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NOx Abatement R&D – Navistar CRADA
Project Overview
CRADA Timeline:

LNT

SCR Bench Reactor

2000-2006 2006-2007 2008-present

Budget
• 2000-2006 budget
– ~$400k/year

• Funding for FY08 
– $125k

• Funding for FY09 
– $125k

Barriers
• Meet 2010 emissions 

standards 
• Maintain high efficiency
• Control SCR performance
– Minimize NOx and 

NH3 emissions

Partners
• Navistar Incorporated 
• Michigan Technological 

University
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• Enable maximum fuel economy while meeting emissions regulations
– Modeling and understanding emissions control devices critical to 

efficient operation

• Obtain accurate temperature dependent 
data under transient operation
– Performance data and rate 

parameters
– Define key catalyst characteristics 

and storage capacity

• Evaluate sensors for on-board 
diagnostic (OBD)

NOx Abatement R&D – Navistar CRADA 
Objectives
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• FY 08 (Completed September 30, 2008)
– Evaluate at least two LNT samples in bench flow reactor to establish 

relationship between space velocity, temperature, and product 
selectivity

• FY 09 (On Target for September 30, 2009 completion)
– Evaluate NH3 storage and reactivity on fresh and aged fully-formulated 

urea SCR catalysts

NOx Abatement R&D – Navistar CRADA 
Milestones
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NOx Abatement R&D – Navistar CRADA 
Approach

Catalyst 
Supplier

• ORNL provides unique 
capabilities and expertise not 
available at Navistar

• Michigan Tech models results 
with input from ORNL

• Navistar implements control 
model for device operation
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• Established SCR test protocol that provides critical transient and 
steady-state conditions for a given temperature

• Evaluated fresh zeolite-based SCR catalyst using protocol at nine 
temperatures and two space velocities as of March 2009 

• Evaluated NOx sensor while operating protocol

• Automated bench reactor to allow 
unattended operation
– Meets ORNL’s stringent safety 

regulations

NOx Abatement R&D – Navistar CRADA 
Technical Accomplishments
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Evaluation Protocol Developed for SCR
• CLEERS SCR focus-group has developed a steady-state SCR protocol 
• Accurate models also require transient data; especially for system control
• CRADA-developed protocol provides both transient & steady-state model parameters 
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Protocol reveals characteristic transient 
chemistry of catalyst
• Planned protocol evaluated at 150-600°C, 30k-120k h-1, inlet NOx: 150-500 ppm 
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Steady-State Results
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Varying NH3/NOx (α-ratio) and T 
demonstrate operating range of catalyst

• Generally, expected trends observed
– With increasing temperature: 
• NOx and NH3 conversion increase

– With increasing NH3 dose (α-ratio):
• NOx conversion increases
• NH3 conversion decreases

Experiment conditions:
– SV = 90,000 hr-1

– NO2/NOx = 0
– α = NH3/NOx = 0.8, 0.9, 1.0, 1.1, 1.2
– Total NOx = 300 ppm
– 10% O2, 5% CO2, 5% H2O

α =
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NH3 inhibits NO-SCR reaction at low T

• Re-plotting data as a function of NH3/NOx 
ratio reveals NH3 inhibition

• For T ≤ 300°C, increasing NH3 decreases 
NOx conversion
– Indicates inhibition of NO-SCR reaction 

by excess NH3 at low T
• Trend previously reported for zeolite-SCR

– M. Wallin et al., J. Catal. 218 (2003) 354
– A. Grossale et al., Catal. Today 136 (2008) 18 

• Temperature of inhibition is catalyst 
dependent 

Experiment conditions:
– SV = 90,000 hr-1

– NO2/NOx = 0
– NH3/NOx = 0.8, 0.9, 1.0, 1.1, 1.2
– Total NOx = 300 ppm
– 10% O2, 5% CO2, 5% H2O

T ≥ 350oC
T ≤ 300oC
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NO2 more reactive than NO at all T
• As expected, 1:1 mixture of NO+NO2 gives 

best performance
– “Fast SCR” reaction

• However, NO2 more reactive than NO at all 
temperatures
– “Slow SCR” reaction not observed with 

NO2

– NO-only is “slowest” reaction
– Characteristic of zeolite catalyst

A. Grossale et al. Catal. Today 136 (2008) 18
• NO2-SCR reaction only contributor to N2O 

formation

Experiment conditions
– SV = 90,000 hr-1

– NO2/NOx = 0, 0.5, 1.0
– NH3/NOx = stoichiometric
– Total NOx = 300 ppm
– 10% O2, 5% CO2, 5% H2O

NO-only

NO2-only

NO2+NO

NO2-only
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NH3 oxidation observed above 350°C

• NH3 oxidation increases rapidly above 
350°C

• Catalyst selective for N2 production from 
NH3 oxidation
– Typically oxidized to NO over precious 

metals
• Model must account for losses of NH3 to 

direct oxidation 
– but not for additional NO formation

Experiment conditions
– SV = 90,000 hr-1

– 300 ppm NH3, 10% O2, 5% CO2, 5% H2O

N2

NO2

NO
N2O 



14 Managed by UT-Battelle
for the U.S. Department of Energy 2009-03_ACE_33_toops

NO-oxidation peaks at 450-500°C

• NO oxidation increases with temperature up 
to 450°C

• Conversion decreases above 500°C
– NOx concentrations approach 

equilibrium values reaction slows

Experiment conditions
– SV = 90,000 hr-1

– 300 ppm NO, 10% O2, 5% CO2, 5% H2O
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Transient Results
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All surface NH3 oxidizes or desorbs at 
temperatures above 400°C
• NH3 storage capacity probed at two points:

1. NH3 uptake during step change at inlet
• Absence of O2
• NH3 stored at all temperatures 
• Storage decreases as T increases

2. Temperature Programmed Oxidation 
(TPO) performed after lean NH3 storage
• Single desorption peak centered 

near 300°C
• All NH3 released/oxidized by 400°C

• All NH3 stored at T ≥ 400°C oxidized by O2
or desorbed when NH3 flow stops

Experiment conditions
– SV = 90,000 hr-1

– NH3 Ads: 300 ppm NH3, 0-10% O2, 5% CO2, 5% H2O
– TPO: 10% O2, 5% CO2, 5% H2O, 5°C/min ramp

NH3 uptake - inert conditions

TadsTPO after lean NH3 uptake

NH3 
desorption
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• NO oxidation step provides another 
measure of NH3 storage capacity
– NO feed constant at 300 ppm after NH3

turned off
– Dips in NO concentration due to 

conversion by stored NH3

– Rate of stored NH3 consumption (depth 
of dip in NO) increases with T

• Comparison to NOx uptake under inert 
conditions confirms oxidation or desorption 
of previously stored NH3

Experiment conditions
– SV = 90,000 hr-1

– 300 ppm NO, 10% O2, 5% CO2, 5% H2O

Stored NH3 not available for subsequent 
NOx reduction above 350°C

NH3 stored NOx reduced by stored NH3

NO profile after removal of NH3

200°C
225°C

250°C
300°C
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Optimization of protocol necessary

• Current research plan requires ~300 hours of catalyst evaluation
– Planned protocol evaluated at 150-600°C, 30k-120k h-1, inlet NOx: 150-500 ppm
– Eight weeks of normal workday operation 

• Protocol must be optimized to aid new catalyst transitions
– Identify most critical experiments through model parameter sensitivity analysis
– Experiments with low sensitivity are removed from the matrix

• Work through CLEERS to relate complete and optimized protocol



19 Managed by UT-Battelle
for the U.S. Department of Energy 2009-03_ACE_33_toops

NOx Abatement R&D – Navistar CRADA 
Future Plans
• Fully execute protocol under all conditions and space velocities 
– Vary total NOx level and increase space velocity up to 120k h-1

• Complete model development and protocol optimization
• Evaluate model parameters with aged catalysts

• New direction for FY10:  
DOC and DPF regeneration kinetics
– DPF regeneration has large impact 

on fuel economy 
– Soot to be collected on production 

or production-intent Navistar 
engines

– Explore effects of advanced 
combustion modes
• Hydrocarbons generated and 

effect on soot oxidation Kinetic Soot Studies

3”1” 
Mini-DPF

Bench-scale 
DPF regeneration
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NOx Abatement R&D – Navistar CRADA 
Summary
• Established evaluation protocol providing both steady-state and transient chemistry
– Benefits experimental and modeling community in addition to Navistar
– Optimized protocol will economize experiments
– Starting point for validated CLEERS SCR protocol for transient behavior 

• Several key SCR-chemistry findings
– Stored NH3 reactivity identified specifically for reactivity to NOx reduction 
– NH3 identified as an inhibiting species at low temperatures
– Temperature dependent NH3 storage identified 

• Detailed transient and steady-state data generated for CRADA partner and model
– Additionally benefits systems level modeling efforts (PSAT)
– Current plans are to publish model and data




