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Overview
TIMELINE
• Start – Jan 2006
• Finish – June 2009
• 85% finished

BUDGET
• Total project funding ($3,748k)
• Funding FY08  ($1,240k)
• Funding FY09 ($947k)

BARRIERS ADDRESSED
• Extend operating range of LTC
• Develop strategies for exploiting LTC 

for optimal FE benefits
• Investigate ignition timing control
• Explore fuel effects on LTC operation

UNIVERSITY PARTNERS
• UM (lead)
• MIT
• UCB
• STANFORD

COLLABORATION
• Sandia National Lab
• Lawrence Livermore 

National Laboratories
• General Motors
• Borg Warner
• Bosch
• Ford Motor Company
• BP
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Objectives

• Expand the operating range of LTC 
engines at both high and low loads

• Investigate methods of achieving 
improved combustion control

• Investigate effects of stratification on 
autoignition and combustion

• Determine kinetics of alternative fuels 
and blends and optimize HCCI 
operation with such fuels.
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Milestones

4

ENGINE MODELING
Kiva – burn correlations
Develop GT model
Applications

HCCI LOAD LIMITS
Establish N.A. limits
Low load – DI effects

-- Kinetic modeling
High Load - Boosted

WALL EFFECTS
Twall/Tin effects
Deposit effects

SPARK ASSIST
Acquire images with SA
Model lean, high T lam. Flames
Develop KIVA SACI model

DI - STRATIFIED CHG MODELS
Flamelet modeling
DNS studies

CHEMISTRY/KINETICS
Measure Ignition delay for biofuels
Validate LLNL model for small esters
Sampling valve experiments

YEAR 1 YEAR 3YEAR 2
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Approach

Remapping Algorithm
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Unique Range of Engine Facilities
UM Optical Engine

(SA-HCCI and Fuels)
UM Heat Transfer Engine
(Thermal Management)

MIT Camless Engine
(Boost and Mode Transitions)

UCB Multi-cylinder Engine
(Boost and Controls)

UM Camless Engine
(Multi-Mode Combustion)

6

Stanford Camless Engine
(DI and Controls)
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Integrated high fidelity model and camless
engine test cell for HCCI FE assessment
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MODEL PROJECTIONS

• Developed a fundamentally based HCCI 
combustion simulation model for use with 
GT-Power®. 

• Model was used to compare different valve 
strategies for a naturally aspirated HCCI 
engine subject to NOx, knock and misfire 
constraints.

• Camless SCTE has been setup and is 
being used for model validation and 
strategy assessment.

User subroutines
Combustion
Heat transfer
NOx

Twall

Fuel
Injector

(DI)

Valve Actuation 
Strategy

A B

Fully flexible valve
actuation (mechanism by
Sturman Industries)



LTC University Consortium

Explored effect of intake pressure on high load limit

• Used GT Power model with UM 
developed combustion correlation to 
investigate the potential of increased 
intake pressure for extending high 
load range.

• Ringing intensity criterion can be 
satisfied by decreasing Φ as boost 
pressure is increased
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Demonstrated increased load limit
in engine experiments

• Net IMEP’s of above 6 bar achieved in the lab
• CA50 must be retarded to decrease ringing 

intensity, while avoiding misfire
• Further load gains may be possible through 

leaner operation at higher boost 
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VW 1.9L TDI engine (CR=17:1), 1800 RPM

Ringing Index
limit

Higher loads
possible here

More fuel, but even more air!
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Extended low load limit with DI during NVO
• Low load  extended to 1 bar NMEP by 

injecting fuel during negative valve overlap 
(NVO) and leaner operation to induce 
recompression reactions

• Observed advanced combustion phasing 
and better cycle stability

• Model studies show maximum effect on 
ignition occurs with Φ ~ 0.8 and moderate 
exothermicity
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Determined the effect of near-wall thermal 
conditions on HCCI limits

• Increased combustion chamber wall temperature 
or presence of the thermal barrier on the wall 
extends the low load limit

• Surface temperature measurements with fast 
thermocouples enable determining:
– Time-varying boundary conditions, with or without  

deposits

• Coupled heat transfer experiments with CFD 
modeling of boundary layer effects to provide: 
– In-depth insight into thermal stratification
– Guidance for developing HCCI range expansion

HCCI Operating Range
Single-cylinder gasoline HCCI  with re-induction of 
residual, fixed exhaust cam lift,  2000 rpm. Experimental 
work performed with UM/GM CRL funding

Wall affected zone highly influenced by wall 
temperature, although thin in can contain 
large fraction of mass
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Insight gained on spark assisted HCCI (SACI)
with optical engine

• Spark assist with high load (Φ ~0.6) 
and low T is dominated by flame 
type behavior

• Without spark, images show similar 
reaction fronts but much slower 
overall combustion

• Spark assist with low load (Φ ~ 0.4) 
and high T shows mixed mode 
combustion

• Without spark, combustion is 
slower and less stable
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HIGH LOAD (Φ=0.62); LOW Tint (271C)

LOW LOAD (Φ=0.40); HIGH Tint (321C)
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Extended model based laminar flame data 
for application to HCCI and SACI ranges 

• Transient flame code (HCT) showed 
that autoignition and flame propagation 
are largely independent processes

• Used HCT to establish database of 
flame speeds beyond range of available 
experimental data

• Flame speeds ( SL~20-40 cm/s) appear 
robust enough for flame propagation in 
SACI and HCCI regions (consistent with 
optical engine observations)

• KIVA model nearing completion based 
on wrinkled laminar flame combined 
with autoignition
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Ignition delay: case C > case A > case B

Peak heat release:  case C > case A > case B

Case A

Case B

Case C

Effects of SOI on mixture formation at TDC:

• Premixed – constant Ф (case A)

• Early SOI – uncorrelated T-Ф fields (Case B)

• Late SOI – negatively-correlated T-Ф fields (Case C)

Initial 
Conditions

T

Investigated autoignition in LTC engine 
environments with DNS

• Small scale effects of T-Φ correlations on 
autoignition and front propagation studied 
using DNS

• Most stratified case displays most 
spatially distributed reactions and burns 
faster, while homogeneous and 
uncorrelated cases exhibit reaction fronts 
and longer burn durations

• Domain: 4.1mm x 4.1mm
(960 x 960)

• Detailed chemistry of H2

• P = 41 atm
• Prescribed random turbulence 

field (u’ = 0.5m/s, L11 = 0.34mm)
• Prescribed random temperature 

field (Tmean=1070K, T’=15K)

Normalized HRR
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Studied effect of DI stratification on LTC

• Developed KIVA- RIF-ER model, 
which considers the effect of 
evaporation in the reaction space for 
accurate modeling of LTC/DI 
combustion

• Demonstrated model capability by 
matching experiments (Dec,2003)

• Studied effect of stratification on 
spatial CO production under low load 
conditions

Effect of evaporation included
in the reaction space

Effect of evaporation
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Determined ignition properties of biofuels and fuel blends

• Measured ignition delays for 3 small biofuel 
esters (basic components of typical biofuels) 
and found a factor of 3 variation in delay times

• Speciation studies of the ester methyl 
butatnoate  (MB) were conducted and the key 
reaction pathways identified.  

• There was excellent agreement between the 
reaction mechanism developed by Westbrook, 
Pitz and co-workers at LLNL

• Identified non-linear behavior for methyl trans-
3-hexenoate (M3H) and n-heptane blends

• Results indicate that biofuel blends could be 
designed with targeted levels of HCCI reactivity
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Future Work
• Focus on High Pressure – Lean Burn path toward 

overall fuel economy gain of 20-40%
– Application to downsized and boosted engines
– Lean burn and high temperature for thermodynamic 

gains
• Determine ways to use fuel and thermal 

stratification interactions for improved combustion
• Explore fuel blends and their effect on combustion 

limits
• Investigate and demonstrate the benefits of multi-

mode combustion methods (SACI, DI) for 
combustion control

• Use full range of models developed in previous 
years (CFD, system, etc) to maintain close 
connection between experimental work and final, in-
vehicle results, including thermal and other 
transients

~ 30 %
FEff Gain

Incr.
CR

RICHLEAN

A

B
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Summary
• We have a well developed and balanced approach to the research task

– Full range of modeling tools from fundamental (flame, kinetic, CFD) to system level (GT 
power)

– Excellent selection of experimental engine facilities (single cylinder, multi-cylinder, rapid 
compression facility)

– Tools now available to fully focus work on achieving large fuel economy benefits
• We have accomplished our objectives for the project so far

– Demonstrated FE potential of candidate valve strategies
– Extended low load limit to 1 bar NMEP by DI during NVO
– Extended high load limit to 6 bar NMEP by boosted, dilute operation
– Demonstrated controllability improvement with spark assist and showed multi-mode 

combustion by propagating reaction fronts and autoignition
– Obtained fundamental ignition data for biofuels and fuel blends for optimizing fuel/engine 

interactions
– Used DNS to show that stratification can effect ignition and heat release depending on 

nature of T, Φ correlation
– Demonstrated combustion control by fast thermal management on multi-cylinder engine

18
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