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Project Overview 

• Started in FY2013 
− Reprogrammed project that was 

unfunded in 2012 
− Prior project focused on effects of 

advanced combustion regimes on 
emissions control (Multi-mode) 

 

Timeline Barriers 

Budget  
• FY2013: $400k (expected) 
• FY2012: $0k 

• BES-funded scientists Sheng Dai and 
Steve Overbury 

• Center for Nanophase Materials 
Science (CNMS) user project 
 
 

• From DOE Vehicle Technologies 
Multi-Year Program Plan (2011-2015) 
− 2.3.1.B: Lack of cost-effective 

emission control 
− 2.3.1.D: Durability 

• Responsive to ACEC Tech Team 
requested emphasis on low 
temperature emissions control 
 Partners  



3 

Objectives and Relevance  
Develop emission control technologies that perform at low temperatures (<150ºC) to 

enable fuel-efficient engines with low exhaust temperatures to meet emission regulations 

Top: J.Kubsh, “Light-duty Vehicle Emission Standards”, 01/10/2013. 
Bottom:  C. DiMaggio, “ACEC Low Temperature Aftertreatment Program”, 06/21/2012. 

Emissions 

Fu
el 

Ec
on
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y 

• Project aims to identify advancements in 
technologies that will enable commercialization 
of advanced combustion engine vehicles 

– Advanced combustion engines have greater 
efficiency needed to meet CAFE 
• consequently lower exhaust temperatures 

– At low temperatures catalysis is challenging   
• emissions standards harder to meet, getting stricter 

• Perform research on strategies to improve low 
temperature catalysis for emission control  

– Need ~90% conversion at T ≤  150°C  

• Investigate “trap” material technologies that 
would temporarily store emissions  

– Released and converted later under periodic high 
temperature conditions 
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Improved vehicle efficiency leads to low 
exhaust temperature 
• Advanced combustion modes have greater 

efficiency and consequently lower exhaust 
temperatures 

• Low temperature exhaust is not simply a 
start-up problem 

• Exhaust temperatures stay low throughout 
the FTP 

• Further improvements in efficiency will be 
even more challenging for emissions 

– Waste heat recovery (WHR) 
– ACEC: “Turbo = Catalyst Refrigerator” 

Top: C. Lambert, “Future Directions in SCR Systems”, 2012 CLEERS workshop, 05/01/2012. 
Bottom: M. Zammitt, “ACEC Future Aftertreatment Strategy Report”, 01/10/2012. 
Turbo: http://www.autoblog.com/2012/10/03/turbo-sales-to-accelerate-by-80-could-make-up-40-of-global-of/ 

= 

TURBOTurbo 
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Current emissions control technologies 
have limited activity at 150°C 

TWC 

All: M. Zammitt, “ACEC Future Aftertreatment Strategy Report”, 01/10/2012. 

DOC  
(HC)  

LNT 

SCR 
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Approach: 
Pursue innovative catalyst technologies to improve low 
temperature emissions control 

• Coordinate with BES-funded scientists to identify 
catalysts/technologies that have potential  
– Transfer “science” findings to applied settings 

• Evaluate promising catalysts/technologies under 
exhaust-relevant conditions 
– H2O, CO2, CO, HC, NOx 

• Investigate durability 
– Sulfur, aromatics, hydrothermal cycling 

• Characterize catalysts/technologies to understand 
fundamental behavior and limitations 
– Particularly when performance is being impeded 
– Materials and specific catalyst functionality/chemistry 

• Redesign catalysts trying to overcome shortcomings 
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Milestones  
• Previous project scope was aimed at measuring the impact of advanced 

combustion modes on emissions control  
– Low temperature reactivity seen to be a significant hurdle 

• Example completed previous milestones are: 
– Comparison of Cu- and Fe-zeolite Urea-SCR catalyst performance for multimode diesel 

engine operation 
– Characterization of hydrocarbon oxidation efficiency of diesel oxidation catalyst for low 

load operation with advanced combustion which results in lower exhaust temperatures 
 

• Current direction is to identify novel/innovative technologies that can be 
implemented to address the challenges of advanced combustion strategies 

 

• FY13 Milestone: Characterization of performance and surface 
morphology for a novel candidate catalyst (September 30, 2013) 
– On target 
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Collaborations 
• Basic Energy Sciences [active] 

– Sheng Dai and Steve Overbury (ORNL) 
– Center for Nanophase Material Science (ORNL) 

 

• Interactions with other fundamental catalysis groups [planned] 
 

• CLEERS [active] 
– Dissemination of data; presentation at CLEERS workshop 

 

• USCAR/USDRIVE [active and future activities] 
– Participation in US DRIVE 2012 Low Temperature Workshop 

• ACEC catalyst sub-team (GM, Ford, Chrysler, PNNL, ORNL) 
– Guidance of critical technology needs 
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Summary of Technical Accomplishments 
• Investigated innovative Au@Cu (core@shell) catalyst for oxidation 

– Copper oxide surrounding Au core shows excellent low temperature CO oxidation 
behavior 
• In presence of CO2 and H2O 

– Inhibition by HC and NOx observed  
• Could be potential CO-cleanup catalyst at tailpipe  

– Durability investigated up to 800°C 
• Performance is good up to 700°C, but falls off 800°C; Sintering observed 

 

• Demonstrated synergy of mixing of Au@Cu and Pt catalysts and 
potential to overcome inhibitions 
– Pt inhibited by CO at low temperature; improved with AuCu 
– Very high NO to NO2 oxidation observed with mixture 

 

• Synthesized and evaluated new catalysts using a new support 
– Improved hydrothermal durability using ceria-zirconia support 
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Synthesis of AuCu/SiO2 Catalyst 
• Supported Au nanoparticles serve as templates to synthesize small 

and disperse intermetallic AuCu nanoparticles 
– Synthesized using aqueous/solution techniques 

H. Zhu et al. Applied Catalysis A: General 2007, 326, 89-99 
Bauer et al. Phys. Chem. Chem. Phys., 2011, 13, 2571-2581 

Oxidized catalyst  
Au core + CuOx shell 

SiO2 

Au(en)2Cl3  
pH=10  

(1.0 M NaOH) 
SiO2 

H2N

NH2

H2N

NH

Au

N N

amine ligand coats the 
surface of gold 

Cu(C2H3O2)2
  

Organic solution 
at 300゜C  

Cu0 

Reduction 
H2 ~150 ゜C 

Reduced catalyst = AuCu Alloy 
(Inactive) 

SiO2 

Metallic  
Cu addition 

Reduce in 
H2 ~150 ゜C SiO2 

Au Au 

Au 
Au Au 

SiO2 
Au Au 

Au 
Au Au 

SiO2 
Oxidation 

When reduced, 
catalyst forms a 

AuCu alloy 
Inactive for CO 

oxidation 

When oxidized, 
catalyst forms 

Au@Cu  
core-shell 

ACTIVE for CO 
oxidation 
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AuCu/SiO2 catalyst is activated under lean 
conditions; forms core (Au) shell (CuOx)  
• When oxidized, Au 

core surrounded 
by  amorphous 
CuOx shell after 
heating at 500 °C 
 
 

• After H2 reduction 
at 300 °C, AuCu 
alloy forms 
– Time required to 

be reduced 
– Brief rich period 

will not inactivate 
catalyst 

Oxidation 

Au 

CuOx ACTIVE 

Inactive 

Au 
38.2 
 

2θ 

AuCu 40.3 
 

2θ 

Reduction 

Au 
38.2 
 

2θ 

AuCu 
40.1 
 

2θ 

AuCu  
alloy 

Oxidation pretreatment conditions: 
Flow Rate = 75 sccm 
550 ̊C for 16 in 10% O2 + 1% H2O in Ar 
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AuCu/SiO2 
W/F = 0.50 g·h/mol 

AuCu/SiO2 
W/F = 0.25 g·h/mol 

Pt/Al2O3 
W/F = 0.50 g·h/mol 

Pt/Al2O3 
W/F = 0.25 g·h/mol 

Catalyst = 50-100 mg 
10% O2 
1% H2O 
1% CO 
Ar (balance) 
Flow Rate = 75 sccm 

Au@Cu/SiO2 catalyst is excellent for 
low temperature CO oxidation  

• Au@Cu/SiO2 shows high 
activity even at 50°C 
– Reactivity as low as 0 °C 

• Similar loadings of 
Pt/Al2O3 catalyst show 
little activity below  
200°C 
– T50% = 182-205 °C 
– Pt/Al2O3 space velocity: 
W/F = 0.5 g·h/mol is 27k h-1  

 

CO-only 
oxidation 

                [weight catalyst (g)] 
W/F =    ––––––––––––––––––– 
             [molar gas flow (mol/h)] 
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Low temperature activity is limited in the 
presence of NO and hydrocarbons 
• Strong inhibition by both NO and HC • Pt/Al2O3 displays less impact, but still 

shows inhibition  

• Opportunity exists as a low temperature CO-cleanup catalyst for Au@Cu 
– Passive SCR approach presented by Jim Parks in prior talk (ACE033) shows CO-only 

exhaust concerns 
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Flow Rate = 75 sccm 



14 

Combination of Au@Cu/SiO2 and Pt/Al2O3 
studied to explore potential synergies 

• Au@Cu/SiO2 and 
Pt/Al2O3 were 
physically mixed 
together 
 

• CO oxidation activity 
increases compared 
to Pt/Al2O3 
– but not as high as 

Au@Cu/SiO2 alone 
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NO oxidation synergy observed with 
Au@Cu/SiO2 + Pt/Al2O3 physical mixture 
• Improved low temperature CO-oxidation  

in the presence of NO w/ Au@Cu+Pt 
– Better than either individual catalyst 

• For Au@Cu+Pt, NO oxidation to NO2 
approaches equilibrium limit at 250°C 

• Considerably more active than Pt/Al2O3 

Theory:  1. NO oxidation inhibited by CO on Pt 
 2. Au@Cu catalyst oxidizes CO, thus improving NO oxidation 
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Durability a concern with SiO2 support 
• Au@Cu/SiO2 aged in 10% O2 + 1% H2O in Ar 

• Catalyst relatively stable up to 700°C 
– Only very low temperature activity (T< 150°C) 

diminishes with increasing aging temperature 

• Particles grow up to ~25 nm in diameter after 
thermally aged at 800°C for 10h (8-9 nm avg.) 
– Sulfur also shown to strongly deactivate  

• Improved metal support interactions needed 
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Supporting AuCu catalyst on ceria-
zirconia shows improved stability 
• Same synthesis procedure as 

followed as described in slide 10 

 

• Even with low weight loading high 
activity shown with unaged sample 
– W/F = 0.25 g*h/mol 

• SV = ~95,000 h-1; denser than SiO2 
– T50% = 60°C 
– T90% = 98°C 

 

• Activity drops after aging at 800°C, 
but is still very high 
– T50% = 125°C 
– T90% = 155°C 

Aging Temp. 

CO-only oxidation 
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Catalysts studied show promise, but 
challenges remain 
• T-90 compared for each catalyst and 

condition studied 
– T-90 = temperature where 90% 

conversion is achieved 
– The lower the better 

• 90% Oxidation of HCs and CO at 
150°C will continue to be difficult, but 
exploiting synergies of catalysts show 
promise 
– Both Au@Cu/SiO2 and Pt/Al2O3 show 

impact from NO and HCs 
– Mixing catalysts results in ~35°C 

drop in T-90 

• Matching active catalysts with the 
right support shows promise for 
overcoming durability challenges 
– 90% conv. achieved w/ 800°C aging 
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Future work 
• Continue investigation on Au@Cu with ceria-zirconia and other supports 

– Activity in the presence of HC and NO 
– Physical mixture with Pt/Al2O3; Pt co-supported on ceria-zirconia  
– Additional supports while studying/characterizing metal support interactions 

• Specifically interested in titania-modified SiO2 support  
– Discussed briefly last year and this year in CLEERS project (ACE022) 

 

• Initial focus is on oxidation catalysts, but future efforts will move into trap 
materials and NOx reduction catalysts 
– Low temperature NOx and HC trap materials 

• Release at moderate temperatures 
– NOx storage reduction catalysis with low temperature release and highly active 

reduction chemistry 
 

• Goal is to move from powder catalysts to washcoated cores and further validation 
in engine exhaust 
– Developing washcoating capability 



20 

Summary 
• Relevance:  

– Advanced combustion modes have greater efficiency and consequently lower exhaust temperatures 
– Simultaneous increase in efficiency and decrease in allowable emissions necessitates improved 

emissions control system performance, especially at low temperatures 

• Approach:  
– Pursue innovative catalyst technologies to improve low temperature emissions control 
– Evaluate performance, investigate durability, characterize materials, identify fundamental limitations 

• Collaborations:  
– Basic Energy Science scientists, CLEERS, USCAR/USDRIVE 

• Technical Accomplishments: 
– Investigated activity, durability and material properties of Au@Cu core-shell oxidation catalyst 
– Identified synergistic effects of physical mixture of Au@Cu and Pt catalysts that overcome some of 

the observed inhibitions 
– Synthesized new catalysts with a range of supports, that significantly improve durability 

• Future Work: 
– Continue investigation on AuCu with ceria-zirconia and other supports 
– Move into NOx reduction catalysts and trap materials   
– Move from powder catalysis to washcoated cores and further validation in engine exhaust 
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Technical back-up slides 
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DRIFTS analysis shows NO interactions on 
catalysts are unstable above 200°C 

• Evidence of NO adsorbed 
on AuCu/SiO2  

– Nitrates: 1300-1650 cm-1  
– Chemisorbed on Au; faintly at 

~1880 cm-1 

• Heating nitrated samples 
while flowing NO+O2 results 
in removal at 200°C 

– Coincides with CO-lightoff 
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Aging Au@Cu/SiO2 
as-synthesized 600 C for 10h 700 C for 10 h 800 C for 10h

Scherrer Analysis = 7.3 nm, TEM = 8.7 nm 

700  ̊C, 10 h  

Scherrer Analysis = 9.0 nm, TEM = 8.4 nm 

Scherrer Analysis = 5.7 nm, TEM = 5.9 nm 

Scherrer Analysis = 4.0 nm 

600  ̊C, 10 h  

as-synthesized  

800  ̊C, 10 h  
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This sample is different from the two above.  
This sample was from the first Au@Cu batch 
that was heated 500, 600, 700 and 800 C. 

Heated at 600 C for 10 h. 

Heated at 700 C for 10 h. 
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600 C, 10h 700 C, 10h 

800 C, 10h 800 C, 10h 
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Au-only catalyst supported on ceria-
zirconia also shows good stability 
• Even with low weight loading high 

activity shown with unaged sample 
– W/F = 0.25 g*h/mol 

• SV = ~95,000 h-1 

– T50% = 50°C 
– T90% = 94°C 

 

• Activity drops after aging at 800°C, 
but is still very high 
– T50% = 103°C 
– T90% = 182°C 

 


	Low Temperature Emissions Control
	Project Overview
	Objectives and Relevance 
	Improved vehicle efficiency leads to low exhaust temperature
	Current emissions control technologies have limited activity at 150°C
	Approach:
	Milestones 
	Collaborations
	Summary of Technical Accomplishments
	Synthesis of AuCu/SiO2 Catalyst
	AuCu/SiO2 catalyst is activated under lean conditions; forms core (Au) shell (CuOx) 
	Au@Cu/SiO2 catalyst is excellent for low temperature CO oxidation 
	Low temperature activity is limited in the presence of NO and hydrocarbons
	Combination of Au@Cu/SiO2 and Pt/Al2O3 studied to explore potential synergies
	NO oxidation synergy observed with Au@Cu/SiO2 + Pt/Al2O3 physical mixture
	Durability a concern with SiO2 support
	Supporting AuCu catalyst on ceria-zirconia shows improved stability
	Catalysts studied show promise, but challenges remain
	Future work
	Summary
	Technical back-up slides
	DRIFTS analysis shows NO interactions on catalysts are unstable above 200°C
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Au-only catalyst supported on ceria-zirconia also shows good stability
	Reviewer-only slides
	Response to reviewers comments
	Presentations and Publications
	Critical assumptions and issues



