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Project History 

• Initial CRADA signed and project initiated in February 
2007 – Deactivation mechanisms of urea SCR catalysts 

• Annual budgets were smaller than planned so some 
work was de-scoped 

• CRADA extended and expanded to also include HC 
trap studies in October 2010 (beginning for FY11), total 
budget remained as initially agreed 

• Finish – September 2012 (end of FY12) 
• The project consisted of two parts that will be discussed 

separately: 
• Deactivation of zeolite-based urea SCR catalysts 
• Development of Hydrocarbon Adsorber Materials 
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Approach 

• Ford tasks: 
– Procure urea SCR catalyst and HC trap materials 

• Commercial materials, model and doped zeolites 
– Laboratory, engine and vehicle aging of materials 
– Laboratory and engine performance testing 
– Provide aged materials for PNNL characterization 
– Develop refined laboratory aging protocols 

 

• PNNL tasks: 
– Use PNNL/IIC’s state-of-the-art tools to characterize sets 

of laboratory- and engine-aged samples provided by Ford. 
– Correlate materials characterization results with 

performance data (provided by Ford), and with changes in 
catalyst surface chemical properties as a function of wide 
array of laboratory and engine aging conditions. 

– Use this information for determining important mechanisms 
for performance and activity degradation. 

PNNL Catalyst 
Characterization Facilities 
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The project consisted of two parts: 
 
-  Deactivation of zeolite-based urea 
 SCR catalysts – Chuck Peden (P.I.) 
 
-  Development of Hydrocarbon 
 Adsorber Materials – Jong Lee (P.I.) 
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Project Overview 

Timeline 

Budget 

Partners 

Barriers 
• Start – February 2007 
• CRADA extended and 

expanded (now also 
includes HC trap 
studies to be discussed 
separately) in FY11 
• Completed – 

September 2012 

•DOE funding for 
urea SCR studies in 
FY12:  $150K 

• Discussed on next 
slide 

• Institute for Integrated 
Catalysis, PNNL 
• Ford Motor Company 
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Barriers 

● Lean-NOx emission control technologies, including 
urea selective catalytic reduction (SCR) are 
needed to enable wider use of fuel-efficient diesel 
engines. 

● Regulations impose challenging requirements for 
catalyst activity and durability, with durability 
especially difficult due to a relative lack of 
experience with this new technology. 

● As such, there is a critical need to develop realistic 
laboratory aging protocols that effectively simulate 
engine aging induced catalyst deactivation. 
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Purpose of the Work 

• Correlate the performance and characterization of 
the catalysts aged in the laboratory, on engines and 
on vehicles. 

• Develop an understanding of various specific aging 
factors identified by Ford and in this work as 
possibly impacting the long-term performance of 
urea selective catalytic reduction (SCR) materials in 
diesel vehicle applications. 

• (Ford activity):  Use these results to develop realistic 
laboratory aging protocols, saving experimental time 
and cost. 
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1. Measurement of the performance and characterization of the 
catalysts used for various Ford-developed laboratory aging 
protocols. 

2. Sulfur poisoning of urea SCR catalysts that follow a diesel 
oxidation catalyst:  
– Studies of sulfur poisoning of urea SCR catalysts had only considered effects of 

SO2 since this is the primary S-species in the exhaust.  However, DOC’s (which 
typically contain Pt) will oxidize SO2 to SO3. Ford studies showed significantly 
greater poisoning by SO3 than with SO2. 

– PNNL performed detailed studies aimed at characterizing the differing effects of 
these two sulfur species, and to identify their respective mechanisms of poisoning. 

3. Laboratory studies of phosphorus poisoning. 
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Program Summary 

Studies performed have focused on a 
number of critical issues: 



4. Measurement of the performance and materials 
characterization of engine-aged urea SCR catalysts.  

5. Develop a detailed understanding of unusual hydrothermal 
aging of urea SCR catalysts observed at Ford: 

– Initial results published in SAE paper by Ford researchers (Cavataio, et al.) 
that suggested possible way to obtain better HT performance. 

– PNNL reproduced the Ford results in early FY10 on some zeolite catalysts, 
then performed studies of model catalysts aimed at understanding the 
nature of the active catalyst responsible for the unusual HT behavior. 
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Program Progress 

Studies to date have focused on a 
number of critical issues: 

Will present one highlight from each 
of these areas in the following. 
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Figure 1a. 

1. Performance and Characterization 
of Lab-Aged Catalysts 

• First studies carried out when little was known about Cu-zeolite 
aging in exhaust relevant conditions 

• PNNL characterization clearly showed loss of zeolite crystallinity 
correlated with performance loss measured at Ford. 

• Urea may have some influence on catalyst aging. 
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Y Cheng, J Hoard, CK Lambert, 
JH Kwak, CHF Peden, Catalysis 
Today 136 (2008) 34-39. 

NOx SCR Performance:  
Laboratory-aged Catalyst 

(A) hydrothermal only 
(B) "dry urea" + hydrothermal  
(C) "wet urea" + hydrothermal 
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2. Sulfur poisoning of SCR catalysts that 
follow a diesel oxidation catalyst 

• SCR Performance clearly sensitive to whether sulfur present as 
SO2 (as in engine exhaust) or SO3 (as after a DOC). 

• PNNL-obtained XPS and EXAFS results verified significantly 
higher residual sulfur concentrations with SO3 exposure. 

• TPD used to estimate strength of binding of formed S-species. 
Y Cheng, CK Lambert, DH Kim, 
SJ Cho, JH Kwak, CHF Peden, 
Catalysis Today 151 (2010) 266-270. 

Ford SCR Performance Data 
Exposure to Either SO2 or SO3 
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3. Laboratory studies of poisoning 
phosphorus in the exhaust 

• SCR performance (not shown) and NH3 oxidation show some 
sensitivity to prior exposure to phosphorus. 

• Phosphate-like P present at various concentrations via XPS. 
• 31P NMR peak shifts with phosphorus loading – why? 

Y Cheng, D Dobson, CK Lambert, JH 
Kwak, CHF Peden, unpublished results. 

Ford NH3 Oxidation Data With and 
Without Varying Phosphorus Exposures 

31P NMR Data 

Low P 

High P Steady State Comparison
SV=30K, 350ppm NH3
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4. Non-Uniform Deactivation of 
Vehicle-Aged SCR Catalysts 

1

7

1 inch

front

back

• Fully-formulated Cu/CHA catalyst; 50K miles on Super-Duty Truck 
• Steady State NOx-NH3 SCR, SV=30K, 350ppm NO/350ppm NH3 
• Front end (“M1”) only core to show significant deactivation 
• Even within this first (M1) core, reactivity is worse at the front end. 
• Only very front of catalyst shows contaminants (P,C,Zn but no S), and 

changes in Cu (TPR and XPS). 

Cu XPS Data 

Ford Laboratory SCR Performance 
Data of Vehicle-Aged SCR Catalyst 

Y Cheng, H Jen, M Jagner, CK Lambert, JH Kwak, 
DH Kim, CHF Peden, 2010 DEER and 22nd NAM 
(2011) Presentations. 
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Under moderate aging conditions, 
large differences in SCR NOx 
performance is observed above 
400°
 

C. 

Under severe aging conditions, 
Catalyst B retains high temp. 
performance but low temp. 
activity is now unacceptable. 

G Cavataio, H-W Jen, JR Warner, 
JW Girard, JY Kim, CK Lambert, 
SAE 2008-01-1025 

5. Unusual Hydrothermal Aging of 
Urea SCR Catalysts  
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5. Unusual Hydrothermal Aging of 
Urea SCR Catalysts  

• XRD shows progressive dealumination of Cu/beta catalyst. 
• 27Al NMR also show loss of zeolite crystallinity but no new features. 
• Isolated CuO shows significant SCR activity at high temperature. 
• CuO clusters at high Cu loading oxidize the NH3 and produce NOx. 

CHF Peden, JH Kwak, SD Burton, RG Tonkyn, DH 
Kim, JH Lee, HW Jen, G Cavataio, Y Cheng, CK 
Lambert, Catalysis Today 184 (2012) 245-251. 

SCR Performance 
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The project consists of two parts: 
 
-  Deactivation of zeolite-based urea 
 SCR catalysts – Chuck Peden (P.I.) 
 
-  Development of Hydrocarbon 
 Adsorber Materials – Jong Lee (P.I.) 
 then transitioned to Chuck Peden 
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Overview 

Timeline 

Budget 

Partners 

Barriers 
•Start – October 2010 
•Finish – September 2012 

• DOE funding in: 
• FY12:  $125K; 

total funding of 
$250K for 2 year 
program. 

Upcoming stringent hydrocarbon 
emission standards 
Increased HC emissions from 
advanced combustion, vehicle 
electrification & biofuel (E85) 
Better understanding of the  HC 
adsorber materials for improved 
performance and durability 

• Institute for Integrated 
Catalysis, PNNL 
•Ford Motor Company 
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Objectives 

• Ford carrying out studies of potential HC adsorber 
materials for two applications: 
– Diesel cold-start applications 
– E0 and E85 fueled vehicles 

 

• Focus of these Ford studies is on comparative full feed 
performance with a range of materials that vary: 
– Zeolite type (variations in pore size and shape, acidity (Si/Al ratios), 

effects of added metals and/or other exchangable cations 

Active Bypass HC Trap System Passive In-line HC Trap System 
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Objectives for PNNL Work  

PNNL studies were aimed at a more fundamental 
understanding of important HC Trap characteristics by: 
• Performance measurements that include single ‘model’ hydrocarbon 

components (ethanol, toluene, n-dodecane, propene) in order to 
isolate varying effects of HC size, degree of unsaturation, and the 
presence of heteroatoms (notably, oxygen). 

• Assessment of the effects of water and CO2 on performance. 
• Use state-of-the-art catalyst characterization facilities to identify 

modes of deactivation experienced in Ford laboratory studies. 
• As in the studies at Ford, catalyst variability was assessed in the 

more fundamental studies at PNNL: 
1. Effect of Si/Al ratio 

• acidity and hydrophobicity 
2. Effect of zeolite pore size & structure 

• HC size exclusion and limits on diffusion) 
3. Effect of metals and/or other exchanged cations 

• Possible oxidation reactions and pore size modifications 19 



Example of Recent Results 
from Studies at Ford 

Jason Lupescu, 
CRADA Conference 
Call Data 

• Complex hydrocarbon feed 
includes ethanol, 
branched and straight-
chain paraffins and 
unsaturated HCs, 
aromatics, and aldehydes 

• Data used to compare 
performance of different 
zeolites for these mulitple 
HCs. 
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Beta-25 Zeolite:  Effects of Aging & H2O 

• Ethanol desorption at <200oC, ethylene desorption at >200oC 
• Significant loss of ethanol adsorption & dehydration with 3.5% H2O 
• Practically no adsorption of ethanol with H2O after HTA 
• Blocking of pores by H2O?  
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Technical Summary 

A number of studies of zeolite-based SCR catalysts were 
completed including: 
• Initial studies focused on the relevance of various laboratory aging conditions 

(Catal. Today 136 (2008) 34). 
• Comparative poisoning by SO2 and SO3 (Catal. Today 151 (2010) 266). 
• Mechanism of poisoning by phosphorus species (unpublished work). 
• Detailed studies of engine and vehicle aged SCR catalysts (2010 DEER and 22nd 

NAM (2011) presentations). 
• Nature of a high-temperature active phase formed upon HTA of zeolite-based 

SCR catalysts (Catal. Today 184 (2012) 245). 
For last two years of this CRADA, studies aimed at providing 
fundamental insights into the performance of zeolite-based HC 
Trap materials were performed: 
• Identification of optimum properties including zeolite pore size and structure, 

acidity, and incorporation of metals and/or other exchangeable cations, including: 
– Studies of ethanol adsorption and reaction as a function of zeolite structure, 

hydrothermal aging, and the presence of water. 
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Future Work 

No future work is planned; this 
program has been completed. 
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Extra Data Slides 
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How Does a Hydrocarbon Trap Work? 

Square channels 
on front face 
of HC Trap brick

Zeolite cage structure 
traps and holds 
hydrocarbon molecules 
at metal ion sites (Al-1) 
until precious metal 
catalyst in washcoat is 
hot enough to oxidize 
them.

Beta Zeolite
Catalyzed HC trap 
washcoats on 
ceramic honeycomb 
monolith 
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Brief Summary of Recent 
PNNL Studies 

• Obtained model zeolite samples relevant to studies being carried out at 
Ford and designed to probe the effects of various zeolite properties on 
HC adsorber performance and durability. 

• Examined the effects of HTA of the model zeolites on their physical 
properties 
– Determined when loss of crystallinity, and loss of surface area and acidity 

occurs as a function of some hydrothermal aging conditions. 
• Evaluated adsorption & desorption characteristics of various individual 

hydrocarbons with respect to Si/Al ratio, HTA, and the presence of water. 
– Ethanol dehydration to ethylene during ethanol-TPD 
– Ethanol desorption at <200ºC, ethylene desorption at >200ºC 
– Significant loss of ethanol adsorption after HTA 
– Very little adsorption in the presence of H2O 
– Improved ethanol adsorption with H-ZSM-12 
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HC Adsorption/Desorption Testing 

• Reactor setup and test procedures established with a commercial sample 
– Reactor system to handle both monolith and powder samples 

• For ethanol adsorption/desorption studies : 
– Temporal exposure to ethanol at room temperature, followed by TPD 
– Effects of H2O, aging, Si/Al ratio, etc.  

 Commercial HC Trap Sample on a Monolith 
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Interaction between Ethanol and Water 

• Ethanol adsorption with/without H2O, followed by TPD without H2O 
(previously TPD with H2O/N2) 

• Slight reduction in C2H5OH ads, but no effect on C2H4 formation 
• No evidence of pore blocking during co-adsorption of ethanol & water 
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Interaction between Ethanol and Water 

• Ethanol adsorption before/after H2O adsorption, followed by dry-TPD  
 Ethanol displacement by H2O during H2O adsorption (E/W) 
 H2O displacement by ethanol during ethanol adsorption (W/E) 

• Significant reduction in ethanol and C2H4 due to ethanol displacement 
by H2O (E/W)! 

33 



Comparative Behavior of 
Different Zeolites 

• No evidence of pore blocking during co-adsorption of ethanol & water 
• Water replaced by ethanol (W/E) 
• Weakly adsorbed ethanol easily replaced by H2O (E/W) 

 More ethanol retained and dehydrated over H-ZSM-12 despite higher 
Si/Al2 ratio!  Effect of pore connectivity? 
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