Cryo-Hydrogen Storage Workshop
February 15, 2011
Crystal Gateway Marriott
Crystal City, Virginia

Ned T. Stetson
Acting Hydrogen Storage Team Lead
Fuel Cells Technologies Program
U.S. Department of Energy
Presentation Overview

• Welcome and Introductions!
• Recap of Compressed Gas Workshop (Feb. 14th)
• Introduction to cryo-compressed and cryo-sorbent storage
• Objective of Workshop
• Scope of Workshop
Key Workshop and DOE Contacts

The Workshop Team

Larry Blair
Consultant to DOE

Bob Bowman
ORNL

Mike Tetelman
SRA International

The DOE Hydrogen Storage Team

Ned Stetson
Acting Hydrogen Storage Team Lead
202-586-9995
ned.stetson@ee.doe.gov

Carole Read
Technology Development Manager
202-586-3152
carole.read@ee.doe.gov

Grace Ordaz
Technology Development Manager
202-586-8350
grace.ordaz@ee.doe.gov

Scott McWhorter
Hydrogen Storage Technical Detalee
202-586-7009
christopher.mcwhorter@ee.doe.gov

Kevin Hofmaenner
Hydrogen Storage Support
202-586-3632
kevin.hofmaenner@ee.doe.gov

Golden Field Office: Jesse Adams, Jim Alkire, Paul Bakke, Katie Randolph and Kristian Whitehouse
Recap of cH₂ Workshop

• Carbon Fiber
 – ORNL pursuing low cost precursors for high-strength CF
 – Multiple fibers with matched strength/modulus would allow optimization of fiber use on tanks
 – Appropriate CF packaging will reduce labor/manufacturing steps
 – QC at CF and tank manufacturers can reduce cost and weight

• Balance of Plant
 – Consider consolidation versus separate functionalities
 – Match safety factors of BOP and tank components
 – Component standards needed

• Alternative
 – Type II, hoop wrapped, tanks
 – Linerless and/or bladder lined tanks
 – Nanofiber addition to CF matrix
 – Optimization of multi-tank configurations
Above the critical temperature (33K), H₂ density increases rapidly with pressure.

Supercritical fluid densities greater than the liquid hydrogen density (71 g/L) are possible.
Cryo-compressed hydrogen systems

• High-pressure capable cryo-vessels
 ➢ Double-walled vessels
 ➢ Inner vessel: high-P Type III cylinder
 ➢ Multi-Layer Vacuum Super Insulation (MLVSI)
 ➢ Improved dormancy vs. liquid
 ➢ > 40 g/L H₂ system density possible
 ➢ > 6 wt.% is achievable

Figure sources: ANL, LLNL
Hydrogen Sorbents

- High surface area, porous materials
 - Diatomic molecule adsorbs on surface
 - Excess capacity reaches a maxima at a specific pressure, above which advantages are minimized
 - For carbon-based materials, ~1 wt% per 500 m²/gm specific surface area

“Material” Hydrogen Capacity Definitions

- Porous Material
- Excess H₂ Capacity
- Absolute H₂ Capacity
- Total H₂ Capacity

Figure sources: Karl Gross, H₂ Technology Consulting
Sorption Systems

- Adsorption is through weak physisorptive interactions
 - Van der Waals-type interactions
 - For carbon-based materials, ~4-6 kJ/mol H₂
 - Capacity drops off as temperature increases

Adsorption isotherms for MOF-5

Source: Ford

Comparison against targets

<table>
<thead>
<tr>
<th>Performance and Cost Metric</th>
<th>Units</th>
<th>CcH2</th>
<th>MOF-177</th>
<th>2010 Targets</th>
<th>2015 Targets</th>
<th>Ultimate Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usable Storage Capacity (Nominal)</td>
<td>kg-H₂</td>
<td>5.6</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usable Storage Capacity (Maximum)</td>
<td>kg-H₂</td>
<td>6.6</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Gravimetric Capacity</td>
<td>wt%</td>
<td>5.5-9.2</td>
<td>4.1</td>
<td>4.5</td>
<td>5.5</td>
<td>7.5</td>
</tr>
<tr>
<td>System Volumetric Capacity</td>
<td>kg-H₂/m³</td>
<td>41.8-44.7</td>
<td>34.1</td>
<td>28</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>Storage System Cost</td>
<td>$/kWh</td>
<td>12</td>
<td>18</td>
<td>4</td>
<td>2</td>
<td>TBD</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>$/gge</td>
<td>4.80</td>
<td>4.6</td>
<td>2-3</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>Cycle Life (1/4 tank to Full)</td>
<td>Cycles</td>
<td>5500</td>
<td>5500</td>
<td>1000</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Minimum Delivery Pressure, FC/ICE</td>
<td>atm</td>
<td>3-4</td>
<td>4</td>
<td>4/35</td>
<td>3/35</td>
<td>3/35</td>
</tr>
<tr>
<td>System Fill Rate</td>
<td>kg-H₂/min</td>
<td>1.5-2</td>
<td>1.5-2</td>
<td>1.2</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Minimum Dormancy (Full Tank)</td>
<td>W-d</td>
<td>4-30</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂ Loss Rate (Maximum)</td>
<td>g/h/kg-H₂</td>
<td>0.2-1.6</td>
<td>0.9</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>WTT Efficiency</td>
<td>%</td>
<td>41.1</td>
<td>41.1</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>GHG Emissions (CO₂ eq)</td>
<td>kg/kg-H₂</td>
<td>19.7</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ownership Cost</td>
<td>$/mile</td>
<td>0.12</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Commonalities and Differences

• **Cryogenic operation**
 – Cryo-compressed: 20 - +100 K
 – Cryo-sorbents: ~77 - +100 K

• **Heavily insulated pressure vessel**
 – Cryo-compressed: current designs use MLVSI
 – Cryo-sorbents: may use MLVSI but other options being investigated

• **Inner pressure vessel**
 – Cryo-compressed: may operate up to 350 or even 700 bar
 – Cryo-sorbents: operation may be <100 but could be several hundred bar

• **Need for heat exchange**
 – Cryo-compressed: may need to evaporate liquid, warm exiting gas
 – Cryo-sorbents: heat of adsorption needs to be removed/added for operation

• **Phase state**
 – Cryo-compressed: potential for liquid, supercritical and gaseous states
 – Cryo-sorbent: most likely only gaseous and adsorbed states
Workshop Objectives

• Identify R&D needs to validate these technologies for automotive applications, e.g.,
 ➢ dormancy issues
 ➢ robustness of insulation systems for vehicles
 ➢ use of carbon fiber composites in high frequency pressure cycle application at cryogenic temperatures
 ➢ procedures and standards to validate designs
 ➢ low-cost manufacturability of the systems
 ➢ understanding of potential phase changes during operation of cryo-compressed systems

• Identify common needs for both areas where efforts may benefit both

• Identify unique needs for each
Scope of Workshop

• In-Scope:
 - the “on-board” system hardware
 - materials of construction and design
 - testing and validation of components and systems
 - on-board operation
 - understanding affect of drive cycles/use patterns
 - effect of initial conditions on refill
 - potential changes in state that may occur

• Out-of-scope:
 - off-board systems and processing, e.g.,
 - compression, storage and dispensing
 - overall efficiency
 - energy penalty for liquefaction, etc.
Thank you for your participation!
1. What are the key R&D needed to validate the technologies

2. What is needed to develop codes and standards for these technologies

3. What are the balance of plant needs