Metabolic pathways and metabolic engineering

Adam Guss
Genetic and Metabolic Engineer
Oak Ridge National Laboratory

Sept 25, 2013
Metabolic engineering of *Clostridium thermocellum* for cellulosic ethanol production

By understanding and then modifying carbon and electron flux, we have increased ethanol yield in *C. thermocellum*.
Major issues in applying metabolic engineering

- **Choice of platform organism**
 - Every host presents challenges

- **Start with easily modified, industrial organism**
 - Usually yeast or *E. coli*
 - Engineer for desired function → requires deep understanding of pathways to heterologously express
 - Control expression, mitigate toxicity of intermediates and products

- **Start with organism that has unique desired capabilities**
 - Develop genetic systems
 - Build understanding of metabolism, gene regulation, etc.
 - Engineer it to make only the compound of interest and be more robust
Current status of technology in metabolic engineering

• Developing new genetic systems is difficult but feasible

• Synthetic biology is allowing rapid progress on all fronts
 – DNA synthesis is relatively inexpensive, and cost is decreasing
 – Shifts the focus from tools to ideas, even in non-model organisms

• Metabolic models and other computational tools are becoming more advanced and could inform future strategies

• 13C labeling and other “fluxomics” could be broadly enabling, but are typically under-utilized
 – May be less useful for H_2 production because it can not directly follow electron flux, but still important
Barriers and challenges in metabolic engineering

• Knowledge
 – Often incomplete understanding of enzymatic pathways
 – Electron flux often less well understood than carbon flux

• Complexity
 – Regulatory pathways, including mechanisms of dynamic regulation
 – Allostery; either a hindrance or a tool
 – Multiple isozymes of key enzymes

• Models
 – Limited by the information you put into them

• Vision
 – Need clear idea of how to get where you want
Key needs in metabolic engineering

Near term

• Put existing pieces together as proof-of-principle
• Target applied metrics

Medium term

• Explore the basics of native pathways to increase foundational understanding
• Explore completely new approaches