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Overview

• Project provides fundamental 
research that supports DOE/ 
industry advanced engine 
development projects.

• Project directions and 
continuation are evaluated 
annually. 

• Engine efficiency and 
emissions

– Sources of unburned hydrocarbons 
and CO for LTC combustion

• Low-load limitations for LTC
• CFD model improvement for 

engine design/optimization

• Project funded by DOE/VT:
FY08 - $580K
FY09 - $570K

Timeline

Budget

Barriers

Partners
• 15 Industry partners in the 

Advanced Engine 
Combustion MOU

• Participants in the Engine 
Combustion Network
– Experimental and modeling

• Project lead: Sandia 
– Lyle Pickett (PI)
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Overall Approach

• Facility dedicated to fundamental combustion 
research for both heavy-duty and light-duty 
engines (cross-cut research).

– Well-defined charge-gas conditions
• Pressure, temperature, EGR level

– Well-defined injector parameters
• Injection pressure, fuel, multi-injections

Experiments in CV
• Well-defined boundary 

conditions
• Quantitative diagnostics at 

engine conditions
• Improved physical 

understanding

High-Efficiency, Low-Emissions Engine

Computer models
• Sum of many sub-models
• Adds knowledge about things that 

are not “measurable”
• Parametric design optimization
• Saves time and cost over “hardware” 

iteration
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Objectives/Milestones

• Determine the factors that cause liquid wall impingement at early-
injection LTC conditions (FY07-FY09).

– Addresses an important source of UHC, oil dilution, inefficiency.
– FY09 (1): Root causes and limitations for early-injection liquid penetration 

explained and modeled.

• Characterize liquid vaporization and flame/ignition propagation after 
the end of injection (FY08-FY09).

– UHC may remain near the injector when using LTC combustion.
– FY09 (2): Investigate the controlling parameters that extinguish or permit 

combustion near the injector after the end of injection. 

• Aid the development of computational models for engine design and 
optimization (ongoing).

– Experimental and modeling collaboration through the Engine Combustion 
Network: http://www.ca.sandia.gov/ECN

– FY09 (3): Develop a baseline high-temperature, high-pressure condition, attain 
injector set for experimentation by multiple laboratories.
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(1) Characterize liquid wall impingement at 
early-injection LTC conditions.

• Provide quantitative measurement 
of liquid penetration using optical 
techniques.

• Assess the effects of 
– temperature
– boost (density)
– fuel
– nozzle size  
– injection pressure  

• Prevention by using short and 
multiple injections.

• Liquid penetration modeled using 
mixing-limited vaporization 
(Siebers 1999).

Bowl 
Impingement

Liner 
Impingement

14°

ρa
[kg/m3]

TBDC = 340 K
PBDC = 1 atm
CR = 16

Ta
[ K ]
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(1) High-speed imaging of liquid and vapor 
boundaries of penetrating spray

Steady

Mie Scatter (-40 CAD)

Steady

Shadow/Liquid (-40 CAD) Chamber dimensions allow extensive 
visualization before wall impingement.

(click to play
movie)
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Past research focused on TDC, steady conditions, 
rather than transient, early-injection.

• Liquid penetration follows 
vapor until some critical 
distance (max. liquid length).

• Steady liquid length identified 
at early-injection conditions.

– Much longer than TDC liquid 
length.

– Liquid wall impingement likely.

-20 CAD
768 K,

10.5 kg/m3

TDC
900 K, 22.8 kg/m3, 60 bar

d = 0.181 mm
Pinj = 110 MPa

#2 diesel, 373 K

Quasi-Steady Period

Rate of Injection 

Steady 
Liquid 
Length

Charge gas/injector effects on liquid length
Ambient 

temperature 
Ta ↑

Ambient 
density 
ρa ↑

Orifice 
diameter

d ↑

Injection 
pressure

Pinj ↑

Fuel 90% 
boiling pt.

T90 ↑
Liq. length: 

↓ ↓ ↑ none ↑

Siebers 1999
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Advanced injection timing increases liquid 
penetration.

A

B

C

Wall impingement (100 mm) at -40 CAD

d = 0.108 mm
110 MPa
#2 diesel BA C

• Time ASI to attain steady liquid length, tss, increases.

tss(-20)
tss(-35)

(Click to play movie)
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Liquid length model shows ability to capture 
trends wrt to ambient conditions, fuel, nozzle.

dies. 181

Model Exp. Fuel d [μm]
keros. 181

dies. 108
dies. 94
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Wall
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A F
600 K 373 K

Ambient FuelMix

508 K
A/F = 6

Mixing fuel and ambient to saturated mixture state.
Spray spreading angle, fuel/ambient thermodynamic 
properties used as inputs (Siebers 1999).

• Use of low-boiling-point fuel can 
significantly lower liquid penetration.
– T90 is 75 °C less for kerosene than diesel.

• Reducing nozzle orifice size will 
reduce liquid penetration.

• Low-boiling-point fuel more effective 
at reducing liquid penetration than 
use of a small nozzle orifice.
– Liquid length does not increase as sharply 

for kerosene compared to diesel when 
advancing injection.

– Confirmed by both experiments and 
modeling results.

• Model overpredicts liquid length at 
earlier CAD.
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Kerosene
(HMN)

Diesel
(n-c17)

Why does injection advancement cause less 
liquid length increase for kerosene over diesel?

• Mixture thermodynamics show:
– Lower saturated temperature Tsat for 

kerosene.
– Higher (F/A)sat for kerosene.

• With earlier CAD, 

progressively 

increases.
– Higher saturated F/A ratio → shorter 

liquid length

• Kerosene more resistant to wall-
wetting with early injection, even 
compared to diesel and small 
nozzle orifice diameter.

heptadecane (n-c17) and heptamethylnonane (HMN) used as 
surrogates for #2 diesel and kerosene, respectively.

Ambient
600 K
5.2 kg/m3

Fuel
373 K

Diesel
Tsat = 508 K

(F/A)sat = 0.17

Kerosene
Tsat = 474 K

(F/A)sat = 0.29

Conditions

( )
( ) dies sat

kero. sat,

AF
AF

,/
/

( )
( ) dies sat

kero. sat,

AF
AF

,/
/
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Boost significantly lowers liquid penetration.

• Boost helps to reduce wall impingement when using early injection.
– Spray penetration speed also reduced.

• Time to reach steady state tss depends upon conditions.
– At early CAD, boost increases tss.
– At later CAD, boost decreases tss.
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- Liquid length L depends upon density 
and (F/A)sat. 
- L decreases with increasing density.

(1)

- (F/A)sat depends only on mixture 
thermodynamic properties.
- (F/A)sat decreases with increasing 
pressure (boiling point T increases).

(2)

Why does tss increase or decrease with boost 
at various injection timings? 

F/A =

-40 CAD
Ta = 600 K
kerosene

-20 CAD
Ta = 767 K

diesel
F/A =

Use model jet penetration (Naber and 
Siebers 1996) and liquid length 
prediction (Siebers 1999).

• The tradeoff between (1) and (2) determines whether the time to 
attain a steady liquid length will increase or decrease. 

satf
ss AFU

Lt
)/(
1

⋅∝
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0.12 ms
0.5 mg

-20 CAD
d = 0.181 mm

diesel

0.20 ms
1.3 mg

0.38 ms
2.8 mg

0.50 ms 
3.6 mg

0.60 inj. dur.
5.0 mg inj. mass

0.95 ms
8.4 mg

Reducing injection duration/mass produces 
injections with shorter liquid penetration.

• The injection duration must be shorter than tss to have maximum 
liquid penetration less than the quasi-steady liquid length. 

0.50 ms 
3.6 mg

0.38 ms 
2.8 mg

Even when reaching the steady 
liquid length, short-injection 
sprays are not as dense.
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Injection duration must be less than ½ of tss to 
reduce the maximum liquid penetration.

• Increased ambient entrainment must propagate downstream to the 
jet head to reduce F/A and vaporize liquid fuel.

• Musculus’ jet model shows that the entrainment wave reaches the 
jet head at 2 times the injection duration. 

Minimum

Max. of Steady Period
Musculus SAE 2009-01-1355dtinject = 0.5 ms

Jet mixture (F/A) begins to 
decrease below steady 
value at 2·dtinject. 

Mean 
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Relevance of early-injection liquid penetration 
research to LTC.

• Experiments provide data on the steady liquid length and time of 
penetration that is critical for spray model validation.

• Knowledge about the critical injection duration to limit liquid 
penetration (½ of tss) allows injection rate control optimization.

– Multiple injections limit the liquid penetration and increase the injected mass.
– Provides a pathway to increase engine load for LTC.

• New understanding about low-boiling-point fuels and their resistance 
to wall-wetting (superior to diesel+small nozzles) allows further 
optimization of LTC using alternative fuels.

• Well-controlled environment (pressure and temperature) reveals the 
fundamental causes of liquid penetration.

– Needed to understand spray events in an unsteady engine environment.  

• Findings provide comprehensive understanding needed to minimize 
liquid wall impingement and UHC in LTC engines.
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(2) Accomplishment: Flame extinction after EOI 
affected by fuel/ambient mixture.

• Dataset shows lack of flashback for lower 
equivalence ratio conditions when φ(H) < 3.

• Flashback determines whether or not near 
nozzle region produces UHC.

Flashback

Shadow + Mie + Soot

(Click to 
play 
movie)
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Successful LTC Engines

(3) Accomplishment: Development of ECN is 
accelerating model development.

Better physical 
understanding of LTC.

Improved, predictive models
SAE 2008-01-1331 Vishwanathan, Reitz

University of Wisconsin
SAE 2008-01-0968 Campbell, Hardy, Gosman

Imperial College
SAE 2008-01-0961 Karrholm, Tao, Nordin

Chalmers University
SAE 2008-01-0954 D’Errico, Ettorre, Lucchini

Politecnico di Milano
(Multiple modeling groups using our spray data!)

Engine Combustion Network
http://www.ca.sandia.gov/ECN

Soot distribution

Ignition Delay
Heat-release 
Fuel effects
Temperature
Pressure
Inject. Pressure

Soot volume fraction
Mixture fraction
Rate of injection

Experimental Data
Liquid penetration
Vapor penetration
Lift-off length
EGR effects
Multi-Injection
Nozzle size

Receding 
Length

Maximum Liquid Distance

Minimum Liquid Distance

Air Entrainment

Liquid Phase

Vapor Phase
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Future work: 
Experimental collaboration in the ECN

• Multiple groups to work on 
the same baseline 
experimental condition:  
“Spray A”

– Repeat experiments at multiple 
facilities.

– Accurate models require 
accurate measurements/b.c. 

• Bosch to donate “identical” 
injectors/nozzles to Sandia. 

– Sandia will distribute to other 
groups for voluntary
experimentation at this 
condition.

• Acceleration of LTC model 
development.

Michigan Tech. Univ.
Vessel temperature
composition

Spray A

Argonne (x-ray source)
Internal needle movement
Near-nozzle liquid volume

IFP
Spray velocity
Combustion

CMT
Rate of injection
Droplet diameter

Sandia
Liquid and vapor mixing
Combustion diagnostics

Meiji Univ.
Soot 
formation

Spray A
Ambient: 900 K, 60 bar (22.8 kg/m3)
Injector: 1500 bar, 0.090 mm nozzle, KS1.5/0.86
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Future work (continued)

• Fundamental study of liquid wall impingement at DPF regeneration 
conditions (post injection).

– Oil dilution and increased fuel consumption are problematic!
– Combustion vessel ideal to investigate high-temperature, low-density conditions 

typical of post- injection.

• Lift-off (UHC and soot) effects with jet-jet interaction.
– Addresses the gap in understanding between single-spray combustion and that 

using a multi-hole, practical fuel injector.

• Mixing measurements of Spray A condition.
– Past mixing dataset with older injector has proven invaluable for spray and CFD 

model validation. 
– Mixing measurements also performed as a function of ambient gas density. 

Needed to quantify “spreading angle” in vaporizing spray environment. 

• Velocity measurements of combustion vessel
– Improved boundary condition information needed for CFD model development.
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Presentation Summary

• Project is relevant to the development of high-efficiency, low-
emission engines.

– Observations of combustion in controlled environment lead to improved 
understanding/models for engine development.

• FY09 approach addresses critical LTC needs.
– Measurements and new understanding for spray liquid-phase transients for 

early-injection LTC where wall-wetting is problematic.
– Factors that influence liquid vaporization and flame flashback after the end of 

injection.

• Collaboration expanded to provide greatest impact (MOU, Engine 
Combustion Network)

• Future plans will continue effort
– Post-injection liquid wall impingement.
– Lift-off (UHC and soot) with jet-jet interaction.
– “Spray A” characterization for the ECN.
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