Overview

Timeline

- Level 1
 - 2010 Honda Insight - 3Q09
 - 2010 Toyota Prius - 3Q09
 - 2010 Mini-E - 3Q09
 - 2010 Ford Fusion - 4Q09
 - 2010 Mercedes S400h - 1Q10
 - Start / Stop Vehicle Technology – TBD
 - Hyundai HEV – TBD

- Level 2
 - 2010 Toyota Prius 2Q10 - 3Q10

- Incremental DOE Projects
 - Ford TADA phase 2 - 2Q09
 - Ford TADA - 2010 TBD
 - GM TADA phase 1 - 3Q10
 - Coal-to-Liquid fuel VW Jetta TDI -3Q09
 - Hydrogen fuel truck durability study - 2Q09 and 2Q10
 - EV prototype for supplier
 - Codes and Standards test support

- Start / Stop Vehicle Technology

Budget

- 2010FY $1,450k
- 2009FY ~ $1,800k

DOE strategic goals/barriers addressed:

- Laboratory and field evaluations of HEVs, PHEVs and EVs
- Codes and standards development
- Continued support for model development and validation (AUTONOMIE) with test data
- EV testing and charging evaluation

Partners:

- AVTA (Advanced Vehicle Technology Activity): DOE, INL, eTec
- DOE, National laboratories, USCAR, OEMs, Suppliers, Vehicle Competitions

60% complete on FY2010 tasks
Relevance: Advanced Technology Benchmark

- Vehicle research: dynamometer testing
 - Vehicle system testing
 - Energy consumption (fuel + electricity)
 - Emissions
 - Performance
 - Vehicle operation and strategy
 - ‘In-situ’ component and system testing
 - Component performance, efficiency and operation over drive cycles
 - Component mapping
 - Technology assessment and goal setting

Importance: Enable petroleum displacement through data dissemination and technology assessment

- Establish the state-of-the-art automotive technology baseline for powertrain systems and components through data generation and analysis
- Provide independent evaluation of technology
- Generate data to support target creation and hardware/model validation

APRF
Advanced Powertrain Research Facility

Objective: Benchmark advanced technology vehicles and disseminate that information to U.S. OEM’s, National Labs, and Universities

(APRF since 2000)
Relevance: Enable Petroleum Displacement through Data Dissemination and Technology Assessment

Further DOE goals
- Independent technology validation
- Baseline for component technical target and goal setting
- Development and deployment of advanced technology
- Environmental footprint reduction
- Energy Diversity
- Speed-to-market

Technology evaluation
AVTA (Lab and Fleet)
DATA AND ANALYSIS

D3
Dynamometer Downloadable Database
Online
EVs, PHEVs, HEVs

Codes and standards
(Data for procedures)

Modeling support
(Data and validation)

USCAR Tech team support
OEM / supplier collaboration
Milestones: APRF Provides Data for a Wide Variety of Vehicle Technologies

<table>
<thead>
<tr>
<th>Milestones</th>
<th>2009 Q3</th>
<th>2009 Q4</th>
<th>2010 Q1</th>
<th>Today</th>
<th>2010 Q2</th>
<th>2010 Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honda Insight (gen2)</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toyota Prius (gen3)</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Ford Fusion</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Mercedes S400</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Mini-E (BEV)</td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Toyota Prius (gen3)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Alternative GTL fuel study</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ford Tada</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Standards (PHEVs and EVs)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Hydrogen trucks</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>GM TADA</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

- **Level 1**
- **Level 2**
- **Other studies**

Images:
- 2010 Honda Insight
- 2010 Toyota Prius
- Ford Fusion Hybrid
- BEV prototype
- Ford TADA
- Jetta TDI (bio-fuels)
- Mercedes S400H
- Mini-E (BEV)

- The vehicle benchmark activity has been refined for over a decade. This results in:
 - Continuous improvement of testing procedures
 - Standard test plan including instrumentation and drive cycles (adjusted for individual vehicles)
 - Advanced and unique facility and instrumentation
 - Significant knowledge of testing and advanced vehicles

- AVTA (Advanced Vehicle Testing Activity) strategy:

 - New vehicle
 - Track testing & coast down
 - Baseline dynamometer testing
 - Accelerated fleet testing
 - DOE National Labs
 - USCAR (OEMs)

 - Wide range of vehicle technology tested
 - Powertrains
 - Conventional
 - Hybrid Electric (HEV)
 - Plug-in HEV (PHEV)
 - Battery Electric (BEV or EV)
 - Alternative fuels
 - Hydrogen
 - Ethanol, Butanol
 - Diesel (Bio, Fisher-Tropsch)
Approach/Strategy: Dynamometer Vehicle Benchmark
Testing Approach - Depth of Study Varies

Level 1:
- **Power sensors**
- **Other Sensors**

- **Battery**
- **Tank**

Electric

Hybrid system

Engine

Basics instrumentation:
- Engine speed, fuel flow (bench), oil temp
- Battery, Charger V I (Hioki)
- CAN (if possible)
- Further ... if required (but still non invasive)

Purpose:
- Vehicle operating parameter study
- Vehicle characterization (energy consumption, emissions level, performance)

Level 2:
- **Power sensors**
- **Other Sensors**

- **Battery**
- **Tank**

- **Engine**

- **Fuel**

Complete and invasive instrumentation:
- Incremental to level 1
- Engine, shaft torque & speed sensors
- All major power flows (mechanical, electric,...)
- Component specific instrumentation

Purpose:
- Energy analysis, efficiency analysis on vehicle and components
- Component characterization in vehicle system
Accomplishments: Level 1 Testing Overview

|----------------|-----------------------------------|------------|----------------------------|--|--|
| 2010 Honda Insight | ![Image](Civic.jpg) | 40 Label, 26 Conv | | ![Image](Civic.jpg) | 22 S350 | 220 | Mini Copper | • Value hybrid
• Technology evolution | • Compromise of cost to hybrid system effectiveness |
| 2010 Toyota Prius | ![Image](Corolla.jpg) | 51 Label, 26 Conv | 23 Fusion 2.5 liter | ![Image](Corolla.jpg) | 16 S350 | 904 | | • State of the art hybrid
• Thermal recovery system | | |
| Ford Fusion Hybrid | ![Image](Fusion.jpg) | 41 Label, 23 Conv | | ![Image](Fusion.jpg) | | | | • High fuel economy in mid-size sedan
• Thermal recovery system
• High speed EV operation | • Larger EV operation increase driver impact on fuel economy |
| Mercedes S400H | ![Image](S400H.jpg) | 22 Label, 16 Conv | | ![Image](S400H.jpg) | | | | • First major OEM Lithium Ion battery pack hybrid | • Uses Air conditioning system to actively cool the battery pack |
| Mini-E (BEV) | ![Image](Mini-E.jpg) | | | ![Image](Mini-E.jpg) | | | | • Modern Electric Vehicle benchmark
• SAE J1634 development | • Even aggressive driving yields a range over 100 miles |
Accomplishments: Tracking Power-Split Hybrid Evolution

Prius and Fusion illustrate most recent hybrid developments: More Electric-Only Capability and Higher Fuel Economy

HEV Emissions Control Strategies
- Prius uses a prescribed fuel rate for catalyst warm-up
- Battery power is used to supplement engine power

➤ Strategy is very applicable to PHEV operation. Allows for flexible engine starting with acceptable emissions

Fuel Economy Variability
- Fusion EV capability is high-speed, but torque limited
- Location of EV envelope near urban operation results in significant fuel economy variability

➤ Blended PHEVs will likely have similar issues affecting real-world fuel economy variability

Prius Cold Engine Starting Strategy

![Prius Cold Engine Starting Strategy Diagram]

Fusion EV Envelope and Urban Operating Points

![Fusion EV Envelope and Urban Operating Points Diagram]

A slight decrease in requested torque may enable more EV operation
Accomplishments: Evaluation of More Mild Hybrids

Insight demonstrates the limitations of reducing motor and battery usage in order to reduce system cost or prolong component life.

• Due to a more limited hybrid system and despite reduced road load, the 2010 Honda Insight provides similar Urban FE and decreased Hwy FE relative to the previously designed Civic Hybrid. This is primarily due to:
 • Reduced regenerative braking capability
 • Generally less hybrid system operation (more “mild”)

Mercedes S400h shows similar limitations due to battery usage restrictions to prolong life.
Accomplishments: Alternative Fuel Benchmark

Alternative fuels contribute to Petroleum displacement

Hydrogen powertrains

- Hydrogen can displace 100% of petroleum
- Combustion engines are extremely clean

Coal-To-Liquid, Gas-To-Liquid diesel study

- Sasol designed:
 - CTL to replicate US Ultra Low Sulfur Diesel properties
 - GTL to replicate European diesel properties

- The energy consumption and emissions showed that designed fuels are within 10% of the target fuel results

First use at APRF of FTIR to measure non regulated emissions
Accomplishments: Energy Consumption Impact
Factors and Sensitivities

Driver intensity impact
- Electric vehicle energy consumption is most sensitive to driver aggressiveness which has a direct impact on range.
- Impact of driver intensity on energy consumption varies with vehicle type and powertrain.

Air conditioning impact
- The AC impact can increase energy consumption by over 70%.
- Impact of air conditioning usage is largest in city driving since extra energy is consumed during stops.

Increased Driving Intensity

Energy consumption [Wh/mi]

- Scaled UDDS (equivalent distance)
- US06

Fusion
- +18%
- +56%

S400H
- +29%
- +71%

Mini-E
- +14%
- +82%
- +38%

NO AC ↔ *WITH AC*
Accomplishments: Data Supports Standards Development

Open and public test data, which can be shared among committee members is critical to standards development and validation for multiple stakeholders.

Understanding and incorporating test data identifies practical problems during the standard development:
- Procedure development and validation
- Improved SOC correction methodology (necessary for certain PHEVs)
- Battery energy allocation methods
- End-of-test criteria development

J1634 focused testing provided insight into:
- Procedure development and validation
- Shortcut versus full testing results
- Shortcut limitations due to thermal transients
- Consumption impacts of vehicle variability
- Charge energy variability
Accomplishments: Collaborations Contributing to Technology Development

Electric Vehicle supplier
- Early prototype
 - First testing for supplier
 - First EV for J1634 development
- In-lab data analysis led to suggested technology improvements

TADA
- Data used for SAE J1711™ development
- OEM vehicles → wider EV range and better control led to a more refined PHEV compared to conversions
- In-lab data analysis led to altered controls on Ford TADA
Collaborations and Coordination with Other Institutions

- AVTA (Advanced Vehicle Testing activities)
 - Baseline dynamometer testing of vehicles

- J1711 HEV & PHEV test procedures
- J1634 EV test procedures
- Grid Interoperability

- DOE (Department of Energy) technology evaluation
 - DOE requests
 - National Lab requests

- APRF

- USCAR, tech teams and OEMs
 - Shared test plans, data and analysis

- Automonie
 - Support of modeling and simulation with data

- SAE International
Proposed Future Work

- Benchmark Continuation of Vehicles and Components in System Context
 - ATVA program participation (the final vehicles will depend on AVTA selection and availability)
 - Possible EVs: Nissan Leaf, MMC iMiEV, Ford Focus, Ford Transit Connect, BMW, Think
 - Possible PHEVs: Toyota Prius and Chevy Volt
 - Possible HEVs: Honda CRZ and Chinese HEV
 - Technology Assessment
 - DOE selected vehicle(s) for in-depth Level 2 research
 - Support standards development with data

- Testing approach
 - Level 1 extension with more CAN cracking
 - Level 2 extended collaboration

- Facility upgrade: climate test cell upgrade (in progress)
 - 5 cycle fuel consumption testing (including PHEV, EV)
 - Investigate vehicle system limitation from extreme operation conditions and propose technical solutions
 - Improved AC and heater impact assessment of energy consumption

Remaining Vehicles to Test 2010FY
- Hydrogen truck
- Level 2 Prius
- Level 1 Hyundai HEV
- GM TADA vehicle
- Ford TADA vehicle
- Further EV for J1634™
- Codes/Standards work
Summary

- The benchmark activity enables petroleum displacement through data dissemination and technology assessment by:
 - Establishing the state of the art automotive technology baseline for powertrain systems and components through data and analysis, with support for target setting
 - Providing independent evaluation of technology
 - Enabling optimized system and component development with compare and contrast opportunity across multiple manufacturers
 - Generating test data for model development and validation to encourage speed-to-market of advanced technology
 - Supporting codes and standards development for unbiased technology weighting

- ANL has benchmarked a wide range of technologies (FC, EV, PHEV, HEV, and alternative fuels) with a refined and recognized process to deliver quality data

- The benchmark activities are a collaborative effort from the test preparation to the data and analysis dissemination

- The benchmark activities and data are highly leveraged
Background Slides
ARGONNE’S OBJECTIVE: Provide to DOE and Partners the Best Advanced Vehicle Test Data

“Be the eyes and ears of technology development”

- **Advanced Powertrain Research Facility (APRF)**
 - Purpose built for DOE benchmarking
 - State-of-the-art 4WD chassis dynamometer
 - Custom multi-input data acquisition specific to hybrid vehicle instrumentation
- Staff at cutting edge of test procedures for new advanced vehicles
- Inventing new and novel instrumentation techniques
Benchmarking Facility Achievements

- **4WD Dynamometer Facility** designed as most advanced test facility anywhere (EPA followed a year later)
- **Landmark Regen Study of HEVs on 4WD Dynamometer**
- **Built Custom Powertrains / Vehicles** for benchmarking configurations not available otherwise
- **Suite of Vehicle “Hacking” Tools** and procedures developed to read proprietary vehicle network data for any OEM vehicle
- **Only PHEV Data Available from APRF**. Available for download via searchable database website
- **ANL-EPA 4WD Road Load Study** investigated coast-down procedures and accuracy of dynamometer
- **ANL–INL AVTA Testing Program** provides standard tests before vehicle are put in fleet testing
- **ANL-ORNL Benchmarking** leverages APRF data and instrumentation techniques for e-motor testing
“Level 2” - In-Depth Testing and Analysis

- Temperatures
- Direct fuel measurement (fast, accurate)
- Battery energy, thermal management
- Axle torque
- Pioneered in In-Vehicle Engine Torque

1999

2004

2006

2007

Torque from internally gauged input shaft and Indicated torque
APRF Equipment and Features

- Link Models to Hardware
- 6 Channel Power Meter and Power Analyzer
- Comprehensive Database Of Hybrids and PHEV's
- Hydrogen Test Capability gaseous and liquid H₂
- Vehicle Benchmarking
- APRF Computer
- Emissions Bench
- Power Analyzer
- Sensor Signals
- Dynamometer
- CAN Bus
- Criteria emissions
- Battery Voltage and current at six different nodes
- Engine speed
- Temperatures
- Vehicle speed
- Wheel force/power
- SOC %, Battery limits
- Motor / generator torque and speeds
- many others
- Multi-fuel Compatible Emissions Bench
- Component Testing
- In-House Data Acquisition
PHEV’s Tested

- **Prius Conversions**
 1. Hymotion (Kokam) Prius (highly instrumented)
 2. HybridsPlus Prius (highly instrumented)
 3. Hymotion (A123 ver1) Prius
 4. EnergyCS Prius ver.1 and ver.2
 5. Hymotion (A123 ver2) Prius
 6. Plug-In Conversions Corp. Prius

- **Escape Conversions**
 6. Electrovya Escape
 7. Hymotion Escape
 8. HybridsPlus Escape

- **OEMs**
 9. Renault Kangoo
 10. OEM PHEV Mule (NDA-protected)
 11. Insight HEV Level 1 testing
 12. Prius HEV Level 1 testing
 13. TADA Ford Escape
 14. (at BMW) Mini E BEV
Latest PHEV Conversions Demonstrate SULEV Attainment