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Purpose of work

1. Compare the performance of various lithium‐ion cathodes when used in Compare the performance of various lithium ion cathodes when used in 

HEV and PHEV applications using mathematical modeling 

g	 ( p2.	 Understand the limitations in using alloyy anodes (specificallyy silicon)) in PHEV 
applications 

Responses to reviewers’ comments‐ June 2006 Responses to reviewers comments June 2006 
1. “Extend the modeling to other systems” 

•	 Research has been directed to next‐generation systems (alloy anodes) in

keeping with BATTs emphasis in this area
keeping with BATTs emphasis in this area 

2. “The PI should interact with and guide the staff who are building cells” 
•	 Close interaction exist with cell analysis group 

3. “Not clear what info the models will give to the experimentalists” 
•	 Models have provided guidance to material developers (how small a particle is 

needed to achieve HEV‐like power?) and cell developers (how thick should the needed to achieve HEV like power?) and cell developers (how thick should the 
electrode be for a PHEV?) 



Approach 
New Material Synthesized 

Develop model for each chemistryp 

New Material Synthesized 

y 

Perform thermodynamic and rate experiments Understand 
limitations and 

Compare model to data 
• Extract unknown parameters 

limitations and 
provide 

guidance to 
improve 

Combine half-cell models to develop a full-cell model 
• Ensure common basis (e.g., mass of current collectors) 
for various cells 

performance 

Use model to optimize battery design and evaluate ability to satisfy vehicular needs 

New Battery Developed for use in a PHEV 
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New Battery Developed for use in a PHEV 



Use model to optimize battery design and evaluate ability to satisfy vehicular needs

Approach 
New Material Synthesized 

Develop model for each chemistry 

New Material Synthesized 

Perform thermodynamic and rate experiments 

Compare model to data 
• Extract unknown parameters 

Understand 
limitations and limitations and 

provide 
guidance to 

improve 
fperformance 

We have been using this approach to model silicon anodes. g  pp  
All experiments are conducted on thin films as opposed to porous 

electrodes 

New Battery Developed for use in a PHEV 
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Why silicon?

•	 High capacity compared to graphite (3579 vs. 372 mAh/g) 

•	 Theoretical energy of the cell could increase by ~35% (lower $/kWh) 

BarriersBarriers 
•	 Large irreversible capacity loss (1000 mAh/g) 

•	 Large volume change during cycling (280%) 

• Even at low rates (C/10),), the voltage g(C/ 
during lithiation is lower than during 
delithiation by ~0.32 V 

J. Electrochem. Soc., 150, A1457 (2003) 

Impact: 

1. Round tripp energygy efficiency=91% ((at C/10). VT ggoal is 90% on HEV cyyclingg  (  (10C)y / ) 	 ) 

2. Resistance estimate=~7000	 Ω‐cm2 ! Typical resistance of electrodes=15 Ω‐cm2 

Has impact on VT power goals. 



Film behavior
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• Good cycleability for many cycles


• Evidence of a side reaction
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A d fil t lli (b d C/8 cycling • As‐made films are crystalline (based 
on Raman spectroscopy) 

• Electrochemical data suggests that 
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C/8 cycling 

films have features similar to porous 
electrodes made with silicon powders 

• Based on literature data, we believe 
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that we are cycling in the amorphous 
Si region (i.e., single phase region). 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
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Capacity (As) 



Is this voltage offset rate dependent?

1.0 

Note that Li metal also known to have 
polarization losses 
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Increasing current 
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C/30 to ~C/2 
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Normalized Capacityp y 

Magnitude of current has very little impact on the offset potential.

Is this a thermodynamic hysteresis?




Open‐circuit experiments on the Si electrode
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Cell was discharged to ~50% SOC at C/8, then kept 
under open circuit for 48 hours 
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Although curves do not collapse, clearly the closed circuit potentials 
were not thermodynamic experiments 
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Voltage decreases, 

0.40 
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OCV during delithiation 

then increases‐ Side 
reaction! 
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Side reaction makes it 
impossible to confirm that 
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OCV during lithiation 
Voltage evolving even 

after 48 hours 
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Voltage evolution during OCV 
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Is there a phenomenon that shows a voltage offset at small currents, no 

voltage dependence on current, and a large time constant on open circuit? 



Tafel kinetics with double‐layer charging
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• A reaction with poor kinetics (small

io) would show an offset even at low 
rates


• And would show little change in

overvoltage with current, for large i/i
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• On open‐circuit, double layer discharges the faradaic reaction 

RTC • Time constant ∝ 
RTCdl


Fi
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• If io is small, time constant can be very large 

We propose that the small io causes the observed phenomena 
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Estimating the kinetics of the reaction 
Assumptions: 
1. Iggnore pporous electrode effects‐ thin film 
2. Ignore the side reaction‐ only important at very long times 
3. Use tafel to represent kinetics‐ very small io 

4. Current small enough to ignore diffusion losses 
dV ⎛⎛ αcFdV F

On open‐circuit, solve for: Cdl dt 
= io exp

⎝
⎜ − 

RT 
(V −U 

⎞ 
In Tafel kinetics, io 

⎠ 
and U are connected

Plot of V vs. ln(t) should be a straight line at long times.* 
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* Davis  et al., J. Electrochem. Soc., 154, A477 (2007) 

Norm. Capacity 0.83, lithiation 



Voltage offset vs. SOC
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10 h OCV during lithiation 

• Note that OCVs don’t collapse to same potential because of side reaction 

• Similar experiment on silicon‐powder porous electrodes performed at low SOC showed that 
the curves almost collappse

OCV data for these 10 points were used to estimate kinetic parameters 
across SOC range 
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•	 From an OCV experiment, io and CDL are not separable 

•	 Assuming Cdl=10 μF/cm2, io O(10‐13 A/cm2) 
•• Estimates on graphite suggest io O(10 3 ( J El t h S 150 A706 2003)Estimates on graphite suggest i O(10‐3 A/cm2)A/cm2) (see J. Electrochem. Soc, 150, A706, 2003) 

Can we use these parameters to predict experimental data under other conditions? 
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Simulation results 
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Connection to the barriers

Barriers: (i) Round trip energy efficiency (ii) Power Capability
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• Energy efficiency=98.2% 



Discharge Power (W/kg)

Plans for next fiscal year 
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• More quantitative predictions of voltage evolution 
• Impedance spectroscopy for capacitance 
• Structural changes between lithiation and 
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