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Simulation of Injection Molding ol

Polymers Reinforced with Short and
Long Glass Fibers: NSF DMI-052918

Investigators: D. G. Baird and P. Wapperom, VA Tech

Improved the capability to predict fiber orientation as a
function of injection molding conditions:

e Used an improved constitutive relation in which rheology
and fiber orientation are coupled: included effect of fiber
Interaction, non-affine motion, and viscoelasticity.

e Constructed a rheometer for obtaining basic material
parameters (e.g. Folgar-Tucker Constant)

= Developed a numerical simulation package incorporating
the improved relation and including the advancing front.

e Confirmed prediction of orientation In a center-gate disk
using confocal laser microscopy.

Present and continuing efforts:

e Modify constitutive relation to include fiber flexibility-
application to long fiber composites

= Predicting fiber orientation in gate region-3D simulation




Microstructural Modeling and Synchrotron Studies
of Orientation Development in Injection Molding of

Liquid Crystalline Polymers

(NSF DMI-0521823 & DMI-0521771)

Wesley R. Burghardt
Northwestern University

Robert A. Bubeck
Michigan Molecular Institute

1. Time-resolved, in situ x-ray
scattering of molecular
orientation during injection

enterline Anisotropy Factor

2. De-convolution of skin/core
orientation distributions using
surface-sensitive NEXAFS
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3. Process modeling of
orientation in extrusion and
molding, exploiting analogy
between fiber & domain
orientation models: /
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Award DMI-0522221

“A Hierarchical, Structure-Oriented and Stochastic Approach to Model Liquid Molding Processes”
T.D. Papathanasiou (PI), Chemical Engineering, U. South Carolina (papathan@engr.sc.edu)

RESEARCH OBJECTIVE
Develop models for the hydraulic permeability (K) of fibrous media, taking
explicit account of the underlying microstructure and its variability.

APPROACH

Our approach is computational. A large number of simulations have been
carried out, using a parallel implementation of the Boundary Element
Method, in microstructures consisting of ~102 fiber cross-sections placed
within a containing unit-cell by a Monte Carlo procedure. This allows a
direct and unambiguous correlation between (K) and the microstructure of
the fiber arrays.

BROADER IMPACT

Quantitative structure-permeability correlations for fibrous media will allow
for optimal design of fabrics used in liquid-molded composite materials.
This will advance the technology of high-performance composites.

MICROSTRUCTURE GENERATION & CHARACTERIZATION

We use a NVT-Monte-Carlo process to create microstructures

showing various degrees of clustering. The process temperature (T*)
correlates to a structural metric (Mp) derived from Ripley’s K-function K(r)
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KEY RESULT

We find that the permeability (K) of random fiber arrays
correlates to the underlying microstructure, namely the
mean nearest inter-fiber distance (<3,>) according to:

K o

hex hex

where K., and §, ., are functions of porosity only

130 { }
{ ! 1t K()
1201 H IVIDZb—a ar? ar
a
o 1.154
1.104 { { }
1.05 % ¢ :
LX] 3
1.00 ¢ 5 . .
s o 05 06 07 08 0o 10
-

Flow speed contours across two arrays of 576 fibers, having
70% porosity. The two arrays differ only in the extent of local
aggregation, reflected in the value of (<§,>); their permeabilities
are different. ﬂ

Results of several hundred simulations
scaled as above. (K) decreases as the
extent of local aggregation (5,<8,,)
increases
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Center for Composite Materials Department of Mechanical Engineering

Modeling Compression Resin Transfer Molding (CRTM)
by Suresh Advani and Pavel Simacek
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Incorporating Higher Order Tensors in the
Computation of Polymer Composite Mechanical
Properties (NSF Grant: DMI-0522694)

Douglas E. Smith
University of Missouri

Center-gated disk short-fiber orientation simulations show that fibers tend
to align in the radial direction with increased radius, resulting in a higher
Young's modulus with a Iarger'variability.

Research Objective
Develop a predictive capability
that incorporates higher-order
orientation tensors to evaluate
elastic mechanical properties of
short- and long-fiber reinforced
polymer composites.

Milestones
eMean and variance of
elasticity matrix computed from
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4t through 8™ order orientation
tensors and orientation
distribution functions for short
fiber composites.

e Analytical expressions for
mean and variance verified with
Monte Carlo simulation.

e Three-dimensional voxel-
based finite element method
developed for computing elastic
properties for short (completed)
and long (in progress) fiber
polymer composites.
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Fiber interaction within the composite structure is more accurately
modeled with voxel-based finite element modeling approach, yielding
higher than expected modulus values for short fiber composites.

typical FEA voxel-based °

random short fiber RVE
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Linking Process-Induced Properties to Thermoplastic-Matrix Woven-Fabric
Composite Performance

NSF Grant # DMI-0522923 — NSF Program Name: MPM |
Principal Investigators: James A. Sherwood, Julie Chen, Larissa Gorbatikh
UML Students: Corey Morris, Konstantine Fetfatsidis, Lisa Gamache, James Kremer ]

Advanced Composite Material and Textiles Research Laboratory UMASS
Department of Mechanical Engineering, University of Massachusetts Lowell LOWG"

Goal of Research is to develop a widely-accepted integrated design tool:

» That will be used by the automotive industry and
» That will link the process-induced properties to product
performance
0 By capturing all of the critical material-processing
mechanisms that occur during the thermostamping
process for this class of commingled polypropylene-
fiberglass woven-fabric composites,
o By predicting the magnitudes of the material
properties and the distribution of these properties in
a formed part of complex geometry, e.g. a floor pan
l erformance or bumper of a car, as a result of the manufacturing
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L analysis of the part for in-service load conditions—

either as a single component or integration into a
vehicle system.

[Flowchart for the integrated design tool
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