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Purpose of the Work - LNT

• This program element is aimed at developing a practically useful
fundamental understanding of the NOx adsorber technology 
operation.
– Chemical mechanisms of NOx adsorption, desorption, and reduction for inclusion 

in CLEERS models – emphasis this year:  effect of CO2 and H2O on NOx
adsorption, storage, and reduction.

– Catalyst structure/function relationships – determine when catalyst structure 
changes are relevant for models.

• Identify materials changes occurring during operation and chemical mechanisms of 
various operational processes (adsorption, desorption, catalytic reduction)

• Effects of gas composition (CO2, H2O, reducing conditions) on catalyst structure 
changes

• Roles of catalyst promoters (e.g., J.R. Theis, et al., “The effect of Ceria Content on 
the Performance of a NOx Trap”, SAE 2003-01-1160)

– On the basis of the 2007 CLEERS R&D Priorities Survey, we have initiated 
some effort on lean-NOx trap materials for higher temperature operation as will 
be encountered in GDI applications. 

• No specific comments about this program element were received 
last year so there are no reviewer comments to address.



Summary of TP-XRD and TEM/EDX studies:  Both 
‘Monolayer’ and ‘Bulk’ Ba(NO3)2 morphologies present.  
These ‘phases’ can be distinguished spectroscopically.

Heat

NO2 adsorption
at 300K

Heat
in NO2

Large Ba(NO3)2
crystallites

Al2O3

BaO nanoparticles

Heat Ba(NO3)2
nanoparticles

Ba(NO3)2
particles

+
thin Ba(NO3)2

layer

Al2O3

Al2O3
Al2O3

Szanyi, Kwak, Hanson, Wang, Szailer, Peden,
J. Phys. Chem. B 109 (2005) 7339-7344.



Technical Accomplishments/ 
Progress/Results

We’ve determined a number of practical implications 
of the observed Ba-phase morphologies.

• From TPD experiments, the “monolayer” morphology is 
found to decompose at lower temperature in vacuum and in 
a reducing atmosphere than “bulk” nitrates.

• “Monolayer” Ba-phase is also easier to ‘de-sulfate’.
• Formation of a high-temperature (deactivating?) BaAl2O4

phase requires BaO coverages above 1 monolayer.
• Morphology model at least partially explains relatively small 

use of Ba species (often <20%) in storing NOx during typical 
lean-rich cycling.
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EffectEffect of COof CO22 on on NOxNOx release:  release:  TPD under CO2 (5%) 
after NO2 uptake at 300 K on BaO(20%)/Al2O3
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• Appearance of a second NO2 desorption feature at higher temperature
• Decrease in the amount of NO release
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Only “bulk” Ba
nitrates are 
effected by the 
presence of CO2
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We have initiated studies of LNTs that operate at 
higher temperatures for GDI applications.

Technical Accomplishments/ 
Progress/Results
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We discovered that supporting BaO on MgAl2O4 produced 
much more active materials at higher temperatures.
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Recently published work from Toyota demonstrate that MgAl2O4 is 
also an improved support material for K-based LNTs.

Technical Accomplishments/ 
Progress/Results
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NO2 TPD indicates enhanced performance may be related 
to better dispersion of BaO on the MgAl2O4 surface.

Technical Accomplishments/ 
Progress/Results
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Transmission electron microscopy (TEM) micrographs also 
indicate better Pt dispersion on MgAl2O4-supported LNT.



Technical Accomplishments – Summary

• The morphology of BaO/Al2O3 LNT materials is remarkably dynamic during NOx 
storage and reduction.  A “monolayer’” of Ba(NO3)2 forms on the alumina surface in 
addition to large “bulk” Ba(NO3)2 particles.

• These different morphologies display dramatically different behavior with respect to 
NOx removal temperature, formation of a deactivating high-temperature BaAl2O4
phase, and temperature requirements of desulfation.

• Effects of H2O and CO2 on the uptake and release of NOx was emphasized in studies 
performed this year.  A notable conclusion from this work is that the presence of CO2
only effects the decomposition of “bulk” Ba-nitrates with little, if any change is the 
properties of “monolayer” nitrates.

• On the basis of a recent CLEERS priorities poll, we have initiated studies of LNT 
materials that operate at higher temperatures than the baseline Pt/BaO/alumina.  Both 
novel supports (MgAl2O4, CeO2, etc.) and alternative storage materials (e.g., alkali 
metals) are included in this new work.

• Other highlights include:
– Detailed comparative studies of the performance of all alumina-supported alkaline earth 

oxide (MgO, CaO, BaO, and SrO) storage materials.
– Role of surface sites in the phase change and sintering of the common LNT support 

material, γ-Al2O3.
– Ultra-high field NMR and aberration-corrected TEM studies of the anchoring and sintering of 

Pt on the γ-Al2O3 surface.  TEM work done in collaboration with Larry Allard, ORNL/HTML.



Activities for Next Fiscal Year

• Complete studies of effects of CO2 and H2O on morphology and NOxstorage properties of baseline Ba-based materials.
• Higher temperature LNT operation:  the anchoring, structure and 

mobility of alkali and alkaline earth NOx storage oxides on alumina 
and other supports.

• Roles of promoter species such as ceria.
– Effects on Ba-phase morphology changes
– Roles in minimizing deactivation processes

• Effects of other emission control systems on LNT performance.  For 
example:
– If soot filters are located downstream of LNTs as seems likely, the effects of 

soot accumulation on LNT catalyst morphology and NOx reduction 
performance should be understood.

– How to optimize LNT regeneration for NH3 production if downstream urea SCR 
catalyst system present?  Assess by fundamental understanding of the 
regeneration chemistry.
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Desorption of NOx during 
TPD in the presence of 2% 
H2O (red curves) occurs at 
higher temperature 
indicating the formation of 
bulk barium nitrates.

TPD results in a subsequent 
experiment without H2O 
indicate significant changes 
to the Ba-based storage 
material. 

The presence of H2O leads to stabilization of large crystallites of Ba(NO3)2 as 
evidenced by Temperature Programmed Desorption (TPD) experiments.
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State-of-the-art in-situ synchrotron experiments performed at the National 
Synchrotron Light Source (NSLS) at Brookhaven National Laboratory.  
Specific techniques used include:

• X-ray absorption near-edge structure (XANES);
• Extended x-ray absorption fine structure (EXAFS); and
• Time-resolved x-ray diffraction (TR-XRD)
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