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Understanding emission control devices and
interactions with advanced combustion 
directly applies to FCVT objectives 
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FreedomCAR Engine Fuel 

Efficiency Goals 
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Purpose of Work: Enable efficient lean engine
market penetration by meeting emission
regulations with aftertreatment 

•	 Research of Lean NOx Trap Catalyst NOx and SOx 
Regeneration Chemistry and Performance (9248) 
–	 Characterize H2, CO, and HC’s generated by the engine (tools: FTIR, 

GC/MS, SpaciMS) 
–	 Develop stronger link between bench and full-scale system evaluations 
–	 Provide data through CLEERS to improve models. Use models to guide 

engine research 

•	 Research of Multimode Engine Operation and Potential 
Synergies with Aftertreatment (12249) 
–	 Investigate emissions from advanced engine combustion modes and 

study emissions control technologies 
•	 LNT, Urea SCR, HC-SCR, Lean NOx Catalysis, DPF, Oxidation 

–	 Study effect of multimode operation on system performance 
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Address Previous Reviewer Comments

Strengths: 

•	 “…good target to bridge very 
fundamental work in other projects 
to more practical implementation.” 

•	 “…made good use of quality 
facilities…capable of total-system 
tests with detailed diagnostics.” 

•	 “Good progress…a relatively large 
number of experiments….” 

•	 “Engine control is typically not well 
covered … due to proprietary 
nature…, but ORNL is to be 
commended for including this.” 

•	 “Working groups feeding 
information that is input into the 
program.” 
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Weaknesses: 

•	 “…measure fuel consumption accurately.” 

•	 “…can you address fuel dilution effects?” 

•	 “It is hard to get state of the art devices….” 

•	 “…potential exists for more substantive 
associations with industry particularly in the 
area of engine control….” 

•	 “…definitive reasons for conducting these 
specific research areas need to be better 
justified.” 

•	 “Only general mention of next year’s activities 
and plans….” 
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number of experiments….” 

• “Engine control is typically not well 
covered … due to proprietary 
nature…, but ORNL is to be 
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program.” 
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associations with industry particularly in the 
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for conducting these 
need to be better 

• “Only general mention of next year’s activities 

Measuring fuel consumption 
accurately with gravimetric system. 

Also, improved dyno torque accuracy. 

Continuing to strive to balance 
public aspect of project with most 

state-of-the-art technology. 

Transition to new engines may 
expand collaborations 

More specific plans for FY08 activities 



ORNL research activities address multiple
emissions control barriers 
•	 Technical Challenges & Barriers from FCVT 

MYPP: 
–	 3.3.1.8.C. Emission control. Meeting EPA 

requirements for oxides of nitrogen and particulate 
matter emissions standards with little or no fuel 
economy penalty will be a key factor for market 
entry of advanced combustion engines. NOx 
adsorbers appear to be the most viable NOx 
reduction devices for light-duty vehicles, but they 
are very sulfur-sensitive, resulting in an increasingly 
greater energy penalty over time to compensate for 
loss of activity. 

–	 3.3.1.8.E. Durability. The emission control system 
has to perform effectively for 120,000 miles .... 

•	 FreedomCAR ACEC Tech Team 2006 Roadmap: 
–	 Development and optimization of catalyst-based 

aftertreatment systems are inhibited by the lack of 
understanding of catalyst fundamentals (e.g., 
surface chemistry, deactivation mechanisms... ) and 
catalysts modeling capabilities. 
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Approach


ORNL Emissions

• Study LNTs on multi-cylinder engine 

with full control for in-cylinder 
regeneration 

•MECA-supplied and model LNTs 
•Non-proprietary regeneration strategies 

• Operate multi-cylinder engine in 
multimodes (traditional + HECC/LTC) 

•Study synergies of aftertreatment (LNT, 

SCR, HC-SCR) with multimode operation

•Identify technologies and combined 
approaches that meet DOE goals 
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Approach	 Universities

Industry 

CLEERS 
MECA • Aftertreatment Modeling 

ORNL Emissions	 Natl Labs 
•	 Multi-cylinder engine with 

prototype and model LNTs 
•	 Multimode operation with 

various aftertreatment 

ORNL Combustion	 ORNL Health Impacts

• Low NOx/PM efficient • Mobile Source Air Toxics 

combustion • Unregulated emissions 

Advanced Engine HEI 
Combustion Natl Labs NREL 

Universities Industry
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Performance Measures and Accomplishments


Since last review (June 2007): 

•	 Studied LNT technology for multimode engine
operation at various operating conditions 
–	 Measured performance for OEM vs. HECC operation 
–	 Measured LNT oxidation efficiency of MSATs 

•	 Studied Ce-based LNT on bench flow reactor 
–	 Characterized NOx reduction and capacity vs. temperature 
–	 Measured deSulfation temperature profile 
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Synergies

of 


Lean NOx Trap

and


Multimode Combustion 
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What are synergies between HECC combustion
and lean aftertreatment? 

Combustion Modes: 

•	 No EGR: 
–	 no EGR, lean combustion 
–	 low PM and CO/HCs, high NOx 

•	 OEM (EGR): 
–	 OEM EGR level and injection timing 
–	 moderate PM, NOx, and CO/HCs 

•	 Low Temperature Combustion (LTC): 
–	 high EGR level, OEM injection timing 
–	 low PM and NOx, high CO/HCs 

•	 High Efficiency Clean Combustion 
(HECC): 

–	 high EGR level, advanced timing, higher

fuel rail pressure


–	 low PM and NOx, high CO/HCs 
–	 HECC efficiency closer to OEM than LTC LNT 
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Research Platform 
FY07 Improvements 
• Variable Geometry Turbo 

• Custom Exhaust Header 

Advanced Technologies 
• Model-Based Full-Pass Control System 

– unlimited software flexibility 

• Advanced Fuel Injection Capabilities 
– high pressure common rail 
– up to 8 injections per combustion event 
– no injection timing window limitations 

• Electronic Intake Throttling Valve 

• Electronic Solenoid Controlled EGR 
– low flow and high flow valves 
– EGR from 0% to ~60% (depending on engine condition) 

– EGR gas cooling 

• Advanced Combustion Regimes (LTC/HECC) 
0 1 2 3 4 5


NOx [g/hp-h]
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HECC Enables Low PM and NOx 
•	 EGR sweep conducted with OEM and HECC injection parameters 

–	 NOx-PM tradeoff curve shown 
•	 HECC enables low PM emissions across span of EGR rates 
•	 Less sensitivity of PM emissions to EGR rate for HECC is an

advantage for PM control 
1.0 

1500 rpm0.9 OEM 
0.8 2.6 bar HECC 
0.7 
0.6 
0.5 
0.4 LTC 
0.3 
0.2 
0.1 Increasing EGR 
0.0 
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Downside of HECC is Higher HC and CO
Emissions 

•	 At high EGR rates, CO and HC emissions increase with HECC
combustion relative to OEM and lean combustion modes 

•	 Formaldehyde, a Mobile Source Air Toxic (MSAT), also increases
for HECC relative to OEM 

–	 In-depth MSAT emissions addressed in ORNL Health Impacts project 
•	 Catalytic oxidation of these emissions dependent on temperature
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Optimization of HECC combustion is Trade-Off
between Efficiency and Emissions 

•	 As EGR rate increases, NOx emissions continue to drop, but … 
•	 Ultimately, efficiency will drop at the highest EGR rates as


combustion becomes less stable

•	 Optimal HECC operating parameters determined by varying EGR rate

and injection timing 
0.3 30 
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1000 

Experiments made use of engine conditions
developed by Ad Hoc Working Group 
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DescriptionWeight 
FactorSpeed / LoadPoint 

75 

200 

200 

600 

400 

700 Idle900 rpm / 0.1 bar0 

5 

4 

3 

2 

1 

Hard acceleration2600 rpm / 8.8 bar 

Moderate 
acceleration2300 rpm / 4.2 bar 

Low speed cruise w
slight acceleration2000 rpm / 2.0 bar 

Low speed cruise1500 rpm / 2.6 bar 

Catalyst transition 
temperature1500 rpm / 1.0 bar 

• Considered representative
speed-load points for light-duty
diesel engines. 

• Does not include cold-start or 
other transient phenomena. 

• Represents method for
estimating magnitude of drive
cycle emissions. 
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• HECC operation achieved for
Modes 0 to 4 using high levels of
dilution on ORNL combustion 
project engine 

– Reference: Sluder and Wagner, 
SAE 2006-01-3311 

• HECC operation achieved for
Modes 0 to 3 with ORNL 
emissions engine (different EGR) 



Regeneration Performed with Combination of

O2 Reduction and Fuel Enrichment Techniques


O2 Reduction: 
• Throttle 

Engine MECA LNT 

MECA LNT: ~100 g/ft3 PGM, 2.47 liters (1.5 ESV)• EGR 
TDC 

Fuel Enrichment 
• OEM Injection Timing 

• Delayed and Extended Main (DEM) 

• Post-80º Enrichment (Post80) 

• HECC Enrichment 
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Regeneration Approach for SS Conditions


Point Speed /
Load SV (/hr) 

LNT 
Temperature

(ºC) 
Modes Regeneration Technique 

1 1500 rpm
/ 1.0 bar 

11,400
19,800 128-142 Lean, OEM, 

HECC 
EGR and Throttle w/ HECC and DEM 
Enrichment 

2 1500 rpm
/ 2.6 bar 

11,800
21,300 244-258 Lean, OEM, 

HECC EGR and Throttle w/ HECC Enrichment 

3 2000 rpm
/ 2.0 bar 

14,700
31,500 242-282 Lean, OEM, 

HECC EGR and Throttle w/ HECC Enrichment 

4 2300 rpm
/ 4.2 bar 

38,200
39,200 354-366 Lean, OEM Throttle w/ DEM Enrichment 

5 2600 rpm
/ 8.8 bar 39,500 485 Lean Throttle w/ Post80 Enrichment 

•	 LNT temperatures challenging for conditions #1 and #2 
•	 Steady-state modes not truly representative of LNT temperature

during transient operation, large temperature and SV variations 
observed in matrix 
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Regeneration Approach for SS Conditions


19 Managed by UT-Battelle
for the Department of Energy 

485 
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SV (/hr) Regeneration Technique Modes Speed /
LoadPoint 
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EGR and Throttle w/ HECC Enrichment 2000 rpm
/ 2.0 bar 

EGR and Throttle w/ HECC Enrichment 1500 rpm
/ 2.6 bar 

EGR and Throttle w/ HECC and DEM 
Enrichment

1500 rpm
/ 1.0 bar 

• LNT temperatures challenging for conditions #1 and #2 
• Steady-state modes not truly representative of LNT temperature

during transient operation, large temperature and SV variations 
observed in matrix 
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Regeneration Approach for SS Conditions
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Point #1: 1500 rpm / 1.0 bar
(Catalyst transition temperature) 

• No NOx reduction observed by catalyst 
• Temperature (<150 C) is too low 
• Reductants generated pass through LNT 
• HECC is lowest NOx option 
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Point #2: 1500 rpm / 2.6 bar
(Low speed cruise) 

• OEM and HECC effective at achieving low NOx levels 
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Transient Operation Avoids System Cooling
Effects Responsible for Drop in HECC Efficiency 

•	 At steady-state conditions, HECC efficiency can drop due
to system cooling issues at some conditions 

•	 For transient operation, switching between combustion
modes helps to preserve HECC efficiency to OEM levels 

– Experiment shows maintaining efficiency during switching 
from OEM to HECC modes every five minutes 

1500 rpm 
2.6 bar 
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Point #2: 1500 rpm / 2.6 bar
(Low speed cruise) 

•	 HECC preferred if transient operation maintains equivalent
efficiency to OEM 
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Point #3: 2000 rpm / 2.0 bar

(Low speed cruise w/ slight acceleration)


• HECC shows optimal results; OEM also good with frequent regen 
• HECC benefits from higher LNT temperature and lower SV 
•	 Efficiency of HECC remains high at steady state as exhaust 

temperatures are more stable 
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Point #4: 2300 rpm / 4.2 bar (Moderate
Acceleration) 

• OEM (EGR) more efficient than “No EGR” mode at low NOx levels 
• HECC not attained at condition #4 
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Point #5: 2600 rpm / 8.8 bar (Hard
Acceleration) 

• No EGR mode is only option explored at higher load 
• Optimization occurs at midpoint of curve 
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CO and HC Emissions Problematic at Point #1


•	 Tailpipe CO and HC emissions for no regeneration case at each 
speed/load point 

•	 Point #1 is below light-off temperature of LNT 
•	 Low temperature oxidation catalyst needed 
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Bad EGR Chemistry Detriment to System


•	 High EGR rate
combined with heavy
hydrocarbons and soot
in cool system lead to
problematic deposits in
EGR system 

•	 Multiple cases of EGR
valve failure and EGR 
loop fouling observed
during experiments 

•	 Especially problematic
at lowest exhaust 
temperatures 
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HECC and LNT Technology Synergistic at Some
Conditions 
•	 NOx reduction from the combination of HECC combustion and LNT 

aftertreatment is excellent at low temperatures 
–	 Efficiency can be optimal in transient conditions where combustion 


switches between HECC and OEM operation


•	 CO, HC, and MSAT emissions from HECC are controlled by LNT at
higher temperatures but are not controlled at lower temperatures 

•	 High EGR rate and HC chemistry are bad mixture at low temperatures 
–	 System durability issues are biggest hurdle to overcome 
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LNT 
Temperature (ºC) CommentsSpeed / LoadPoint 

5 
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2 

1 

No EGR optimal2600 rpm / 8.8 bar 

OEM optimal (HECC not achieved)2300 rpm / 4.2 bar 

HECC optimal 2000 rpm / 2.0 bar 

HECC optimal, but HECC efficiency drops 
off for long term operation1500 rpm / 2.6 bar 

OEM and HECC optimal, but CO and HC 
Emissions Problematic 1500 rpm / 1.0 bar 



Bench Flow Reactor

Characterization of


Ce-Based Lean NOx Trap 
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Are Ce-based LNTs suitable for light-duty 
diesel engine applications? 

•	 Honda has studied use of Ce-based LNT for 
hybrid (LNT + SCR) aftertreatment system for
future diesel vehicles 
– Reference: Naohiro Satoh, Hiroshi Ohno, and Tadao 

Nakatsuji, Aachener Kolloquium Fahrzeug- und 
Motorentechnik 2006 

•	 What are advantages of Ce-based LNTs?


•	 Investigated model Ce LNT on bench flow 
reactor 
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Ce-Based LNT Offers Low deSulfation 
Temperature 

•	 Temperature programmed reduction (TPR) of LNT after S
exposure with SO2 

•	 Conditions: SV=30k/hr, CO2=H2O=6%, 0.5% H2 
•	 Sulfur release (as H2S) begins at 250 C 
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Ce-LNT Peak Efficiency at 250-280 C

•	 NOx reduction efficiency peaks between 250 and 280 C 
•	 In general, good performance at low temperatures, but poor

performance at higher temperatures (>350 C) 
•	 Conditions: SV=30k/hr, CO2=H2O=6%, O2=8%, 200 ppm NO, CO 

and H2 reductants, lean/rich cycle=55/5 sec 
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Ce-Based LNTs Offer Low Temperature 
Performance 

•	 Low deSulfation temperature observed


•	 NOx reduction performance is shifted to
lower temperatures relative to Ba-based
LNTs 
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Technology Transfer/Publications

and


Future Plans 
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Technology Transfer 
• Interactions with field at … 

–	 DEER Conference 
–	 CLEERS Workshop, Focus Group conference calls, and website (database) 
–	 SAE Conferences 

• Informal interactions with MECA partners and OEMs 

Publications/Patents 
• Since Last Review (June, 2007): 

–	 Jim Parks, Shean Huff, Matt Swartz, and Brian West, “Lean NOx Trap Formulation Effect on 
Performance with In-Cylinder Regeneration Strategies”, 13th Diesel Engine-Efficiency and 
Emissions Research Conference, Detroit, MI, August, 2007. 

–	 Jim Parks, Shean Huff, Mike Kass, and John Storey, “Characterization of In-Cylinder 
Techniques for Thermal Management of Diesel Aftertreatment”, SAE Technical Paper Series 
2007-01-3997 (2007). 

–	 Jim Parks, Brian West, Matt Swartz, and Shean Huff, “Characterization of Lean NOx Trap 
Catalysts with In-Cylinder Regeneration Strategies”, SAE Technical Paper Series 2008-01
0448 (2008). [will be presented at SAE Congress 2008] 
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Plans for Rest of FY08 and FY09 

•	 Rest of FY08 
–	 Continue multimode study: add SCR and DOC 
–	 Investigate novel HC-SCR catalyst from University of 

Kentucky (Mark Crocker) 
–	 Continue Ce LNT study and add PGM loading study (1st on 

bench, then migrate to engine) 

•	 FY09 
–	 Migrate to new engine platforms 

•	 GM 1.9-liter diesel (4-cylinder) 
•	 Lean gasoline (still looking for specific engine) 

–	 Study hybrid LNT-SCR systems 
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Plans for Univ of Kentucky MWNT HC-SCR


•	 Study MWNT HC-SCR catalyst on Mercedes
1.7-liter diesel platform 
–	 In-pipe injection of diesel fuel 
–	 In-cylinder reductant production 

•	 Reductant mixture of H2, CO, and HCs added to lean 
exhaust with cylinder indexing approach 

–	Slipstream exhaust geometry 

•	 Goal: Characterize unique HC-SCR catalyst
under realistic engine conditions 
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Novel HC-SCR Based on C Nanotubes (U of K)


•	 Multiwalled carbon nanotubes (MWNTs) for 

development of lean NOx catalysts (HC-SCR)

–	 MWNT growth on steel monolith 
–	 Functionalization of the monolith-grown MWNTs prior to 

precious metal deposition 

•	 University of Kentucky (Mark Crocker et al) 
–	 Coordinating Research Council (CRC) sponsoring U of K 
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MWNTs Offer Improved Low Temp Performance


• Bench flow reactor results show higher NOx conversion at lower temps 

• Feed: 500 ppm NO, 500 ppm C3H6, 10% O2, 10% H2O (SV=50k/hr) 
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Engine Platform Evolution 

•More modern engine 
•Platform for DOE efficiency 
and combustion studies 
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Current Platform: 
Mercedes 1.7-l 
with modern components 
and controls 

Diesel Platform: 
GM 1.9-l engine with 
aftertreatment controls 

Lean Gasoline Platform: 
Still being defined 

•Representative of gasoline 
engine evolution 
•Opportunity for more 
petroleum savings 



Summary 
•	 Relevance 

Improved understanding of emission control technologies and their interactions with 
advanced combustion techniques is critical to enabling greater use of high efficiency lean
burn engines 

•	 Approach 
Multi-cylinder engine-based experiments with advanced diagnostic tools, model and MECA

supplied catalysts 

•	 Accomplishments 
•	 Synergies of LNT and HECC combustion exist for low temperatures where HECC feasible, 

but CO/HC emissions and EGR fouling issues are a concern 
• Ce LNT investigated on bench flow reactor shows low deSulfation temperature 

•	 Collaboration 
Working closely with industry, other labs, and CLEERS LNT focus group. 

•	 Future Research 
• Continue LNT research with Ce-based LNT and PGM loading study 
• Study urea SCR, HC-SCR, and DOCs for multimode combustion 

Jim Parks 
865-946-1283 

parksjeii@ornl.gov 
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