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OBJECTIVES

The project is precursor to "Materials by Design" approach including 
"Catalyst by Design" and is focusing on designing catalyst 
systematically rather than by trial and error.
To demonstrate that we can examine “computationally complex but 
experimentally simple” catalyst system by first principle theoretical 
models,  experimental studies, and nanostructural characterization 
iteratively to forecast improvements to obtain optimum catalyst 
systems
Identify optimum catalyst sites and develop durable catalyst materials 
with such sites

To assist DOE complete the development of materials solutions that will enable 
heavy-duty diesel engines to achieve efficiencies of 50% while meeting EPA 
2010 emissions standards.
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Barriers

Advances in emission catalysts from trial and error method
Although successful, very time consuming

In recent years, nanostructural characterization of catalysts has 
been helpful in advancing the state-of-the-research in emission 
catalysts

Provides information on gradual but persistent decrease in catalyst 
performance (e.g. catalyst coarsening, noble metal migration, changes 
in support etc.)
But, does not offer approaches to alleviate the problem

Theoretical studies were limited to gas-phase very simple 
systems

Not adequate towards design of complex catalyst system
Can we benefit from the advances in catalyst synthesis, theory, and 
nanostructural characterization to better understand catalyst sites and 
reduce the iterations in emission catalyst design?
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Theory

Theoretical Modeling
Density functional theory calculations. 
Generalized gradient approximation (PW91 
functional). 
Optimization of Pt clusters on oxide 
supports
Interaction of CO, NOx, and HC with 
catalysts

Experimental System
Synthesis of Pt Nanoclusters on 
morphologically diverse oxide supports
Interaction of CO, NOx, and HC with 
catalysts

Structure
Nano-structural characterization

Supported clusters (Pt, Rh) are integral part of vehicle emission treatment catalysts such as 
oxidation catalyst, three-way catalyst, lean NOx traps, diesel particulate filters.  We have carried out 
an extensive study of supported Pt clusters, their oxidation behavior, and their activity as CO, HC, 
and NOx oxidation catalyst.  

APPROACH

This approach can also be extended to zeolite based catalysts

Structure
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C.K. Narula, “Catalyst by Design”, Encyclopedia of Nanoscience and Nanotechnology, Taylor & Francis, New York, 2008 (invited).
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Gas-Phase Studies - Ptx clusters

3-D structures generally preferred. Optimal structures are shown with 
some bond distances that match with experimentally observed ones for 
dimers.
Atomization energy increases monotonically with cluster size i.e. atoms 
are held together more strongly as the cluster size increases

Y. Xu, W. A. Shelton, and W. F. Schneider, Journal of Physical Chemistry A, 110 (2006) 5839.
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Oxidation energetically favorable; 
dioxides preferred to monoxides

OE varies non-linearly with cluster size; 
small Pt clusters more prone to oxidation 
than bulk Pt

Oxidation of Ptx clusters
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PtO2

PtO3

Pt
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Pt2O4

Pt2O3

Pt2

Pt2O2

NPt=2

(T, pO2
) phase diagrams for Pt1-3 clusters

Higher T , lower pO2
favor lower oxidation

Lower oxides dominant for larger clusters

No sub-oxides seen

Mostly dioxides at 
standard conditions

At diesel exhaust
temperature larger 
cluster is less oxidized

Pt3O3

Pt3

Pt3O4

Pt3O8 NPt=3
Pt3O6

Y. Xu, W.A. Shelton, and W.F. Schneider, Journal of Physical Chemistry B, 110 (2006) 16591.
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Modeling Pt/γ-Al2O3?

Still disagreement on the bulk structure of γ–Al2O3. Poor crystallinity prevents 
structure optimization.

Defect-spinel lattice structure with one cation defect per Al8O12 units to maintain charge balance
Debate on ratio of Td and Oh sites which cation defects occupy
Not resolved by TEM, XRD, NMR 

Cubic Fdm and tetragonal I41/amd cells, restricting Al to spinel positions, results in 
about 1.47 billion configurations. 

Paglia, G.; et al., Physical Review B 71 (2005) 224115

Spinel-based structural models represent γ–Al2O3 structure better than non-spinel
based models and can reproduce lattice parameters and other structural features

Nelson, A.E.; J. Phys. Chem. B, 110 (2006) 2310

Theoretical modeling of supported catalysts on γ–Al2O3 has been carried out but 
the results remain suspect till there is agreement on the structure of γ–Al2O3
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What happens on supported clusters? 

 

nO

free
on MgO

nO

free
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free
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Magnesia (MgO) is a model basic oxide 
surface that is relatively inert toward many 
adsorbates and its (100) facet is 
thermodynamically the most stable. 

The oxides of the Pt dimer and trimer exhibit 
very similar formation energies on MgO(100) 
compared to those of the free Pt2 and Pt3 
clusters, while Pt1Oy clusters have markedly 
lower formation energies. 

The morphologies of the various Pt oxide 
clusters on MgO(100) closely resemble their 
gas-phase counterparts. 

These results show that the oxidation 
energetics and morphologies of the free Pt 
nanoclusters by and large are preserved on a 
relatively inert surface 
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Oxidation Catalyst – Pt/γ-Al2O3

STEM analysis shows that platinum 
particle size ranges from 0.6-1.4 nm 
and the distribution is centered at 0.9 
nm 

A common observation reported in 
literature
Recent EXFAS & XANES study 
suggest thermally mediated 
interaction between Pt and support 
resulting in Pt-Pt bond contraction 
(JACS, 128 (2006) 12068)

HAADF-STEM mode clearly shows 
that the atomic make-up of these 
platinum nano-clusters involves on 
average between 10-20 atoms 
Single atoms and 2-3 atom clusters 
can also be observed 

Only a 3-atom cluster has been 
observed previously

The directly measured Pt-Pt bond 
distances are 2.35, 2.54, 2.7, and 3.2Å
for 2-atom clusters, and 2.3, 2.8 Å for 
3-atom clusters. 
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C.K. Narula, L.F. Allard, D.A. Blom, M.J. Moses, W. Shelton, W. Schneider, Y. Xu,  SAE-2007-01-1018 (invited).
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Pt-Clusters on alumina

This structure has Pt-Pt bond 
distances of 2.6, 2.6, and 3.3 Å. If 
this structure is capped with –OH, 
the bond distances are 2.6, 3.1, 3.6 
Å which are in good agreement 
with experimental values.

This structure has Pt-Pt bond 
distances of 2.59, 2.65, and 2.73 Å
which do not agree with 
experimental values of are 2.7, 
3.2, 3.4 Å.

Sohlberg, K. et al., ChemPhysChem, 2004, 5, 1893
Oversimplified structure of γ-Al2O3 employed in these models
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Pt/α-Al2O3

a. AlT site b. O3h c. O3v

a. AlT-AlT b. O3-O3

Pt3 equilateral triangle adsorption 
structure

a. Planar b. tetrahedron

a. Square pyramid b. triangular 
bipyramid

O3 site strongly preferred
Clusters larger than 3 prefer to 
interact with substrate via its 
triangular face
Adhesion declines with 
increase in size 

Balakrishnan et al, J. Phys. Chem. C, 111(2007)13786

AlT = 2 zigzag O and 1 
linear O attached to 
single Al

O3h = 2 zigzag O and 1 
linear O attached to 
2 Al

O3V = 1 linear and 2 
zigzag O from 
adjacent  row
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Pt-Pt bond distances

Since our measured Pt-Pt bond distances are not from 3-dimensional 
images, we need to be very careful in assigning structures

The directly measured Pt-Pt bond distances are 2.35, 2.54, 2.7, and 3.2Å
for 2-atom clusters.

Gas phase Pt-Pt dimer 2.34 Å
Gas phase Pt2O4 cluster 2.77 Å
Pt dimer/α-Al2O3 2.723 Å

The directly measured Pt-Pt bond distances for 3-atom clusters are 2.3, 2.8 
Å. These are different from previously reported values of 2.7, 3.2, 3.4 Å

Gas phase Pt-Pt trimer 2.5 Å
Gas phase Pt3O6 cluster 2.75 Å
Pt trimer/α-Al2O3 2.696 Å
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CO-Oxidation
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Pt-Particles post CO-Oxidation

20 nm

20 nm

0

10

20

30

40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
particle size (nm)

%
 o

f P
ar

tic
le

s

Fresh Intitaiton-tested Full Range-tested 3xQuantitative Conversion 

STEM images after CO oxidation 
were stopped at initiation (Top) and 
after 3 cycles of quantitative 
conversion (bottom)

Pt particles start to grow even 
after exposure to CO-oxidation 
initiation conditions only

Is Pt-sintering effect real?
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Reaction Energy Profiles

The reaction energy profiles for CO + ½O2 CO2 and NO + ½O2 NO2 on Ptx (x = 1-5 and 10).  
The profiles on the bulk Pt surface (represented by the Pt(111) surface) are included. As particle 
size increases, the adsorption energies trend toward the Pt(111) level  That the adsorption of these 
species is enhanced compared to Pt(111) means that the energy profiles of CO and NO oxidation 
on Ptx also differ from their bulk-surface counterparts.  CO oxidation on the bulk Pt surface is 
exothermic every step along the reaction path, but because of the enhanced adsorption of CO, 
there is a minimum in energy when CO adsorbs on the clusters. The same phenomenon can be 
seen in NO oxidation.  This indicates that the ability of the Pt clusters to catalyze CO and NO 
oxidation may be inhibited by the strong adsorption of CO and NO. 
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Ex-Situ Reactor

Rapid Screening Method for 
Monitoring Nano-structural 
Changes

The catalyst was deposited on 
a TEM grid and placed in our ex-
situ reactor where it was 
exposed to three different 
conditions 1) CO oxidation 
initiation, 2) quantitative CO 
conversion (2 cycles) , and 3) 
quantitative CO conversion (3rd 
cycle).
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ACEM HAADF-STEM images of the exact same 
sample area after exposure to CO-Oxidation 
conditions

C.K. Narula, L.F. Allard, D.A. Blom, M. Moses-DeBusk, SAE-2008-01-0416.
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Catalyst by Design…
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What happens when fresh catalyst 
contains larger particles?
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STEM analysis shows that platinum particle 
size distribution is centered at ~12 nm with 
some large particles in 20-40 nm range
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What happens when fresh catalyst 
contains larger particles?
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ACEM HAADF-STEM images of the exact same 
sample area after exposure to CO-Oxidation 
conditions
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What happens if substrate morphology is 
different?

STEM images of 2%Pt/γ-Al2O3 (top row) 
and 2%Pt/θ-Al2O3 (bottom row) as fresh 
catalyst (A, C), after CO oxidation initiation 
(B, D) and after 3 cycles of quantitative CO 
oxidation (C, E)
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Hydrocarbon Oxidation

A 500 ppm mixture of 
Propane and Propene
in 1:2 ratio with 10% 
O2 and balance N2 at 
~25k h-1 space 
velocity
The oxidation begins 
at 180ºC and 
completes at 600ºC
Pt particles grow 
rapidly (range 1.3-
15.2 nm). This is not 
surprising since 
thermal treatment at 
650ºC can also lead 
to ~12 nm particles

2%Pt/gamma-Al2O3 HC Oxidation 
(10% O2 and 500 ppm C3 mix - 1 C3H8 :  2 C3H6) SV= ~25k h-1
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Conclusions -Theory, Experiments, and 
Structural Studies tell us…

Nanostructural studies show that Pt nanoclustes on γ-alumina single atoms, 2-, 3-, and 10-
20 atom clusters. Theoretical models suggest that metal clusters have extensive interaction 
with substrate oxygen. In gas phase, the oxidized nanoparticles are more stable. 
CO oxidation on Pt nanoclusters initiates and completes at lower temperature than that on 
Pt particles. Theoretical studies suggest that the adsorption of O, CO, and NO are 
weakened on PtxOx and PtxO2x clusters  resulting into favorable CO and NO oxidation 
energetics on small oxidized clusters than on small metallic clusters or large particles. 
Experimental studies show that

Pt nanoclusters undergo rapid agglomeration even after exposure to CO oxidation initiation 
conditions.
When fresh catalysts comprises large Pt particles (~10nm), CO oxidation reaction does not 
induces rapid agglomeration.
Substrate has a major impact on the agglomeration rate.
Pt nanoclusters rapidly grow under hydrocarbon oxidation conditions.  

Overcoming Barriers
We demonstrate that iterative application of theory, experimental studies, and nanostructural
characterization can advance catalyst discovery process
For CO oxidation, theory predicts that oxidized Pt nanoclusters are better catalysts than Pt-
particles. Experimentally, we validate it by synthesizing supported Pt-nanoclusters, 
characterizing them, and determining their reactivity.

• We also monitor nanostructural changes and show the impact on reactivtiy. 
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Can we do anything about 
agglomeration?

Narula, C.K.; et al., 

AIChE Journal, 2001, 47, 744.

Ba or La Incorporation

Stabilization
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X-ray diffraction patterns of Al2O3
molecular sieves synthesized at 64 
rpm, doped with 2 wt% La and 
calcined under flowing air at  (A) 500 
°C/ 5.5 h, followed by annealing 
under flowing air  at (B) 700 °C/ 5.5 
h, and finished with a final annealing 
under flowing air at (C) 900 °C/ 5.5 h. 

C2H5CH(CH3)O]3Al
Cetyltrimethylammonium
bromide in water-ethanol + 
ammonium hydroxide

Or Tergitol + 
water

Calcination500ºC

Alumina 
Molecular sieves

Shanks et al., Adv. Funct. Mater., 2003,13, 61
Wenzhong, Z., T. J. Pinnavaia, Chem. Comm., 1185 
1998
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Thermal Stability

A. Molecular Sieves [From Barium & Aluminum Alkoxides using Tergitol 15-S-12 as template]

B. BaO.6Al2O3 from Alkoxide hydrolysis  

C. BaO.6Al2O3 [Lit., J. Mater. Sci, 29 (1994) 3441, carbonate method].

D. BaO.6Al2O3 [BaO impregnated Alumina]

E. BaO.6Al2O3 [From decomposition of a mixture of nitrates].
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Technology Transfer

Ongoing work with Dr. Danan Dou and Dr. 
Gongshin Qi of John Deere under a work-for-
others arrangement on NOx treatment for off-
road vehicles

Collaboration with Dr. Yisun Cheng of Ford 
Motor Company
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Activities for Next Year

• Study of NOx and HC oxidation on Pt/Al2O3 system
– Theoretical models
– Nanostructural Changes
– Experimental studies

• Complex System “Oxidation Catalyst” for SCR
– Nanostructural changes
– Catalytic Activity
– Comparison with individual gas interactions
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