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Overview of NPBF effects on advanced combustion
Broad Barrier: Inadequate data and predictive tools to assess fuel 

property effects on advanced combustion, emissions, and engine 
optimization

 Our role: Determine the effects of non-petroleum based fuel 
properties and chemistries on combustion performance and emissions 
for advanced combustion regimes

Budget
• FY09: $895k
• FY10: $1,470k

Project Timeline
• NPBF fuel effects program started at ORNL in 2004
• Investigations have evolved, and will to continue to 

evolve, with emerging research needs

Industrial Partnerships and Collaboration
•Participation in Model Fuels Consortium, led by Reaction Design
•Members of the AEC/HCCI working group led by Sandia National Laboratory
•CRADA project with Delphi to increase efficiency of ethanol engines
•Related funds-in project with an OEM
•Related funds-in project with energy company
•Collaboration with University of Wisconsin
•Collaboration with University of Michigan
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NPBF program is broad and includes numerous 
areas of research (1)

Multi-cylinder diesel engine platform
•Past research has focused on fuel effects of PCCI
•Current focus is on dual-fuel combustion strategy

•Diesel with gasoline or ethanol
•University of Wisconsin collaboration
•Leveraged with APBF and HECC activity in Vehicle 
Technology Program (ACE016)

Single cylinder HCCI engine platform
• Past research has focused on diesel and gasoline range fuel 
effects on HCCI combustion
• Straight-forward nature of experiment makes the engine a good 
platform for generating kinetic data

Milestone: Quantify efficiency and emissions potential of a dual-fuel 
advanced combustion approach on a multi-cylinder light-duty engine
Status: On Track (preliminary assessment complete, further analysis ongoing)

Milestone: Investigate algae-derived and 2nd generation biofuels
Status: Working to obtain fuel samples

Milestone: Conduct experiments with surrogate fuels with 
different sooting tendencies Status: Complete
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NPBF program is broad and includes numerous 
areas of research (2)

Kinetics research
• Member of the Model Fuels Consortium led by 
Reaction Design
• Providing experimental data for kinetics research
• Partnering with the University of Wisconsin on 
mechanism reduction

Milestone: Establish partnership with the University of Wisconsin for 
mechanism reduction.  Status: Complete
Milestone: Develop robust multi-zone kinetic model and KIVA CFD model for 
Hatz HCCI engine.  Status: On Track

Advanced Statistical Techniques
• Statistics allow for the study of complex 

relationships in experimental data for determination 
of major trends
• Project includes evaluating two different software 
packages and numerous statistical techniques

Milestone: Apply advanced statistical techniques to fuel and engine data.  
Status: On Track
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NPBF program is broad and includes numerous 
areas of research (3)

Single cylinder GDI engine with VVA
• Operational at ORNL in FY09
• Flexible research platform for multiple 
investigations

• Ethanol optimization CRADA with Delphi
• Gasoline range fuel effects on NVO and 
exhaust re-breathing HCCI
• Spark-assisted HCCI combustion

Reviewer feedback from 2009 merit review: additional focus on gasoline and 
ethanol is recommended.

Experimental results will focus on ethanol optimization study

Milestone: Complete parametric experiments for optimal performance of 
ethanol blends using
a) Single cylinder VVA engine Status: Complete
b) Multi-cylinder cam VVA engine Status: On Track
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Relevance: EISA legislation requires increased use 
of renewable fuels, but reduced fuel economy is a 
market barrier for E85
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Objective: Reduce fuel economy gap between E85 
and gasoline.

• Increase thermal efficiency of E85 by taking 
advantaged of advantageous fuel properties while not 
decreasing efficiency with gasoline.

• Fuel properties: high octane number and high 
latent heat of vaporization

• Engine technologies: high compression ratio, 
direct fuel injection

• Ethanol is primary renewable contributor for EISA targets

• Currently 99% of fuel ethanol is sold as E10, more E85 
needed to comply with legislation

• E10 alone not sufficient concentration for EISA 
targets

• Consumers experience 25-30% drop in fuel economy with 
FFV’s, attributable to lower energy content
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Engine approach: Single cylinder research engine 
with Sturman hydraulic valve actuation (HVA)

• Modified 2.0L GM Ecotec engine with 
direct injection

• Cylinders 1-3 are disabled, cylinder 4 
modified for Sturman HVA system

• Engine management performed with 
Drivven engine controller

• Custom pistons to increase 
compression ratio

• Engine platform is being used for a 
number of additional DOE projects

– HCCI fuel effects on advanced combustion 
(APBF and NPBF)

– SA-HCCI (APBF and NPBF)
– Stretch efficiency
– Delphi HCCI CRADA

9.20 CR 11.85 CR 12.87 CR

Bore 86 mm
Stroke 86 mm

Connection Rod 145.5 mm
Fueling Direct Injection

Compression Ratio 9.2*, 11.85, and 12.87
Valves per Cylinder 4

*Compression ratio with the production piston
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Fuel Approach: Low and high octane gasoline, 
three ethanol blends

Fuel Property Test Method RG HO E10 E50 E85
Research Octane Number (RON) ASTM D2699 90.8 96.1 95.7 101.6 101.5
Motor Octane Number (MON) ASTM D2700 82.8 87 85.3 89.5 90.1
Antiknock Index (R+M)/2 N/A 86.8 91.6 90.5 95.6 95.8
Wt. % C ASTM D240 86.3 86.5 81.98 68.58 56.71
Wt. % H ASTM D240 13.7 13.5 13.28 13.19 12.97
Wt. % O ASTM D240 by difference 0 0 4.74 18.23 30.32
Stoichiometric Air-Fuel Ratio N/A 14.56 14.55 13.71 11.57 9.61
Specific Gravity ASTM D 4052 0.7305 0.7400 0.7456 0.8 0.7855
Lower Heating Value (MJ/kg) ASTM D240 43 42.8 41.5 34.8 29.2
Reid Vapor Pressure (psia) ASTM D5191 9 9 9.9 8.3 5.6
Ethanol Content (vol%) ASTM D5599 n/a n/a 11.2 51.3 87.2

RG stands for Regular Gasoline (UTG-91 certification gasoline from CPchem)
HO stands for High Octane Gasoline (UTG-96 certification gasoline from CPchem)

Ethanol blended with RG rather than 
HO to better match real-world trends
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Approach 3: Engine operating conditions
Stoichiometric conditions for all points
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Approach 3: Engine operating conditions
Stoichiometric conditions for all points
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Approach 3: Engine operating conditions
Stoichiometric conditions for all points
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1500 RPM EIVC Asym
90 kPa MAP Equiv7.
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Ethanol content simultaneously increases thermal 
efficiency and power under conditions that are not 
knock-limited

• Efficiency and power trends with ethanol have been reported previously, but root cause not fully 
understood
– Analysis shows that about half of the power increase can be attributed to increased energy flux, 

due to charge cooling and higher energy content per unit mass air
– Inherent thermodynamic differences between ethanol and gasoline can be used to gain insight
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Thermodynamic differences between ethanol and 
hydrocarbon fuels examined to determine root 
cause of efficiency increase

• Lower gamma during compression with ethanol fuels serves to decrease efficiency

• Mole multiplier term identified and defined, MM = (moles products / moles reactants)
– Alcohol fuels have higher MM than hydrocarbons
– MM relates directly to relationship between LHV and exergy, and is subject of ongoing study

• Net effect and relative contribution of these thermodynamic effects are not yet fully 
understood
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Gasoline and low level blends of ethanol are 
knock-prone at high compression ratio
Valve strategies can be used to maintain compatibility

Sensor input can be used to 
determine if the operating 
condition is knock-limited

Engine 
Speed
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Load

Knock 
Limited?
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Sensor
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Example: Maximum power demanded at 1500 rpm with 12.87 CR configuration
E50 and E85 

•Not knock-limited
•Maximum power

High Octane Gasoline
• Knock-limited, spark retard 

required to mitigate knock
• Small power penalty
• Substantial efficiency penalty

E10
•Knock-prone, EIVC 
to mitigate knock
•Substantial power 
penalty
•No efficiency 
penalty compared to 
lower CR

Regular Gasoline
•Knock-prone, LIVC to mitigate knock
•Large power penalty
•No efficiency penalty compared to lower CR
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Net effect of compression ratio when maximum 
load is demanded at 1500 rpm

• E85 is able to operate untrottled without knock at all compression ratios, whereas 
gasoline requires LIVC strategies at 11.85 and 12.87

• Efficiency increases with CR for both fuels, much larger increase with E85

• Power increases with compression ratio for E85, but decreases for
– Engine power de-rated by 33% with gasoline at highest compression ratio

• Fuel consumption gap is reduced by 20% at the highest compression ratio
– At CR = 9.2, the ISFC gap between regular gasoline and E85 is 93 g/kW-h
– At CR = 12.87 the ISFC gap between regular gasoline and E85 is 74 g/kW-h
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Discussion
• In order to maintain compatibility with knock prone fuels, either spark retard or valve 

strategies must be employed
– Spark retard has limited authority and incurs an efficiency penalty
– EIVC and LIVC operation offer more control authority and maintain high efficiency, but 

can substantially de-rate the engine

• Strategies demonstrated here show that the fuel economy gap between gasoline and E85 
can be reduced with no efficiency penalty for gasoline

• Results shown here are likely not representative of full engine operating map
– Fuel economy gap may show little difference at light load 

conditions where gasoline is not knock-limited
– Possible efficiency advantage for ethanol with fuel-

specific engine and transmission calibration
• Ethanol can remain in high gear where a downshift for 

gasoline is required to deliver demanded power
• Lower exhaust temperature for ethanol, fuel 

enrichment to cool exhaust is required less frequently
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Continuing FY10 ethanol optimization on multi-
cylinder engine with cam-based VVA engine
Status: engine to be operational 3rd quarter FY10

• Engine incorporates prototype 2-step 
variable valve actuation system, 11.85 
compression ratio
– Modified 2.0L GM Ecotec engine, 

same as single-cylinder VVA  
engine

• Capable of similar EIVC and LIVC 
operating strategies with production-
intent valve train

• Drivven engine controller for flexible 
operation

• Companion engine operational at 
Delphi

Lift 
(mm)

Duration* 
(CA)

Phasing 
(CA)

Strategy

Intake
Low Lift

5.6 131 80 EIVC

Intake
High Lift

10.3 300 80 LIVC

Exhaust 10.3 240 50 --

*Valve opening and closing defined as 0.015”
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Collaborations

• Highlighted data is from a CRADA project with Delphi

• Additional collaborations
– Member of the Model Fuels Consortium

• Membership through CRADA, supplying experimental data for modelers
– Member of the AEC working group led by Sandia
– Related funds-in project with an OEM
– Related funds-in project with an energy company
– Collaboration with the University of Wisconsin on dual-fuel combustion mode
– Modeling collaboration with University of Michigan
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Future work 
• Ethanol CRADA concluding in FY10

• SA-HCCI strategy has been developed 
with VVA engine for ethanol/butanol
study
– Stoichiometric operation
– Up to 7.5 bar IMEP load
– Substantial efficiency increase

• Multi-cylinder HECC work to continue 
to investigate dual-fuel strategy
– Promising path to high efficiency 

with low emissions
– Use of ethanol in diesel engines

• Continued work planned in statistical 
analysis and kinetics research
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Summary
• There are a large number of ongoing research activities at ORNL as part of the NPBF program

– Focused on ethanol-related activity to highlight work 
– Unable to give a full overview of all research activities in the time allotted

• Ethanol optimization investigation demonstrated ability to reduce fuel consumption gap between 
ethanol and gasoline

– Ethanol is inherently more efficient than gasoline at substantially similar conditions
• Efficiency increase is linked to thermodynamic differences of gamma and mole multiplier
• Full understanding of this relationship is the subject of an ongoing investigation

– Early and late intake valve closure can be used to de-rate high compression ratio engine to 
prevent knock and maintain compatibility with gasoline fuels
• Demonstrated that the fuel economy gap can be reduced 

– ISFC gap reduced from 93 g/kW-h at low CR to 74 g/kW-h at high CR

• Thermal efficiency of gasoline was actually increased under these conditions, but power 
reduced

• Combustion strategies to be repeated and expanded on multi-cylinder cam-based engine

• Future work includes stoichiometric spark-assisted HCCI combustion mode with high load 
capabilities (up to 7.5 bar IMEP)
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