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Overview

 Insufficient voltage stability
 High flammability, low safety
 Poor Cycle  & calendar life
 Surface reactivity with electrodes
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 Develop advanced electrolyte with high voltage stability, combined 
with high lithium ion conductivity, high thermal stability, non toxicity, 
non-flammability and enhanced safety. 

 Identify functional electrolyte additives that provide stable solid 
electrolyte interface (SEI) and investigate their formation 
mechanism and their effects on improving the cell performance. 

Objectives
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 Develop novel electrolyte systems that include sulfone-based 
electrolytes, hybrid electrolytes of sulfone with other type of 
solvents, such as carbonate, ionic liquid to enable high power 
high energy lithium ion batteries with superior safety for PHEV 
applications. 

 Investigate compatibility of new electrolytes with different 
battery electrode chemistries.

 Investigate electrolyte additives that stabilize the interface 
between the charged electrode and electrolyte and improve the  
cell performance. Electrolyte additives include compounds 
containing oxalic group, ester group, vinyl group et al..

Approaches
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Electrochemical Window stability

• EMS-Ethyl methyl sulfone: 5.5V
• TMS-Tetramethylene sulfone: 5.0 V
• FS-1-Fluoro-2-(methylsulfonyl)benzene: 4.7 V

• BS-Butyl sulfone: 4.5 V
• EVS-Ethyl vinyl sulfone: 4.3 V

Fig.1 CV profiles of 1M LiTFSI in various sulfones.

ADVANTAGES:
 Large electrochemical windows

- Can enable high voltage cathodes
 High to medium ionic conductivity
Wide liquid-phase temperature
 Lower viscosity (vs. ionic-liquid)
 low cost (byproduct in petroleum industry)
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Sulfones as High Voltage Electrolytes
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Solvent Melting 
Point

EVS: ethyl vinyl sulfone
[C2H5SO2CH=CH2]

<-50ºC

EMS: ethyl methyl 
sulfone

[C2H5SO2CH3] 

35ºC

TMS: tetramethylene 
sulfone 

[C4H8O2S]

23ºC

BS: butyl sulfone 
{[CH3(CH2)3]2SO2} 

44ºC

FS: 1-fluoro-2-(methyl-
sulfonyl)benzene

[C7H7FO2S]

50ºC

3 x 10-3 S/cm at 1.2M LiTFSI with EVS

Ambient Ionic Conductivity of Various Sulfones

Physical Properties of Sulfones
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(c)

Cycle number

Charge
Discharge

FS

 Excellent cycling performance for cells using 
EMS or TMS as electrolyte solvents. No 
capacity fade for 100 cycles.

 Good performance was obtained using glass 
fiber separator (better wettability).

 Poor cycleability for cells using FS as 
electrolyte, even at low current density
- Low ionic conductivity (10-4 S/cm)
- High reactivity. 

 Sulfone based electrolyte has an issue with 
wettability when using conventional 
separators.  Ceramic coated separators will be 
preferable. 

Performance of Sulfone Based Electrolyte 
Using Li1+xMn2-xO4 Based System



8

Capacity (mAh/g)

Performance of Sulfone Based Electrolyte Using 
LiMn1.5Ni0.5O4 (4.8V) Based System
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 1M LiPF6 in (EC/EMC 3/7) need 
about 2 seconds to ignite.

 1M LiPF6 in (TMS/EMC 5/5) need 
about 45 seconds to ignite.

 Strong flame is observed for 1M 
LiPF6 EC/EMC 3/7 electrolyte.

 Weak flame with self extinguished
character is observed for 1M LiPF6
TMS/EMC 5/5 electrolyte. Non-
flammability is expected for pure 
sulfone electrolyte without EMC.

Flammability Test of Sulfone Based Electrolytes

1M LiPF6 in (EC/EMC 3/7)

1M LiPF6 in 
(TMS/EMC 5/5)
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Background - Electrolyte Additives

Reduction occurs at 1.7V (LiBOB) and
1.6V (LiDfOB) and form a new SEI before
the formation of conventional SEI layer
at a potential of 0.6~0.8V. Kang Xu, Chem. Rev. (2004)

Formation of Solid Electrolyte Interface (SEI)
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SEI Modification: Additives to form polymerized artificial SEI film

LiDFOB

LTFOP LTOP

LiBOB

Lithium Tetrafluoro(oxalato) Phosphate Lithium Tris(oxalato) Phosphate

Lithium Bis(oxalato) Borate Lithium Difluoro(oxalato) Borate

P
O

O
O

O

O

O
O

O

O

O
O

O

LiP
F

F

F

O

O

O

O

F

Li

B

O

OO

O

O

O

O

O

Li B
F

F O

O

O

O

Li

SEI Additives Candidates
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LTFOP (1.7V vs Li+/Li)

LTOP (2.1V vs Li+/Li)
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Cell potential, V vs. Li+/Li
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Electrolyte: 1.2M LiPF6 EC/EMC 3/7+2% Additive
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Reduction Voltage of Different Additives
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 Addition of 1~3 wt% LTFOP improves the cycle life, 3% shows the best result.
 More additive decreases the capacity due to thicker SEI layer formation.
 Addition of 1~3 wt% LTOP shows the similar improvement on the cycle life.
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Li/Li1.1(Ni1/3Co1/3Mn1/3)0.9O2

Li/MCMB
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With addition of 1% LTFOP, the onset 
thermal decomposition temperature of 
SEI was pushed above 175oC (70oC 
increase compared with the conventional 
SEI).
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TOS improves the cycle life of the 
lithium ion cell. 1 wt% can provide 
maximum improvement.
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Reduction Peak is not observed, the 
reaction could be radical triggered 
instead of electrochemically induced.

New Additive Candidate TOS
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 TOS only provides very good 
protection for MCMB anode.     
No effect on cathode.

 Impedance of cell with 1% TOS 
additive is initially very high.

NCM 
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Effect of TOS on Performance of MCMB & NMC Electrode 
During Aging at 55oC
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Summary
 EMS and TMS were identified as solvents with high voltage stability (around 5.5V) 

 Wettability issues were identified when using sulfone based electrolytes. Need ceramic or 
ceramic coated separators for maximum performance.

 Both TMS/ LiTFSI and EMS/LiTFSI electrolytes showed stable cycling using both 
Li1+xMn2-xO4 and LiMn1.5Ni0.5O4 systems (1000 cycles was achieved for the 4.8V spinel).

 New compounds with oxalic group were identified as excellent SEI formation additives.

 Using Lithium tetrafluoro(oxalato) phosphate (LTFOP) and lithium tris(oxalato) phosphate 
(LTOP) as additives has led to a significant improvement in cycling and aging performance  
of both NMC cathode and MCMB anode at 55°C.

 Additives with unsaturated bonds (TOS) also exhibit positive effect on cell performance, 
however, initial impedance is large. 

 Succinic anhydride (SA) and maleic anhydride (MA) are reduced prior the decomposition 
of EC forming a unique SEI layer. This new SEI (without EC participation) provides 
excellent cycling stability and low impedance, which benefit  both high power and high 
energy applications.
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Work Plan for FY 11

 Continue investigating sulfone-based electrolytes. 
- Examine how sulfone-based electrolyte performs in graphite system 
- Attempt enabling graphite cell by co-solvent approach
- Develop new additives to enable graphite system with these solvents

 Investigate ionic liquids as new electrolyte solvents. 
- Screen existing ionic liquids and evaluate potential candidates
- Develop new ionic liquids with good compatibility with cell components
- Synthesize new additives to enable ionic liquids for Li-ion cells

 Continue the development of electrolyte additives.
- Examine other performance of succinic/maleic anhydride additives 
including SEI thermal stability, cell self-discharge, and storage property

- Initiate the SEI morphology and SEI component study by SEM, TEM, 
XPS, FT-IR, Raman et al.
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