Biological Hydrogen Production Workshop

September 24, 2013

The Hydrogen Program at NREL: A Brief Overview

“Integration is the Word”
NREL Fuel Cell & Hydrogen Technologies Program

- Renewable Hydrogen Production
- Hydrogen Delivery
- Hydrogen Storage
- Fuel Cell Manufacturing R&D
- Fuel Cells
- Technology Validation
- Codes, & Standards
- Analysis
- Market Transformation
- Education
Hydrogen Production from Renewable Sources at NREL

Xcel Energy and NREL’s Integrated Renewable Hydrogen System

- 10 kW Photovoltaics
- DC-DC Converter
- 100 kW Wind Turbine Northern Power Systems
- AC-DC Converter
- Excess Grid-Compatible Electricity
- Utility Grid
- ASCO Transfer Switch
- AC Power
- H-Series (PEM) Electrolyzer Proton Energy Systems 2.2 kg/day
- HOGEN 40RE (PEM) Electrolyzer Proton Energy Systems 13 kg/day
- Hydrogen Output (100-200 psi)
- Compression to 3500 psi Pressure Products Industries
- 115 kg Hydrogen Storage Capacity at 3500 psi CP Industries
- Unit under test
- 115 kg Hydrogen Storage Capacity at 6000 psi FIBA Technologies
- H₂ Filling Station for FCEVs and H₂ ICEs
- 60 kW ICE Genset Hydrogen Engine Center
- 5 kW Fuel Cell (PEM) Altery Systems
- HMXT-100 (Alkaline) Teledyne Energy Systems 12 kg/day

March 2011
Refueling at NREL’s Hydrogen Station
ESIF: West Elevation
ESIF: Northwest Elevation
Major ESIF Laboratories/Capabilities

View All Distribution Buses

- **Electricity Laboratories**
 1. Power Systems Integration
 2. Smart Power
 3. Energy Storage
 4. Electrical Characterization
 5. Energy Systems Integration

- **Thermal Laboratories**
 6. Thermal Systems
 7. Thermal Storage Materials
 8. Optical Characterization and Thermal Systems
 9. Thermal Distribution Bus

- **Fuel Laboratories**
 9. Energy Systems Fabrication
 10. Manufacturing
 11. Materials Characterization
 12. Electrochemical
 13. Energy Systems Sensor
 14. Fuel Cell Development
 15. High-Pressure Testing
 16. Fuel Distribution Bus

- **Data, Analysis, and Visualization**
 16. ESIF Control Room
 17. Visualization Room
 18. Secure Data Center
 19. High Performance Computing

Supervisory Control and Data Acquisition (SCADA) System
Integrating Basic Science & Translational R&D to Understand and Develop Photobiological Algal Systems for Producing Hydrogen at NREL

Translational Research & Development (EERE:FCT)
Goal: Develop algal systems (enzymes or organisms) capable of sustained \(\text{H}_2 \) photoproduction under aerobic conditions

(a) Developed chemochromic sensors for detection of \(\text{H}_2 \) by isolated algal colonies
(b) Identified and cloned the algal HYDA1 and HYDA2 [FeFe]-hydrogenases genes
(c) Introduced HYDA1, HYDA2 and their maturation genes into \textit{E. coli} for mass-production of the respective enzymes
(d) Developed computational models of gas diffusion in clostridial [FeFe]-hydrogenase; generated and tested mutants for \(\text{O}_2 \) tolerance (no positive transformants with high hydrogenase activity have been identified, yet).
(e) Shifted R&D direction towards the introduction of the clostridial hydrogenase (higher \(\text{O}_2 \) tolerance) gene into \textit{Chlamydomonas}, using an algal strain with no native hydrogenase activity. Demonstrated expression of Ca1 in \textit{Chlamydomonas} and \(\text{H}_2 \) photoproduction.
(f) Performed computational modelling of the interaction between ferredoxins and hydrogenases.
(g) Expressed clostridial hydrogenase in double knock-out algal strain and demonstrated \(\text{H}_2 \) production in vivo

Basic Research (SC:BES/BER)
Goal: understand structure, function and transcriptional regulation of hydrogenases

(a) Identified the maturation proteins responsible for assembly of algal hydrogenases using chemochromic sensors.
(b) Expressed bacterial [FeFe]-hydrogenases in \textit{E. coli} and found that clostridial hydrogenases have higher tolerance to \(\text{O}_2 \) inactivation.
(c) Generated an algal strain with no native hydrogenase background activity.
(d) Generated a collection of cyanobacterial Hox operon mutants.
(e) Demonstrate higher reductant flux in vitro towards \(\text{H}_2 \) production with fused Fd/H2ase.
(f) Developed high throughput high-sensitivity biological sensor for single colony \(\text{H}_2 \) production.
PHOTOBIOLOGY: Improving Algal Photosynthetic Hydrogen Production – O₂ tolerance

Scientific Achievement

A more oxygen-tolerant Clostridial hydrogenase expressed in *Chlamydomonas* catalyzed photo-hydrogen production

Significance and Impact

Oxygen sensitivity is a major limitation to the use of photosynthetic microbes for solar hydrogen

Research Details

- Photosynthetic water-splitting utilizes sunlight energy to split water.
- Green algae can link water-splitting to hydrogen production using hydrogenases, but only for short periods due to high sensitivity to oxygen.
- Bacterial hydrogenases (Cal) showing higher oxygen tolerance were expressed in a hydrogenase deficient algal mutant (Posewitz, CSM)
- Under photosynthetic conditions, the Cal cells showed 40-fold higher tolerance to oxygen.
- This is an essential step towards engineering green algae for efficient photo-production of hydrogen from water splitting.

GFP Screening and Oxygen Inactivation Kinetics of Photo-Hydrogen Production: Under illumination, photosynthesis produces hydrogen detected as a GFP halo that identified Cal expressing cells. Exposure of anaerobic cells to oxygen inactivates native algal hydrogenase (HydA1, red trace) at a faster rate than bacterial hydrogenase (Cal, green trace).

Seth Noone, Kath Ratcliff, Reanna Davis, Matt Wecker, Jon Meuser, Matthew C. Posewitz, Paul W. King and Maria L. Ghirardi
FERMENTATION: Developed Genetic Tools in *Clostridium thermocellum* for Improved Hydrogen Production from Cellulose

Scientific Achievement

NREL has developed proprietary genetic tools to stably manipulate the genome of *Clostridium thermocellum* for improved hydrogen production.

Significance and Impact

C. thermocellum exhibits one of the highest rates of cellulose hydrolysis. This in-house capability enables us to engineer its metabolic pathways to tailor the production of desirable biofuels and biochemicals including hydrogen.

Research Details

- *Clostridium thermocellum* combines cellulose hydrolysis with H₂ production, hence is a model microbe for consolidated bioprocessing (CBP).
- Yet the competing metabolic pathways (top figure) lower the yield of H₂ from cellulose, a technical barrier as to its techno-economic feasibility.
- We have developed genetic tools and obtained mutants lacking the competing pyruvate-to-formate reaction, as evidenced by a lack of formate production in the mutant (red arrow, lower figure).
- The mutant exhibited a 50% increase in the specific activity of H₂ production and up to 60% increase in ethanol production.
- Improving H₂ yield and total H₂ output via additional genetic engineering forms the thrust of this research I building an H₂ economy.

Pin-Ching Maness, Katherine Chou, & Lauren Magnusson
Strong NREL Capacity in Artificial Photosynthesis (Analogous to Natural Systems)

- Artificial: Work in Progress
- Natural: Poor Efficiency
- Biohybrid: Nexus

Photocatalysis

- PC/ET: Photon capture and energy transfer
- CS/et: Charge separation and electron transport
- Cat: Catalysis and fuel formation

Diurnal Issue Common to All

- H₂, CH₃OH from H₂O & CO₂

Key

- PC/ET: Photovoltaic
- CS/et: Charge separation and electron transport
- Cat: Catalysis and fuel formation
Control is often more important than power (or efficiency).

Photosynthesis did not evolve to make us biofuels nor necessarily to be the most efficient. It evolved because it lets organisms survive.
Thank You!

www.nrel.gov