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Background 

� Compressed hydrogen is needed for storage and delivery 
– Compressed gas tanks at 5,000-10,000 psig 
– Metal hydride (150-450 psig) 

� Pressurized reformate is needed for many purification and enrichment paths 
– Membrane separation 

• Hydrogen permeation, e.g., Pd-membrane 
• By-product removal, e.g., COx (CO & CO2) 

– Pressure Swing Adsorption (PSA) 

� Gas compression is energy intensive 
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The energy required to compress hydrogen to 6,000 psig
can be as high as 31% of the LHV of hydrogen 
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5-Stage Intercooled Compressor 
Compressor Efficiency: 70% 
Mechanical Efficiency: 97% 

Electric Motor Efficiency: 90% 
FinalPressure: 6000 psi 

Electricity Generation Efficiency = 40% 
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Initial Pressure of Hydrogen, atm


� Starting with a pressurized hydrogen / reformate stream lessens the energy 
required by the compressor 

Note: Hydrogen from SMR-PSA processes may be available at 200 psig 
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(SMR- Steam Methane Reforming; PSA – Pressure Swing Adsorption) 



Steam reforming of liquid fuels generates a pressurized 
reformate with little energy penalty 
� Injecting liquid (ethanol + water) feeds into a high pressure reactor requires little energy 
� Hydrated ethanol is less expensive than fuel-grade ethanol 

– Available upstream before water separation (distillation, adsorption, membrane) 
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�	 Steam reforming of ethanol at elevated 
pressure does not favor hydrogen yield, 3 

however 
–	 Equilibrium predicts increasing 2


methane yields with increasing 

pressures
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The negative effect of pressure on hydrogen yield can be 
offset with higher temperature and steam-to-carbon ratio 

46 
S/C = 3, P = 2000 psia 
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� High pressure-temperature combinations add to hardware cost 
� High steam-to-carbon ratio reduces overall process efficiency 
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Simulated process efficiencies approach 70%
at a steam-to-carbon ratio of 5 

Burner

AirHydrogen 

equilibrium	 Equilibrium 
Reactor �	C2H5OH + xH2O(l) 

Ethanol+Water 

Exhaust	

Membrane CO2, CO, H2, H2O(g), CH4, CnHm, … 
Separator 

�	Chemcad simulated process based on 
Heat –	 steam-reformer at equilibrium Exchanger 

–	 hydrogen separation with membrane 
•	 90% hydrogen recovery 

–	 combustion of raffinate to generate 

heat 100


–	 heat exchange to reformer feeds 90 
–	 exhaust at 200°C 

80 

�	Efficiency decreases with increasing S/C 70 

60 
� Various alternative and more detailed 


system solutions need to be evaluated 50
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A micro-reactor apparatus is being used to generate yield data


� Rated for 1,000 psi, 900°C 
� 63.5-mm (0.25-in) ID reactor tube 
� 4 wt% Rh/ La-Al2O3 

� Powder, 150-250 μm 
� 0.35 g of catalyst 
� 20-mm long-catalyst bed 
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Vaporizer tests indicate the ethanol starts decomposition
above 440°C 
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� At 1000 psig, S/C = 12-20
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The hydrogen yield with the nickel catalyst decreased
with time, indicating deactivation of the base metal 
catalyst 

�	 The nickel catalyst deactivated with 
time 
–	 Bed pressure drop increased 
–	 Carbonaceous deposits were 

observed in the reactor 

�	 The reactor was re-packed with a 
rhodium catalyst 
–	 4 wt% Rh / La-Al2O3 

�	 The rhodium catalyst performed better 
–	 Higher hydrogen yield 
–	 Maintained activity 
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The nickel catalyst yielded a considerable fraction of
condensable products 

�	 The Ni catalyst yielded more 
undesirable hydrocarbons 

–	 Mass balance accounted for 
76% of the carbon 

•	 Condensable products and 
carbon deposits could not be 
factored in 

�	 The Rh catalyst yielded more 
hydrogen and COx, the desired 
product species 

Catalyst Ni Rh 
Temperature, °C 650 650 
Pressure, psig 1000 1000 
GHSV, /hr 83,000 83,000 
Steam-to-Carbon 12 12 
Product Yield 

H2, mol/(mol EtOH) 2.4 3.9 
CO, mol/(mol EtOH) 0.2 0.1 
CH4, mol/(mol EtOH) 0.5 0.6 
CO2, mol/(mol EtOH) 0.8 1.4 
C2H4, mol/(mol EtOH) 0.006 ND 
C2H6, mol/(mol EtOH) 0.029 ND 

Carbon Balance, % 76 101 

ND – not detected 

10Work sponsored by U.S. Department of Energy, 
Hydrogen, Fuel Cells and Infrastructure Technologies Program 



Experimental data show multiple hydrocarbon species in
the product stream 

� With increasing pressure 5 
– Hydrogen yield decreases 
– Methane yield increases 4 
– Ethylene is hydrogenated to 

produce ethane 
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The experimental hydrogen yield approaches equilibrium
predictions at 1000 psi 

� At a constant GHSV, equilibrium is 

approached at higher pressures


– Faster reaction rates


Yi
el

d,
 m

ol
/(m

ol
 E

tO
H

) 

S/C=6, GHSV=15,000 /hr, Rh catalyst 
6


5


4


4.
26

 

0.
76

0.
09

 

2.
17

 

0.
94

 

0.
71

 

0.
24

 0.
64

 

20 psi-Equil 

20 psi-Exp 

1000 psi-Equil 

1000 psi-Exp 

3


2


1


0 
H2 CO2 CO CH4 

12Work sponsored by U.S. Department of Energy, 
Hydrogen, Fuel Cells and Infrastructure Technologies Program 



The product species can be explained through a
combination of reactions 

1. Ethanol Dehydrogenation : C2H5OH = CH3CHO + H2 

2. Ethanol Dehydration : C2H5OH = C2H4 + H2O 
3. Dissociative Ads. of Water : C2H5OH + H2O = CH3COOH + 2H2 

4. Acetaldehyde Dissociation : CH3CHO = CO + CH4 

5. Ethanation : C2H4 + H2 = C2H6 

6. Dissociation of Acetic Acid : CH3COOH = CH4 + CO2 

7. Methane Steam Reforming : CH4 + H2O = CO + 3H2 

8. Water Gas Shift : CO + H2O = CO2 + H2 
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FY07 work directed at yield and kinetics of pressurized reforming 

� Experimental yields and kinetics are being determined 
� Using a micro-reactor with a Pd-membrane separator 
� Hydrogen extraction exacerbates coking 

Case 1: EtOH=1 
H2O=3 

Case 2: EtOH=1 
H2O=3 

Case 3: EtOH=1 
H2O=4 
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How worthwhile is the pressurized steam
reforming of bio-liquids? 
� We are currently seeking an answer for ethanol 

– Experimental yields and kinetics are being determined 
• Using a micro-reactor with a Pd-membrane separator 

– Reactor models will help extract kinetic information 
– Supported by new generation of catalysts 

• Improve durability and reduce cost 

� System model and analysis 
– Simple membrane reactor concept 
– Alternative purification / enrichment options 
– Go / NoGo determination on pressurized reforming with ethanol 
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