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Overview
• Timeline

– Start
• FY05

– Finish
• Ongoing

• Budget
– FY09 Funding

• $250K
– FY10 Funding

• $250K

• Barriers
– Max energy efficiencies of existing 

IC engines (including HECC and 
HCCI modes) are well below 
theoretical potential 

– Overcoming these limits involves 
complex optimization of materials, 
controls, and thermodynamics

• Partners
– Gas Technology Institute

• Partnered with catalyst supplier, 
engine OEM

– Universities
• Texas A&M University 
• University of Wisconsin 
• Illinois Institute of Technology
• University of Alabama
• University of Michigan, Dearborn
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Objective: Reduce ICE petroleum 
consumption thru higher fuel efficiency
• Summarize and update  

understanding of efficiency 
losses

• Identify promising strategies 
to reduce losses

• Implement proof-of-principle 
demonstrations of selected 
concepts

• Novel aspect within OVT 
portfolio: 
– long term, high risk approaches 

for reducing thermodynamic 
losses in combustion

Max Fuel
Efficiency

40-42%

Losses
58-60%

Max Fuel
Efficiency 

50-60%

Losses
40-50%

Today’s engines

Tomorrow’s engines?
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Milestones
• FY09 Milestone (completed):

– Journal paper on preheating and thermochemical 
recuperation (CPER/TCR) as a means for 
increasing combustion engine efficiency 
(published in Energy and Fuels)

• FY10 Milestone (on track for completion)
– Journal paper on chemical looping 

combustion (an alternative approach to chemical 
exhaust heat recuperation) as a means for 
increasing combustion engine efficiency 
(September 30, 2010)
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General Approach: Combine thermodynamic 
analysis and experiments to identify 
potential paths for efficiency breakthrough 
• Collaborate with experts to 

clarify reasons for ICE efficiency 
limits 
– Previous meetings at ORNL in past 

years
– Colloquium at USCAR this past March

• Implement supporting analytical 
and experimental studies 
– Thermodynamics of leading concepts 

(both 1st and 2nd Law effects)
– Flexible lab experiments for generating 

basic data, demonstrating proof-of-
principle 

– Single-cylinder engine experiments
– Multi-cylinder engine experiments and 

simulations
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The engine efficiency colloquium held at USCAR 
this March has been helpful in focusing our 
perspective
Participants were:

•Paul Najit (GM)

•Walt Weissman (Exxon)

•Eric Curtis (Ford)

•Gary Hunter (AVL)

•Jerry Caton (Texas A&M)

•Noam Lior (U Penn)

•Tony Greszler (Volvo)

•John Clarke (Cat® retired)

•Ron Graves (ORNL)

•Robert Wagner (ORNL)

•Bengt Johansson (Lund)

•Dan Flowers (LLNL)

•Kellen Schefter (DOE)

•Terry Alger (SwRI®)

•Ron Reese (Chrysler)

•Don Stanton (Cummins)

•George Muntean (Cummins)

•Gurpreet Singh (DOE)

•Chris Edwards (Stanford)

•James Yi (Ford)

•Dave Foster (U Wisconsin)

•Steve Ciatti (ANL)

•Harry Husted (Delphi)

•Stuart Daw (ORNL)

•Pete Schihl (U.S. Army)

•Paul Miles (SNL)

•Roy Primus (GE)

•John Kirwan (Delphi)

•Tim Coatesworth (Chrysler)
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The colloquium participants recommended 
near and longer-term potential approaches for 
stretching fuel efficiency including:

• High EGR and boosting * 
• Higher peak cylinder pressures *
• Extended lean combustion (both conventional and HECC) *
• Variable valve and cylinder geometries *
• Waste heat recovery and cycle compounding *
• Dual fuels and fuel-adaptive combustion *
• Alternative slider-crank architectures as well as more novel 

engine configurations beyond slider-crank *

* Directly related to this project 
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One promising longer-term approach we have 
been pursuing is thermochemical recuperation 
(TCR)

• Exhaust heat drives endothermic reforming reactions that convert hydrocarbon fuels 
to a mixture of CO and H2 (syngas).

• Engine fueling is supplemented with syngas (in place of some or all original HC). 

• Fuel heating value increases, recuperating exhaust energy.

• Molar gas expansion from reforming creates pressure boost.

• H2 enrichment extends lean limit, improves Cp/Cv ratio, lowers cylinder heat loss, 
assists cold start, lowers combustion irreversibility.

IC Engine

Work

Reformer
Air

Hot 
Exhaust

Cool 
Exhaust

Hydrocarbon Fuel

CO + H2 (syngas)
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Results (TCR 1): This year we completed a basic 
analysis of a highly simplified version of TCR
• Objective to clarify the thermodynamic potential of TCR for simplest possible case.

• Included both 1st and 2nd Law (energy and exergy) effects.

For no reforming, fuel and exhaust pass CV2 unchanged

CV0 = entire system

CV1 = comb. chamber + piston

CV2 = reformer + inter-cooler

Fuel vapor
+ steamCO/H2
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Energy & Fuels, 2010, 
24 (3), pp 1529-1537 
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Key assumptions:
• Ideal catalytic reformer

− Batch mode to interface with engine
− Water injected with fuel (enough to completely reform fuel to CO and H2 )           

Ex: C8H18 + 8 H2O → 8 CO + 17 H2 ; 
− Water, liquid fuel vaporized at Patm with exhaust heat prior to reformer
− Reforming reactions at equilibrium at specified T and constant P or constant V 
− 3 fuels: methanol, ethanol, iso-octane

o Methanol requires no added water
o Wet ethanol of special interest from production standpoint

• Frictionless, 1-stage piston engine operating over ideal Otto cycle
− Air and fuel mixed in cylinder at constant P or V;
− Isentropic compression of fuel + air mixture;
− Adiabatic constant volume combustion at max compression;
− Isentropic expansion of combustion gases to Patm;
− All work from single stage piston expansion; 
− Steady-state operation (engine state repeats precisely at each point in the cycle) 

Results (TCR 2): Our initial TCR analysis focused on 
ideal thermodynamic steps instead of mechanical 
and transient details
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Results (TCR 3): One important observation is 
that reforming mode has large efficiency impact
• Methanol fuel
• Variation with reforming 

level 
– 0 = no reforming
– 1 = 100% reforming

• Reforming temperature 
and exhaust energy 
required are almost 
unchanged by constant 
P or V

• Pressure boost from 
constant V reforming 
increases work output 
by several percent
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Results (TCR 4): Leaner combustion with H2
from TCR also significantly boosts efficiency

• Methanol fuel, reformed 
at 600 K

• Variation with fuel/air 
equivalence ratio 

• Lean fueling improves 
piston work because of 
higher exhaust Cp/Cv

• Constant V reforming + 
lean burn increases 
efficiency by about 7%
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Results (TCR 5): TCR efficiency benefits 
increase with higher MW fuels

• Methanol vs. ethanol vs. 
isooctane

• Variation with constant V 
reforming level 
– 0 = no reforming
– 1 = 100% reforming

• Isooctane and ethanol 
require higher reformer 
temperature

• Isooctane and ethanol 
generate larger pressure 
boost (larger mole ratio)
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Results (TCR 6): Overall exergy balances 
reveal more about impact and possibilities

• Combustion irreversibility is significantly reduced for reformed fuel
• Reformer and intercooler exergy destruction could be reduced 
• Any additional conserved exergy will have to be converted to work downstream 

from the piston (bottoming cycle)
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Results (TCR 7): Initial Analysis Summary
Key Observations about TCR:
• Potential to substantially boost piston work for a range of fuels.
• Constant V reforming better because of the pressure boost.
• H2 can extend lean limit, improve exhaust Cp/Cv.  
• Benefits greater for higher MW fuels, but reforming conditions more severe.
• Benefits for ethanol attractive because of:

− Reduced need for water removal during production
− Effective boost in volumetric fuel energy

Additional Questions:
• Do the basic results change when non-idealities are included?
• How can TCR be implemented in real engines? (Multiple approaches including 

external and in-cylinder)
• How fast are reforming reactions and heat transfer? (Catalytic vs. non-catalytic, fuel 

effects) 
• How much can irreversibility of reforming and inter-cooling be reduced?
• Does it make sense to include bottoming cycle on engines utilizing TCR?
• Are there other viable approaches to chemical heat recuperation (e.g., chemical 

looping)?

Above are being addressed with additional experiments and modeling
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Results (RAPTR 1): The RAPTR experiment 
provides a way to study constant volume TCR

• RAPTR stands for Regenerative Air Preheating and Thermochemical Recuperation
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Results (RAPTR 1): The RAPTR experiment 
provides a way to study constant volume TCR

• RAPTR stands for Regenerative Air Preheating and Thermochemical Recuperation
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Results (RAPTR 1): The RAPTR experiment 
provides a way to study constant volume TCR

• RAPTR stands for Regenerative Air Preheating and Thermochemical Recuperation
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Results (RAPTR 1): The RAPTR experiment 
provides a way to study constant volume TCR

• RAPTR stands for Regenerative Air Preheating and Thermochemical Recuperation
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Results (RAPTR 1): The RAPTR experiment 
provides a way to study constant volume TCR

• RAPTR stands for Regenerative Air Preheating and Thermochemical Recuperation
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Results (RAPTR 1): The RAPTR experiment 
provides a way to study constant volume TCR

• RAPTR stands for Regenerative Air Preheating and Thermochemical Recuperation
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Results (RAPTR 2): RAPTR will be operational 
by end of fiscal year
• Construction nearing completion

– wiring, insulation, and programming 
remain

• Experiments will evaluate 
feasibility of TCR for IC engines
– quantify post-combustion availability 

with and without TCR
– measure rates of gas/solid heat 

transfer
– measure rates of catalytic and non-

catalytic steam reforming reactions
– screen potential heat transfer 

materials and catalysts
– evaluate heat exchanger & catalyst 

configurations (packed bed, monolith, 
wire mesh, etc.)
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We have also begun investigating a new 6-stroke 
cycle as a way to implement in-cylinder exhaust 
heat recuperation and TCR
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– Water version conceived and modeled under ORNL LDRD
• Patent application
• Journal Article (Conklin and Szybist. Energy,  2010, v35:4, pp1658-1664)

– Experimental demonstration planned for 3rd quarter FY10
– Now investigating fuel injection with water + in-cylinder reforming 
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A new research engine with fully variable hydraulic 
valve actuation is being used                                      
to demonstrate 6-stroke cycle
• Engine functional at ORNL in March 09

– Internal ORNL funds used to establish 
capability (LDRD and other)

• Infinitely variable HVA is capable of 
unconventional combustion strategies

– NVO and exhaust re-breathing HCCI 
combustion strategies, over-expanded 
cycles, and others

Engine Installation

Sturman Hydraulically 
Actuated Valve

• Platform is being used for a number of additional DOE 
HCCI projects (SA-HCCI, gasoline FACE, NPBF, Delphi 
HCCI CRADA)

• First experimental study performed with engine was 
ethanol optimization, Delphi CRADA

– Presented at 2010 SAE Congress
– Additional details in Merit Review presentation FT-008

• Ideal for 6-stroke cycle demonstrations because valve 
events are not controlled by cams
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Collaborations
As described earlier, we have technical interactions with the following groups regarding 

various aspects of this work:
•Gas Technology Institute

– Partnered with catalyst supplier, engine OEM

•Texas A&M University 
•University of Wisconsin 
• Illinois Institute of Technology
•University of Alabama
•University of Michigan, Dearborn

This project is intended to address longer range, high risk concepts for increasing 
engine efficiency, thus near-term commercial application is expected to be limited. 
However, we have attempted to promote as much information transfer as possible 
through the following mechanisms: 

•State-of-technology dialogue with academic and industry experts (e.g., the USCAR 
colloquium).

•Publication of articles on TCR and 6-stroke cycle thermodynamic analyses.
•Utilization of HVA Sturman engine (potential links to ongoing CRADAs involving this 

engine and current industry work- e.g., SAE 2010-01-0621).
•Technical discussions with GTI regarding application to stationary heavy-duty engines. 
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Planned Activities
• Near term

– 0-D thermodynamic modeling of TCR in 6-stroke cycle
– Complete RAPTR construction and shakedown 
– Continued lab characterization of reformer catalysts
– Initial experimental studies of exhaust heat recuperation in 

RAPTR and Sturman engine
– Initial thermodynamic evaluation of chemical looping as an 

alternative heat recuperation method for engines

• Longer term
– Extended RAPTR and Sturman experiments
– More detailed cycle simulations with non-ideal engine 

components
– Theoretical analysis of possible major changes to engine 

architecture (along lines proposed in USCAR colloquium)
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Summary

• Thermochemical exhaust heat recuperation (TCR) has the theoretical 
potential for increasing peak IC engine efficiency by more than 10%. 

• A large part of this potential TCR benefit is associated with the 
pressure boost generated by reforming.

• A highly flexible constant volume bench-top combustor and HVA 
engine are being set up to experimentally evaluate this potential.

• Further analytical studies are underway to explore how direct 
exhaust heat recuperation and TCR might be exploited in both 
current and future engine architectures.

Stuart Daw
865-946-1341 

dawcs@ornl.gov
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