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Purpose of WorkPurpose of WorkPurpose of Work

Ultimate Goals: 
z Meet DOE goal on weight reduction by promoting more widespread use 

of Advanced High Strength Steels (AHSS) in vehicle structures. 
z Accelerate development and adoption of AHSS in auto-body structures 

Objectives: 
z Develop fundamental understanding and predictive modeling capability

to quantify the effects of auto manufacturing processes (forming,
welding, paint baking, etc) and in-service conditions on the performance 
of auto-body structures made of advanced high-strength steels (AHSS) 

z Establish the technical basis to fully realize the advantages of AHSS 
intensive structures in fuel efficiency and structure crash safety 

z To provide performance data and constitutive models for formed and 
welded AHSS parts. 
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Technical BarriersTechnical BarriersTechnical Barriers

There exist wide range of grades and types of AHSS and they
continue to evolve: 
z The constitutive behaviors for AHSS parts are not available to CAE 

engineers for rapid prototyping; 
z Lack of quantitative understandings and predictive capabilities on the 

effects of 2nd phase particles on the overall stress versus strain behaviors of 
AHSS. 

The behaviors of AHSS parts subject to different thermal and 
mechanical loading paths (forming and welding) are not fully
understood and quantified: 
z Forming induced failure under different loading paths: biaxial stretch,

plane strain, stretch bending, etc. 
z Welding induced complex microstructure changes. 

Lack of application guidelines for effective and optimal use of
AHSS in auto body structures 
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Technical ApproachTechnical ApproachTechnical Approach
Forming – PNNL 
z Quantify the base material 

performance under different
loading paths, loading rates and
loading temperatures 
z Quantify the effects of loadin

mode, rate and temperature on
transformation kinetics 
z Evaluate structural performance 

of formed and welded parts
made of AHSS 
z Develop transformation kinetics 

model and macroscopic
constitutive relationships for 
TRIP steels 
z Develop macroscopic

constitutive model to simulate 
the stress vs. strain behavior of 
AHSS: TRIP + DP 
z Develop micromechanics model 

to predict AHSS failure modes 
under different loadin
conditions 

Welding – ORNL 
z Develop a fundamental understanding of

microstructure transformation kinetics of 
AHSS steels during welding 

z Develop integrated thermo-
metallurgical-mechanical predictive 
models for the performance of welded
AHSS parts 

z Investigate the weldability of AHSS 
under various welding processes and 
parameter conditions applicable to auto
production environment 

z Investigate welding techniques for 
improved AHSS weld performance and 
benchmark them against the current 
welding practices for roll-formed and 
hydro-formed AHSS frame and 
underbody structure applications 

z Generate weld performance data 
including static strength, formability
impact strength, and fatigue life as 
function of welding processes and 
parameters 

2 



Forming AccomplishmentForming Accomplishment –– InIn--Situ CharacterizSitu CharacterizForming Accomplishment – In-Situ Characterizationaationtion 
of Transformation Kinetics and Phase Propertiesof Transformation Kinetics and Phase Propertiesof Transformation Kinetics and Phase Properties 

using Synchrotron Sourceusing Synchrotron Sourceusing Synchrotron Source
 

determine individual phase propertiesdetermine individual phase properties  Martensite (Exp.)

Argonne APS InArgonne APS In--Situ HEXRD MeasurementSitu HEX sRD Measurements toto 10000 
Ferrite (Exp.)

8000 

St
re

ss
 (M

Pa
)

La
tti

ce
 s

tra
in

 (1
0-6

) Ferrite (Sim.)
 Martensite (Sim.) 

6000 

4000 

2000 

0 

Loading FrameLoading FrameL ading FramLLLo eoading Frameoading Frameoading Frame
BBB(a)(a(a))

2θ2θ2θ2θ
High-Energy X-Rays

22222222θθθθ
High-Energy X-Rays

θθθθ
High-Energy X-Rays

Beam-StopBeam-StopBeam-StopBeam-StopB -StopB toBBBBBBeameam-S peam-Stopeam-Stopeam-Stopeam-Stopeam-Stopeam-Stop -2000
SlitsSlitsSlitsSlitsS sSSSSSSSlitlitslitslitslitslitslitslits 0 200 400 600 800 1000 1200 

SpecimenSpecimenSpeci eSpeciSpeciSpecim nmenmenmen Applied stress (MPa)

 Stress 
Volume fraction

1400 16.0 
2-D Detector2-D Detector2-D Detector2-D Detector2 D Detector2 tecto222222--D De r-D Detector-D Detector-D Detector-D Detector-D Detector-D Detector

1200 14.0 
(b) (c)(b(b) (c)) (c)

LDLD 1000 12.0 

Volum
e fraction of fcc phase(%

) 

800 I Zone III Zone 10.0 

8.0600 

6.0
400 

4.0 
200 

II Zone 2.0 
0 

0 MPa 1350 MPa0 M0 MPa 1350 MPaPa 1350 MPa
0.0 0.1 0.2 0.3 0.4 

0.0 

True strain 

lishmentlishment -- Failure Mode PrediFailure Mode PrediForming AccompForming AccomForming Accompplishment - Failure Mode Prediction forcction fortion for 
AHSS under Different Loading ConditionsAHSS under Different Loading ConditionsAHSS under Different Loading Conditions

DP980
DP980
A


B 
1200 

Computation 
1000 Experiment 

800 

600 

400 

200 

0 
0 10  20  30  40  

Strain(%) 

 Comparison ofComparison of predicted/measuredpredicted/measured 
stressstress vs. strain curvesvs. strain curves B: sample centerB: sample center

St
re

ss
(M

Pa
) 

A: sample edgeA: sample edge
OAK RIDGE NATIONAL LABORATORY 6 

3 



i i i i i i

Forming Accomplishment - Integrated Forming
Induced Phase Transformation in TRIP Steel Side 

Rail Crash Simulations 
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Welding Accomplishment – Correlation between 
Structural Performance and Microstructural Changes

of AHSS welds 

Welding AccomplishmentWelding Accomplishment –– Correlation betweenCorrelation between 
Structural Performance and Microstructural ChangesStructural Performance and Microstructural Changes

of AHSS weldsof AHSS welds 

Cross weld tensile strength generally increases, as base metal strength increases. 
Weld tensile strength of higher grade AHSS is lower than the base metal due to 
HAZ softening. 
Joint efficiency can be used to quantify the reduced weld strength for design. 
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Welding Accomplishment - Integrated 
Thermal-Metallurgical-Mechanical Modeling

of AHSS Welds: Preliminary Results 

Welding AccomplishmentWelding Accomplishment -- IntegrateIntegrated
ThermalThermal--MetallurgicalMetallurgical--Mechanical ModelingMechanical Modeling

of AHSS Welds: Preliminary Resultsof AHSS Welds: Preliminary Results
HAZ softening predicted
Weld metal under development 

Boron HT 
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Welding Accomplishment - Fatigue Life
Improvement by Welding

Welding AccomplishmentWelding Accomplishment -- Fatigue LifeFatigue Life 
Improvement by WeldingImprovement by Welding

Fatigue life of AHSS welds depend on the steel grade and chemistry 
Considerable Improvement of fatigue life achieved for DP780 
z Over an Order of Magnitude at Low Stress Level 

HAS softening has no influence on weld fatigue life 
Fatigue life prediction for high cycle low stress conditions 
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Technology TransferTechnology TransferTechnology Transfer
Received very strong supports from and maintained close interactions with OEM, steel
suppliers and A/SP committees 
z A/SP AHSS Stamping Team 
z Joining Technologies Team 
z A/SP Sheet Steel Fatigue Committee 
z A/SP Lightweight Chassis Structure Team 

Research approach and results have been adopted and further developed by the OEMs and 
industry consortiums 
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Activities for Next Fiscal YearActivities for Next Fiscal YearActivities for Next Fiscal Year
Forming and base material 
property predictions of AHSS: 
z Influence of martensite hardness,

volume fraction, distribution, 
shape effects on stress-strain 
behaviors and failure modes of 
DP steels 

z Effects of transformation kinetics 
on stress-strain behaviors and 
failure modes of TRIP steels 

z Effects of retained austenite 
shape and volume fraction on
fatigue of TRIP steel 

Conduct concept feasibility
studies on nano precipitate
strengthened steels: 
z Effects of 2nd phase particle size,

shape and mechanical properties 
on the overall steel properties 

z Cost and cycle time for various 
techniques in introducing nano
precipitates 

Welding of AHSS: 
z Complete weld metal 

microstructure model 
development 

z Integrate welding
process/microstructure model
with mechanical performance
model 

z Refine weld fatigue life
prediction model 

z Predict Phase transformation 
kinetic in the intercritical region 

z Design guideline and CAE 
design methodology for welded
structure design and prototyping 

z Welding techniques and practices 
to improve AHSS weld
performance 
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SummarySummarySummary
Potential for petroleum displacement 
z This project provides the knowledge and modeling tools on AHSS 

subject to forming and welding such that more AHSS can be used to 
achieve the DOE vehicle lightweighting goals. 

Research approach 
z A complementary experimental and modeling approach has been used

to gain fundamental understandings of AHSS under automotive-related
thermal mechanical loadings, i.e., forming and welding. 

Technical Accomplishments 
z On target with project objective and timeline 

Technology transfer 
z Continue close interactions with the OEM and A/SP technical 

committees to exchange research progress and collaborate on other
related projects 

Plans for next year 
z Continue development work in the various technical areas 
z Explore new approaches for GEN III AHSS 
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