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Overview

• Start: June 2008
• End: May 2011
• 90% complete

• Total project funding
– DOE $600K

• Funding received in FY08/09
• $400K

• Funding for FY10
• $200K 

Timeline

Budget

Barriers

• Argonne National Laboratory
• Saft Batteries
• U of Texas, Austin
• U of Maryland
• U of Utah

Partners

• SOA electrolytes based on Carbonate 
Solvents decompose below 4.5 V;

• Sulfone-based solvents showed  
anodic stability up to 5.8 V but:
• SEI chemistry from reduction of 

sulfones does not provide protection 
of graphitic anodes

• Most sulfones are viscous liquids 
with m.p. near RT.

• Lack of a reliable 5 V cathode as 
characterization platform.

• Lack of additives for protecting high 
voltage cathodes.
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Milestones

• Sep 2009: 
– Synthesized sulfone based solvents with and without unsaturated bonds 

and evaluated their electrochemical properties
– Synthesized various additives including fluorinated phosphate esters for 

both sulfone- and carbonate-based electrolytes

• Sep 2010: 
– Explored additives that passivates cathode surfaces at high voltages
– Diagnostic studies: surface characterization and SEI chemistry

• May 2011: 
– Evaluate electrolytes with additives in both half cells and full cells
– Understand reactive pathways of electrolyte components through 

computational effort, surface characterization and SEI chemistry studies
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Objectives

• Develop high voltage electrolytes that enable the 
operation of 5 V Li Ion Chemistry
– Energy density 

• Increased energy density for HEV/PHEV
– Power density 

• Faster kinetics for Li+ charge transfer at the 
electrode/electrolyte interface

• High charge/discharge efficiency
– Life

• Improved capacity retention
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Approach

• Sulfone based solvents approach
– Synthesize and characterization of unsymmetric sulfones for lower 

viscosity
– Synthesize and characterization of unsaturated sulfones for higher 

reactivity with potential for forming protective layer on cathodes

• Carbonate based solvents approach
– Search additives that would decompose and form protective 

interface on cathode 
– Formulate electrolytes using fluorinated phosphate ester as 

additives for the state-of-the-art electrolytes

• Computational effort
– Understand oxidative stability of solvents/electrolytes
– Understand reactive pathways of additives and electrolytes
– Develop ability to predict and design electrolyte components 
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Technical Accomplishments

• Discovered, synthesized and structurally characterized an 
additive, tris (hexafluoro-iso-propyl) phosphate (HFiP), for 
carbonate based electrolytes.

• Demonstrated that electrolytes with 1% of HFiP would enable 
improved performance for LiNi0.5Mn1.5O4 and LiCoPO4 high 
voltage cathodes vs. Li. 

• Demonstrated that the SOA electrolyte with 1% of HFiP would 
enable the cycling of graphite anode vs. Li with no capacity 
loss.

• Investigated oxidative stability of the sulfone (and sulfonate)-
based solvents, solvent/anion complexes and additives using 
quantum chemistry (QC) calculations

• Investigated structure and transport of LiPF6 in sulfone and 
linear carbonate mixtures using molecular dynamics (MD). 
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1% HFiP presence dictates a new interphase
• Flexible with different cathode chemistry

- LiCoPO4 (4.8 V) (shown later)
- LiNi0.5Mn1.5O4 (4.6 V) (shown below)

• Cell impedance stabilized over long 
cycling
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• Cell impedance increasing with cycling
• Rapidly fading capacity
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Stabilized LiCoPO4 Cathode 
Half Cells
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Cycling of Stabilized LiCoPO4 Cathode 
Half Cells

• Cycling of stabilized LiCoPO4 
with substitution in 1 m LiPF6 in 
EC:EMC (30:70) with 1% HFiP 
• Demonstrates high cycle life 
(capacity retention of >80% at 
500 cycles shown here) with 
about 97% coulombic efficiency.
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Anode/Electrolyte 
Interphase
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Computational Part: Outline

Quantum Chemistry: Explore oxidative stability of the sulfone (and sulfonate)-based 
solvents, solvent/anion complexes and additives using quantum chemistry (QC) 
calculations

– Compare with oxidative stability (Eox) obtained from QC with experiments;
– Understand the influence of anion chemistry on the electrolyte oxidative 

stability;
– Understand the influence solvent dielectric constant on the electrolyte 

oxidative stability.
– Investigate oxidative decomposition of the additives with and without 

presence of anions.

Molecular Dynamics: Investigate structure and transport of the mixed sulfone : 
(linear carbonate)/LiPF6 electrolytes. Compare with the previous results obtained 
for the EC:DMC /LiPF6 electrolytes focusing on the following properties:

– Li+ cation coordination;
– Fraction of free ions;
– Mechanism of the lithium transport (moving together with the solvent vs. 

solvent exchange)
– Set a stage for investigation of electrolyte interfacial properties
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Influence of Anion on Solvent 
Oxidation

oxidation
a b

oxidation

DTF M05-2X/cc-pvTz oxidation potential and experimental data on non-active electrodes

ε=1 ε=4.2 ε=20.5 ε=78.4
no anion
ε=20.5

published exp.

DMC/BF4- 4.14 5.79 6.21 6.29 7.6 6.7 GC 0.65 M Bu4NBF4

EC/BF4
- 4.55 5.95 6.28 6.34 7.6 6.2 GC 0.65 M Et4NBF4

PC/BF4
- 4.57 6.25 7.3 6.6 GC 0.65 M Et4NBF4

(a)TMS/BF4
- 5.23 6.33 6.49 6.52 6.7

5.8 Pt, 1 M LiBF4(b)TMS/BF4
- 3.82 5.68

DMC/PF6
- 4.56 6.12 6.51 6.58 7.6 6.3 GC 1 M LiPF6

EC/PF6
- 4.94 6.27 6.57 6.63 7.6

(a)TMS/PF6- 5.44 6.36 6.54 6.57 6.7 5.8 Pt, 1 M LiPF6

(b)TMS/PF6- 4.25 5.59
(a)EMS/PF6- 5.46 6.47 6.66 6.69 6.9
(b)EMS/PF6- 5.93

PMS/PF6
- 4.29 5.55 5.84 5.89 7.0 6.2 PMS in EC:DMC/LiPF6

 Presence of BF4
- and PF6

-

anions significantly reduces 
oxidation potential of 

electrolytes and improves 
agreement with experiment.
 Fluorine transfer (from BF4

- or 
PF6

-) to solvent molecules or 
proton transfer and HF 

formation is responsible for the 
reduction of the oxidation 

potential.
(in collaboration with U. of 

Utah)Exp. data from J. Electrochem. Soc., 144, 2684 (1997), Russ J 
Electrochem., 44, 575 (2008), J. Electrochem. Soc., 154, A810 (2007).
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Tris(hexafluoro-iso-
propyl)phosphate (HFiP) Additive

 In gas phase C-O bond of tris(hexafluoro-iso-propyl)phosphate (HFiP) has the lowest 
barrier to break.

 During oxidation a fluorine from PF6
- in transferred to HFiP resulting in a PF5 formation.

 In the oxidized HFiP/PF6 complex the P-O bond was found to be the easiest to break, 
unlike results for the HFiP in gas-phase where C-O bond has the lowest barrier for 

breaking.

1e
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EMS-DMC/LiPF6 and 
Sulfolane-DMC/LiPF6 

MD Simulations
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 MD simulations employing developed force field predicted EMS-DMC/LiPF6 and Sulfolane-
DMC/LiPF6 conductivity in good agreement with experiments.

 In agreement with QC studies Li+ cation showed a higher affinity to EMS and Sulfolane than 
DMC. For example, at EMS:DMC=1:1 a Li+ cation was coordinated by 0.54 DMC, 3.1 EMS and 

0.57 PF6
- on average.

Solvent diffusion coefficient and ion aggregation monotonically increased with increasing DMC 
fraction.

 The Li+-DMC residence time was 3 times shorter than the Li+-EMS and Li+-PF6
- residence times 

indicating a much faster exchange of DMC than EMS or PF6
-.
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Future Work

• Demonstrate performance of the developed high voltage 
electrolyte in full cells
– LiNi0.5Mn1.5O4/Li4Ti5O12
– LiNi0.5Mn1.5O4/graphite 

• Optimization of carbonate-based electrolytes
– Focus on performances at elevated temperatures
– Study impedance in combination of interphasial chemistries

• Characterization and diagnostic studies
• XPS, XRD, EIS, SEM/TEM

• Design and synthesis of new additives
– Further improvements are expected with new additive 

structures
• Develop better understanding of electrolyte reactivity for the 

materials design ability through computational and SEI 
analytical efforts
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Summary

• Significant improvement has been made in the additive approach, 
where carbonate-based electrolytes containing 1% HFiP have been 
enabled to support the 5 V Li ion chemistry with spinel and LiCoPO4
cathodes.
– Further improvements are being made to optimize the performance;
– Surface analysis on-going will reveal fundamental understanding on 

mechanism and interphasial chemistry.
• Modification of high voltage cathodes through substitution chemistry 

has resulted in more stable structures for improved cycling 
performance as shown in LiNi0.5Mn1.5O4 and LiCoPO4.

• Based on QC calculations, presence of BF4
- and PF6

- anions 
significantly lowers oxidation potential of electrolytes and improves 
agreement with experiment.
– Fluorine transfer (from BF4

- or PF6
-) to solvent molecules or proton 

transfer and HF formation is responsible for the reduction of the 
oxidation potential.

– In the oxidized HFiP/PF6 complex, the P-O bond was found to be the 
easiest to break, unlike HFiP in gas-phase where C-O bond has the 
lowest barrier for breaking.
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Publications 

• A. v. Cresce, K. Xu,  J. Electrochem. Soc. 2011, 158(3) A337-A342.
• A. v. Cresce and K. Xu, “Electrolytes in Support of 5 V Li Ion Chemistry”, J. Electrochem. Soc. , 

2011, 158, A337~342
• K. Xu, A. v. Cresce, and U. Lee,  “Differentiating contributions to “ion transfer” barrier at 

electrolyte/graphite interphase from Li+- desolvation and interphasial resistance”, Langmuir, 2010, 
26, 11538~11543

• A. v. Cresce, K. Xu, “High Voltage Electrolytes for Li Ion Batteries”, Proceedings 44th Power 
Sources Conference, Las Vegas, NV (June 14~17, 2010)

• J. L. Allen, J. Wolfenstine, T. R. Jow, "New Cathode Materials for Lithium Ion Batteries", 
Proceedings 44th Power Sources Conference, Las Vegas, NV (June 14-17, 2010)

• T. R. Jow, J. L. Allen, M. Marx, K. Nechev, B. Deveney, S. Rickman, “Electrolytes, SEI and Charge 
Discharge Kinetics of Li-ion Batteries”, ECS Transactions, 2010, 25 (36), 3.  

• T. R. Jow, M. Marx, J. L. Allen, “Li+ Charge Transfer Kinetics at 1. NCA/Electrolyte and 
Graphite/Electrolyte Interfaces, and 2. NCA/Electrolyte and LFP/Electrolyte Interfaces in Li-ion 
Cells,” ECS Transactions, accepted, 2011.

• O. Borodin, T. R. Jow, “Quantum Chemistry Studies of the Oxidative Stability of Carbonate, 
Sulfone and Sulfonate-Based Electrolytes Doped with BF4

-, PF6
- Anions,” ECS Transactions, 

accepted, 2011.
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Explicit Anion Solvation Shell: 
from 1 to 3 EC around BF4

-

PCM (ε=20), M052-x/6-31G* opt for 
oxidized EC2/BF4 and EC3/BF4 ;
M052x/cc-pvTz opt for EC/BF4

EC2/BF4

EC3/BF4

EC/BF4
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Influence of the medium dielectric 
constant on DMC and DMC/BF4

- Eox

dielectric
constant Eox. vs. Li+/Li (V)

DMC DMC/BF4
-

ε=1 9.9 4.1

ε=4.2 8.3 5.8

ε=20.5 7.9 6.2

ε=78.4 7.8 6.3
Calculated at M05-2X/cc-pvTz level

 For pure DMC (no anion) Eox decreases as the medium dielectric constant increases .
Presence of anion changes the trend of the oxidation potential vs. solvent dielectric constant that 

might explain lower electrolyte oxidative stability on strongly interacting oxides compared to GC.

EC:DMC(3:7)/LiPF6 EDL 
on metal oxide

Strong cathode-
electrolyte

interaction suggests a 
low dielectric 

constant at the 
surface

Low local dielectric 
constant and 

presence of anion 
leads to lower 

oxidation potential

Lower electrolyte stability 
on oxides compared to 

glassy carbon

Smith, G. D.; Borodin, O.; Russo, S. P.; Rees, R. J.; Hollenkamp, A. F. Phys. Chem. Chem. Phys. 2009, 11, 9884-9897.
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Modeling of the 
Sulfone:Carbonate/LiPF6
Electrolytes

Step 1: Develop many-body polarizable force 
field for sulfolane/Li+ , EMS/Li+ interactions 

starting from APPLE&P force field.

Step 2: Validate ability of the developed force 
field to predict binding energy of Li+/Sulfolane 

and Li+/EMS, and Li+/(Sulfolane,DMC) 
clusters obtained from QC calculations.

Step 3: Perform Molecular Dynamics (MD) 
simulations of Sulfolane-DMC/LiPF6, EMS-
DMC/LiPF6; validate the force field; learn 

about Li+ coordination and transport.

Step 4: (in progress) examine interfacial 
properties in collaboration with U. of Utah 
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TMSn-DMCm-Li Binding Energy from 
QC and Molecular Mechanics

Binding energy
(kcal/mol)

MP2/cc-pvTz
BSSE 

corrected

MM
using 
Force 
Field

TMS4-Li -133.5 -133.9
TMS3-DMCcc-Li -127.2 -129.2
TMS3-DMCct-Li -126.8 -128.3
(TMS2,DMCcc,DMCct)-Li -122.0 -121.2
TMS2-DMC(cc)2-Li -119.8 -123.0
TMS-DMC(cc)3-Li -116.3 -121.9

A strong preference for Li+ complexation 
with sulfolane (TMS) vs. DMC is observed.

Developed force field accurately 
predictions binding energy for TMS vs. 

DMC.
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