Benchmarking of Competitive Technologies

Tim Burress
Oak Ridge National Laboratory
May 15, 2012

Project ID: APE006

Washington, D.C.
Overview

Timeline

- Start: FY04
- Finish: Ongoing

Barriers

- Obtaining parts for newly released vehicles
- Integrating ORNL developed controller with OEM components
- Adapting non-standard motor assembly to test cell

Budget

- Total project funding
 - DOE: 100%
- Funding received in FY11: $465K
- Funding received in FY12: $550K

Partners

- Argonne National Laboratory
- Electric Transportation Applications
- Idaho National Laboratory
- National Renewable Energy Laboratory
- ORNL Team Members
 - Steve Campbell, Chester Coomer
 - Andy Wereszczak, Materials Science and Technology Division
Objectives

• **Benchmark on-the-road HEV or PEV vehicle technologies**
 – Assess design, packaging, and fabrication characteristics from intensive disassembly of subsystems
 • Determine techniques used to improve specific power and/or power density
 • Reveal compositions and characteristics of key components
 – Trade-offs (e.g. magnet strength vs coercivity)
 – General cost analysis
 – Examine performance and operational characteristics during comprehensive test-cell evaluations
 • Establish realistic peak power rating (18 seconds)
 • Provide detailed information regarding time-dependent and condition-dependent operation
 – Develop conclusions from evaluations and assessments
 • Compare results with other HEV technologies
 • Identify new areas of interest
 • Evaluate advantages and disadvantages of design changes
 – Example: Complexity of LS 600h double sided cooling system

• **FY12 objectives**
 – Complete 2011 Hyundai Sonata hybrid benchmarking studies
 – Complete 2012 Nissan Leaf hybrid benchmarking studies
Milestones

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Milestone or Go/No-Go Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2011</td>
<td>Milestone: Completed 2011 Hyundai Sonata inverter/motor testing (completed in November due to driver board issues)</td>
</tr>
<tr>
<td>September 2011</td>
<td>Go/No-Go decision: Determined which on-the-road HEV or PEV system is available and desirable to benchmark</td>
</tr>
<tr>
<td>September 2012</td>
<td>Milestone: Complete 2011 Hyundai Sonata inverter/generator testing</td>
</tr>
<tr>
<td>September 2012</td>
<td>Go/No-Go decision: Determine which on-the-road HEV or PEV system is available and desirable to benchmark</td>
</tr>
</tbody>
</table>
Approach

Choose subsystem

Teardown PCU and transaxle

Determine volume, weight, SP and PD

Assess design-packaging improvements

Design, fabricate, and instrument

Prepare secondary components

Develop interface-control algorithm

Test systems for performance, efficiency, and continuous operation
Overall Technical Accomplishments

- Detailed comparisons of progressing technologies
 - 2011 Sonata motor improves over similarly benchmarked system
 - PD and SP nearly 2x 2006 Accord and comparable to 2004 Prius,
 - Falls short of 2010 Prius, 2008 LS 600h, and 2007 Camry
 - Note: Sonata has 270V DC bus versus 650V and has lower speed rating
 - 2011 Sonata PEM improves over similarly benchmarked system
 - PD and SP similar to 2010 Prius/2007 Toyota when including boost converter mass/volume
 - PD and SP similar to 2004 Prius when neglecting boost converter mass/volume

<table>
<thead>
<tr>
<th>Component & Parameter</th>
<th>2011 Sonata (30 kW)</th>
<th>2010 Prius (60 kW)</th>
<th>2008 LS600h Lexus (110 kW)</th>
<th>2007 Camry (70 kW)</th>
<th>2006 Honda Accord (12 kW)</th>
<th>2004 Prius (50 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power density, kW/L</td>
<td>3.0</td>
<td>4.8</td>
<td>6.6</td>
<td>5.9</td>
<td>1.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Peak specific power, kW/kg</td>
<td>1.1</td>
<td>1.6</td>
<td>2.5</td>
<td>1.7</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Inverter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excludes generator/inverter (parenthetical values exclude boost converter mass/volume)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power density, kW/L</td>
<td>7.3</td>
<td>6.9 (11.1)</td>
<td>10.6 (17.2)</td>
<td>7.4 (11.7)</td>
<td>2.9</td>
<td>4.5 (7.4)</td>
</tr>
<tr>
<td>Peak specific power, kW/kg</td>
<td>6.9 (16.7)</td>
<td>7.7 (14.9)</td>
<td>5.0 (9.3)</td>
<td>2.4</td>
<td>3.8 (6.2)</td>
<td></td>
</tr>
</tbody>
</table>
Technical Accomplishments (1)

- Sonata transaxle/transmission
 - Conventional 6 speed transmission
 - Motor replaces torque converter
 - But not simply interchanged
 - Primary motor: 205 Nm and 30 kW ratings
 - Approximate corner speed: 1400 rpm
 - Motor very similar to Honda hybrids
 - 24 stator teeth and 16 rotor poles
 - Resolver similar to Toyota/Honda
 - 3-phase oil pump
 - Clutch integrated into motor rotor
 - Oil cooling path around stator
Technical Accomplishments (2)

• Comparison of hybrid PCUs
 – Comparable volume despite much lower power capabilities

(Updated labels)

2010 Prius: 13.0 kg, 16.2 L
2007 Camry: 17.4 kg, 11.7 L
2011 Hyundai Sonata: 12.3 kg, 10.6 L
Technical Accomplishments (3)

• Hyundai Sonata PCU compartments
 – Includes inverters for HSG and primary PMSM
 – 270V to 12V accessory converter
 • Note alternator efficiency
 – Cooling system reservoir with pressure bleed cap (HSG and PCU)
Technical Accomplishments (4)

• PCU in series with HSG on ethylene glycol coolant loop
• Cast aluminum heat exchanger
• Many recognizable components on control board
• SH Film Capacitor by Nuintek
 – 600V, 680 µF and two 0.28 µF capacitors
 – Integrated bus bars
• LEM HAH1DR-500S and 300S current transducers (two each)
Technical Accomplishments (5)

- **Standard gate drive circuitry**
 - Avago driver
 - Totem pole BJT output

- **30 kW and 8.5 kW Infineon PEMs**
 - Appears to be HybridPack1
 - Same package size for both power levels

- **Motor IGBT and diode cross-sectional area**
 - about 1.9 times that of HSG
 - \(\frac{30}{8.5} = 3.53 \)

- **Total cross-sectional silicon area: 2155 mm\(^2\)**
 - Motor: 1195 mm\(^2\)
 - HSG: 960 mm\(^2\)
Technical Accomplishments (6)

- **Hyundai Sonata 888 µF capacitor tests**
 - Ripple current tests conducted in environmental chamber with steady ambient temperature of 21°C
 - Temperature measurement observed after steady-state conditions observed (nearly constant temperature)
 - Usually 30-60 minutes to reach steady state
 - Delta-T relatively unaffected by frequency between 2 and 5 kHz
Technical Accomplishments (7)

- Sonata motor back-EMF reaches 120 V_{in} at about 3,750 rpm
 - 120 is approximate maximum output from 270V DC link inverter
- About 300 A_{DC} required to produce published peak torque of 205 Nm
- Torque-per-current is nearly linear up to 250 A_{DC}
- Slight indication of saturation at 300 A_{DC}
 - Toyota machines operate in saturation at much lower current levels
- Additional results available
Technical Accomplishments (8)

- Sonata motor reached more than 30 kW
- Considerable operation range above 90%
- Maximum efficiency above 94%
- 30 kW reached at rated speed (6,000 rpm)
 - Either mechanical speed rating or 30 kW desired at speeds for EV operation

2011 Sonata - Motor Efficiency Contours
Technical Accomplishments (9)

- Maximum Sonata inverter efficiency of over 98%
- Maximum combined motor-inverter efficiency is about 93%
Technical Accomplishments (10)

- Sonata motor continuous tests conducted with 50C coolant
 - 1,000 rpm and 15 kW
 - 3,000 rpm at 15 and 25 kW
 - 5,000 rpm at 15 and 25 kW

- Inverter most stressed at 1,000 rpm (pink trace corresponds with inverter thermistor)

- Thermocouple locations:
 - Thermocouples 2, 4, & 6 are located in the center of the cooling channel
 - Thermocouple 7 is located on the exterior of the housing at the 12 o’clock position similar to the placement of thermocouple 2
 - Thermocouples 8 & 9 are located in the inlet and outlet of the oil cooling lines, respectively
Technical Accomplishments (11)

- Sonata motor operates at 15kW and 3000 rpm for about an hour without reaching 100°C
- Operates at 25kW and 3000 rpm for about 30 minutes and hottest temperature reaches about 115°C
- Note low inverter temperature
Technical Accomplishments (12)

- **Sonata motor duration versus speed:**
 - 1000 rpm / 15kW operation begins slow thermal runaway after 15 minutes
 - Note difference between 25 kW duration at 3000 and 5000 rpm
 - 15 KW operation is slightly better at 3000 rpm than for 5000 rpm
 - 25 kW operation much better for 5000 rpm tests
Technical Accomplishments (13)

- **Sonata Hybrid Starter Generator (HSG)**
 - 43 Nm, 8.5 kW
 - 3-phase IPM machine
 - Cold start, restart, and generates when low SOC
 - Separate low-temperature coolant loop for HSG and HPCU
 - Drives and is driven by engine belt (crankshaft)
 - Roughly same size as alternator
 - 36 stator slots, 8 pole rotor
 - Ethylene glycol cooling jacket
Technical Accomplishments (14)

- Position resolver
 - 12 pole stator
 - 3 lobes on resolver rotor
- Sonata HSG Shaft adapter and mounting plate designed and fabricated
Technical Accomplishments (15)

- **2012 Nissan Leaf motor assembly**
 - Exterior water jacket surrounds motor
 - Shaft and support plate design underway for adaption to ORNL test equipment

Total mass, as received:
~56kg, ~123 lb)
Technical Accomplishments (16)

- **2012 Nissan Leaf motor**
 - 48 stator slots with 8 poles
 - Similar to Lexus LS 600h design
 - Published ratings:
 - 80 kW
 - 280 Nm
 - 10,390 rpm
 - 9,655 rpm needed for 90 mph

 ![Motor Image]

 Stator O.D.: ~ 19.812 cm (7.8”)

 ![Stator Image]

 15.116 cm (5.95”)

 12.997 cm (5.12”)

 Managed by UT-Battelle
 for the U.S. Department of Energy
Technical Accomplishments (17)

- Total drive ratio: $31/17 \times 74/17 \approx 7.94$
- Brush contacts used to ground shaft of drive gear
- 12-8 switched reluctance motor and elliptical gear used to engage parking gear

Total mass, as received: 26.8 kg (59 lb)
Technical Accomplishments (18)

- **Nissan Leaf inverter assembly contains**
 - One 3-phase inverter
 - Control board with resolver position and current transducer feedback
 - IGBT driver board
 - Main capacitor
 - Bleed-resistor

- **Approximate dimensions shown below**

DC input from battery

- Total mass, as received: 16.2 kg (35.7 lb)
Technical Accomplishments (19)

• Nissan Leaf inverter assembly
 – Tamagawa position resolver chip
 – DC conductors (two) ~ 1/0 AWG
 – AC conductors (three) ~ 3/0 AWG

Control/interface board

Substantial DC conductors
Technical Accomplishments (20)

• **Nissan Leaf inverter**
 - Capacitor module
 - 600V, 1186.5 μF
 - 600V, 1.13 μF
 - Integrated bus bars with two DC terminals for each IGBT power module
 - Integrated thermistor
 - Approximate dimensions shown below

Three current transducers with integrated 3-phase bus bars

![Dimensions](image_url)
Technical Accomplishments (21)

- **Nissan Leaf inverter**
 - 3 IGBTs and 3 diodes per switch
 - 18 IGBTs and 18 diodes total
 - Serpentine water-ethylene glycol coolant loop
 - 3 separate IGBT modules
Collaborations

• **Argonne National Laboratory**
 – ANL provides vehicle level data obtained during extensive drive cycle testing which enables the observation of common operation conditions and trends observed on a system-wide basis
 – Converter, inverter, and motor characteristics such as efficiency and performance are supplied to ANL for use in system-wide vehicle modeling

• **Electric Transportation Applications and Idaho National Laboratory**
 – ETA and INL collaborate on a fleet vehicle testing program in which fleet vehicles undergo normal driving and maintenance schedules. The study of components from these vehicles provides information related to the reliability and operation long-term susceptibility of the designs.

• **National Renewable Energy Laboratory**
 – NREL utilizes temperature measurements observed during performance and efficiency tests to assess the characteristics of the thermal management system
 – NREL provides feedback and suggestions in regards to the measurements (such as thermocouple placement) useful to thermal management system assessments

• **Oak Ridge National Laboratory, Materials Science & Technology Division**
 – Provides detailed material analysis of components such as magnets and power electronics packages
Future Work

- Benchmarking efforts will focus on technologies of interest to DOE, the Electrical and Electronics Technical Team, and Vehicle Systems Analysis Technical Team
Summary

- Various drive systems sub-assemblies fully assessed (Prius, Accord, Camry, LS 600h, Sonata motor)
 - Power density and specific power determined
 - Design specifications validated
 - Red highlight indicates 2020 targets reached

<table>
<thead>
<tr>
<th>Component & Parameter</th>
<th>2011 Sonata (30 kW)</th>
<th>2010 Prius (60 kW)</th>
<th>2008 LS600h Lexus (110 kW)</th>
<th>2007 Camry (70 kW)</th>
<th>2006 Honda Accord (12 kW)</th>
<th>2004 Prius (50 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power density, kW/L</td>
<td>3.0</td>
<td>4.8</td>
<td>6.6</td>
<td>5.9</td>
<td>1.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Peak specific power, kW/kg</td>
<td>1.1</td>
<td>1.6</td>
<td>2.5</td>
<td>1.7</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Inverter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excludes generator inverter (parenthetical values exclude boost converter mass/volume)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak power density, kW/L</td>
<td>7.3</td>
<td>5.9 (11.1)</td>
<td>10.6 (17.2)</td>
<td>7.4 (11.1)</td>
<td>2.9</td>
<td>4.5 (7.4)</td>
</tr>
<tr>
<td>Peak specific power, kW/kg</td>
<td>6.9</td>
<td>6.9 (16.7)</td>
<td>7.7 (14.9)</td>
<td>5.0 (9.3)</td>
<td>2.4</td>
<td>3.8 (6.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor-related Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor peak power rating</td>
<td>80 kW</td>
<td>30 kW</td>
<td>60 kW</td>
<td>110 kW</td>
<td>70 kW</td>
<td>12.4 kW</td>
<td>50 kW</td>
</tr>
<tr>
<td>Motor peak torque rating</td>
<td>280 Newton meters (Nm)</td>
<td>205 Nm</td>
<td>207 Nm</td>
<td>300 Nm</td>
<td>270 Nm</td>
<td>136 Nm</td>
<td>400 Nm</td>
</tr>
<tr>
<td>Rotational speed rating</td>
<td>10,400 rpm</td>
<td>6,000 rpm</td>
<td>13,500 rpm</td>
<td>10,230 rpm</td>
<td>14,000 rpm</td>
<td>6,000 rpm</td>
<td>6,000 rpm</td>
</tr>
<tr>
<td>Power electronics-related Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPM Cooling</td>
<td>Heat sink with water/glycol loop</td>
<td>Heat sink with water/glycol loop</td>
<td>Direct cooled, single side water/glycol loop</td>
<td>Double-sided infrastructure, water/glycol loop</td>
<td>Heat sink with water/glycol loop</td>
<td>Air-cooled heat sink</td>
<td>Same as Camry</td>
</tr>
<tr>
<td>Bi-directional DC-DC converter output voltage</td>
<td>N/A</td>
<td>N/A</td>
<td>200-650 Vdc</td>
<td>288-650 Vdc</td>
<td>250-650 Vdc</td>
<td>N/A</td>
<td>200–500 Vdc</td>
</tr>
<tr>
<td>High-voltage (HV) Ni-MH battery</td>
<td>403.2 V, 59.5 Ah</td>
<td>270 V, 5.3 Ah</td>
<td>201.6 V, 6.5 Ah</td>
<td>288 V, 6.5 Ah</td>
<td>244.8 V, 6.5 Ah,</td>
<td>144V, 6.5 Ah,</td>
<td>201.6 V, 6.5 Ah,</td>
</tr>
</tbody>
</table>