Bacterial Cellulose Composites
Opportunities and Challenges
(An important & exciting area that needs more public/private partnership)

LEONARD S. FIFIELD, PHD
PNNL Applied Materials Science Group
Richland, WA

June 26, 2012
Leonard.Fifield@PNNL.gov
What is bacterial cellulose? Why is it unique?

► Bacterial cellulose—a naturally occurring material:
 - Microbial Exo Poly Saccharides: Dextran, Xanthan, Gellan, **Cellulose**
 - *Gluconacetobacter*, *Agrobacterium*, *Achromobacter*, *Aerobacter*, *Azotobacter*, *Sarcina ventriculi*, *Salmonella*, *Escherichia* and *Rhizobium*

► Bacterial Cellulose—an attractive engineering material:
 - High Modulus (~100 GPa), High Strength (~2 GPa)
 - Low LCTE: (~1 x 10^{-7} K^{-1}), High Aspect Ratio (~50)
 - Nano-sized: Interesting Optical & Barrier Properties

► Bacterial Cellulose—a unique cellulosic material
 - Inherent Purity: free of hemicellulose, lignin, pectin, wax
 - Moldable in cultivation, May be produced directly as coating
 - Natural network structure, High Crystallinity: ~85%, High DP
 - High Carbon-to-Cellulose Conversion Efficiency
Production of Bacterial Cellulose

- Resources required for production
 - Carbon source & media (i.e. protein, yeast, agar, pH buffered)
 - Typical cell converts 108 glucose molecules to cellulose per hour
 - Cultured for days-to-weeks in static batch to produce pellicle
 - Alternates: shaking, stirred, air lift, rotating disk → continuous

- Carbon sources used for bacterial cellulose production
 - Glucose, fructose, sucrose, molasses, etc.
 - Sugar alcohols including glycerol
 - Corn steep liquor, potato effluent, grape pomace, whey lactose
 - Tea, guarana, coffee cherry, konjac powder, cacao, cola nut, mate
 - Saccharified food waste
 - May require dilution and nutritional supplementation

- Cellulose from Cyanobacteria
 - Nitrogen fixing? Saltwater tolerant?

June 26, 2012

Leonard.Fifield@PNNL.gov
Bacterial Cellulose in Polymer Composites

- **Nano cellulose as high modulus filler**
 - Improve modulus/strength, shear strength in FRPs
 - Lower density than ceramic/metal fillers
 - Adhesive filler for lap shear strength

- **In-fiber filler for FRPs**

- **Hierarchical Composites**
 - Low CTE natural fiber coating interfacial for NF reinforced composites

- **Networked fiber structure**
 - Reinforcing sheets, filters, supports

- **H-Bonding hierarchical structure ➔ functional composites**

- **Challenges**: high moisture absorption, aggregation, interfacing, enzyme degradability
Application Opportunities for BC Composites

Current products:
- High quality paper, High-fidelity speakers
- Wound dressings, Dessert foods

Vehicle light weighting
- Structural/non-structural composites

High performance reinforced composites
- Wind energy, Civil infrastructure
- Hydrokinetic energy, Marine infrastructure

Barrier films and coatings
- Food packaging
- Organic electronics (PV, OLED)
- Energy Storage
- Building envelope: Vacuum insulation

Transparent coatings/films/substrates

Biomedical devices: bone growth, drug delivery

Aerogels: insulation, sorbents

Sensors, actuators

June 26, 2012
Leonard.Fifield@PNNL.gov
Public/Private Partnership Research and Development Needs

- Issues related to polysaccharide production from bacteria
 - Pathogenicity? Production costs? Product quality/consistency?
 - Kinetics of bacterial cellulose (vs. plant cellulose) growth
 - Cellulose production may be difficult to transfer to other organisms

- Development Needs for Bacterial Cellulose
 - Alternate feedstocks, genetic engineering, process engineering
 - Low cost scaled-up production, isolation methods
 - Compatibilization chemistries, composite processing

- Key Opportunities
 - Industrial waste remediation (i.e. ag residue feedstocks)
 - Net shape fibrous reinforcement (i.e. cultivate in shape)
 - Organism engineering (i.e. cellulose from cyanobacteria)
Bacterial Cellulose for Composites

Conclusions

- Bacterial Cellulose is an attractive high performance natural nanomaterial that can compliment plant cellulose in US manufacturing.

- Realization of the opportunities for this material in US manufacturing will require public and private investment to lower production cost and advance composite applications.
Leo Fifield with Bacterial Cellulose isolated from Nata de Coco

June 26, 2012
Leonard.Fifield@PNNL.gov
Selected Literature Referenced

Recent Bacterial Cellulose Reviews