Panel Session: State of HVDC Technologies

Neil Kirby
Arlington, VA
April 22nd, 2013
Agenda

- HVDC Technologies
- World View
- Key Projects
- Development Work
HVDC Transmission

Back to Back
- Asynchronous interconnection of adjacent networks
- DC Circuit is short - within the same building/station
- 2 Converters in 1 Station

Point to Point
- Long Distance Transmission by Overhead Line or Insulated Submarine or Underground Cable or a combination of these
- DC Circuit Distance according to application
- Two Converter Stations

Multi-terminal
- 3 or more HVDC Converter Stations on a common DC conductor
- Limited installations worldwide (2 systems in service)
- VSC technology makes this easier, increasing interest

DC Grid
- Many converters in a network with meshed, radial, circuit and AC interconnections
HVDC Using Thyristors

Classic HVDC

- In use since 1980’s
- Over 100 schemes in operation
- Uses 4”, 5” and now 6” thyristors
- Ratings
 - Commonly 500 kVdc / 3000 MW
 - Recently 660 kVdc / 4800 MW and 800 kV / 6400 MW
- Water cooled
- Most economical solution for:
 - Long distance / bulk power transmission
 - Large capacity cable / water crossings
- Commonly referred to as
 - Line commutated converter (LCC) HVDC
 - Conventional HVDC
HVDC Using Transistors

Voltage Source Converters (VSC)

- Recently introduced
- Uses IGBT, IGCT or similar device
- Ratings
 - 320 kVdc / 1000 MW
 - Increased ratings being developed
- Water cooled
- Reduced overall site footprint than LCC
- Easier construction than LCC
- More Versatile Function than LCC
 - Simultaneous control of MW and MVars
 - Faster response to events
 - Can “black start” a network
World View of HVDC – Major Markets

N America: Asynchronous Interconnections, Water Crossings, Bulk Renewable Power Transfer

India: Bulk Power over Long Distances and Asynchronous Interconnections

Europe: Water Crossings, severely restricted ROW Permits

South America: Bulk Power over Long Distances and Asynchronous Interconnections

China: Bulk Power over Long Distances and Asynchronous Interconnections
Brazil: Rio Madeira – Bipole 2

Purpose:
- Interconnect Rio Madeira Hydro-plants (Santo Antonio and Jirau) in NW Brazil to major load centers in South / Southeast Brazil

Project:
- 3150 MW / 600 kV Bipole HVDC
- 2375 km World’s Longest HVDC Link

Contract Value:
- 300 MEuro ($ 480 MUSD)

Date:
- Contract Signed September 2009

End Customer:
- ANEEL – Agencia Nacional de Energia Eletrica

Consortium: Consórcio Madeira Transmissão
- Furnas (Alstom)
- CHESF
- CTEEP
India: Champa-Kurukshetra ±800kV HVDC Project

- POWERGRID of India Project funded by ADB
- +/-800kV 3000MW Bipole with Dedicated Metallic Return Conductor.
- Between Champa “pooling” station and Kurukshetra
- Provision to include upgrade to 6000MW at a later date (additional 3000MW bipole utilising existing conductors).
- 37 Month Contract
SouthWest Link : Sweden/Norway – World First VSC Multi-Terminal HVDC

Phase 1:
- South West Link
- 4 x VSC Converters
- 2 x 720MW links, +/- 300kV DC, OHL & Cables

Phase 2:
- Extension to 3-Terminal
- 2 x VSC Converters in Norway
- Connection of Barkeryd Converters to Norway
Multi-terminal Functionality

Barkeryd

DC
AC
Cable 10km
OHL 62km

Hurva

DC
AC
Cable 10km
OHL 62km

Transit Stations

Removable Links

-300kV

+300kV

179km

62km

10km
Single Line Diagram – Barkeryd

- “pre-insertion” resistor
- DC reactor +300kV
- Phase reactors
- DC reactor -300kV
- Converter

Grid Tech - Arlington April 2013
Tres Amigas SuperStation

Phase 1

750MW BTB VSC
Atlantic Wind Connection
HVDC Connections - Off-shore Wind Farms

Dolwin 3 Project: 900 MW VSC HVDC Link
Off-shore Germany

- 10 Ongoing Offshore HVDC Projects
- 400 - 900 MW
Overlay DC Grid Gives Access to Renewable Sources within Europe

- Interconnection of remote renewable energy sources
- Overcoming “bottlenecks” in the existing AC grids
- Low loss (HVDC) transmission systems
- Controllable power flows over a wide area
- Avoidance of synchronisation over a wide area
- Less environmental impact than AC reinforcement

Markets also in North America, China and India
A Sample of European Initiatives

Desertec Foundation

Friends Of The SuperGrid

OffshoreGrid Europe
“Offshore Electricity Grid Infrastructure in Europe: Techno-Economic assessment”
3E (coordinator), dena, EWEA, ForWind, IEO, NTUA, Senergy, SINTEF
Final Report, October 2011
DC Grid Recommendations Activities

- Cigré B4-52 “Feasibility of HVDC Grids” now published
- Cigré has started five further DC grid working groups:
 - B4-56: Guidelines for the preparation of “connection agreements” or “Grid Codes” for HVDC grids
 - B4-57: Guide for the development of models for HVDC converters in a HVDC grid
 - B4-58: Devices for load flow control and methodologies for direct voltage control in a meshed HVDC Grid
 - B4-59: Protection of Multi-terminal HVDC Grids
 - B4-60: Designing HVDC Grids for Optimal Reliability and Availability performance
- Other bodies, such as CENELEC, and FOSG, also actively producing recommendations
Development

- DC Grid control philosophy being refined
- Optimised protection strategies are being developed
- Modular DC Breakers suitable for application in different HVDC schemes
 - fast acting and reliable mechanical switch is critical component
 - 3000A / 2.5ms achieved
 - 170 kV / 7500A next milestone
- Part of European “Twenties” Project sponsored by RTE France
- Dynamic Breaking Resistor circuits under development for Windfarm application
- New Markets associated with DC Grids being addressed
- Current flow control being developed
- DC-DC converter design optimisation on-going
- Half-Bridge, Full-Bridge, and other configurations being developed