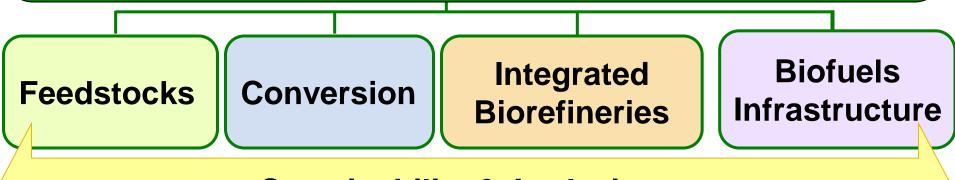


Algae Biofuels Technology

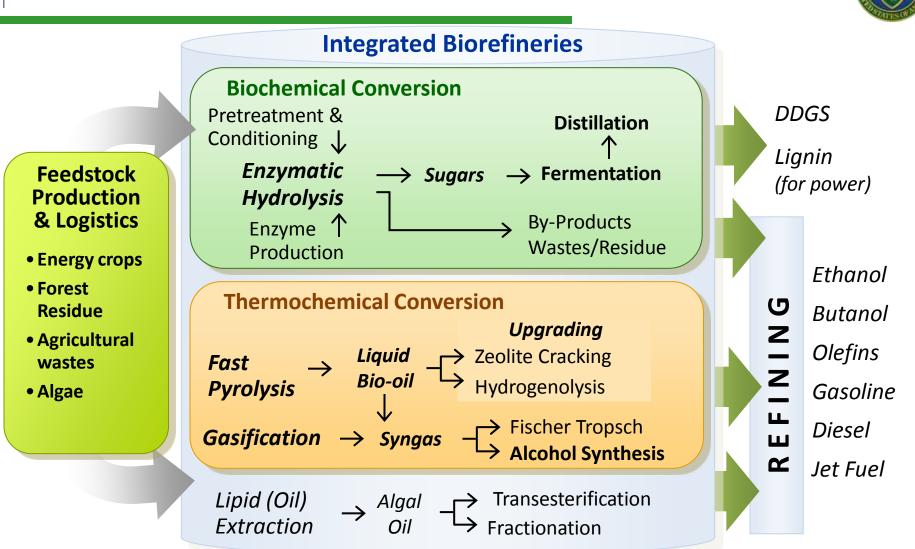
Office Of Biomass Program Energy Efficiency and Renewable Energy Jonathan L. Male May 27, 2010

Biomass Program Mission and Objectives


Develop and transform our renewable and abundant, non-food, biomass resources into sustainable, cost-competitive, high-performance biofuels, bioproducts and biopower.

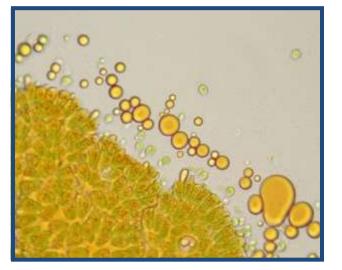
Focus on targeted research, development, and demonstration

- Through public and private partnerships
- Deploy in integrated biorefineries


Biomass Program

- Make cellulosic ethanol cost competitive, at a modeled cost for mature technology of \$1.76/gallon by 2017
- Help create an environment conducive to maximizing production and use of biofuels- 21 billion gallons of advanced biofuels per year by 2022 (EISA)

Sustainability & Analysis


Exploring Routes to Convert Biomass

Research on multiple conversion pathways and hybrid pathways aims to improve the efficiency and economics of biofuels production.

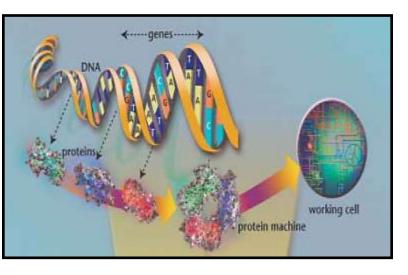
Why Algae? Supply

- Algae may produce more lipids (plant oils) per acre than other plants -potentially 2x - 20x
 - Lipids are the preferred starting point to make diesel or jet fuel from biomass
- Algae cultivation may utilize:
 - marginal, non-arable land
 - saline/brackish water
 - large waste CO₂ vent resources
- Minimizing competition with food, feed, or fiber

1978-1996 \$25M

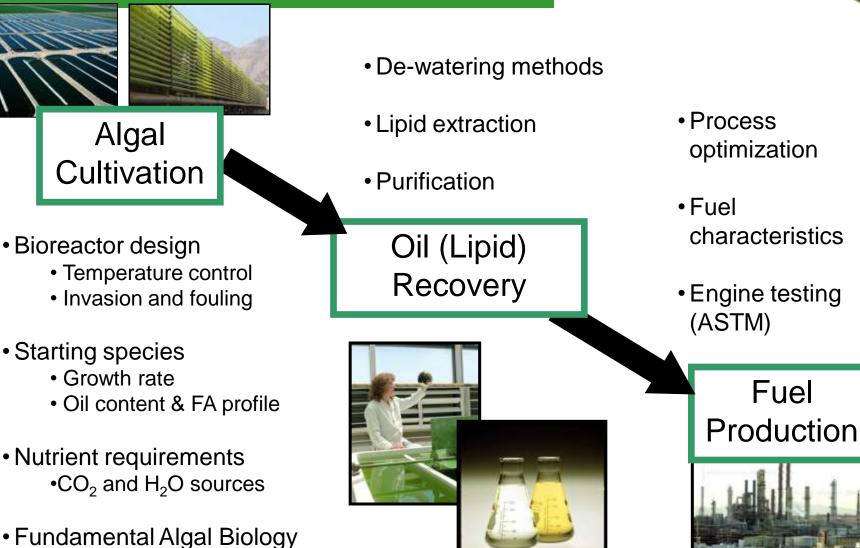
Excerpt from ASP Close-Out Report (1998)

In 1995, DOE made the difficult decision to eliminate funding for algae research within the Biofuels Program


... [T]his report should be seen not as an ending, but as a beginning. When the time is right, we fully expect to see renewed interest in algae as a source of fuels and other chemicals. The highlights presented here should serve as a foundation for these future efforts.

What's Changed Since 1996?

- Volatile Petroleum Distillate Pricing
 - Crude oil prices have seen record highs (\$147/barrel)
- Technology has improved dramatically
 - New photobioreactor designs and advances in material science
 - Explosion in biotechnology -- advances in metabolic engineering and systems biology
- Greater emphasis on energy security and CO₂ capture, GHG reduction, etc


DOE's Office of Science Joint Genome Institute recently published the genome sequence of *Chlamydomonas reinhardii* (Science, 318:245-50, 2007) and has 4 additional algal species currently in its pipeline resulting from user-initiated submissions to JGI's Community Sequencing Program.

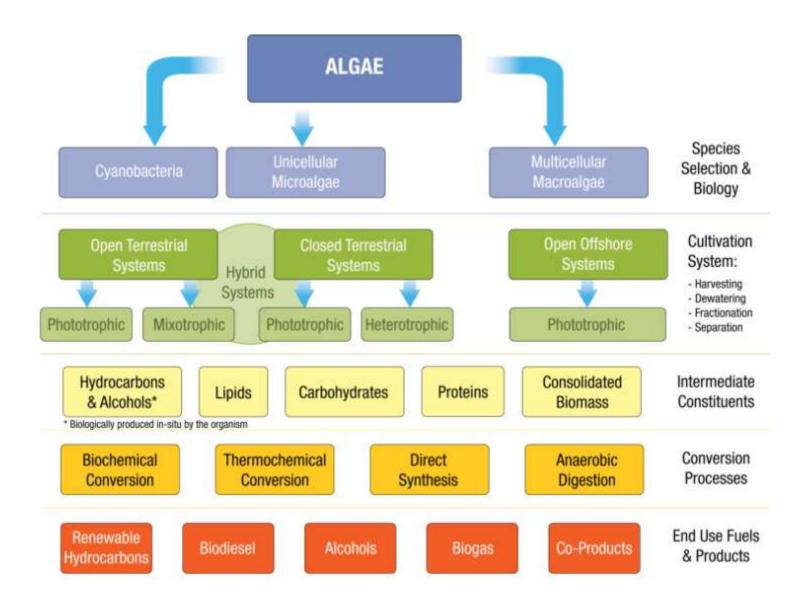
elf Serve

Algal Systems Technical Barriers

Biomass Program Budget

*Includes regular FY2010 appropriations and 2009 ARRA funds

DOE Algal Biofuels Efforts



- DOE Office of Biomass Program is establishing an "Advanced Biofuels Initiative"
- An element will be the "Algal Biofuels Pathway"
- Draft "National Algal Biofuels Technology Roadmap" released for comments in 2009
 - Stakeholder workshop held Dec. 2008
 - Anticipate 4 major R&D and analysis areas:
 - Basic algal biology
 - Cultivation and process research
 - Production/integrated scale up
 - Sustainability and economic analysis

Research Planning: Algal Biofuels

Recent DOE-Biomass Algae Projects

- 3 University-based algae projects
 - University of Georgia livestock waste as algae nutrient
 - Montana State & Utah State Universities extremophilic algae
 - Scripps Oceanographic Institute- diatom lipids
- DOE National Laboratory involvement
 - Techno-economic modeling (Sandia and NREL)
 - Resource assessment (Pacific Northwest National Lab)
 - Algae biodiesel production (Los Alamos National Lab)
- Algal biofuels consortium (ARRA)
- 3 Integrated Biorefinery Projects (ARRA)
- 35 million additional FY10 funds TBD
- International Collaborations
 - US-Israel Partnership (Sandia, NREL, CEHMM, Seambiotic)- process modeling, life-cycle assessment
 - US-Canada Partnership (Sandia, NREL, NRCAN)process modeling, strain optimization for flue gas CO2

Photo courtesy of Dr. Das (U. Georgia)

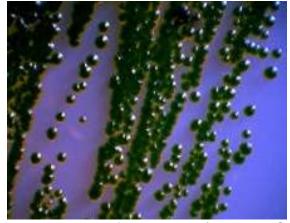


Photo courtesy of Dr. Peyton (Montana St.)

Locations of Integrated Biorefinery Projects

For more information, visit: http://www.eere.energy.gov/biomass/integrated biorefineries.html

National Alliance for Advanced Biofuels and **Bioproducts**

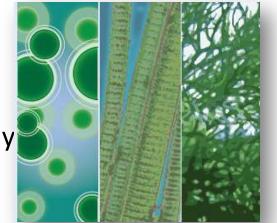
Project Objective – Investigate and integrate multiple approaches to meet the central challenges of feedstock production, handling logistics, and conversion in order to lower costs of algal biofuels.

Funding - 3 year effort Recovery Act/DOE Funding \$49M Cost Share \$25M Total \$74M

CO2

Land

Nutrients

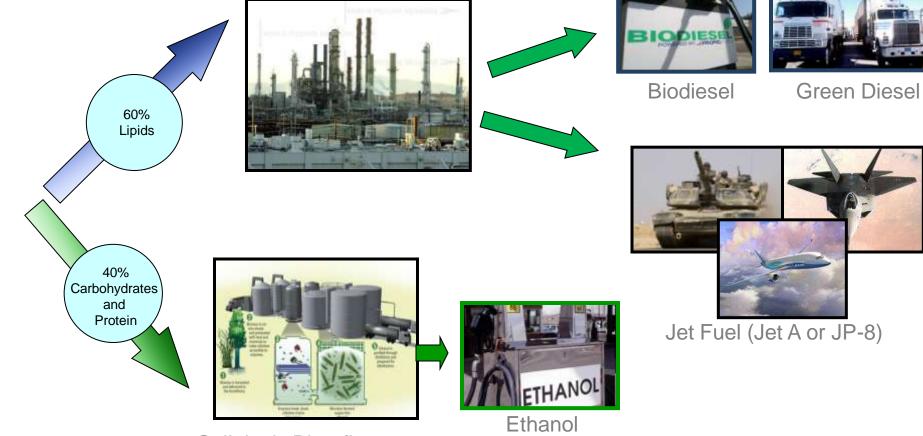

Development and Commercialization Value Chain

Expectations for the NAABB

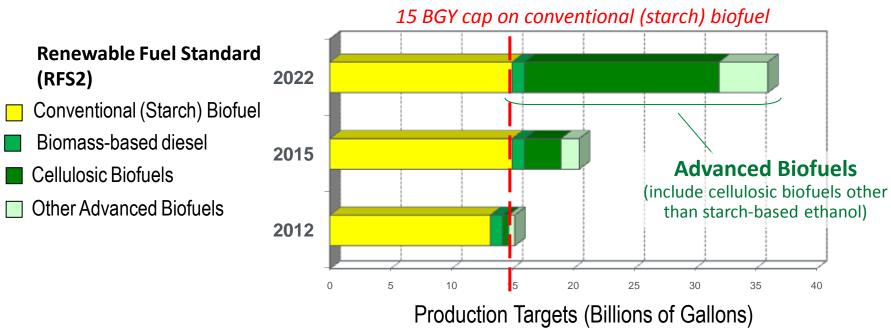
- The Biomass Program supports the national scale deployment of new bioenergy technologies.
- Deployment of new technology is risky and costly – the Biomass Program invests heavily understanding and modeling bioenergy pathways and processes to better understand the risks and costs.

- Our expectations of this consortium are clear: Do the research and generate the data necessary to find out what has changed in the intervening years, and set and evaluate aggressive, cost-driven targets for multiple algal biofuel pathways.
- Develop the science and technology necessary to significantly increase production of algal biomass and lipids, efficiently harvest and extract algae and algal products, and establish valuable conversion routes to fuels and co-products.

- Office of Biomass Program, <u>http://www1.eere.energy.gov/biomass/</u>
- EERE Info Center <u>www1.eere.energy.gov/informationcenter</u>
- Alternative Fuels Data Center -<u>http://www.eere.energy.gov/afdc/fuels/ethanol.html</u>
- Bioenergy Feedstock Information Network <u>http://bioenergy.ornl.gov/</u>
- Biomass R&D Initiative <u>www.biomass.govtools.us</u>
- Grant Solicitations <u>www.grants.gov</u>
- Office of Science <u>http://www.er.doe.gov/</u>
- Biomass 2010 Conference Presentations-<u>http://www1.eere.energy.gov/biomass/biomass2010/</u>
- National Alliance for Advanced Biofuels and Bioproducts -<u>http://www.naabb.org</u>

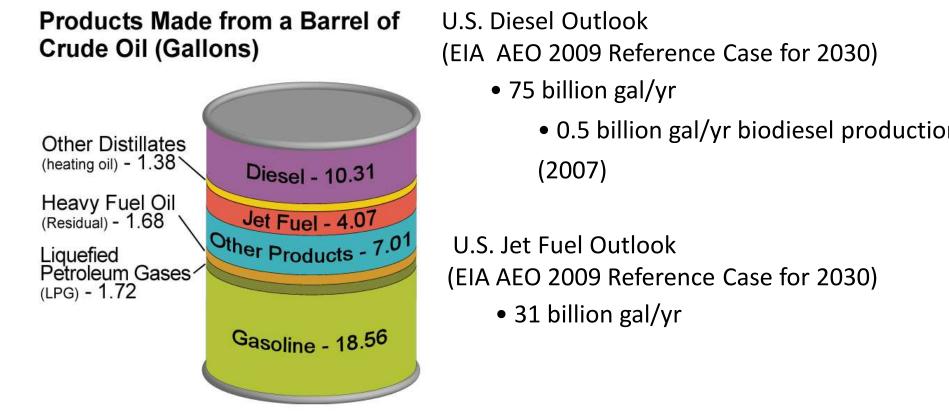

Appendix

Fuels From Algae


Petroleum Refinery

Cellulosic Biorefinery

EISA Mandated Biofuel Production Targets



EISA defines **Cellulosic Biofuel** as "renewable fuel derived from any cellulose, hemicellulose, or lignin that is derived from renewable biomass and that has lifecycle greenhouse gas emissions...that are *at least 60 percent less* than baseline lifecycle greenhouse gas emissions." The EPA interprets this to include cellulosic-based diesel fuel.

EISA defines Advanced **Biofuel** as "renewable fuel, other than ethanol derived from corn starch, that has lifecycle greenhouse gas emissions...that are *at least 50 percent less* than baseline lifecycle greenhouse gas emissions." This includes biomass-based diesel, cellulosic biofuels, and other advanced fuels such as sugarcane-based ethanol.

Rationale for Advanced Biofuels

- Cellulosic ethanol displaces light duty gasoline fraction only
- Heavy duty/diesel and jet fuel substitutes are needed to displace other components of the barrel

Source: Energy Information Administration, "Petroleum Explained" and AEO2009, Updated (post-ARRA), Reference Case.

ASP Accomplishments

- 3,000 strains of algae collected and screened;
- Advances in applied biology and design of algae production systems achieved
- 1,000m² open pond facility operated in Roswell, New Mexico for one year
- Final cost estimates for algal lipids \$40 -\$70 per bbl oil in \$1980 (Benemann and Oswald, 1996). Our initial estimates are that this translates to \$90 - \$160 per bbl oil in \$2008 (EIA Annual Energy Report)
- Final report is still reference --important resource for algae researchers worldwide
- Main authors are now recognized leaders in this field

Paul Roessler Synthetic Genomics Venture with Exxon-Mobil

John Benemann Independent Consultant

Joe Weissman Exxon-Mobil Venture with Synthetic Genomics

John Sheehan Science Program Coordinator U. Minnesota Institute on the Environment

Advanced Biofuels Implications: Algal Oils

Сгор	Oil Yield (gal/ac/yr)		
Soybean	48		
Camelina	62		
Sunflower	102		
Jatropha	202		
Oil Palm	635		
Microalgae	1000-4000		

Adapted from Christi (2007), as cited in the National Algal Biofuels Technology Roadmap.

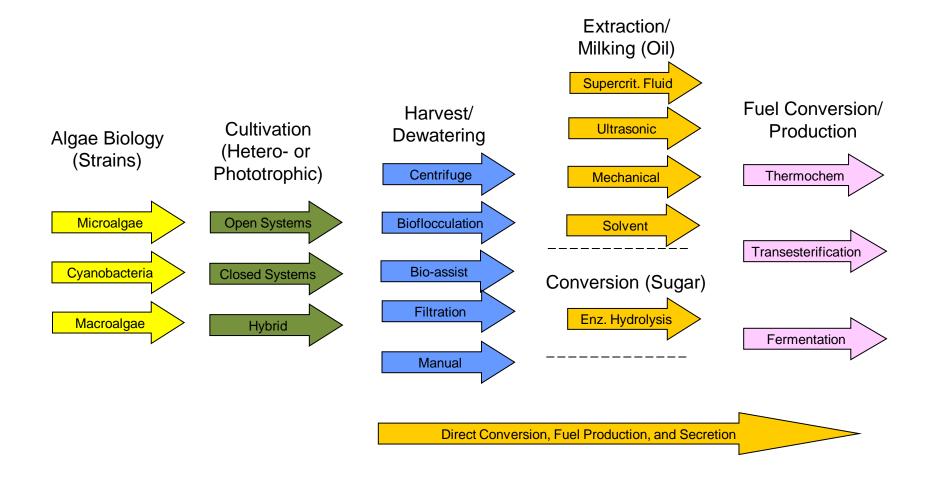
Cyclotella

Photo Source: R. Andersen/CCMP

Triacylglyceride (TAG) Fatty Acid (FA)

Photo Source: 3dChem Website

Commercial-Scale Cultivation



Outdoor Photobioreactor Arizona State University

Raceway Ponds Cyanotech, Hawaii

Diverse Process Options

New Integrated Biorefineries Using Algae

Pilot Scale Biorefinery

Performer	Location	DOE Award*	Feedstock Type	Conversion Technology	Fuel / Capacity**	Status
Algenol Biofuels, Inc.	Freeport, TX	\$25M	Co ₂ , Algae and Seawater	Closed Bioreactor	>100,000 gals <u>Ethanol/</u> year	Phase 1 award
Solazyme, Inc.	Riverside, PA	\$21.7	Sugar Fed Algae, Sucrose (from cane), Municipal Green Waste, Switchgrass	Biochemical Conversion Process	300K gals/yr of Purified Algal Oil Product: <u>Biodiesel</u> <u>and Renewable</u> <u>Diesel</u>	Phase 1 Award for engineering design and environmental permitting.

Demonstration Scale Biorefinery

Performer	Location	DOE Award*	Feedstock Type	Conversion Technology	Fuel / Capacity**	Status
Sapphire Energy, Inc.	Columbus, NM	\$50M	Co_2 and Algae	Dynamic Fuels, LLC refining process	IM gals/year of <u>Jet Fuel</u> <u>and Diesel</u>	Demonstration Phase 1 Award for engineering design and environmental permitting.

*Award amounts still under negotiation.

**Fuel capacities are based on performers estimates.

The NAABB Targets for a Viable Algal Biofuels Industry

Increased Algal Production

- >50% lipid/hydrocarbon dry weight
- >20 gdw/m²/day from pond cultivation
- 1-2 gdw/L from bioreactors

Efficient Harvesting and Extraction

- 5000 gal/day processing
- 15 gal/day lipid extraction
- \$0.51 /std barrel/day

Marketable Co-products

- Animal feed development and testing
- Glycerol = \$80/ton
- Lipid extracted algae = \$250-1000 / ton

Affordable Fuel

- <\$0.40 / algal processing
- <\$2.10 / gal lipid</p>

National Alliance for Advanced Biofuels and Bioproducts

Donald Danforth Plant Center, lead institution

National Laboratories

- Los Alamos National Laboratory
- Pacific Northwest National Laboratory

Universities

- Brooklyn College
- Colorado State University
- New Mexico State University
- Texas AgriLife Research (TAMU)
- Texas A&M University System
- University of Arizona
- University of California Los Angeles
- University of California San Diego
- University of California Davis
- University of Washington
- Washington University, St. Louis
- Washington State University

Industries

- AXI
- Allied Minds
- Catilin
- Diversified Energy
- Eldorado Biofuels
- Genifuel
- HR Biopetroleum
- Inventure
- Kai BioEnergy
- Palmer Labs
- Pratt & Whitney
- Solix Biofuels
- Targeted Growth
- Terrabon
- UOP

Subcontractors: Clarkson University, Center of Excellence for Hazardous Materials Management, Iowa State University, North Carolina State University, University of Pennsylvania, University of Texas

