

EA No. EC-1300-08-04

## Green Mountain Reservoir Substitution and Power Interference Agreements

**Final Environmental Assessment** 



AT THIS WAY IN THE AVERAGE

U.S. Department of the Interior Bureau of Reclamation Great Plains Region Eastern Colorado Area Office



Cooperating Agency: U.S. Department of Energy Western Area Power Administration Rocky-Mountain Customer Service Region Loveland, Colorado

December 2008

#### Table of Contents

| Acronyms vi |        |                                                                                             |       |  |
|-------------|--------|---------------------------------------------------------------------------------------------|-------|--|
| 1.0         | Purpo  | Purpose and Need1-1                                                                         |       |  |
|             | 1.1    | Introduction                                                                                | . 1-1 |  |
|             | 1.2    | Project Purpose and Need                                                                    |       |  |
|             | 1.3    | Study Area                                                                                  |       |  |
|             | 1.4    | Background                                                                                  |       |  |
|             |        | 1.4.1 Prior Appropriation System                                                            |       |  |
|             |        | 1.4.2 Reclamation and Green Mountain Reservoir                                              | . 1-2 |  |
|             |        | 1.4.3 Western Area Power Administration                                                     | .1-4  |  |
|             |        | 1.4.4 Springs Utilities' Collection Systems and Customers                                   | .1-4  |  |
|             |        | 1.4.5 Blue River Decree                                                                     | . 1-7 |  |
|             |        | 1.4.6 Substitution Year Operations                                                          | . 1-8 |  |
|             |        | 1.4.7 Substitution Memorandums of Agreement                                                 | 1-10  |  |
|             | 1.5    | Required Permits and Approvals                                                              | 1-11  |  |
|             | 1.6    | Agency and Public Input                                                                     | 1-11  |  |
|             | 1.7    | Environmental Resources                                                                     | 1-12  |  |
| 2.0         | Alteri | natives                                                                                     | . 2-1 |  |
|             | 2.1    | Introduction                                                                                | . 2-1 |  |
|             | 2.2    | Alternative Screening Process                                                               | 2-1   |  |
|             | 2.3    | No Action Alternative                                                                       | . 2-2 |  |
|             | 2.4    | Proposed Action                                                                             | . 2-3 |  |
| 3.0         | Affect | ted Environment and Environmental Consequences                                              | . 3-1 |  |
|             | 3.1    | Introduction and Methodology                                                                | . 3-1 |  |
|             |        | 3.1.1 Impact Thresholds                                                                     | . 3-1 |  |
|             |        | 3.1.2 Climate Change                                                                        | . 3-2 |  |
|             |        | 3.1.3 Reasonably Foreseeable Water-Based Actions Considered in Cumulati<br>Effects Analysis |       |  |
|             | 3.2    | Issues and Impact Topics Considered but Excluded from Further                               |       |  |
|             |        | Evaluation                                                                                  | . 3-7 |  |
|             | 3.3    | Hydrology                                                                                   |       |  |
|             |        | 3.3.1 Affected Environment                                                                  | 3-10  |  |
|             |        | 3.3.2 Environmental Consequences                                                            | 3-29  |  |
|             |        | 3.3.3 Cumulative Impacts                                                                    | 3-58  |  |
|             | 3.4    | Hydroelectric Generation                                                                    | 3-62  |  |
|             |        | 3.4.1 Affected Environment                                                                  | 3-62  |  |
|             |        | 3.4.2 Environmental Consequences                                                            | 3-65  |  |



|       |           | 3.4.3   | Cumulative Impacts                                   |     |
|-------|-----------|---------|------------------------------------------------------|-----|
|       | 3.5       | Water   | Quality                                              |     |
|       |           | 3.5.1   | Affected Environment                                 |     |
|       |           | 3.5.2   | Environmental Consequences                           |     |
|       |           | 3.5.3   | Cumulative Impacts                                   |     |
|       | 3.6       | Aquati  | c Resources and Special Status Species               |     |
|       |           | 3.6.1   | Affected Environment                                 |     |
|       |           | 3.6.2   | Environmental Consequences                           |     |
|       |           | 3.6.3   | Cumulative Impacts                                   |     |
|       | 3.7       | Wetlar  | nd and Riparian Resources and Special Status Species |     |
|       |           | 3.7.1   | Affected Environment                                 |     |
|       |           | 3.7.2   | Environmental Consequences                           |     |
|       |           | 3.7.3   | Cumulative Impacts                                   |     |
|       | 3.8       |         | tion                                                 |     |
|       |           | 3.8.1   | Affected Environment                                 |     |
|       |           | 3.8.2   | Environmental Consequences                           |     |
|       |           | 3.8.3   | Cumulative Impacts                                   |     |
|       | 3.9       |         | conomics                                             |     |
|       |           | 3.9.1   | Affected Environment                                 |     |
|       |           | 3.9.2   | Environmental Consequences                           |     |
|       |           | 3.9.3   | Cumulative Impacts                                   |     |
|       | 3.10      | Summ    | ary of Impacts                                       |     |
| 4.0   | Consu     | ltation | and Coordination                                     |     |
|       | 4.1       | Scopin  | g Process                                            |     |
|       | 4.2       |         | ents on the Draft EA                                 |     |
|       | 4.3       | Prepar  | ers                                                  |     |
| 5.0   | Refere    | ences   |                                                      | 5-1 |
| Gloss | Glossary1 |         |                                                      |     |

### List of Tables

| Table 1-1 | Summary of Historical Substitution Year Operations                                                                                       |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3-1 | Springs Utilities Substitution Summary, Modeled Differences between No Action and Proposed Action Alternatives (AF)                      |
| Table 3-2 | Blue River below the Continental-Hoosier System, Modeled Differences in Flow<br>between No Action and Proposed Action Alternatives (cfs) |



| Table 3-3  | Blue River below Dillon Reservoir at USGS Gage 09050700, Modeled<br>Differences in Flow between No Action and Proposed Action Alternatives (cfs)          |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 3-4  | Blue River below Green Mountain Reservoir, Modeled Differences in Flow between No Action and Proposed Action Alternatives (cfs)                           |
| Table 3-5  | Upper Blue River Reservoir, Modeled Differences in Content between No Action and Proposed Action Alternatives (AF)                                        |
| Table 3-6  | Dillon Reservoir, Modeled Differences in Content between No Action and Proposed Action Alternatives (AF)                                                  |
| Table 3-7  | Green Mountain Reservoir, Modeled Differences in Content between No Action and Proposed Action Alternatives (AF)                                          |
| Table 3-8  | Williams Fork River below Williams Fork Reservoir, Modeled Differences in Flow between No Action and Proposed Action Alternatives (cfs)                   |
| Table 3-9  | Williams Fork Reservoir, Modeled Differences in Content between No Action and Proposed Action Alternatives (AF)                                           |
| Table 3-10 | Muddy Creek below Wolford Mountain Reservoir, Modeled Differences in Flow<br>between No Action and Proposed Action Alternatives (cfs)                     |
| Table 3-11 | Wolford Mountain Reservoir, Modeled Differences in Content between No<br>Action and Proposed Action Alternatives (AF)                                     |
| Table 3-12 | Colorado River below the Confluence with the Williams Fork River, Modeled<br>Differences in Flow between No Action and Proposed Action Alternatives (cfs) |
| Table 3-13 | Colorado River near Kremmling at USGS Gage 0905800, Modeled Differences in Flow between No Action and Proposed Action Alternatives (cfs)                  |
| Table 3-14 | Colorado River below the Confluence with the Eagle River, Modeled Differences in Flow between No Action and Proposed Action Alternatives (cfs)            |
| Table 3-15 | Homestake Creek below Homestake Project at USGS Gage 09064000, Modeled Differences in Flow between No Action and Proposed Action Alternatives (cfs)       |
| Table 3-16 | Homestake Reservoir, Modeled Differences in Content between No Action and Proposed Action Alternatives (AF)                                               |
| Table 3-17 | Middle Fork South Platte River below Montgomery Reservoir, Modeled<br>Differences in Flow between No Action and Proposed Action Alternatives (cfs)        |
| Table 3-18 | Montgomery Reservoir, Modeled Differences in Content between No Action and Proposed Action Alternatives (AF)                                              |
| Table 3-19 | Elevenmile Canyon Reservoir, Modeled Differences in Content between No<br>Action and Proposed Action Alternatives (AF)                                    |
| Table 3-20 | TMDLs for the Upper Colorado River Basin                                                                                                                  |
| Table 3-21 | Fish Species Identified within Study Area Stream Reaches                                                                                                  |
| Table 3-22 | Summary of Maximum Average Monthly Flow Decreases and Associated Changes in Water Depth, Wetted Perimeter, and Velocity                                   |



- Table 3-23Summary of Maximum Average Monthly Flow Increases and Associated<br/>Changes in Water Depth, Wetted Perimeter, and Velocity
- Table 3-24
   Dominant Riparian and Wetland Classifications in the Study Area
- Table 3-25Summary of Impacts from the Proposed Action
- Table 4-1List of Preparers

#### **List of Figures**

| Continental-Hoosier System Vicinity Map                                                                         |
|-----------------------------------------------------------------------------------------------------------------|
| Continental-Hoosier System and Other Relevant Upper Colorado River Facilities                                   |
| Study Area                                                                                                      |
| Blue River near Dillon Gage 0904660<br>Daily Mean Historical Streamflow (1958-2005)                             |
| Blue River below Dillon Gage 09050700<br>Daily Mean Historical Streamflow (1963-2005)                           |
| Blue River below Green Mountain Reservoir Gage 09057500<br>Daily Mean Historical Streamflow (1951-2005)         |
| Upper Blue Reservoir<br>Daily Mean Historical Storage Summary (1967-2005)                                       |
| Dillon Reservoir<br>Daily Mean Historical Storage Summary (1966-2005)                                           |
| Green Mountain Reservoir<br>Daily Mean Historical Storage Summary (1950-2005)                                   |
| Williams Fork River below Williams Fork Reservoir Gage 09038500<br>Daily Mean Historical Streamflow (1951-2005) |
| Williams Fork Reservoir<br>Daily Mean Historical Storage Summary (1960-2005)                                    |
| Muddy Creek below Wolford Mountain Reservoir Gage 09041500<br>Daily Mean Historical Streamflow (1966-2005)      |
| Wolford Mountain Reservoir<br>Daily Mean Historical Storage Summary (1966-2005)                                 |
| Colorado River near Kremmling Gage 09058000<br>Daily Mean Historical Streamflow (1962-2005)                     |
| Homestake Creek at Gold Park Gage 09064000<br>Daily Mean Historical Streamflow (1973-2005)                      |
| Homestake Reservoir<br>Daily Mean Historical Storage Summary (1970-2005)                                        |
|                                                                                                                 |



| Figure 3-15 | Montgomery Reservoir<br>Daily Mean Historical Storage Summary (1963-2005)        |
|-------------|----------------------------------------------------------------------------------|
| Figure 3-16 | Elevenmile Canyon Reservoir<br>Daily Mean Historical Storage Summary (1950-2005) |

Figure 3-17 Upper Colorado River Basin Water Quality

#### Appendices

- Appendix A Model Selection and Parameters
- Appendix B Model Output
- Appendix C Water Quality
- Appendix D Response to Comments on Draft EA



### Acronyms

| <b>,</b>            |                                                    |
|---------------------|----------------------------------------------------|
| ACHP                | Advisory Council on Historic Preservation          |
| AF                  | acre-feet                                          |
| Authority           | Upper Eagle Valley Water Authority                 |
| BLM                 | Bureau of Land Management                          |
| Breckenridge        | Town of Breckenridge                               |
| C-BT                | Colorado-Big Thompson Project                      |
| CDOW                | Colorado Division of Wildlife                      |
| CDPHE               | Colorado Department of Health and the Environment  |
| CDSS                | Colorado Decision Support System Model             |
| CEQ                 | Council on Environmental Quality                   |
| CFR                 | Code of Federal Regulations                        |
| cfs                 | cubic feet per second                              |
| Continental-Hoosier |                                                    |
| System              | Continental-Hoosier Transmountain Diversion System |
| CWCB                | Colorado Water Conservation Board                  |
| Denver Water        | Denver Board of Water Commissioners                |
| D.O.                | Dissolved oxygen                                   |
| EA                  | Environmental Assessment                           |
| EPA                 | U.S. Environmental Protection Agency               |
| HUP                 | Historic Users Pool                                |
| Kw                  | Kilowatt                                           |
| MOA                 | Memorandum of Agreement                            |
| MPWCD               | Middle Park Water Conservancy District             |
| MW                  | megawatt                                           |
| NCWCD               | Northern Colorado Water Conservancy District       |
| NDIS                | Natural Diversity Information Source               |
| NEPA                | National Environmental Policy Act                  |
| NHPA                | National Historic Preservation Act                 |
| NRCS                | Natural Resources Conservation Service             |
| OHV                 | off-highway vehicle                                |
| ORV                 | Outstandingly Remarkable Value                     |
|                     |                                                    |



| PACSM             | Platte and Colorado Simulation Model       |
|-------------------|--------------------------------------------|
| ppt               | parts per thousand                         |
| Reclamation       | Bureau of Reclamation                      |
| River District    | Colorado River Water Conservation District |
| RMP               | Resource Management Plan                   |
| SHPO              | State Historic Preservation Officer        |
| Springs Utilities | Colorado Springs Utilities                 |
| Subdistrict       | Municipal Subdistrict of the NCWCD         |
| SWSI              | Statewide Water Supply Initiative          |
| TMDL              | Total Maximum Daily Load                   |
| TVS               | Total Value Standards                      |
| UAA               | Use Attainability Analysis                 |
| USACE             | U.S. Army Corps of Engineers               |
| USFS              | U.S. Forest Service                        |
| USFWS             | U.S. Fish and Wildlife Service             |
| USGS              | U.S. Geological Survey                     |
| Vail              | Vail Summit Resorts                        |
| WAPA              | Western Area Power Administration          |
| WGFP              | Windy Gap Firming Project                  |
| WQCC              | Water Quality Control Commission           |
| WQCD              | Water Quality Control Division             |
| WRCC              | Western Regional Climate Center            |
|                   |                                            |



## **1.0 Purpose and Need**

## 1.1 Introduction

In response to a request from Colorado Springs Utilities (Springs Utilities), the Bureau of Reclamation (Reclamation), an agency of the Department of the Interior, is considering entering into a Green Mountain Reservoir Substitution Agreement with Springs Utilities and a Power Interference Agreement with Springs Utilities and Western Area Power Administration (WAPA). The execution of the proposed agreements would allow Springs Utilities to provide a reliable source of municipal water to the citizen owners and customers of Springs Utilities.

This Environmental Assessment (EA) was prepared by Reclamation, the lead federal agency, in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, the Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] 1500-1508), and Reclamation's Draft NEPA Handbook (U.S. Department of the Interior 2000). This EA is not a decision document, but rather it is a disclosure of the potential environmental consequences of the No Action and Proposed Action alternatives. Implementation of the Green Mountain **Reservoir Substitution and Power** Interference Agreements requires approval by Reclamation. This EA provides the basis for Reclamation's review and evaluation of potential effects of the agreements, as well as reviewing the range of reasonable alternatives.

WAPA, an agency of the U.S. Department of Energy, with statutory authority over the proposed project, was invited to participate in the NEPA process as a cooperating



agency (40 CFR 1501.6 and 1508.5). WAPA has accepted formal cooperating agency status and retains review and comment responsibility on the project.

# 1.2 Project Purpose and Need

Springs Utilities is obligated to provide substitution water for diversions from the Blue River in years when Green Mountain Reservoir may not fill. Springs Utilities currently does this on an annual basis subject to the terms of the Blue River Decree, which specifically allows for releases to be made from water stored on the Blue River and the Williams Fork River to meet the substitution obligation. The purpose of the Substitution Agreement is to allow Springs Utilities to comply with the Blue River Decree by approving the 2003 Memorandums of Agreement (MOAs) as Springs Utilities' substitution operation plan. This would specifically approve the additional water sources of Wolford Mountain Reservoir and Homestake Reservoir, which are beyond those sources authorized in the Blue River Decree. The need for the additional sources of substitution water is to provide additional operational flexibility in meeting substitution obligations to complete the fill of Green Mountain Reservoir during dry years. Reclamation must operate and maintain Green Mountain Reservoir to fulfill its purpose of assuring replacement water and power generation to the West Slope of Colorado.

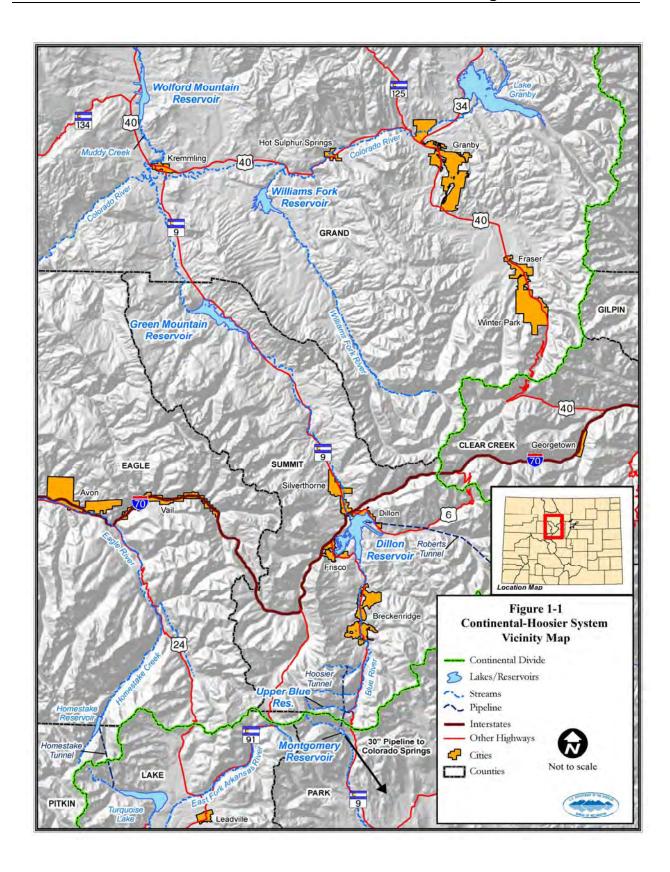
In addition to the Substitution Agreement, during both substitution and non-substitution years, Springs Utilities repays WAPA for interfering with power generation from the Green Mountain Reservoir power plant. In the past, this has been accomplished through informal, annual, as-needed agreements with WAPA. The purpose of the Interference Agreement is to provide a long-term, formalized agreement for the arrangement and conditions of repayment. The need for the agreement is to ensure that Springs Utilities repays WAPA for the interference of power generation from the Green Mountain Reservoir hydroelectric plant.

## 1.3 Study Area

Figure 1-1 presents a vicinity map of the Study Area for the EA. The Study Area primarily encompasses the Continental-Hoosier System as shown in Figure 1-2. In addition, the Study Area is defined by potentially affected reaches of streams and reservoirs that may experience fluctuating flows or water levels. A more detailed Study Area used to describe existing conditions and evaluate impacts is described in Chapter 3 and presented in Figure 3-1.

## 1.4 Background

This section provides a description of Springs Utilities' existing operations as well as the relationship between these operations, Reclamation's and WAPA's operations at Green Mountain Reservoir, and the Blue River Decree. A description of the prior appropriation system is included in this section to facilitate an understanding of Springs Utilities' water rights.


#### 1.4.1 Prior Appropriation System

A legal framework called the **prior appropriation system** regulates the use of surface water in Colorado and operates on a first in time/first in right basis. "Prior" means water users with earlier water rights (senior water rights) can fill their needs before others (junior water rights) in times of short supply. "Appropriation" occurs when a public agency, private person, or business places water to a beneficial legal use per a plan to divert, store, or otherwise capture and control the water. Only previously unappropriated water can be appropriated. The prior appropriation system provides a legal procedure by which water users can obtain a court decree for their water rights. This process of court approval is called adjudication, which sets the priority date of the water right, its source of supply, amount, point of diversion, type and place of use, and terms and conditions that govern the operation of the water right. Adjudication also confirms that the water right will not cause injury to existing water right holders. The prior appropriation system lays out an orderly process for state officials to distribute water according to decreed water priority rights, shutting off junior rights as needed to satisfy senior rights (Colorado Foundation for Water Education 2004).

#### 1.4.2 Reclamation and Green Mountain Reservoir

Reclamation owns, operates and maintains the Colorado-Big Thompson Project (C-BT) which stores, regulates, and diverts water from the Colorado River on the western slope of the Continental Divide to the eastern slope of the Rocky Mountains. It provides supplemental water for irrigation of land, municipal and industrial use, hydroelectric power, and water-oriented recreation opportunities. To preserve existing and future water uses and interests on the West Slope, Green Mountain Reservoir was constructed on the Blue River. Spring runoff is stored in this reservoir and later released for C-BT-authorized purposes on the West Slope. Reclamation has rights to fill Green Mountain Reservoir with a 1935 water right, which are senior to Springs Utilities' 1948 water rights.







A hydroelectric power plant is located at the base of the Green Mountain Reservoir Dam and uses the regulated streamflow of the Blue River and the water released from storage in Green Mountain Reservoir to generate electricity. Historically, power interference has been administered on a year-to-year basis.

Springs Utilities' operations on the Blue River impacts Reclamation's ability to produce hydropower; therefore Springs Utilities is required to replace the power that would have been generated by the water that Springs Utilities diverts under its 1948 water rights. During the months the Blue River System is operated, Springs Utilities provides Reclamation with daily operations data. Reclamation then determines the amount of power interference calculated at a rate of 210 kilowatt-hours per acre-feet (AF) of depletion. Since Springs Utilities owns and operates power generation facilities, power interference is typically repaid with power. Springs Utilities coordinates with WAPA to deliver the required amount of replacement power at a time and location determined by WAPA. Springs Utilities may also pay WAPA in cash.

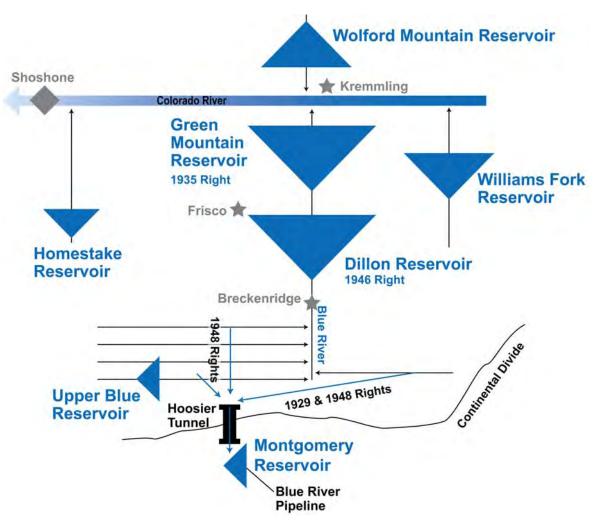
#### 1.4.3 Western Area Power Administration

WAPA was created under the Department of Energy Organization Act of 1977. At this time, the power marketing functions of Reclamation were transferred to WAPA including the construction, operation, and maintenance of transmission lines, and attendant facilities. The operation and maintenance of Reclamation power plants was not transferred to WAPA. WAPA markets power under the same authority that was exercised by Reclamation before the power marketing function was transferred to WAPA. WAPA takes delivery of Reclamation's generation at the power plant switch yards and then transmits the energy to preference power customers.

#### 1.4.4 Springs Utilities' Collection Systems and Customers

The service area for Springs Utilities' customers includes the City of Colorado Springs and portions of the suburban residential areas surrounding the City. The military installations of Fort Carson Army Post, Peterson Air Force Base, and the United States Air Force Academy also receive water and other utility services from Springs Utilities. The water system serves water to an estimated 423,317 people in the Pikes Peak region. This represents the City's population, as well as persons living in the Ute Pass communities west of the City, and military bases and other areas outside the City limits. In 2007, the overall water system delivered 78,389 AF (25,543 million gallons) of potable water to Springs Utilities' customers.

Springs Utilities' water collection system is defined as all facilities that divert, collect, store and transport water prior to treatment. Springs Utilities' extensive water collection and transmission system is made up of 25 reservoirs and/or storage accounts, more than 200 miles of major pipelines and four major pump stations. The entire system stretches through a total of nine counties: Chaffee, Lake, Eagle, El Paso, Teller, Park, Summit, Pueblo and Crowley.


Springs Utilities' collection system is comprised of local and non-local water systems. Because Colorado Springs is not located near a major source of water supply such as a river or lake, local water supplies are limited. As a result, Springs Utilities must also utilize non-local systems to meet



its water demands. The non-local water supply systems utilized by Springs Utilities pertinent to this EA include the following: water diverted from the headwaters of the Blue River through its Continental-Hoosier Transmountain Diversion System (Continental-Hoosier System) facilities; and the Homestake Project (Figure 1-2).

#### Continental-Hoosier Transmountain Diversion System

The Continental-Hoosier System, commonly referred to as the "Blue River System," was completed in the early 1950s and is Springs Utilities' first transmountain diversion system. The Continental-Hoosier System is a major contributor to Colorado Springs'







water supply, bringing an average of about 8,500 AF per year to Colorado Springs. This system diverts water from the headwaters of the Blue River and its tributaries above the Town of Breckenridge, Colorado. The Blue River is a tributary of the Colorado River.

The Continental-Hoosier System is located upstream of Denver Water's Dillon Reservoir and Reclamation's Green Mountain Reservoir (Figure 1-2). The Continental-Hoosier System includes storage in the Upper Blue Reservoir, and diversion points on Crystal Creek, Spruce Creek, McCullough Creek, East and West Hoosier Creeks, Silver Creek, and the Blue River. Water diverted from these points, along with water released from the Upper Blue Reservoir, is transported through a series of canals, tunnels and siphons to the Hoosier Tunnel. The Hoosier Tunnel transports the water beneath the Continental Divide to Montgomery Reservoir, located on the Middle Fork of the South Platte River above the town of Alma, Colorado. From Montgomery Reservoir, water is delivered by gravity through a 30-inch, 70-mile long Blue River pipeline to the City of Colorado Springs (Springs Utilities 2006; Springs Utilities 2007).

Springs Utilities owns two water rights for the West Slope portion of this system. The 1929 water rights are for a portion of the flow in East and West Hoosier Creeks. The remaining diversions are made under Springs Utilities 1948 water rights. Diversions under the 1948 rights are also governed by the Blue River Decree, which relates to Reclamation's 1935 Green Mountain Reservoir rights (Section 1.4.5 Blue River Decree). As Springs Utilities' 1929 rights are senior to Reclamation's 1935 Green Mountain Reservoir rights, diversions under these rights are not subject to substitution replacement operations under the Blue River Decree.

#### Water Reuse and Conservation

Springs Utilities also has a longstanding and extensive nonpotable water system that uses reclaimed wastewater, untreated raw surface water, and untreated groundwater. This system meets nonpotable irrigation demands including; parks, golf courses, cemeteries, schools, businesses, and military facilities, as well as industrial uses for power generation and wastewater treatment plant process water. The nonpotable water delivered through this system comprises about 13% of the total water provided by Springs Utilities.

Conservation has been an integral part of water resource planning and management in Colorado Springs for more than 60 years. In the 1996 Water Resource Plan, conservation was identified as one of four components for meeting future demands. A Water Conservation Master Plan was completed in 1999, followed by the Drought Response Plan in 2001. Most recently, Springs Utilities completed its Water Conservation Plan for 2008-2012, which was approved by the Colorado Water Conservation Board (CWCB) in January 2008. Currently, Springs Utilities' water conservation portfolio includes customer education, demonstration projects, community partnerships, rates and metering, regulatory requirements, financial incentives, and lowincome programs. Conservation programs contribute significantly to water resource planning and management, while education, demonstrations and partnerships serve as a strong foundation for an active and accountable water conservation program. Since 2001, Springs Utilities' customers have reduced their water use by 28% per account, leading to a total annual water



usage decrease of about five billion gallons (about 15,000 AF).

### 1.4.5 Blue River Decree

Reclamation's 1935 Green Mountain Reservoir water rights were adjudicated in Federal District Court in Consolidated Case Nos. 2782, 5016, and 5017. The decrees and stipulations in these cases are collectively known as the Blue River Decree. This decree and its related stipulations allow Springs Utilities to exercise its 1948 water rights (junior) in relation to Reclamation's 1935 Green Mountain Reservoir rights (senior). The Blue River Decree also provides for replacement of water and power to mitigate impacts to Reclamation's operations resulting from Springs Utilities' exercising of its 1948 water rights. The Blue River Decree requires the approval of the Secretary of the Interior for Springs Utilities to exercise its 1948 water rights, to assure that such exercise would not adversely affect the ability of Green Mountain Reservoir to fulfill its functions.

One major provision of the Blue River Decree is that Springs Utilities must replace the power that would have been generated by Reclamation in Green Mountain Reservoir's hydroelectric turbines had Springs Utilities not diverted water. In other words, Springs Utilities must pay for power interference. Springs Utilities has historically provided the replacement power year-to-year by mutual agreement with the WAPA at a time and location requested by WAPA. Springs Utilities has carried out this operation under the authority of the Blue River Decree.

Another major provision of the Blue River Decree is that Springs Utilities, and other junior water rights owners specifically identified in the Blue River Decree, must implement water substitution plans to help assure the filling of Green Mountain



Reservoir. Each year, Reclamation determines, based on snow pack and other forecasting, whether it is reasonably probable that Green Mountain Reservoir will fill as provided for in the Blue River Decree. If a fill is reasonably probable, then it is projected to be a non-substitution year, and Reclamation allows Springs Utilities to divert under its 1948 rights. Typically, during non-substitution years, Reclamation mails a letter between April 1<sup>st</sup> and May 15<sup>th</sup> notifying Springs Utilities that the most Probable Forecast is that Green Mountain Reservoir will fill, and therefore Springs Utilities may divert its 1948 water rights. Because the hydrology of the basin has generally been sufficient to assure the filling of Green Mountain Reservoir, this procedure, historically, has been the typical operation in most years.

If Reclamation determines that it is reasonably probable that Green Mountain Reservoir will not fill, then it is projected to be a substitution year, and Springs Utilities may not divert Blue River water without a plan for substitution approved by the Secretary of the Interior. The Decree specifically identifies and authorizes water stored on the Blue River and the Williams Fork River as acceptable substitution supplies.

Typical substitution operation under the terms of the Blue River Decree includes the following:

- A volume of replacement water equal to or greater than the anticipated fill deficit is diverted and held in storage during the fill season, or carried over from a previous storage season.
- At the end of the fill season, the actual fill deficit is determined and the amount of replacement water required from each diverting entity is calculated.

• The entity releases its replacement water according to a schedule of releases set by Reclamation.

#### 1.4.6 Substitution Year Operations

#### Historical Substitution Year Operations

Typically, Springs Utilities has operated during substitution years by proposing an annual plan for substitution to Reclamation after receiving notice that Green Mountain Reservoir is not expected to fill. Springs Utilities has used replacement storage on the Blue River and Williams Fork River as authorized Blue River Decree replacement supply sources during several of the substitution years. Springs Utilities has also used, with Reclamation's approval, replacement storage from Wolford Mountain Reservoir on Muddy Creek during more recent substitution years. However, this source is not specifically identified in the Blue River Decree, but was utilized as part of interim agreements pending approval of

the 2003 MOAs by Reclamation (see description in Section 1.4.7 Substitution Memorandum of Agreement). Thus, this source is not considered part of the existing operating conditions. Because each substitution year that has occurred has resulted in a different annual plan for substitution, each year's substitution operation and implementation has been different. The operations in the substitution vears that have occurred during the period of 1964 through 2005 are described below and are based on Springs Utilities' Annual Blue River Reports and related correspondence. Additionally, the amount and supply source of the substitution water is summarized in 

 Table 1-1.
 These substitution years serve as

 examples of the different sets of existing conditions that result from using the year-byyear substitution plans and substitution sources identified in the Blue River Decree.

| 1964 Substitution Year                                                     |           |  |  |  |
|----------------------------------------------------------------------------|-----------|--|--|--|
| Total Green Mountain Reservoir Shortage23,531 AF                           |           |  |  |  |
| Springs Utilities' Replacement from Dillon Reservoir                       | 1,583 AF  |  |  |  |
| Springs Utilities' Net 1948 Diversions                                     | 8,997 AF  |  |  |  |
| Total Green Mountain Reservoir Shortage                                    | Unknown   |  |  |  |
| Springs Utilities' Replacement from Upper Blue Reservoir                   | 589 AF    |  |  |  |
| Springs Utilities' Net 1948 Diversions                                     | 2,182 AF  |  |  |  |
| 1981 Substitution Year                                                     |           |  |  |  |
| Total Green Mountain Reservoir Shortage (est.)                             | 36,000 AF |  |  |  |
| Springs Utilities' Replacement (full replacement provided by Denver Water) | 0 AF      |  |  |  |
| Springs Utilities' Net 1948 Diversions                                     | 5,425 AF  |  |  |  |
| 1994 Substitution Year                                                     |           |  |  |  |
| Total Green Mountain Reservoir Shortage4,740 Al                            |           |  |  |  |
| Springs Utilities' Replacement from Williams Fork Reservoir                |           |  |  |  |
| Springs Utilities' Net 1948 Diversions8,390 A                              |           |  |  |  |

#### Table 1-1: Summary of Historical Substitution Year Operations



#### 1964 Substitution Year

Denver Water's Dillon Reservoir filled for the first time in 1964. Springs Utilities and Denver Water entered into a one year water supply agreement, which was approved by Reclamation. Under this agreement, Springs Utilities diverted water physically available under the 1948 rights. Denver Water reserved water in and released water from Dillon Reservoir to replace the shortage in Green Mountain Reservoir. Replacement was based on Springs Utilities' pro-rata share of depletions.

#### 1977 Substitution Year

This year was declared a substitution year by Reclamation. Based on direction in the annual letter from Reclamation, Springs Utilities started storing water in Upper Blue Reservoir only, but not diverting through Hoosier Tunnel. Then, in early June, Reclamation notified Springs Utilities that the reserved amounts in Dillon Reservoir and Upper Blue Reservoir were sufficient to fill Green Mountain Reservoir. Thus, Springs Utilities began diverting water until it was no longer in-priority and was called out on June 20, 1977. On July 6, 1977 Reclamation notified Springs Utilities by telephone that Green Mountain Reservoir would fill without the water stored in the Upper Blue Reservoir and Springs Utilities began transferring the Upper Blue Reservoir water through Hoosier Tunnel. On July 13, 1977 Reclamation reversed itself and conveyed by telephone that it needed about 600 AF from Springs Utilities to complete the fill of Green Mountain Reservoir. Springs Utilities held 614 AF in the Upper Blue Reservoir to cover the deficit, and on September 7, 1977, Reclamation notified Springs Utilities that it owed 589 AF to Green Mountain Reservoir, which was released from Upper Blue Reservoir.

#### 1981 Substitution Year

In contrast to the 1977 substitution year, the Probable Fill letter from Reclamation approved diversions under Springs Utilities' 1948 water rights without any reference to holding the water in storage. Therefore, Springs Utilities diverted under the 1948 rights through the entire runoff period until Shoshone called the 1948 right out of priority. There were no communications from Reclamation or from the Division 5 Office of the State Engineer to curtail diversions (other than the Colorado River Call). Simultaneously, Denver Water had proposed and operated a 55,000 AF replacement and exchange from Williams Fork Reservoir to Dillon Reservoir. Reclamation may have concluded that since Denver Water had reserved 55,000 AF. which was more than sufficient to fill Green Mountain Reservoir, substitution water from Springs Utilities was not needed.

#### 1994 Substitution Year

Initially there was no request from Reclamation for Springs Utilities to store water or to curtail their 1948 rights. Later in the season, Reclamation informed all parties that Green Mountain Reservoir would not fill. Denver Water paid back the total Green Mountain Reservoir shortage of 4,740 AF with releases from Williams Fork Reservoir and Springs Utilities agreed to repay Denver Water a pro-rata share of the shortage (474 AF) with releases to the South Platte River from Springs Utilities' Homestake Pipeline.

#### Recent Substitution Years

Substitution was required for the filling of Green Mountain Reservoir during 2001, 2002, and 2004. In addition, the years 2003 and 2005 were initially declared substitution years, but hydrologic conditions were such that Green Mountain Reservoir filled without any substitution operations or releases necessary. Although 2001 was



initially declared a non-substitution year, Reclamation reversed this position mid-year. Springs Utilities did not gain approval from Reclamation for its proposed substitution operation in 2001, and, accordingly, diversions under Springs Utilities' 1948 water rights were curtailed. Substitution operations during the years 2002 through 2005 were proposed or carried out under interim agreements that partially implemented the Proposed Action. Operations during some of these years included releases from Wolford Mountain Reservoir to cover Springs Utilities' substitution obligations.

#### **Summary of Substitutions**

Since the entry of the Blue River Decree, during non-substitution years, Springs Utilities has diverted water under its 1948 rights after notice from Reclamation that Green Mountain Reservoir will most probably fill. During substitution years, Springs Utilities has typically diverted water under its 1948 rights after submitting an annual substitution plan under the authority of the Blue River Decree and receiving approval from Reclamation on behalf of the Secretary of the Interior. Water owed to Green Mountain Reservoir during substitution years has been repaid at various times from Dillon Reservoir, Williams Fork Reservoir, and Upper Blue Reservoir, as expressly authorized in the Blue River Decree. Use of Dillon and Williams Fork Reservoirs as replacement sources for Springs Utilities has been subject to agreement between Springs Utilities and Denver Water. For water diverted during both substitution and non-substitution years, Springs Utilities has repaid power interference through informal, year-to-year agreements with WAPA.

#### 1.4.7 Substitution Memorandums of Agreement

In May 2003, Springs Utilities entered into a MOA, which formalized a long-term substitution plan and sets forth the terms and conditions among the parties to the MOA regarding substitution operations by Springs Utilities. A copy of the 2003 MOA is available on Reclamations' project website at: http://www.usbr.gov/g//nepa/ quarterly.cfm#ecao. The parties to this MOA are Springs Utilities, Colorado River Water Conservation District (River District), the Denver Board of Water Commissioners (Denver Water), Northern Colorado Water Conservancy District (NCWCD), Summit County, Vail Summit Resorts (Vail), and the Town of Breckenridge (Breckenridge). Springs Utilities also signed a Supplemental MOA in October 2003 to address protection of the Upper Blue River entities' exchanges under certain conditions. The parties to this agreement include Summit County, Vail, and Breckenridge. Reclamation is not a party to the MOAs. The NEPA process, through this EA, must be completed prior to Reclamation's decision to approve the substitution plan set forth in the MOAs.

Springs Utilities has proposed that Reclamation approve and adopt the 2003 MOAs to serve as a flexible and reliable substitution plan that will meet the requirements of the Blue River Decree. In addition to operations that are specifically authorized in the Blue River Decree, the 2003 MOAs provide for the addition of two new sources of substitution water: Wolford Mountain Reservoir and Homestake Reservoir. The 2003 MOAs contain additional provisions not directly related to the substitution operation required for the filling of Green Mountain Reservoir, and documents some substitution operations that



are already specifically authorized by the Blue River Decree. Chapter 2 of this EA provides a description of the Proposed Action.

The proposed project also formalizes a longterm power interference agreement with Reclamation and WAPA. Under the agreement, Springs Utilities would compensate for lost hydropower with power generated from their own facilities, at a time and location determined by WAPA.

In separate but related actions, Colorado Springs has filed applications in Colorado Water Court and in Federal Court to formally decree and adjudicate its long-term Substitution Plan (discussed in Section 1.5 Required Permits and Approvals).

# 1.5 Required Permits and Approvals

Federal, state, and local permits and approvals may be required to implement the proposed project. However, the project does not involve ground disturbing activities and therefore, would not require an extensive list of permits and/or authority. This EA provides information for the other regulatory agencies having jurisdictional responsibility for lands and resources affected by the project. Permits and/or approvals required to implement and/or are related to the project include:

**Bureau of Reclamation** – Formal approval of a long-term Substitution Agreement per the conditions of the 2003 MOAs between Reclamation and Springs Utilities. Formal approval of a long-term Power Interference Agreement between WAPA, Reclamation, and Springs Utilities.

Western Area Power Administration –

Formal approval of a long-term Power

Interference Agreement between WAPA, Reclamation, and Springs Utilities.

**Colorado Water Court System** – Final determination in the Springs Utilities' substitution filing (Case No. 03CW320) in Colorado Water Court Division 5. This filing does not impact the NEPA process, but runs concurrent to the project.

**Federal Court System** – Final determination in the Springs Utilities' filing in Federal District Court parallel to the Colorado Water Court for the same purpose. Again, this filing does not impact the NEPA process, but runs concurrent to the project.

**County Permits** – Additional county permits may be required. Summit County may require a 1041 permit per the County's Land Use and Development Code regulations (Chapter 10: Areas and Activities of State Interest).

# 1.6 Agency and Public Input

In accordance with the NEPA (40 CFR 1501.7), Reclamation initiated the scoping process to provide for an early and open process to gather information from the public and interested agencies on the issues and alternatives to be evaluated in this EA. Reclamation conducted stakeholder interviews with federal and state agencies to solicit concerns and comments on the project, and determine the level of anticipated participation from each agency, and is described in the scoping summary report prepared for this project (URS 2008).

During the scoping period, Reclamation held a public scoping meeting on March 6, 2008 in Silverthorne, Colorado. The scoping period extended from March 6 to April 4, 2008. The NEPA scoping process, original scoping letters, and specific comments



gathered by Reclamation during the process are detailed in the scoping summary report and in Chapter 4 Coordination and Consultation (URS 2008).

## 1.7 Environmental Resources

Chapter 3 Affected Environment and Environmental Consequences describes a summary of the resources Reclamation identified to be included for further evaluation in the EA, and those considered but excluded from further evaluation along with a brief explanation. In summary, resource issues and impact topics evaluated in Chapter 3 include:

- Hydroelectric generation
- Hydrology
- Water quality
- Aquatic resources
- Wetlands/riparian resources
- Special status species associated with aquatic resources and wetland and riparian areas
- Recreation
- Socioeconomics

Resource issues and impacts topics considered, but excluded from further evaluation in the EA include:

- Geology
- Soils
- Farmlands
- Air quality
- Noise
- Transportation
- Land use
- Visual resources
- Hazardous materials
- Terrestrial upland communities and wildlife
- Terrestrial special status species
- Environmental justice
- Cultural and Indian Trust resources



## 2.0 Alternatives

## 2.1 Introduction

Compliance with the NEPA requires that the environmental effects of a proposed federal action (i.e., Proposed Action) be studied and compared with the environmental effects of an alternative that does not require the proposed federal action (No Action alternative). For this specific project, the No Action alternative is the same as existing conditions, which is operations per the Blue River Decree using a combination of water from the Blue River and Williams Fork River, as described in Chapter 1, Section 1.4 Background. This EA compares the Proposed Action and the No Action alternatives, as described in Sections 2.2 and 2.3, respectively. The CEQ characterizes the alternatives screening process in an EA as a process to identify reasonable alternatives to be evaluated and appropriate mitigation measures to be incorporated into the alternatives (Section 40 CFR 1508.9[a]). The preliminary alternative screening analysis conducted for this EA is described in Section 2.2.

## 2.2 Alternative Screening Process

In accordance with NEPA, a reasonable range of preliminary alternatives was evaluated during the screening process. Reasonable alternatives include those that are practical or feasible from the technical and economic standpoint using common sense, rather than simply desirable from the standpoint of the applicant ("Forty Most Asked Questions Concerning NEPA," Question 2a). Under NEPA, the comparison of a full spectrum of alternatives should provide "a clear basis for choice among options for the decision maker and the public" (40 CFR 1502.14).



Preliminary alternatives were configured using a variety of potential water supply sources and infrastructure components (i.e., new storage sites, pipelines, pump station). Potential water sources identified must be available (physically and legally) from a sustainable source in amounts sufficient to be practicably developed. Unlike the Proposed Action, all of the preliminary alternatives that were considered required the construction of new facilities. These alternatives were carefully screened based on numerous evaluation criteria related to purpose and need, existing technology, logistics, water rights, costs, environmental impacts, and complying with the requirements of the Blue River Decree. Examples of alternatives that were considered, but screened out are described below.

#### Additional Storage on the Blue River

Springs Utilities has conditional water rights on the Blue River that could be developed at their original decreed locations or transferred to new storage facilities. The development of additional storage on the Blue River would be used to divert and store water in wet years and hold it for substitution releases in substitution years. Two options for Blue River storage were identified and evaluated during the screening process. The first option included the development of approximately 3,166 AF of storage in one or more new reservoirs in the upper reaches of tributaries to the Blue River using Springs Utilities conditional storage rights. The second option for storage that was considered during screening involved the construction of approximately 5,000 AF of new gravel lake storage on the Blue River below Dillon Reservoir or on the Williams Fork River below Williams Fork Reservoir.

Although construction of additional storage on the Blue River is feasible, it would require regulatory approval from the Army Corps of Engineers (USACE) through the NEPA process, as well as 401 Certification through the Colorado Department of Health and Environment, Water Quality Control Division (CDPHE WQCD). Additionally, there would likely be lengthy water rights litigation required for the development of the additional storage. Both Blue River storage options include construction of new structural components and the cost and environmental impacts were deemed to be far greater than implementing the nonstructural Proposed Action.

#### Montgomery Reservoir Pump-Back

Another structural alternative that was considered during the screening process was a pump-back project from Springs Utilities' Montgomery Reservoir, located on the headwaters of the South Platte River. Under this scenario, the pump-back would operate during substitution years by diverting water through the Hoosier Tunnel and storing it in Montgomery Reservoir. When substitution releases are required, the pump station would pump the necessary amount of water from that stored in Montgomery Reservoir back through the Hoosier Tunnel to be discharged into the Blue River, where it would then flow down to Green Mountain Reservoir to complete its filling. This alternative would consist of a new pump station constructed at Montgomery Reservoir, and a new pipeline through the Hoosier Tunnel. This alternative would also require the extension of power to the Montgomery Reservoir site. Additionally, conditional storage rights may need to be obtained to operate this alternative.

The same type of federal action required by Reclamation for the Proposed Action would

be required for a pump-back since Montgomery Reservoir is not approved as a substitution source under the Blue River Decree. Water rights litigation in Colorado Water Court Division 5 would also be required for this alternative to allow this operation to be approved for use as a source of substitution water for Green Mountain Reservoir. This option would require the construction of new structural components and the cost and environmental impacts were deemed to be far greater than implementing the non-structural Proposed Action.

## 2.3 No Action Alternative

#### Water Substitution

If Reclamation does not approve the Proposed Action, Springs Utilities would operate during substitution years strictly per the Blue River Decree (refer to Chapter 1, Section 1.4.5 Blue River Decree) according to annual substitution plans approved by the Secretary of the Interior as needed. The Blue River Decree authorizes substitution operations using a combination of water from the Blue River and Williams Fork River. Denver Water would be willing to continue to provide replacement water in the future on behalf of Springs Utilities in substitution years for water Springs Utilities is obligated to provide to Green Mountain Reservoir, depending on Denver Water's own operational needs and water supply requirements (Denver Water 2008). Based on this information for the purposes of this analysis, it is assumed that Denver Water would provide replacement water. If Denver Water chose not to provide replacement water, Springs Utilities might have to identify other replacement sources for approval by the Secretary of Interior, and the comparative impacts of the No Action



and action alternatives likely would change. Springs Utilities would not use Wolford Mountain or Homestake Reservoirs as sources of replacement water under the No Action alternative. The terms and conditions agreed to in the May 2003 MOA are not part of the No Action alternative. Approval of the October 2003 MOA is also not part of the No Action alternative.

For the purposes of the analysis of hydrologic effects, Springs Utilities' substitution payback under the No Action alternative is modeled as follows. Water is released first from Upper Blue Reservoir to Dillon Reservoir in August. Releases to Dillon Reservoir decrease Springs Utilities' substitution obligation while increasing Denver Water's substitution obligation by a commensurate amount. If contents in Upper Blue Reservoir are not sufficient to payback Springs Utilities' entire substitution obligation, it is assumed that Denver Water would payback any remaining obligation with releases from William Fork Reservoir and/or Dillon Reservoir. To be conservative and reflect the maximum possible change in Middle Fork South Platte River streamflows and contents in Montgomery and Elevenmile Canyon reservoirs, it was assumed that Springs Utilities would provide Denver Water with water released from Montgomery Reservoir to the degree Springs Utilities' substitution obligation exceeds contents in Upper Blue Reservoir.

#### **Power Interference Substitution**

Under the No Action alternative, replacement of power at the Green Mountain Reservoir power plant would continue to be accomplished through informal, as-needed, annual agreements between WAPA, Reclamation, and Springs Utilities as authorized in the Blue River Decree (see discussion in Chapter 1, Section 1.4.2 Reclamation and Green Mountain Reservoir). Springs Utilities' operations on



the Blue River impacts Reclamation's ability to produce hydropower; therefore Springs Utilities is required to replace the power that would have been generated by the water that Springs Utilities diverts under their 1948 water rights. Springs Utilities reserves the right to pay WAPA monetarily or with power. Since Springs Utilities owns and operates power generation facilities, power interference may be repaid with power. Springs Utilities coordinates with WAPA to deliver the required amount of replacement power at a time and location determined by WAPA.

## 2.4 Proposed Action

#### Water Substitution

Under the Proposed Action, Reclamation would enter into up to a 40-year Substitution Agreement with Springs Utilities. This agreement would approve Springs Utilities' substitution plan according to the terms and conditions set forth in the 2003 MOAs. The elements of the May 2003 MOA that are specific to the Proposed Action are the use of Wolford Mountain Reservoir and Homestake Reservoir as sources of replacement water in a manner consistent with the terms and conditions of the 2003 MOAs. Reclamation may approve the use of these additional water sources on a longterm basis, but Springs Utilities must submit for approval of its substitution plan specific for that substitution year. Another component of the Proposed Action (May 2003 MOA) is that Springs Utilities provides up to 250 AF stored in the Upper Blue Reservoir to the Colorado River Water Conservation District (River District) each year in return for a like-amount of water stored in Wolford Mountain Reservoir. The 250 AF is intended for water users in the Blue River Basin including Summit County, Vail, Summit Resorts, and Breckenridge. A storage account in an amount up to 1,750 AF is maintained by the River District at

Wolford Mountain Reservoir for the benefit of Springs Utilities to store Upper Blue Reservoir water booked into Wolford Mountain Reservoir. This account is referred to throughout the rest of this document as Springs Utilities' account in Wolford Mountain Reservoir.

For the purposes of the analysis of hydrologic effects, Springs Utilities' substitution payback under the Proposed Action is modeled as follows. Springs Utilities would divert water in dry years when Reclamation determines that Green Mountain Reservoir would likely not fill and substitute this water using water stored on the Blue and Williams Fork rivers per the terms of the Blue River Decree and if needed, from Wolford Mountain Reservoir and Homestake Reservoir per the terms of the 2003 MOAs. The first 2,100 AF of replacement water would be provided from Springs Utilities to Denver Water from Springs Utilities' Upper Blue Reservoir and their South Platte River supplies such as Montgomery Reservoir, if necessary. The amount provided to Denver Water would be added to the Denver Water replacement obligation and released by Denver Water in accordance with the Denver Water substitution agreements and decree. The next increment of Springs Utilities' replacement obligation (up to 1,750 AF) would be comprised of releases from water accrued by exchange in the substitution account maintained for Springs Utilities at Wolford Mountain Reservoir. Any remaining replacement obligation would be made with releases from Homestake Reservoir. The MOA outlines the use Wolford Mountain Reservoir and Homestake Reservoir as alternate replacement sources to Green Mountain Reservoir operations. Therefore, releases from Springs Utilities' account in Wolford Mountain Reservoir and Homestake

Reservoir would be made in replacement of all uses of Green Mountain Reservoir in lieu of releasing water from Green Mountain Reservoir.

To reflect the exchange of 250 AF between Upper Blue Reservoir and Wolford Mountain Reservoir in the model, releases of 250 AF are made from Upper Blue Reservoir every November. For modeling purposes, this water is assumed to be diverted above Dillon Reservoir in the same month and fully consumed. In actuality, all or a portion of the 250 AF may be used for augmentation purposes, in which case it would be used to replace out-of-priority depletions to the Blue River or its tributaries, directly or by exchange. This use would be fully consumptive. Alternatively, some or all of the water may be diverted or stored, directly or by exchange and may or may not be fully consumed in the month of diversion. In return for this water, 250 AF is booked into an account in Wolford Mountain Reservoir up to a maximum of 1,750 AF and is available for substitution payback. Per the terms of the MOA, no evaporative losses are charged to the 250 AF account in Upper Blue Reservoir or Springs Utilities' account in Wolford Mountain Reservoir.

Springs Utilities' Continental-Hoosier System diversions deplete the Blue River, therefore, these diversions affect the ability to meet the CWCB instream flow requirements above Dillon Reservoir, which are junior to Springs Utilities' water rights and the Blue River Decree. However, in order to ensure this alternative protects the natural environment in a manner consistent with the instream flow requirements above Dillon Reservoir, during substitution years, Springs Utilities' would refrain from diverting to the extent necessary in order to maintain flows at the instream flow levels.



Compliance for this mitigation will be to maintain a flow of 5 cfs just upstream of Goose Pasture Tarn Reservoir. Flows at this location will be estimated based on the USGS gage 09046490 Blue River at Blue River, which is located just downstream of Goose Pasture Tarn Reservoir, plus diversions to storage at Goose Pasture Tarn. The location of compliance was chosen because Springs Utilities' Continental-Hoosier System is the primary diversion upstream of Goose Pasture Tarn Reservoir whereas downstream of this point, flows are influenced by reservoir operations at Goose Pasture Tarn and diversions and returns flows associated with water users other than Springs Utilities.

Based on model results, which are explained in Chapter 3, there would be 13 substitution years during the 56-year study period with total substitution obligations ranging from 139 AF to 4,318 AF. Based on the frequency of substitution years during the study period (one in every 4 to 5 years), there would be approximately 9 to 10 substitution years during the 40-year life of the contract with Reclamation.

#### **Power Interference Substitution**

Under the Proposed Action, a long-term Power Interference Agreement would be formalized with Reclamation and WAPA. Under the agreement, Springs Utilities would compensate for lost hydropower with power generated from their own facilities, at a time and location determined by WAPA. Springs Utilities reserves the right to pay WAPA monetarily or with power.



## 3.0 Affected Environment and Environmental Consequences

# 3.1 Introduction and Methodology

This chapter describes the affected environment and discloses the potential environmental consequences associated with implementing the No Action and Proposed Action alternatives as described in Chapter 2. Resources evaluated in this chapter include: hydrology, hydroelectric generation, water quality, aquatic resources, wetland and riparian resources, recreation, and socioeconomics. A summary of those impacts is shown in Table 3-25 in Section 3.10. As described in Section 3.2 Issues and Impacts Topics Considered but Excluded from Further Evaluation, there are no effects expected to impact geology, soils, farmlands, air quality, noise, transportation, land use, visual resources, hazardous materials, terrestrial upland communities, wildlife, terrestrial special status species, environmental justice, and cultural and Indian trust resources. Therefore, impacts to these topics have been considered but eliminated from further evaluation.

The No Action alternative represents a continuation of operations as outlined in the Blue River Decree. In addition, replacement of power at the Green Mountain Reservoir hydroelectric plant would continue to be accomplished through informal, as-needed, annual agreements between WAPA, Reclamation, and Springs Utilities as authorized in the Blue River Decree. The No Action alternative provides a baseline condition, which was used to evaluate the level of potential impact resulting from the implementation of the Proposed Action. Impact thresholds used to analyze the Proposed Action are defined in Section 3.1.1.

### 3.1.1 Impact Thresholds

Direct, indirect, and cumulative effects were analyzed for each resource topic and are described in terms of type, duration, and intensity with general definitions of each provided below.

**Type** – describes the classification of the impact as beneficial or adverse, and direct, indirect or cumulative.

*Beneficial:* positive change in the condition or appearance of the resource, or a change that moves the resource toward a desired condition.

*Adverse:* negative change that detracts from the resource's appearance or condition, or a change that moves the resource away from a desired condition.

*Direct:* effect caused by the Proposed Action and occurs in the same time and place.

*Indirect:* effect caused by the Proposed Action but occurs later in time or farther removed in distance

*Cumulative:* incremental effect caused by the Proposed Action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (federal or nonfederal) or person undertakes such other actions (40 CFR 1508.7). Cumulative impacts can result from individually minor, but collectively significant actions taking place over time.

Several reasonably foreseeable actions are anticipated to occur in the future regardless of the implementation of the Proposed Action. The cumulative



effects analysis evaluates reasonably foreseeable actions that when combined with the Proposed Action, results in a cumulative effect on the environment. Potential future actions were considered reasonably foreseeable and included in the cumulative effects analysis if they met all of the following criteria:

- The action would occur within the same geographic area where effects from the Proposed Action are expected to occur,
- The action would affect the same environmental resources as the Proposed Action, and contribute to the total resource impact, and
- There is reasonable certainty as to the likelihood of the action occurring (e.g., actions that are funded or permitted for implementation or are included in firm near-term plans).

Potential water-based future actions were identified through available data on known projects or actions under consideration in the vicinity of the Study Area. Future actions meeting the criteria described above are described in the Section 3.3. Because the Proposed Action would not result in any new infrastructure or ground disturbance, reasonably foreseeable actions were limited to those water-based actions that would have overlapping effects with the Proposed Action on water resources.

**Duration** – describes the length of time an effect would occur as short-, intermediate-or long-term.

*Short-term:* lasting no longer than one year of substitution.

*Intermediate-term:* lasting no more than one year beyond a substitution year. In the case of a series of consecutive substitution years, the length of time would not extend for more than one year beyond the last substitution year in the series.

*Long-term:* lasting more than one year beyond the substitution year or series of substitution years up to the length of the contract, which is up to 40 years.

**Intensity** – describes the degree, level, or strength of an impact as no impact, negligible, minor, moderate, or major. The following explains the thresholds used to determine the change in intensity.

No impact: no discernable effect.

*Negligible:* effect is at the lowest level of detection and causes very little or no disturbance.

*Minor:* effect that is slight, but detectable, with some perceptible effects of disturbance.

*Moderate:* effect is readily apparent and has measurable effects of disturbance.

*Major:* effect is readily apparent and has significant effects of disturbance.

#### 3.1.2 Climate Change

Numerous studies have been conducted on the relationship between climate change and water resources in the West. Most climate models project that temperatures will continue to rise in the West. For instance, in Colorado temperatures have increased about 2°F in the past 30 years and future winter projections indicate fewer extreme cold months, more extreme warm months, and more strings of consecutive warm winters (Western Water Assessment 2008; National Research Council 2007).

Results from hydrological modeling of the impact of rising temperatures on water resources in mountainous western regions,



including Colorado, vary widely (Hoerling and Eischeid 2007; Garfin and Lenart 2007; Woodhouse 2007; IPCC 2008; Western Water Assessment 2008). The general scientific consensus is that increased temperatures would change the composition of winter precipitation and the timing of spring snowmelt. In other words, as temperatures rise the West would receive less snow and the snow that does accumulate would melt earlier in the spring than in past years. In Colorado, the onset of stream flows from melting snow has shifted earlier by two weeks between 1978 and 2004 and the projected timing of runoff is projected to shift earlier in the spring, reducing late-summer flows (Western Water Assessment 2008). Additionally, western snowmelt runoff is expected to decrease due to the higher evaporation and transpiration rates that accompany increased temperatures (Garfin and Lenart 2007; Letheby 2007; Nijhuis 2006a and 2006b; USDA 2007; USGS 2005; Watershed Management Council Networker 2005; IPCC 2008). It is estimated that nearly 75% of water supplies in western states are derived from snowmelt; thus, water managers will likely have to address greater extremes in water systems in the foreseeable future. Water managers may best cope with the combination of these anticipated changes by flexible operations that can incorporate increasing amounts of new scientific information as it becomes available (Woodhouse 2007; Garfin and Lenart 2007). Climate change and global warming may be considered reasonably foreseeable; however currently there is no accepted scientific method of transforming the general concept of increasing temperatures into incremental changes in streamflow or reservoir levels. Thus, hydrologic changes in response to global climate change have not been quantitatively described in this EA.

#### 3.1.3 Reasonably Foreseeable Water-Based Actions Considered in Cumulative Effects Analysis

Water-based actions refer to proposed water storage and diversion projects, water rights changes, and Section 404 activities. The Cumulative Effects Analysis focused on water-based actions because the Proposed Action does not involve land-disturbing activities or other on-the-ground changes. The following reasonably foreseeable waterbased actions were considered in the evaluation of cumulative effects.

#### Windy Gap Firming Project

The Subdistrict of the NCWCD, on behalf of several of the Windy Gap Project unit holders and the Middle Park Water Conservancy District, is proposing to improve the firm yield from the existing Windy Gap Project water supply by constructing the Windy Gap Firming Project (WGFP). The Subdistrict's Proposed Action is the construction of a 90,000 AF Chimney Hollow Reservoir located just west of Carter Lake on the East Slope. This project is anticipated to result in additional surface diversions at the Windy Gap Project diversion site on the Colorado River, which is downstream of the confluence of the Colorado and Fraser rivers. The WGFP is anticipated to generate approximately 26,000 AF/yr of firm yield for the project participants. The cumulative effect of the WGFP would be reduced flows in the Colorado River downstream of the Windy Gap Project diversion in average and wet years from April through August.

#### **Moffat Collection System Project**

Denver Water's total system demand is anticipated to grow to 363,000 AF/yr on average by 2030. Denver Water's current



demand is 285,000 AF/yr on average; therefore, an average increase in demand of 78,000 AF/yr is anticipated by the year 2030. The Moffat Collection System Project is currently proposed by Denver Water to develop 18,000 AF/yr of new, annual yield to the Moffat Treatment Plant to meet future raw water demands on the East Slope. The remainder of the deficit would be comprised of savings from implementing various conservation measures. The alternatives include additional storage in the Moffat Collection System. This project is anticipated to result in additional diversions, primarily from the upper Fraser River and Williams Fork River basins. The Moffat Collection System Project and Denver Water's increase in demand would cumulatively reduce flows in the Colorado River, Williams Fork River, and Blue River in average and wet years primarily during runoff.

## Other Increased Water Use in Grand and Summit Counties

The population in Grand and Summit Counties is expected to more than double over the next 25 years, from a year-round population of about 39,000 in 2005 to about 79,000 in 2030 (ERO 2007). Most growth in Grand County is likely to occur in the Fraser River basin while future increases in water use in Summit County would occur primarily in the Blue River basin. The largest growth in water demands in the Blue River basin is expected to occur in areas below Dillon Reservoir including the Towns of Silverthorne, Eagles Nest and Mesa Cortina. Build-out municipal and industrial demands are estimated to be 16,168 AF for Grand County and 17,940 AF for Summit County as identified in the Upper Colorado River Basin Study (Hydrosphere 2003). The timing of the growth in demand depends upon economic development trends in the

respective service areas of the individual water providers. Increased water use and wastewater discharges are expected to result in changes in the quantity and timing of streamflows and water quality.

In addition, Springs Utilities has claimed absolute and conditional rights of exchange in Case No. 03CW314 in connection with the Continental-Hoosier System. These exchange rights would allow Springs Utilities to divert additional water at the Continental-Hoosier System when their rights are out of priority (e.g., Xcel Energy's Shoshone Power Plant rights are calling) and exchange potential exists in the Blue River basin. These exchange rights would typically be exercised in late summer/early fall after Springs Utilities has completed diverting under the Blue River Decree. The circumstances under which these exchanges could occur are varied and difficult to predict since it depends on the physical availability of water at the Continental-Hoosier System and intervening water rights in the exchange reach including Denver Water's rights at Roberts Tunnel and Dillon Reservoir. The operation of these exchanges also depends on Springs Utilities' operational needs and potential benefits to their system. Although Springs Utilities may have the physical and legal ability to exercise an exchange, they may choose not to based on other factors related to their overall system operation.

#### **Reduction of Xcel Energy's Shoshone Power Plant Call**

The Shoshone Power Plant, which is owned by Xcel Energy, has two water rights to divert a total of 1,408 cfs from the Colorado River eight miles east of Glenwood Springs. Denver Water and Xcel Energy have negotiated an agreement to periodically invoke a relaxation of the Shoshone call at times flows are less than 1,408 cfs at the



point of diversion. The agreement to relax the call could result in a one-turbine call of 704 cfs, which would be managed in such a way to avoid a Cameo call by the Grand Valley Water users. The Cameo call refers to a suite of senior water right located near Grand Junction. The Shoshone call could be increased above 704 cfs as needed to keep the Cameo water rights satisfied. The Shoshone call relaxation could be invoked if, in March, Denver Water predicts its total system storage to be at or below 80% on July 1 that year, and the March 1 Natural **Resources Conservation Service (NRCS)** forecast for Colorado River flows at Kremmling or Dotsero are at or below 85% of average. The Shoshone call relaxation could be invoked between March 14 and May 20. The term of this agreement is from January 1, 2007, through February 28, 2032.

Key projects/water rights that would benefit from a reduction of the Shoshone call include the Continental-Hoosier Project, Green Mountain Reservoir, Wolford Mountain Reservoir, Moffat Collection System (Moffat Tunnel, Williams Fork Reservoir, Roberts Tunnel, and Dillon Reservoir), Windy Gap, and the Homestake Project. The relaxation of the Shoshone call would allow diverters that would otherwise be called out to divert water in-priority even if they are junior to the Shoshone Power Plant water rights. Because more diversions would be made in-priority, releases from reservoirs such as Green Mountain, Wolford Mountain, and Williams Fork for exchange or substitution purposes would also be less. Increased in-priority diversions and reduced reservoir releases for exchange and/or substitution would decrease flows primarily in the Williams Fork River, Muddy Creek, the Blue River, and the Colorado River mainstem below the Windy Gap diversion during the relaxation period. Colorado River flows at Dotsero could be affected outside of the relaxation period if additional

U.S. DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION water diverted to storage during the relaxation period is released to the Colorado River. The magnitude and timing of flow reductions attributable to a Shoshone call relaxation could vary widely from year to year and would depend on many factors including streamflows, storage contents, project operations, and bypass/instream flow requirements.

Because of the very high elevation of the Continental-Hoosier system, the snow pack and stream system has generally remained frozen during the period of a potential Shoshone call relaxation described in this section. Therefore, there is very little water that could be diverted by the Continental-Hoosier system under a relaxed call scenario.

#### Changes in Releases from Williams Fork and Wolford Mountain Reservoirs to Meet USFWS Flow Recommendations for Endangered Fish in the 15-Mile Reach

The Programmatic Biological Opinion for the recovery of endangered fish includes a provision for East and West Slope water users to split equally the delivery of 10,825 AF of water to the 15-Mile Reach of the Colorado River east of Grand Junction. An agreement exists between Denver Water, the Colorado Water Conservation Board (CWCB) and the USFWS, for the interim provision of water to the 15-Mile Reach of the Colorado River near Grand Junction as part of the Recovery Program. A similar agreement exists between River District, CWCB, and the USFWS. These agreements provide for the total release of 10,825 AF of water annually from both Williams Fork and Wolford Mountain Reservoirs (5,412.5 AF from each reservoir) to meet USFWS flow recommendations for the 15-Mile Reach.

These contracts expire in 2009 and 2010, respectively, and both Denver Water and the River District do not plan to continue making these releases from Williams Fork and Wolford Mountain Reservoirs in the future. This action affects the timing and quantity of reservoir storage and releases and the flows in Williams Fork River and Muddy Creek below the reservoirs. Fish releases from these reservoirs have historically been made in the late summer and fall when flows drop below the USFWS flow recommendations. When fish releases are not made from Williams Fork and Wolford Mountain Reservoirs, flows in the Williams Fork River and Muddy Creek would be less by a commensurate amount in the fall. The reduction in fish flow releases would be offset by a corresponding change in the amount of water stored in these reservoirs on average. Less water would need to be stored during the runoff season to replace these releases. As a result, cumulative changes in Williams Fork and Wolford Mountain reservoir storage and releases due to this action would affect the timing of flows below these reservoirs, but would have little affect on the annual quantity of flow on average.

#### **Increases in Wolford Mountain Reservoir Contract Demands**

According to the River District, the demand for contract water out of Wolford Mountain Reservoir is expected to increase in the future. River District staff indicated there is currently about 8,750 AF/yr of available contract water in Wolford Mountain Reservoir that would likely be contracted for in the future. In addition, Middle Park Water Conservancy District (MPWCD) has 3,000 AF/yr of contract water in Wolford Mountain Reservoir, which would also likely be contracted for in the future. The specific entities that would contract for this water in the future and the locations of the depletions are not known at this time. Releases from Wolford Mountain Reservoir would need to be made to meet contract demands when depletions (consumptive use) are out-of-priority, which would likely be during winter months (September through March) and in summer months of dry years depending on whether the Shoshone Power Plant rights are calling.

This future action cumulatively affects the timing and quantity of Wolford Mountain Reservoir contents and releases and the flows in Muddy Creek below the reservoir. Because releases for contract demands would increase in the future, flows in Muddy Creek would increase on average by a commensurate amount primarily during winter months and in summer months of dry years. However, more water would be stored during the runoff season to replace these releases, so flows during runoff would decrease on average below the reservoir.

#### Expiration of Denver Water's Contract with Big Lake Ditch in 2013

The Big Lake Ditch is a senior irrigation right in the Williams Fork basin that diverts below Denver Water's Williams Fork collection system and above Williams Fork Reservoir. Big Lake Ditch diversions are currently delivered for irrigation above Williams Fork Reservoir and for use in the Reeder Creek drainage, which is a tributary of the Colorado River. Return flows associated with irrigation in the Reeder Creek drainage return to the Colorado River below the confluence with the Williams Fork.

The following information on the operation of Big Lake Ditch and the terms and conditions of the contract with Denver Water was provided by Denver Water. In



1963. Denver Water entered into a contract with Bethel Hereford Ranch Inc., which owned and operated the Big Lake Ditch, whereby Denver Water purchased the Ranch's water rights. Bethel Hereford was granted a 40-year lease to continue its operation under the condition that the Big Lake Ditch water rights are not called if needed by Denver Water. The 1963 agreement was superseded by a 1998 agreement, which extended the operation of the Big Lake Ditch through 2013, and provided more detail on the conditions under which Denver Water would need the water. The 1998 agreement expires in 2013 and Denver Water does not plan to extend the existing contract. After the contract expires in 2013, the Big Lake Ditch can no longer divert water under the enlargement decree for 111 cfs for irrigation in the Reeder Creek drainage.

This action cumulatively affects the timing and quantity of flows in Williams Fork River and the Colorado River. The abandonment of all Big Lake Ditch diversions to the Reeder Creek basin would allow Denver Water to divert additional water for storage in Williams Fork Reservoir when their water rights are in priority. Big Lake Ditch diversions would decrease. deliveries to the Reeder Creek drainage would be curtailed, and all Big Lake Ditch return flows would accrue to the Williams Fork River instead of the Colorado River below the confluence with the Williams Fork River. The change in Big Lake Ditch diversions and return flows would result in less depletion and a corresponding increase in flows on average in the Williams Fork River basin. Changes in flow would be greatest from June through October when differences in Big Lake Ditch depletions and return flows are greatest.

## 3.2 Issues and Impact Topics Considered but Excluded from Further Evaluation

Resource issues and impacts topics considered, but excluded from further evaluation in the EA are described below. In general, these issues and impact topics were dismissed from further evaluation because the Proposed Action does not involve land-disturbing activities or other on-the-ground changes. Additionally, none to minimal surface water changes would occur under the Proposed Action (refer to Section 3.3 Hydrology), therefore no impacts are anticipated to any of these resources.

#### Geology

The Study Area lies within the central Rocky Mountain geographic region, which consists of steep mountain uplands complemented by areas of glacial drift. The underlying geology consists of sandstone, siltstone, shale and limestone substrates (USGS 2002). The Study Area occurs within Seismic Risk Zone 1 (on a scale of 0 to 3, with Zone 3 having the highest risk) (Algermissen et al. 1990). Since no ground disturbing activities would occur within the Study Area, no impacts to geologic resources, such as aggregate material or minerals, would occur. Additionally, impacts to the project from geologic hazards, such as earthquakes, are not anticipated.

#### Soils

The Study Area generally contains mediumto-fine textured loamy soils that occur on mountainsides and ridges, interspersed with areas of exposed bedrock. Since the Proposed Action does not include ground disturbing activities, soil loss or



displacement from wind or water erosion is not anticipated. Fluctuating water levels in the reservoirs would be minimal; thus, shoreline instability, sloughing, and slippage are unlikely to occur as a result of the Proposed Action.

#### Farmlands

Agricultural production in the Study Area is limited by a cold climate and associated short growing season. Additionally, agriculture has steadily declined in the project vicinity as land is increasingly converted to recreational and residential use. Four categories of important farmlands are federally regulated by the United States Department of Agriculture (USDA) under the Farmland Protection Policy Act: (1) Prime farmlands, (2) Unique farmlands, (3) Farmlands of statewide importance, and (4) Farmlands of local importance. Important farmlands are a distinction made by the USDA as soils that support the crops necessary for the preservation of the nation's domestic food and other supplies, specifically the capacity to preserve high yields of food, seed, forage, fiber, and oilseed with minimal agricultural amendment of the soil, adequate water, and a sufficient growing season. Several USDA and other federal natural resource programs, permits, and regulations require the identification of important farmlands.

No lands are classified as Prime and Unique Farmlands in Summit or Grand counties (NRCS 2008a). Similarly, a majority of farmlands are not classified as Prime or Unique in Park and Eagle counties (NRCS 2008b). Many irrigated farmlands in the Study Area, however, are recognized as farmlands of statewide importance (NRCS 2008a and 2008b). The Proposed Action does not include construction of new facilities. Thus, farmlands in the Study Area would not be directly impacted. Additionally, the amount of water that is diverted from rivers and streams within the Study Area for agricultural uses would not be depleted as a result of the Proposed Action.

## Air Quality, Noise, and Transportation

No new structures would be built within the Study Area as part of the Proposed Action. Thus, temporary noise impacts associated with construction activities would not occur. Similarly, temporary air impacts resulting from fugitive dust emissions generated from construction activity would not occur. Increased traffic or traffic disruptions associated with construction activity would also not occur. Traffic associated with operations and maintenance of existing facilities within the Study Area is expected to be minimal.

#### Land Use

Several different land uses (e.g., recreational, agricultural, forest, urban, etc.) occur within the Study Area. No aboveground structures would be built within or adjacent to the Study Area as part of the Proposed Action, thus the existing land uses would not be altered or impacted.

#### Visual Resources

Scenic quality is defined as the harmonious relationship between physical, biological, and cultural attributes that, when viewed by people, elicits psychological and physiological benefits (USDA 1995). In general, streams in the Study Area occur in high quality scenic or visually sensitive locations. Water levels fluctuate diurnally and seasonally as a result of natural hydrologic cycles, reservoir management, irrigation practices, and diversions for other purposes. Even in a natural state, Colorado streams are characterized by substantial variations in flow, typically reaching the



highest flow levels in May or June and then rapidly dropping off through the remainder of the year until they reach the low flows that predominate during the winter months. As a result, a stream is a dynamic system that rarely remains static and the viewer has an expectation of observing change over the course of the seasons. The Proposed Action would result in no to minimal flow changes and thus would not impact the visual quality of streams and reservoirs in the Study Area.

#### **Hazardous Materials**

Hazardous materials are defined in various wavs under a number of state and federal regulatory programs (e.g., Environmental Protection Agency [EPA] and Colorado Department of Public Health and Environment [CDPHE]). Sites with recognized environmental conditions of concern are sites where known, existing, or past releases of hazardous substances, including petroleum products and other organic substances, metals and other inorganic substances have been released to soil or groundwater. Risks to human health and the environment may occur when these materials are not managed properly. Since the Proposed Action does not include ground disturbing activities, hazardous materials that may occur within the Study Area would not be exposed.

#### Terrestrial Upland Communities, Wildlife, and Special Status Species

Upland communities in the Study Area vary in accordance with elevation. Areas above 10,000 feet generally consist of Engelmann spruce, subalpine fir, and alpine meadows. Lodgepole pine, aspen, blue spruce, and Douglas-fir are examples of tree species found in the plant communities below 10,000 feet. Shrubland communities that occur between 6,000-8,000 feet include mountain mahogany, sage and pinon-juniper associations. Grasses in the Study Area



include various species of fescue, brome, wheatgrass, and bluegrass. Upland communities in the Study Area support terrestrial wildlife such as big game (e.g., mule deer [Odocoileus hemionus], American elk [Cervus elaphus]) and small and medium-sized mammals (e.g., mountain cottontail [Sylvilagus nuttalii], Colorado chipmunk [Tamias quadrivittatus]). These upland areas may also support special status species such as Gunnison's prairie dog (Cynomys gunnisoni) and mountain plover (Charadrius montanus). No construction activities associated with the Proposed Action would occur in the Study Area that would disturb or displace wildlife or reduce associated habitat.

#### **Environmental Justice**

As required by Executive Order 12898, General Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, "each Federal agency shall make achieving environmental justice part of its mission by identifying and addressing, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority populations and low-income populations." The Study Area is not comprised of definable minority or lowincome populations (U.S. Census Bureau [Census] 2000a). The Proposed Action would not result in disproportionate impacts to any populations within the Study Area.

#### Cultural Resources and Indian Trust Resources

On January 23, 2007, Reclamation and the Colorado State Historic Preservation Officer (SHPO) signed a Programmatic Agreement to document the means to determine and evaluate the impacts on historic properties from reservoir operations and storage contracts as required by Section 106 of the National Historic Preservation Act (NHPA)

and stipulated in 36 CFR 800. The Advisory Council on Historic Preservation (ACHP) declined an invitation to participate in this agreement.

Changes in operational strategies within the Study Area in response to project demands would affect timing, depth, and duration of drawdown within the water system network. However, because the water level and flow fluctuations associated with the Proposed Action are within the boundaries of normal flows and levels already experienced within the Study Area, there would be no impact to cultural resources.

Indian trust assets are owned by American Indians but are held in trust by the United States. Requirements are included in the Secretary of the Interior's Secretarial Order 3206, American Indian Tribal Rites, Federal-Tribal Trust Responsibilities, the Endangered Species Act; and Secretarial Order 3175, Departmental Responsibilities for Indian trust resources. There are no known Indian trust assets within the Study Area; therefore there would be no effects on Indian trust resources, resulting from the Proposed Action.

### 3.3 Hydrology

This section describes the existing surface water resources in the Study Area and the effects of the Proposed Action and No Action alternatives on streamflow quantity and reservoir storage content. Potentially affected river segments and reservoirs in the Study Area are shown in Figure 3-1. For each of the affected river basins in the Study Area, regional surface water characterizations are provided that include an overview of the drainage basins (geographic location, drainage area, elevation range, major tributaries, and flow sources) and a summary of surface water use. Additionally, monthly average historical stream graphs are provided for USGS stream gages that are representative of river reaches within the Study Area. Monthly time series graphs showing historical reservoir storage contents are also provided. Simulated streamflow and reservoir storage content are summarized and environmental consequences associated with the Proposed Action and No Action alternatives are compared. This section also describes the cumulative effects of the Proposed Action in relation to other reasonably foreseeable projects in the Study Area.

Issues raised during scoping that specifically relate to surface water resources are also addressed in this section. These issues include the following:

- Effects on Colorado River stream flows below the Windy Gap Project diversion point due to utilizing Williams Fork Reservoir as a source of substitution replacement.
- Effects on Springs Utilities' diversions from the West Slope to the East Slope.
- Effects on the operation and use of the Green Mountain Reservoir Historic User's Pool (HUP).
- Effects on future projects, such as the Green Mountain Reservoir Pumpback Project.
- Effects of Bureau of Land Management's (BLM) Wild and Scenic River designations on stream reaches within the Study Area.
- Adequacy of a monthly time step model for evaluating environmental consequences.

### 3.3.1 Affected Environment

The Study Area encompasses portions of the Colorado River and South Platte River basins (refer to Figure 3-1). Potentially



affected river segments include sections of the Blue River, Williams Fork River, Muddy Creek, Colorado River, Homestake Creek, Eagle River, Middle Fork South Platte River, and South Platte River. Potentially affected reservoirs include Upper Blue Reservoir, Dillon Reservoir, Green Mountain Reservoir, Williams Fork Reservoir, Wolford Mountain Reservoir, Homestake Reservoir, Montgomery Reservoir, and Elevenmile Canyon Reservoir. The study area did not extend below Elevenmile Canyon Reservoir because flow changes downstream of this point would be negligible. Changes in contents in Elevenmile Canyon Reservoir and additional releases under the No Action and Proposed Action alternatives would likely be negligible in comparison to Denver Water's storage and operations. Each of these river segments and reservoirs is discussed in the following sections.

#### 3.3.1.1 Blue River Basin

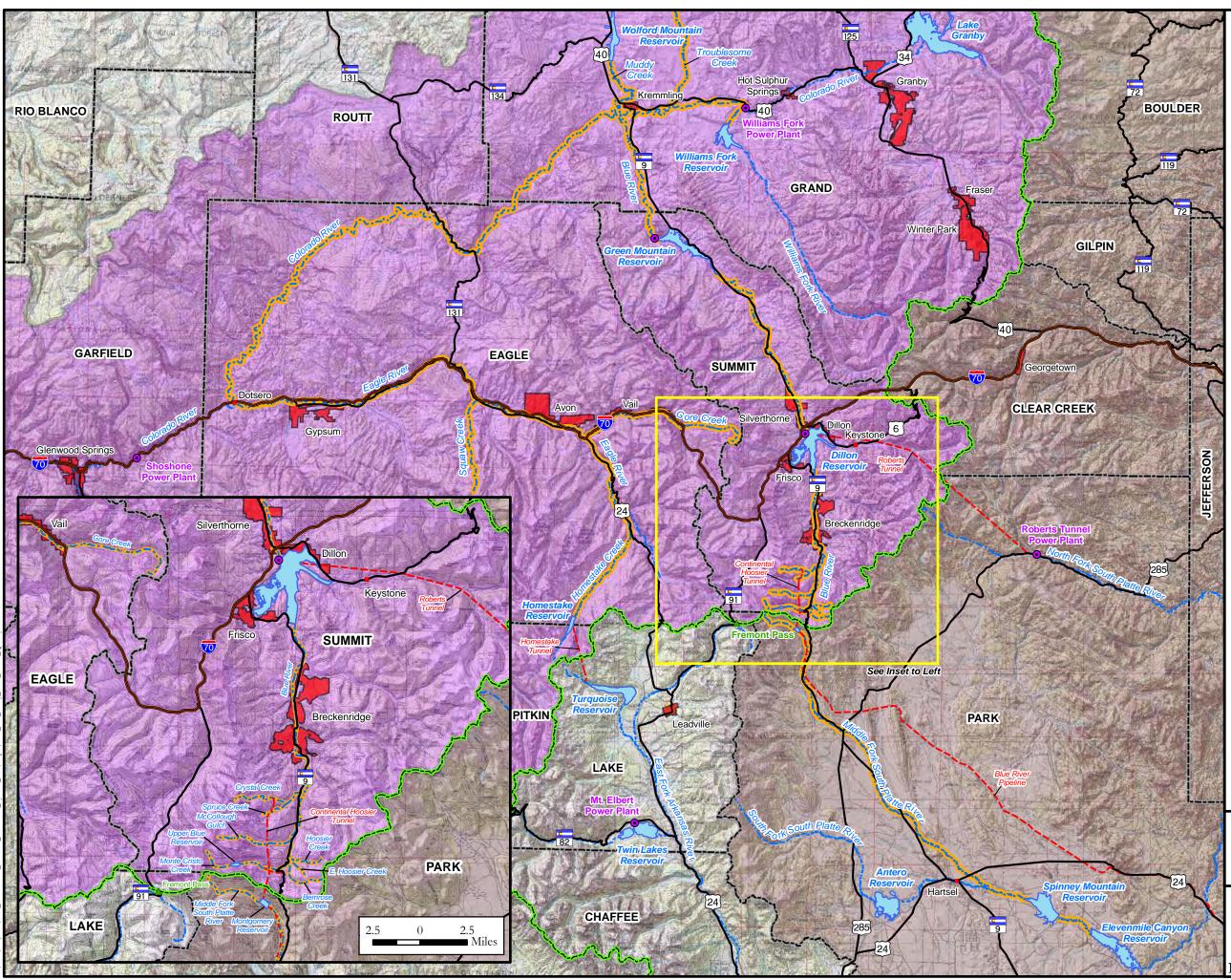
#### **Historical Streamflow**

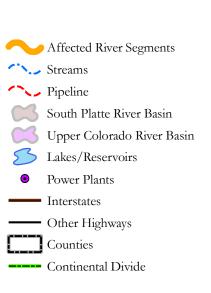
Potentially affected river segments in the Blue River basin include the Blue River and tributaries in the upper Blue River basin from Springs Utilities' Continental-Hoosier System diversion points downstream, as shown in Figure 3-1.

The Blue River flows generally northwest, toward Dillon Reservoir, then on toward the Colorado River, forming a long valley between the Williams Fork Mountains to the north and east, and the Gore Range to the south and west. Springs Utilities' Continental-Hoosier System is located in the upper Blue River basin. The total drainage area of the basin is 680 square miles (Hydrosphere 1989). Precipitation varies with elevation across the Blue River basin, ranging from 15.5 inches at Green Mountain Reservoir Dam in the lower Blue River basin, to nearly 24 inches at Climax mine near Fremont Pass (WRCC 2005). Stream flows are highly variable by season across the basin. Most of the annual stream flow results from snow melt between the months of May and July.

The following table lists the CWCB minimum instream flow rights on the Blue River and tributaries that Springs Utilities diverts from above Dillon Reservoir. There are other CWCB instream flow requirements above Dillon Reservoir that are not included in this table, because those rights are outside of the Study Area. The listed CWCB rights were decreed in 1985 and 1986 and are junior to Springs Utilities' Continental-Hoosier System rights and the Blue River Decree.

| CWCB Minimum Instream Flow Rights abo                         | CWCB Minimum Instream Flow Rights above Dillon Reservoir |                         |  |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------|----------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|--|--|--|
| Reach                                                         | Flow (cfs)                                               | Period                  |  |  |  |  |  |  |  |  |  |  |
| Crystal Creek from Lower Crystal Lake                         | 0.5                                                      | October through April   |  |  |  |  |  |  |  |  |  |  |
| to confluence with Spruce Creek                               | 2                                                        | May through September   |  |  |  |  |  |  |  |  |  |  |
| Spruce Creek headwaters to confluence, with Plue Piver        | 0.5                                                      | October through March   |  |  |  |  |  |  |  |  |  |  |
| Spruce Creek headwaters to confluence with Blue River         | 2                                                        | April through September |  |  |  |  |  |  |  |  |  |  |
| Confluence of Monte Cristo and Bemrose Creeks to Hwy 9 Bridge | 1                                                        | October through April   |  |  |  |  |  |  |  |  |  |  |
| Confidence of Monte Cristo and Bennose Creeks to Hwy 9 Bridge | 2                                                        | May through September   |  |  |  |  |  |  |  |  |  |  |
| Hurr 0 Bridge to Cassa Besture Terr                           | 2                                                        | October through April   |  |  |  |  |  |  |  |  |  |  |
| Hwy 9 Bridge to Goose Pasture Tarn                            | 5                                                        | May through September   |  |  |  |  |  |  |  |  |  |  |
| 5 200 ft unstream of Swan D to confluence with Swan D         | 10                                                       | November through April  |  |  |  |  |  |  |  |  |  |  |
| 5,200 ft upstream of Swan R. to confluence with Swan R.       | 20                                                       | May through October     |  |  |  |  |  |  |  |  |  |  |
| Swan River to Dillon Reservoir                                | 16                                                       | November through April  |  |  |  |  |  |  |  |  |  |  |
| Swan Kiver to Dinon Reservoir                                 | 32                                                       | May through October     |  |  |  |  |  |  |  |  |  |  |





The following table lists the CWCB minimum instream flow rights on the Blue River below Dillon Reservoir. These rights were decreed in 1987 and are junior to Springs Utilities' Continental-Hoosier System rights and the Blue River Decree.

Mean daily historical streamflows and the range of historical daily stream flows are shown in Figures 3-2, 3-3, and 3-4 for the Blue River near Dillon gage (09046600), Blue River below Dillon gage (09050700) and Blue River below Green Mountain Reservoir gage (09057500), respectively.

| Blue River CWCB Minimum Instream Flow                             | v Rights belov | w Dillon Reservoir              |
|-------------------------------------------------------------------|----------------|---------------------------------|
| Reach                                                             | Flow (cfs)     | Period                          |
| Dillon Reservoir outlet to confluence with Straight Creek         | 50             | Year Round                      |
| Confluence with Straight Creek                                    | 55             | May through July                |
| Confluence with Straight Creek<br>to confluence with Willow Creek | 52             | August through September        |
| to confidence with whow creek                                     | 50             | October through April           |
| Confluence with Willow Creek                                      | 75             | April through September         |
| to confluence with Rock Creek                                     | 58             | October through March           |
|                                                                   | 115            | May through August              |
| Confluence with Rock Creek                                        | 90             | September, April                |
| to confluence with Boulder Creek                                  | 78             | October                         |
|                                                                   | 67             | November through March          |
|                                                                   | 125            | May through August              |
| Confluence with Boulder Creek                                     | 90             | September through October       |
| to confluence with Slate Creek                                    | 70             | November through February       |
| to confidence with State Creek                                    | 78             | March                           |
|                                                                   | 90             | April                           |
|                                                                   | 125            | May through September           |
| Confluence with Slate Creek                                       | 90             | October, November, March, April |
| to Green Mountain Reservoir inlet                                 | 85             | December through February       |
|                                                                   | 90             | March through April             |
| Green Mountain Reservoir outlet to Colorado River                 | 60             | May through July 15             |
| Green Wountain Reservoir outlet to Colorado River                 | 85             | July 16 through April           |







#### Reference:

1:250,000-scale quad maps from USGS. 1:100,000-scale quad maps originally from USGS (1980s) and created with TOPO!, 2006 National Geographic Maps, All Rights Reserved.

#### Notes:

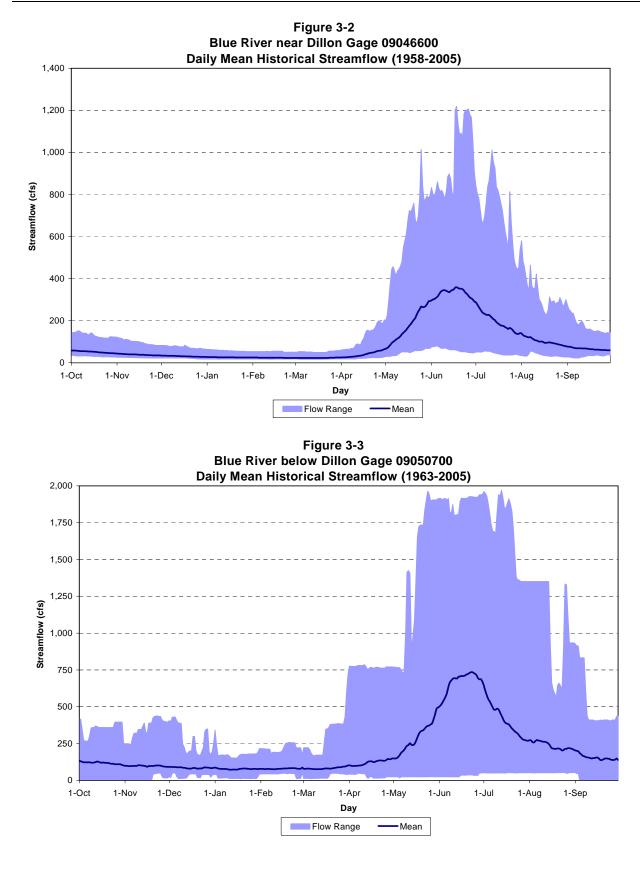
Only portions of each river basin within the study area are shown.



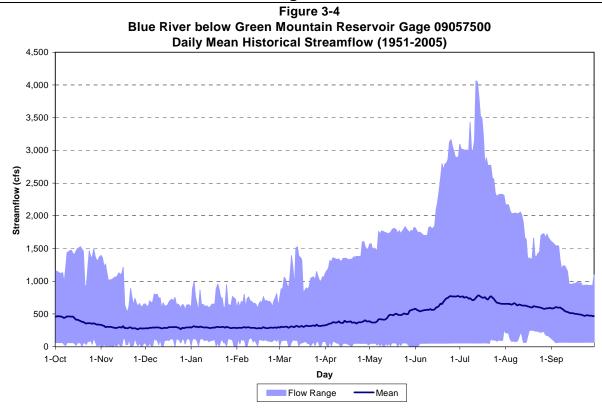
85

0

8.5 Miles


1:538,560

Green Mountain Reservoir Substitution and Power Interference Agreements EA


# Figure 3-1 Study Area

#### DRAFT

9/22/08







#### Wild and Scenic Rivers Designation

In the summer of 2006, the Kremmling and Glenwood Springs Field Offices of the BLM began the eligibility phase of a Wild and Scenic Rivers evaluation as part of their Resource Management Plan (RMP) revision process. The Wild and Scenic Rivers study process is composed of two main components: the eligibility phase, and the suitability phase. The eligibility phase involves identifying eligible rivers and stream segments, and determining a tentative classification (Wild, Scenic, or Recreational). To be eligible for designation, a river must be free flowing and contain at least one Outstandingly Remarkable Value (ORV) that is scenic, recreational, geological, fish-related, wildlife-related, historic, cultural, botanical, hydrological, paleontological, or scientific. Upon conclusion of the eligibility phase, the BLM prepared a Wild and Scenic Eligibility Report that identified a few river segments

within the EA Study Area (portions of the Colorado and the Blue Rivers) that were eligible for inclusion in the National Wild and Scenic Rivers System (BLM 2007). The suitability phase is now being conducted and a Draft Suitability Plan is expected to be made available to the public in the fall of 2009.

Three segments of the Blue River have been preliminarily classified as recreational and wild for purposes of being deemed eligible for Wild and Scenic River status. These segments and their associated ORVs include:

 Segment 1 from the border of BLM and USFS land (approximately 1.5 miles downstream of Green Mountain Reservoir) to the border between BLM and private land (approximately 2.5 miles downstream of Green Mountain Reservoir) – scenic (unique canyon), recreational fishing, recreational floatboating, geological



(unique canyon), wildlife (bald eagle and river otter).

- Segment 2 downstream of Segment 1 from the BLM land boundary downstream of the confluence with Spring Creek to the BLM land boundary located upstream of the confluence with Spruce Creek – recreational fishing, recreational floatboating, and wildlife (bald eagle and river otter).
- Segment 3 includes several small • sections of the Blue River as it occurs on BLM land from approximately 1/4-mile upstream of the confluence with Dry Creek to approximately 1 mile upstream of the confluence with the Colorado River – recreational fishing, recreational floatboating, wildlife (bald eagle and river otter), and biodiversity (riparian communities).

The BLM also has an established fishing access and boat take-out at the downstream end of Segment 3.

UREAU OF RECLAMATIO

#### **Historical Reservoir Operations** and Contents

#### Upper Blue Reservoir

Upper Blue Reservoir is a 2,113 AF reservoir located on Monte Cristo Creek, a tributary to the Blue River in the upper Blue River basin. The reservoir was completed in 1967 as a component of Springs Utilities' Continental-Hoosier System. Water is stored in Upper Blue Reservoir during runoff and the reservoir generally fills by the end of June. Water is typically released from August through October to meet Springs Utilities' substitution obligation or for delivery through Hoosier Tunnel to Montgomery Reservoir on the Middle Fork South Platte River. Mean daily historical storage contents and the range of contents for Upper Blue Reservoir are shown in Figure 3-5. Daily contents were interpolated based on historical end-of-month contents.

The water rights associated with Upper Blue Reservoir are junior in priority to Green Mountain Reservoir. Under the Blue River

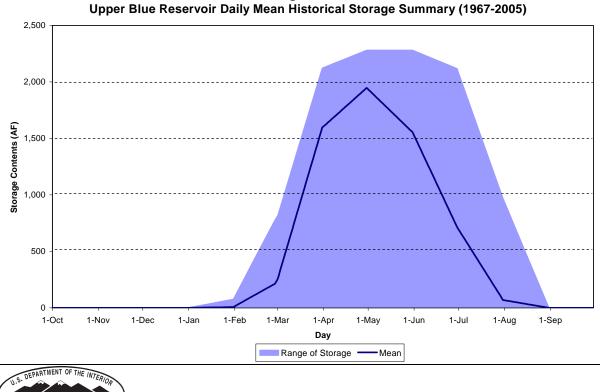



Figure 3-5

Decree, Springs Utilities can store water at Upper Blue Reservoir on an out-of-priority basis against Green Mountain Reservoir's senior first fill storage right. To the extent that Green Mountain Reservoir does not fill, Springs Utilities must provide substitution water to Green Mountain Reservoir. Blue River Decree operations are discussed in more detail under the section for the Green Mountain Reservoir.

#### Dillon Reservoir

Dillon Reservoir is a 257,305 AF reservoir located at the confluence of the Blue River, Snake River and Ten Mile Creek approximately 20 miles upstream of Green Mountain Reservoir. The reservoir, which was completed in 1963 is owned and operated by Denver Water primarily for municipal use. Dillon Reservoir and Roberts Tunnel are components of Denver Water's Roberts Tunnel Collection System. Dillon Reservoir is a major component of Denver Water's long-term carryover storage and is operated in conjunction with Denver

Water's North and South System facilities to meet their demands. Water stored in Dillon Reservoir is conveyed through Roberts Tunnel to the North Fork of the South Platte River. Denver Water must bypass 50 cubic feet per second (cfs) or inflow, whichever is less, to the Blue River from Dillon Reservoir pursuant to their right-of-way agreement with the USFS and the terms of the 1984 FERC Order granting a license exemption to Denver Water's Blue River Hydroelectric Project. Mean daily historical storage contents and the range of contents for Dillon Reservoir are shown in Figure 3-6. Daily contents were interpolated based on historical end-of-month contents.

There are two power plants associated with the Roberts Tunnel Collection System. The Dillon Power Plant generates power from Dillon Reservoir releases to the Blue River. The Roberts Tunnel Power Plant generates power from Dillon Reservoir releases through Roberts Tunnel.

UREAU OF RECLAMATIC

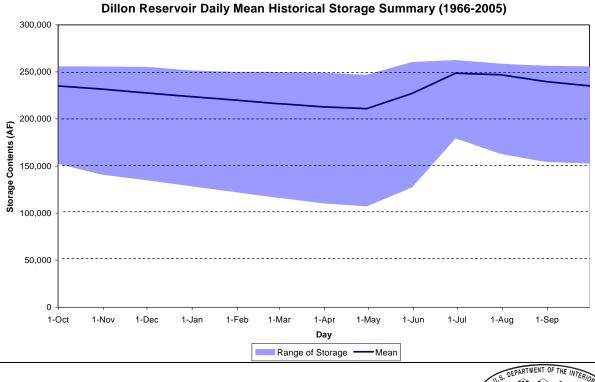
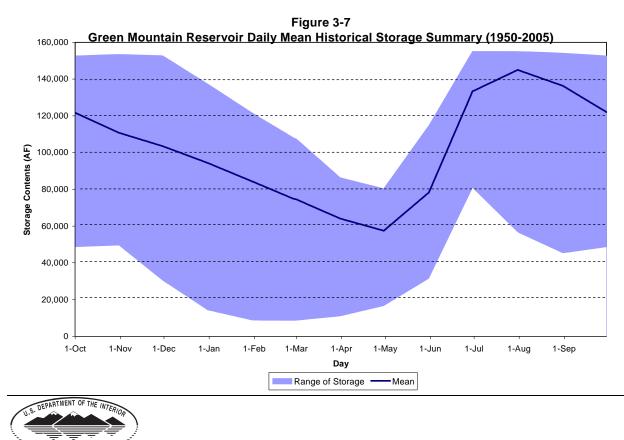



Figure 3-6 Dillon Reservoir Daily Mean Historical Storage Summary (1966-2005)


The water rights associated with Dillon Reservoir and Roberts Tunnel are junior in priority to Green Mountain Reservoir. Under the Blue River Decree, Denver Water can divert and store water at Roberts Tunnel and Dillon Reservoir on an out-of-priority basis against Green Mountain Reservoir's senior first fill storage and direct flow power rights. To the extent that Green Mountain Reservoir does not fill in a given runoff year, Denver Water must provide substitution water to Green Mountain Reservoir. Blue River Decree operations are discussed in more detail under section for the Green Mountain Reservoir.

#### Green Mountain Reservoir

REAU OF RECLAMATIC

Green Mountain Reservoir is a 153,639 AF reservoir located on the Blue River approximately 13 miles upstream of the confluence with the Colorado River. The reservoir was completed in 1943 as a component of the Colorado-Big Thompson (C-BT) Project. The reservoir's primary purposes are to provide replacement water for out of priority diversions in the Upper Colorado River basin by the C-BT Project and to preserve existing and future water uses and interests on the West Slope. It is also authorized to generate power. The reservoir has an operating pool of 152,000 AF, of which 52,000 AF is dedicated to replacement of C-BT Project transmountain diversions, and the remaining 100,000 AF is for power and West Slope purposes.

Green Mountain Reservoir stores flows during runoff from the Blue River and water diverted from Elliot Creek, which is delivered to the reservoir via the Elliot Creek Feeder Canal. Water is released from the reservoir later in the year for various authorized purposes. Releases from the reservoir are made through the Green Mountain Power Plant for power generation. Mean daily historical storage contents and the range of contents for Green Mountain Reservoir are shown in Figure 3-7. Daily contents were interpolated based on historical end-of-month contents.



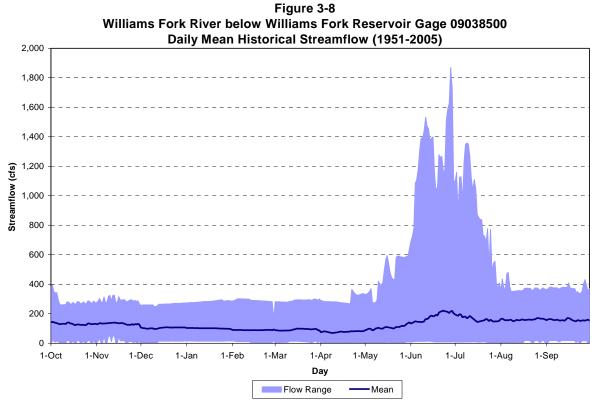
The Blue River Decree (Consolidated Case Nos. 2782, 5016, and 5017) specifies the relative priorities of the storage and hydroelectric rights for Green Mountain Reservoir and the upstream rights at Dillon Reservoir, the Roberts Tunnel and the Continental-Hoosier System. Under the Blue River Decree, Springs Utilities and Denver Water can divert and store water at their facilities, which are upstream of Green Mountain Reservoir, on an out-of-priority basis against Green Mountain Reservoir's senior first fill storage and direct flow power rights. The Interim Policy, which was first adopted by the State Engineer in 2003, is the current administration of the Blue River Decree. The Interim Policy currently defines the administrative and accounting principles concerning Green Mountain Reservoir and specifically outlines the paper fill of Green Mountain Reservoir under its senior storage right. The terms and conditions of the Interim Policy and the manner in which it is reflected in the Colorado Decision Support System (CDSS) Model are described in the technical memorandum, Model Selection and Parameters (ERC 2008) included in Appendix A.

### 3.3.1.2 Williams Fork River Basin

#### **Historical Streamflow**

The potentially affected river segment in the Williams Fork River Basin extends from Williams Fork Reservoir downstream to the confluence with the Colorado River, as shown in Figure 3-1. The Williams Fork River flows generally northwest, forming a relatively narrow basin between the Fraser River basin to the east and the Blue River basin to the west. The southern end of the basin is delimited by the Continental Divide, which separates the Williams Fork River basin from Clear Creek. The total drainage area of the basin is 230 square miles at the USGS gage 09038500 Williams Fork downstream of Williams Fork Reservoir. Annual precipitation varies with elevation across the basin, ranging from approximately 14 inches at Williams Fork Dam to about 24 inches near Jones Pass (WRCC 2005).

Mean daily historical streamflows and the range of historical daily streamflows are shown in Figure 3-8 for the Williams Fork River below Williams Fork Reservoir gage (09038500).


### Historical Reservoir Operations and Contents

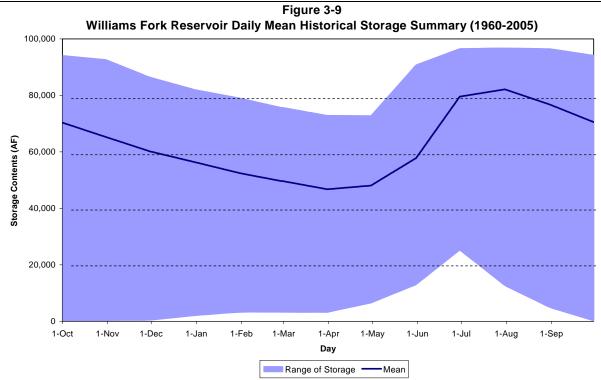
#### Williams Fork Reservoir

Williams Fork Reservoir is a 96,822 AF reservoir located on Williams Fork River approximately three miles upstream of the Colorado River confluence. The reservoir, which was completed in 1959, is the only significant reservoir in the basin. The reservoir's primary purpose is to provide replacement water for out-of-priority diversions by Denver Water and to generate power. A power plant is located at Williams Fork Reservoir, and as a condition of Denver Water's FERC license, Denver Water must bypass 15 cfs or inflow, whichever is less, at all times. Williams Fork Reservoir stores flows during runoff from Williams Fork River. Power operations generally influence reservoir releases during much of the year. Replacement water is released later in the year to allow out-of-priority diversions by Denver Water and to meet substitution obligations.

Denver Water's headwater diversions are protected by Williams Fork Reservoir such that when the Denver Water rights are outof-priority with respect to senior diverters downstream of Williams Fork Reservoir, the reservoir releases water for the satisfaction






of those rights. Williams Fork Reservoir is operated similarly to replace out-of-priority on diversions at Denver's Moffat Collection system, Roberts Tunnel, and Dillon Reservoir. Denver Water also has an obligation to provide up to 2,200 AF of replacement water to the Henderson Mill out of Williams Fork Reservoir. Releases from Williams Fork Reservoir are also made in substitution for releases from Green Mountain Reservoir in years that Green Mountain Reservoir does not fill and Denver Water has a substitution obligation. To the extent that Green Mountain Reservoir does not fill in a given runoff year, water from Williams Fork Reservoir may be released (substituted) to downstream water demands in place of releases from Green Mountain Reservoir. Mean daily historical storage contents and the range of contents for Williams Fork Reservoir are shown in Figure 3-9. Daily contents were interpolated based on historical end-of-month contents.

### 3.3.1.3 Muddy Creek Basin

#### **Historical Streamflow**

The affected river segment in the Muddy Creek Basin extends from Wolford Mountain Reservoir downstream to the confluence with the Colorado River, as shown in Figure 3-1. Muddy Creek is a north side tributary of the Colorado River that enters the mainstem at Kremmling. Muddy Creek drains the Rabbit Ears Range to the north, the north end of the Gore Range to the west, and a relatively low ridge dividing the Muddy Creek valley from the Troublesome Creek basin to the east. The drainage area of the basin is 270 square miles at the USGS gage 09041400 Muddy Creek below Wolford Mountain Reservoir. Muddy Creek generally experiences earlier runoff peaks and lower unit runoff compared with the Williams Fork, Blue and Eagle River basins. Average annual precipitation at Kremmling is approximately 12 inches. but exceeds 25 inches near the headwaters (WRCC 2005). Mean daily historical



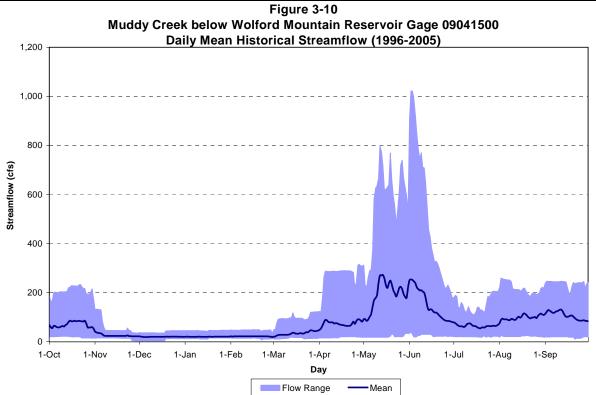


streamflows and the range of historical daily streamflows are shown in Figure 3-10 for the Muddy Creek.

The following table lists the CWCB minimum instream flow rights on Muddy Creek from the outlet of Wolford Mountain Reservoir to the headgate of Deberard Ditch, which were decreed in 1998. In addition, Wolford Mountain Reservoir must bypass 20 cfs or inflow, whichever is less at all times as a permit condition.

| Muddy Creek CWCB Minimum Instream Flow<br>Rights below Wolford Mountain Reservoir |     |                    |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-----|--------------------|--|--|--|--|--|--|--|--|--|--|
| Reach   Flow (cfs)   Period                                                       |     |                    |  |  |  |  |  |  |  |  |  |  |
| Wolford                                                                           | 20  | July 15 to April 3 |  |  |  |  |  |  |  |  |  |  |
| Mountain                                                                          | 70  | May 1 to May 14    |  |  |  |  |  |  |  |  |  |  |
| Reservoir to                                                                      | 105 | May 15 to June 30  |  |  |  |  |  |  |  |  |  |  |
| Deberard Ditch                                                                    | 70  | July 1 to July 14  |  |  |  |  |  |  |  |  |  |  |

### Historical Reservoir Operations and Contents


Wolford Mountain Reservoir

Wolford Mountain Reservoir is a 65,985 AF reservoir located on Muddy Creek

approximately 12 miles upstream of the Colorado River confluence. The reservoir, which was completed in 1995, is jointly owned and operated by the River District and Denver Water. Under the Amended Lease Agreement between Denver Water and the River District, which is dated July 21, 1992, Denver Water acquired the ownership of 40% of the capacity of the reservoir and water right.

Wolford Mountain Reservoir operations reflect permit requirements as well as a history of agreements between Denver Water and the River District, and the negotiated settlement of Case 91CW252, in which the two parties applied for substitution and exchange rights to allow substitution and exchange rights to allow Denver Water to substitute water stored in Wolford Mountain Reservoir for water otherwise storable in Green Mountain Reservoir. Releases from Wolford Mountain Reservoir are made in substitution for releases from Green Mountain Reservoir in years that Green Mountain Reservoir does





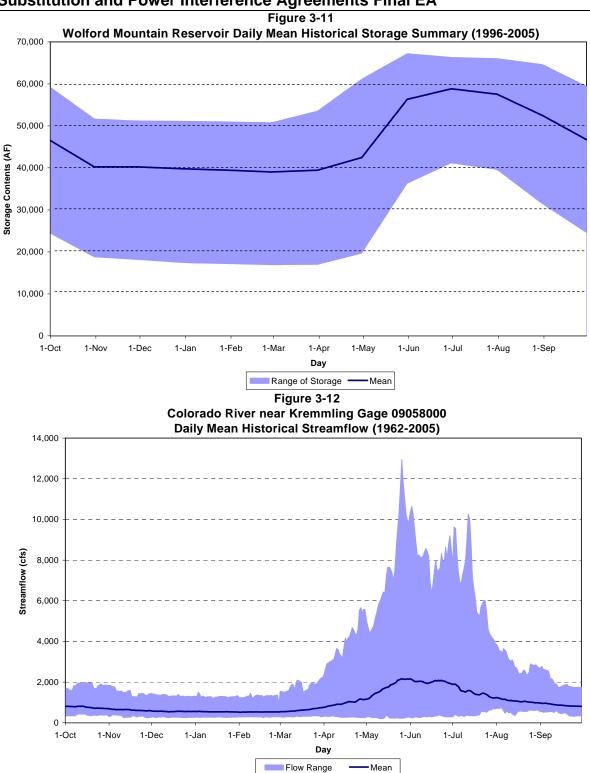
not fill and Denver Water has a substitution obligation. In addition to Denver Water's operations, Wolford Mountain Reservoir is operated by the River District to meet endangered Colorado River fish flows and other West Slope water uses. Mean daily historical storage contents for Wolford Mountain Reservoir are shown in Figure 3-11. Daily contents were interpolated based on historical end-of-month contents.

#### 3.3.1.4 Colorado River Basin

#### **Historical Streamflow**

The affected river segment of the Colorado River extends from the confluence with the Williams Fork River downstream to the confluence with the Eagle River, as shown in Figure 3-1. Major tributaries in this reach include the Williams Fork River, Troublesome Creek, Muddy Creek, Blue River, and Eagle River.

The Azure Settlement Agreement dated June 23, 1980 established instream flow requirements on the reach of the Colorado


River downstream of the Windy Gap diversion to the confluence with the Blue River. These instream flow requirements are as follows:

- From the Windy Gap diversion point to the confluence with the Williams Fork River, 90 cfs;
- From the confluence with the Williams Fork River to the confluence with Troublesome Creek, 135 cfs; and
- From the confluence with Troublesome Creek to the confluence with the Blue River, 150 cfs.

The instream flow requirements that pertain to this Study Area extend from the confluence with the Williams Fork River downstream to the confluence with the Blue River.

Mean daily historical streamflows and the range of historical daily streamflows are shown in Figure 3-12 for the Colorado River near Kremmling gage (09058000)





### Wild and Scenic Rivers Designation

As discussed under Section 3.3.1.1 for the Blue River, three segments of the Colorado River located between Windy Gap and the mouth of Gore Canyon, have been preliminarily classified as recreational for purpose of being deemed eligible for Wild and Scenic River status. These segments and their associated ORVs include:



- Colorado River Segment 3 (Byers Canyon to Mouth of Gore Canyon) recreational fishing, recreational scenic driving, wildlife (bald eagle and river otter).
- Colorado River Segment 4 (Gore Canyon) - scenic, recreational fishing, recreational floatboating, recreational scenic driving, geological, wildlife (bald eagle and river otter), historic.
- Colorado River Segment 5 (Pumphouse to State Bridge) - scenic, recreational fishing, recreational floatboating, recreational scenic driving, geological, wildlife (bald eagle and river otter), historic, paleontological (BLM 2007).

#### 3.3.1.5 Eagle River Basin

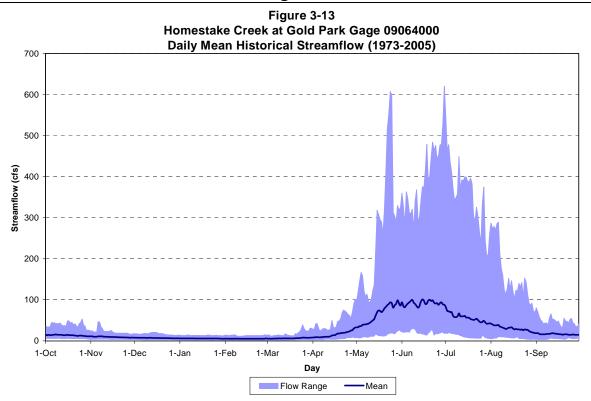
#### **Historical Streamflow**

The potentially affected river segments in the Eagle River basin include Homestake Creek downstream of Springs Utilities' Homestake Project to the confluence with the Eagle River and the Eagle River from the confluence of Homestake Creek to the confluence with the Colorado River, as shown in Figure 3-1. The Eagle River flows generally northwest to the confluence with Gore Creek and then east to the confluence with the Colorado River near the Town of Dotsero. The Eagle River basin is bounded by the Blue River basin to the north and east and the Roaring Fork River basin to the south and west. The total drainage area of the basin is approximately 944 square miles at the USGS gage 09070000 Eagle River below Gypsum. Precipitation varies with elevation across the Eagle River basin, ranging from 11 inches near the Colorado River confluence to in excess of 25 inches on the high ridges at the southern end of the basin (WRCC 2005).

The following table lists the CWCB minimum instream flow rights on the Eagle River below Homestake Creek. These rights were decreed in 1978 and 1980.

In addition to the CWCB instream flow rights listed above, the Homestake Project must bypass water such that 24 cfs or inflow, whichever is less, is met at the Gold Park gage on Homestake Creek as a permit condition.

Mean daily historical streamflows and the range of historical daily streamflows are shown in Figure 3-13 for the Homestake Creek at Gold Park gage (09064000).


## Historical Reservoir Operations and Contents

#### Homestake Reservoir

Springs Utilities' and Aurora's Homestake Project is a transmountain diversion project that diverts water from the East Fork and

| Eagle River CWCB Minimum Instream Flow Rights below the Confluence with Homestake Creek |            |                       |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------|-----------------------|--|--|--|--|--|--|--|--|--|
| Reach                                                                                   | Flow (cfs) | Period                |  |  |  |  |  |  |  |  |  |
| Confluence with Homestake Creek to confluence with Cross Creek                          | 11         | October through April |  |  |  |  |  |  |  |  |  |
| Confidence with Homestake Creek to confidence with Closs Creek                          | 25         | May through September |  |  |  |  |  |  |  |  |  |
| Confluence with Cross Creek to confluence with Gore Creek                               | 2          | October through April |  |  |  |  |  |  |  |  |  |
| Confidence with cross creek to confidence with Gore creek                               | 50         | May through September |  |  |  |  |  |  |  |  |  |
| Confluence with Gore Creek to confluence with Lake Creek                                | 3          | October through April |  |  |  |  |  |  |  |  |  |
| Confidence with Obje Creek to confidence with Lake Creek                                | 85         | May through September |  |  |  |  |  |  |  |  |  |
| Confluence with Lake Creek to confluence with Brush Creek                               | 4          | October through April |  |  |  |  |  |  |  |  |  |
| Confidence with Lake Creek to confidence with Brush Creek                               | 110        | May through September |  |  |  |  |  |  |  |  |  |
| Confluence with Brush Creek to confluence with Colorado River                           | 5          | October through April |  |  |  |  |  |  |  |  |  |
| Confidence with Brush Creek to confidence with Colorado River                           | 130        | May through September |  |  |  |  |  |  |  |  |  |

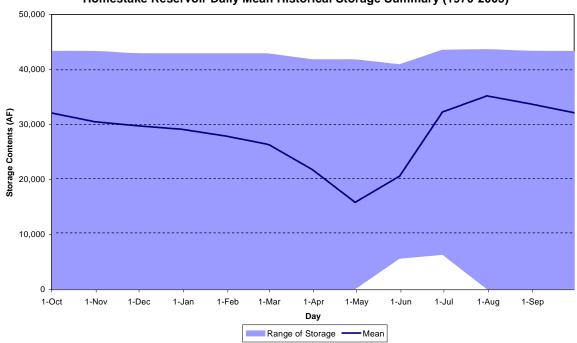




Middle Fork of Homestake Creek, French Creek, Fancy Creek, Missouri Creek and Sopris Creek for storage in Homestake Reservoir and delivery through Homestake Tunnel to Turquoise Lake, which is located in the Arkansas River Basin. Water delivered to the east slope is used for municipal purposes by Springs Utilities and the City of Aurora. Annual diversions through Homestake Tunnel averaged approximately 23,970 AF from 1967 through 2007 (Springs Utilities 2008).

Homestake Reservoir is a 43,539 AF reservoir located on the Middle Fork of Homestake Creek, which is a tributary to the Eagle River. The reservoir was completed in 1966 and is equally owned and operated by Springs Utilities and the City of Aurora. Homestake Reservoir is the primary West Slope storage facility for the Homestake Project. Water stored in Homestake Reservoir during runoff is typically released in March and April and in summer months to a lesser degree for delivery through Homestake Tunnel to Lake Fork Creek upstream of Turquoise Reservoir. Mean daily historical storage contents and the range of contents for Homestake Reservoir are shown in Figure 3-14. Daily contents were interpolated based on historical end-ofmonth contents.

#### 3.3.1.6 South Platte River Basin


#### **Historical Streamflow**

The potentially affected river segments in the South Platte River basin include the Middle Fork South Platte River from Montgomery Reservoir to the confluence with the South Fork South Platte River and the South Platte River from the confluence with the Middle Fork and South Forks of the South Platte River to Elevenmile Canyon Reservoir, as shown in Figure 3-1.

The headwaters of the South Platte River lie in the western perimeter of Colorado's South Park on the east side of the Mosquito Range. Although the western peaks receive

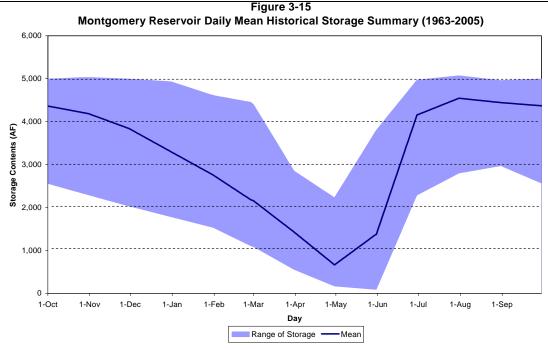


Figure 3-14 Homestake Reservoir Daily Mean Historical Storage Summary (1970-2005)



over 30 inches of precipitation annually, normal precipitation at the Town of Hartsel near Elevenmile Canyon Reservoir is approximately 11 inches. Three major streams flow generally southeast across the plain of South Park. From north to south they are Tarryall Creek, Middle Fork South Platte River, and South Fork South Platte River. Three miles east of the Town of Hartsel, the Middle Fork joins the South Fork to form the South Platte River.

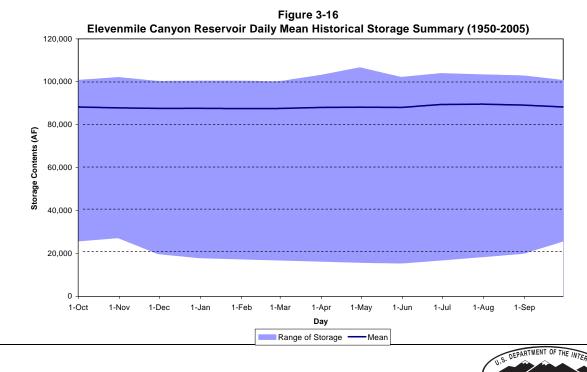
The following table lists the CWCB minimum instream flow rights on the Middle Fork South Platte River downstream of Montgomery Reservoir. These rights were decreed in 1978 and 1980.


#### Montgomery Reservoir

reservoir located on the Middle Fork South Platte River, which is a headwaters tributary to the South Platte River. The reservoir is owned by Spring Utilities and is used to store flows diverted from the Middle Fork South Platte River and to regulate water supplies from the Blue River basin that are delivered through the Hoosier Tunnel. Water is only occasionally diverted from the Middle Fork South Platte River because of the reservoir's relatively junior water right. From Montgomery Reservoir, water is conveyed through the Blue River Pipeline to Springs Utilities' North Slope reservoirs. Mean daily historical storage contents and the range of contents for Montgomery Reservoir are shown in Figure 3-15. Daily contents were interpolated based on historical end-of-month contents.

Montgomery Reservoir is a 5,088 AF

| Middle Fork South Platte River CWCB Minimum Instream Flow Rights below Montgomery Reservoir |            |                       |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------|-----------------------|--|--|--|--|--|--|--|--|--|
| Reach                                                                                       | Flow (cfs) | Period                |  |  |  |  |  |  |  |  |  |
| Montgomery Reservoir to confluence with Buckskin Creek                                      | 4          | Year round            |  |  |  |  |  |  |  |  |  |
| Confluence with Buckskin Creek                                                              | 6          | October through April |  |  |  |  |  |  |  |  |  |
| to confluence with Sacramento Creek                                                         | 12         | May through September |  |  |  |  |  |  |  |  |  |
| Confluence with Sacramento Creek                                                            | 8          | October through April |  |  |  |  |  |  |  |  |  |
| to confluence with South Fork South Platte River                                            | 16         | May through September |  |  |  |  |  |  |  |  |  |






#### Elevenmile Canyon Reservoir

Elevenmile Canyon Reservoir is a 98,000 AF reservoir located on the South Platte River at the eastern edge of South Park. The reservoir, which was completed in 1932, is owned and operated by Denver Water. Elevenmile Canyon Reservoir is operated for long-term drought storage and typically remains full during most years. During a drought, water is released from the reservoir to meet Denver Water's demands. The reservoir may require multiple seasons to fill after being drawn down because of the reservoir's relatively junior water rights. Mean daily historical storage contents and the range of contents for Elevenmile Canyon Reservoir are shown in Figure 3-16. Daily contents were interpolated based on historical end-of-month contents.

SUREAU OF RECLAMATION



#### 3.3.1.7 Grand County Stream Management Plan

Grand County is currently involved in an ongoing effort to develop a Stream Management Plan (SMP) for the County. Phase 1 of the SMP was completed in the spring of 2007 and included an inventory and review of existing data and information for streams within the County. Phase 2 of the SMP, Grand County's Stream Management Plan, Phase 2, Environmental and Water Users Flow Recommendations, which was completed in April 2008, includes recommendations of environmental stream flows and flows to support nonconsumptive water uses. The stream reaches evaluated in the SMP that overlap with the Study Area for this EA are listed below.

- Reach WR: Williams Fork River below Williams Fork Reservoir to the Colorado River
- Reach CR5: Colorado River below Williams Fork River to the KB Ditch
- Reach CR6: Colorado River below KB Ditch to the Blue River confluence
- Reach CR7: Colorado River below Blue River confluence to Grand-Eagle County Line
- Reach MC2: Muddy Creek below Wolford Mountain Reservoir to the Colorado River
- Reach BR: Blue River downstream of Green Mountain Reservoir

Phase 2 of the SMP defined environmental flows as flows that were determined to best maintain the ecological needs of the stream in relation to its fisheries. For the Colorado River, the preferred range for summer environmental flows is 250 to 450 cfs below the confluence with the Williams Fork River. As major tributaries (Williams Fork River, 40 to 140 cfs; Muddy Creek, 60 to 90 cfs; Blue River, 200 to 250 cfs) enter the Colorado River, the preferred range for summer environmental flows increases to 600 to 1000 cfs (Grand County 2008).

Flow recommendations for water users were defined as preferred flow regimes for irrigators, municipalities and industry, and recreation use.

An independent review of the SMP flow recommendations has not been conducted, and the recommendations are currently being evaluated by basin stakeholders as to their validity and applicability, however, they were recognized in the analysis of environmental consequences.

#### 3.3.2 Environmental Consequences

The effects on streamflows and reservoir contents from the Proposed Action and No Action alternatives were determined using hydrologic modeling. The State's CDSS Model was used to simulate streamflows and reservoir operations for the No Action and Proposed Action alternatives. The CDSS Model is a surface water allocation model of the Upper Colorado River Basin. A description of the CDSS Model including information on the study period, network configuration, water rights, diversions, demands, and operational rights is provided in the technical memorandum. Model Selection and Parameters (ERC 2008), and the reports, Upper Colorado River Basin Information (CWCB 2007a) and Upper Colorado River Basin Water Resources Planning Model User's Manual (CWCB 2007b). Pertinent modeling assumptions and variables for the No Action and Proposed Action alternatives are described in Chapter 2, Sections 2.3 and 2.4.

The study period selected extends 56 years from 1950 through 2005. This time frame



was evaluated because it includes a variety of hydrologic conditions. The selected study period contains a balance of dry years (1954, 1966, 1977, 1981, and 2002), wet years (1957, 1983, 1984, 1995, and 1996), and average years. Of particular concern for this EA was the inclusion of several dry years, since hydrologic effects associated with the Proposed Action would occur primarily in substitution years, which generally correspond with dry years. Starting the model a few years prior to the mid 1950's drought period minimizes the influence of initial conditions on model results for those years. The study period ends in 2005 because the CDSS Model data sets currently available extend through 2005. A monthly time step was considered adequate for the purposes of this EA based on the magnitude and timing of hydrologic effects anticipated under the Proposed Action. As discussed in the following sections, differences in the timing of substitution releases within a month between the No Action and Proposed Action alternatives are not likely, in which case a more refined time step was not warranted. In addition, flow changes under the Proposed Action would occur primarily in dry years in the fall (August and September) when there is typically less variability in flows over the month since runoff is over and flows are generally lower. Potential differences in hydrologic effects (percentage change in flows, reservoir contents, etc.) estimated on a monthly basis versus daily basis are not expected to be so great as to warrant a daily model.

While the majority of the Study Area for this EA is located in the upper Colorado River basin, a small portion is located in the upper South Platte River basin, including Springs Utilities' Montgomery Reservoir, Denver Water's Elevenmile Canyon Reservoir and the Middle Fork South Platte River. The CDSS Model does not include the South Platte River basin; therefore, potential hydrologic effects in that portion of the Study Area were based on an assessment of historical end-of-month contents and releases for Montgomery Reservoir provided by Springs Utilities and data provided by Denver Water from their Platte and Colorado Simulation Model (PACSM) for Elevenmile Canyon Reservoir.

Direct and indirect effects were determined based on the difference between simulated conditions under the Proposed Action and No Action alternatives. Simulated flow and reservoir content data at key locations in the Study Area for the entire study period is presented in Appendix B for the No Action and Proposed Action alternatives. The hydrologic data presented in Tables 3-2 through 3-19 consists of simulated maximum monthly streamflow and reservoir end-of-month content increases and decreases and average monthly streamflows and reservoir end-of-month contents for the five driest years and all substitution years for the Proposed Action compared with the No Action alternative. Total natural flow from April through September at the USGS gage Colorado River near Kremmling (#09058000) was ranked from low to high to define the five driest in the 56-year study period because that gage is centrally located within the West Slope Study Area. The five driest years of the study period are 1954, 1966, 1977, 2002, and 2004.

#### 3.3.2.1 No Action Alternative

Under the No Action alternative, Springs Utilities would continue to operate according to the Blue River Decree during substitution years. Therefore, river flows and reservoir contents would continue to fluctuate as they have historically as a result of Springs Utilities substitution operations.



This alternative is expected to have no direct, indirect or cumulative impacts on streamflows or reservoirs.

#### 3.3.2.2 Proposed Action

The impacts of the Proposed Action are evaluated as compared to the No Action alternative. Therefore, in the discussion of the impacts to follow, unless otherwise noted, a "decrease" in a quantity (i.e. flow, storage amount, etc.) means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an "increase" in a quantity means that the quantity for the Proposed Action is greater than the comparable quantity for the No Action alternative.

#### **Substitution Operations**

The majority of hydrologic changes under the Proposed Action would occur in substitution years. Model results indicate there would be 13 substitution years during the 56-year study period with total substitution obligations ranging from 139 AF to 4,318 AF. Substitution years would include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. All of these years are within the driest 30 percent of years in the study period. There is no substitution obligation in years that Green Mountain Reservoir fills, which is approximately 80% of the time during the 56-year study period.

There would be no change in Springs Utilities *total* substitution obligation between the No Action and Proposed Action alternatives in substitution years because there would be no difference in the deficit at Green Mountain Reservoir in those years. In addition, Springs Utilities would divert the same amount of water under the Proposed Action from the Blue River at their Continental-Hoosier System diversion points. There would be no increase in Springs Utilities diversions from the West Slope to the East Slope through the Hoosier or Homestake Tunnels under the Proposed Action. In fact, Springs Utilities diversions to the East Slope would decrease in nonsubstitution years because up to 250 AF in Upper Blue Reservoir would be released to West Slope users in the Blue River basin, which would not occur under the No Action alternative. While Springs Utilities' total substitution obligation would not change under the Proposed Action, the timing and sources of water used for substitution payback would change.

In years the substitution obligation is less than 2,100 AF and the total contents in Upper Blue Reservoir are sufficient to fully payback the substitution obligation, there would be no difference in the location or amount of substitution payback under the Proposed Action. There may be slight differences in the timing of substitution releases under the Proposed Action since releases from Upper Blue Reservoir would be coordinated to provide environmental benefits in the late summer and early fall per the terms and conditions of the 2003 MOA. Since substitution releases under the No Action alternative typically occur in the late summer and early fall, changes in the timing of releases under the Proposed Action are expected to be small. In years the obligation is less than 2,100 AF, Springs Utilities would release water from their Upper Blue Reservoir to Denver Water's Dillon Reservoir under both the No Action and Proposed Action alternatives. In return, Springs Utilities' entire substitution obligation would be paid back by Denver Water with releases from Williams Fork Reservoir and/or Dillon Reservoir.

The biggest difference in the payback of the substitution obligation under the Proposed Action would occur when the substitution



obligation is greater than 2,100 AF. The substitution bill is greater than 2,100 AF in approximately seven of the substitution years during the 56-year study period. In those years, contents in Upper Blue Reservoir would not be sufficient to fully pack back the substitution obligation. Therefore, under the Proposed Action more water would be released from Springs Utilities' accounts in Wolford Mountain and Homestake Reservoirs while Denver Water's substitution releases for Springs Utilities from either Dillon Reservoir and/or Williams Fork Reservoir would decrease.

Table 3-1 shows substitution releases from Upper Blue Reservoir under the No Action and Proposed Action alternatives. Monthly substitution releases from Upper Blue Reservoir would decrease by a maximum of 252 AF. Monthly substitution releases from Upper Blue Reservoir would decrease by 153 AF on average and 248 AF in the driest years. Under the Proposed Action, substitution releases would decrease by up to 250 AF in August because that amount of water must be reserved in Upper Blue Reservoir for West Slope users in the Blue River basin each year. Water for these users would typically be released in November under the Proposed Action as opposed to August for substitution payback under the No Action alternative. When contents in Upper Blue Reservoir are sufficient to fully payback the substitution obligation and release 250 AF for West Slope users in the Blue River Basin, there would be no difference in the substitution release from Upper Blue Reservoir between the alternatives. Decreases in substitution releases from Upper Blue Reservoir would occur in 8 years out of the 56-year study period.

Under the Proposed Action, releases from Springs Utilities' account in Wolford Mountain Reservoir would occur in 7 years out of the 56-year study period and range up to 1,750 AF under the Proposed Action, as shown in Table 3-1. Monthly substitution releases would be 340 on average and 426 AF in the driest years. Under the No Action alternative, no substitution releases from Wolford Mountain Reservoir on behalf of Springs Utilities would be made from Denver Water's account. Substitution releases for Springs Utilities would be allocated among the releases from Denver Water's Williams Fork and/or Dillon Reservoirs

Under the Proposed Action, releases from Springs Utilities' account in Homestake Reservoir would occur in only 1 year out of the 56-year study period in the amount of 469 AF, as shown in Table 3-1. Under the No Action alternative, substitution releases would not be made from Springs Utilities' Homestake Reservoir account.

Table 3-1 shows Denver Water's substitution releases for Springs Utilities under the No Action and Proposed Action alternatives. Denver Water's monthly substitution release for Springs Utilities would decrease by a maximum of 2,220 AF. Monthly substitution releases for Springs Utilities would decrease by 374 AF on average and 424 AF in the driest years. Denver Water's substitution releases for Springs Utilities would decrease in 7 years out of the 56-year study period. Under the Proposed Action, Springs Utilities would release water from their accounts in Wolford Mountain and Homestake Reservoirs to payback their substitution obligation in excess of 2,100 AF, therefore, Denver Water's substitution release from either Williams Fork Reservoir and/or Dillon Reservoir for Springs Utilities would decrease.



|                                                                               | Modeled Differences Between No Action and Proposed Action Alternatives (AF) |                               |            |              |                        |            |              |                          |            |              |                                                     |            |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|------------|--------------|------------------------|------------|--------------|--------------------------|------------|--------------|-----------------------------------------------------|------------|--|--|
|                                                                               | Ma                                                                          | Maximum Decrease<br>in August |            |              | aximum Inc<br>in Augus |            | D            | ry Year Ave<br>in August |            | Subst        | Substitution Year Average<br>in August <sup>1</sup> |            |  |  |
| Springs Utilities<br>Substitution<br>Obligation                               | No<br>Action                                                                | Proposed<br>Action            | Difference | No<br>Action | Proposed<br>Action     | Difference | No<br>Action | Proposed<br>Action       | Difference | No<br>Action | Proposed<br>Action                                  | Difference |  |  |
| Total Substitution<br>Obligation                                              | 4319.0                                                                      | 4318.0                        | -1.0       | 2759.0       | 2767.0                 | 8.0        | 2424.4       | 2427.4                   | 3.0        | 1830.4       | 1832                                                | 1.6        |  |  |
| Upper Blue<br>Reservoir Release                                               | 848.0                                                                       | 596.0                         | -252.0     | 724.0        | 726.0                  | 2.0        | 1379         | 1131.2                   | -247.8     | 1113.1       | 960.2                                               | -152.9     |  |  |
| Wolford<br>Mountain<br>Reservoir Release<br>from Springs<br>Utilities Account |                                                                             |                               | 0.0        | 0.0          | 1750.0                 | 1750.0     | 0            | 426                      | 426.4      | 0            | 340                                                 | 339.8      |  |  |
| Homestake<br>Reservoir Release                                                |                                                                             |                               | 0.0        | 0.0          | 469.0                  | 469.0      | 0.0          | 0.0                      | 0.0        | 0.0          | 36.1                                                | 36.1       |  |  |
| Denver Water<br>Substitution<br>Release for<br>Springs Utilities <sup>2</sup> | 4320.0                                                                      | 2100.0                        | -2220.0    | 724.0        | 726.0                  | 2.0        | 2424.8       | 2001.0                   | -423.8     | 1830.5       | 1456.3                                              | -374.2     |  |  |

# Table 3-1Springs Utilities Substitution SummaryModeled Differences Between No Action and Proposed Action Alternatives (AF)

<sup>1</sup>Substitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004.

<sup>2</sup> Denver Water's substitution release for Springs Utilities includes the amount released from Upper Blue Reservoir to Dillon Reservoir.

<sup>3</sup> The dry year average is the average of the five driest years in the study period, which include 1954, 1966, 1977, 2002, and 2004.



The decrease in Denver Water's substitution release from either Williams Fork or Wolford Mountain Reservoirs depends on Denver Water's total substitution bill. In a substitution year, Denver Water reserves the first 1,000 AF of its substitution obligation in Dillon Reservoir. This water is available to augment releases from Dillon Reservoir if necessary to meet the bypass flow requirement of 50 cfs. This water would be the last water released for substitution payback and is generally not needed since inflow to Dillon Reservoir is almost always greater than 50 cfs. In the model, this water is released from Dillon Reservoir to the river at the end of March to fully payback Denver Water's substitution obligation. However, under actual operations this water reverts to Denver Water ownership. If this water is not released to the river, flows below Dillon Reservoir would be slightly lower in March than estimated in the model in substitution years and contents in Dillon Reservoir slightly higher until the reservoir fills. The difference between actual and modeled operations of the 1.000 AF in Dillon Reservoir would not affect Springs Utilities' substitution obligation or the manner in which their substitution payback is made. Because Green Mountain Reservoir generally releases through the winter months to meet storage targets, the release of 1,000 AF from Dillon Reservoir in March would also not affect modeled storage contents in Green Mountain Reservoir. After the 1,000 AF is reserved in Dillon Reservoir, substitution releases are alternated between Wolford Mountain and Williams Fork reservoirs, with the first 5,000 AF released from Wolford Mountain Reservoir. Williams Fork Reservoir provides the next 10,000 AF of substitution water, in Wolford Mountain Reservoir the next increment up to an annual maximum of 26,000 AF in total from Wolford Mountain Reservoir (Denver

Water 2003). The next 25,000 AF is released from Williams Fork Reservoir and any remaining obligation is met with releases from Dillon Reservoir. For modeling purposes, all releases from Denver Waters' facilities (i.e., Denver Water's substitution obligation plus Springs Utilities' obligation) are aggregated and released according to the schedule of releases described above. However, for the No Action alternative, Springs Utilities' releases are allocated among releases from Dillon Reservoir and/or Williams Fork Reservoir to be consistent with the Blue River Decree.

In years that the last increment of Denver Water's substitution obligation is released from Wolford Mountain Reservoir, there would be no change in the total substitution release from Wolford Mountain and Williams Fork Reservoirs under the Proposed Action. In those years, the total amount released from Wolford Mountain Reservoir for substitution payback would be the same; however, the releases would be allocated from different accounts in that reservoir and from Williams Fork Reservoir. Under the No Action alternative, water would be released from Denver Water's Williams Fork Reservoir for Springs Utilities and a larger proportion of Denver Waters' release would be allocated to Wolford Mountain Reservoir, whereas, under the Proposed Action, water would be released from Springs Utilities' Wolford Mountain Reservoir account. The only exception to this would be when Springs Utilities account in Wolford Mountain is not sufficient to fully payback their obligation and an additional substitution release is needed from Homestake Reservoir.

In years that the last increment of Denver Water's substitution obligation is released from Williams Fork Reservoir, substitution



releases from Wolford Mountain Reservoir would increase, while substitution releases from Williams Fork Reservoir would decrease by a commensurate amount. The total amount released from these reservoirs would be the same under both alternatives unless Springs Utilities' account in Wolford Mountain is not sufficient to fully payback their obligation and an additional substitution release is needed from Homestake Reservoir.

#### **Blue River Basin**

#### Blue River

Flow changes along the Blue River are shown in Tables 3-2 through 3-4. Refer to

Table 3-2 for a summary of monthly average changes in flows in the Blue River downstream of the Continental-Hoosier System and upstream of Dillon Reservoir. Under the Proposed Action, flows would increase in November due to the additional release from Upper Blue Reservoir to West Slope users in the Blue River basin. In one September out of the 56-year study period, flows under the Proposed Action would increase by 4.2 cfs because 250 AF less would be stored in Upper Blue Reservoir that month. This type of flow change would occur infrequently because there is typically little to no water available for diversion to storage in Upper Blue Reservoir that late in

| Modeled D                                  | Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |           |                 |          |          |           |       |      |       |      |       |       |      |  |
|--------------------------------------------|--------------------------------------------------------------------------------------|-----------|-----------------|----------|----------|-----------|-------|------|-------|------|-------|-------|------|--|
|                                            | Oct                                                                                  | Nov       | Dec             | Jan      | Feb      | Mar       | Apr   | May  | Jun   | Jul  | Aug   | Sep   | Avg  |  |
| Maximum Monthly Flo                        | Maximum Monthly Flow Decrease <sup>1</sup>                                           |           |                 |          |          |           |       |      |       |      |       |       |      |  |
| No Action Flow                             | N/A                                                                                  | N/A       | N/A             | N/A      | N/A      | N/A       | N/A   | N/A  | 27.8  | N/A  | 51.0  | N/A   |      |  |
| Proposed Action Flow                       | N/A                                                                                  | N/A       | N/A             | N/A      | N/A      | N/A       | N/A   | N/A  | 27.6  | N/A  | 46.5  | N/A   |      |  |
| Flow Change                                | 0.0                                                                                  | 0.0       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0   | 0.0  | -0.2  | 0.0  | -4.6  | 0.0   |      |  |
| Percent Change                             | 0.0%                                                                                 | 0.0%      | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%  | 0.0% | -0.8% | 0.0% | -8.9% | 0.0%  |      |  |
| Maximum Monthly Flow Increase <sup>1</sup> |                                                                                      |           |                 |          |          |           |       |      |       |      |       |       |      |  |
| No Action Flow                             | N/A                                                                                  | 19.3      | N/A             | N/A      | N/A      | N/A       | N/A   | N/A  | N/A   | N/A  | 63.5  | 19.6  |      |  |
| Proposed Action Flow                       | N/A                                                                                  | 23.5      | N/A             | N/A      | N/A      | N/A       | N/A   | N/A  | N/A   | N/A  | 63.5  | 23.8  |      |  |
| Flow Change                                | 0.0                                                                                  | 4.2       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0   | 0.0  | 0.0   | 0.0  | 0.0   | 4.2   |      |  |
| Percent Change                             | 0.0%                                                                                 | 21.8%     | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%  | 0.0% | 0.0%  | 0.0% | 0.1%  | 21.4% |      |  |
| Dry Year Monthly Ave                       | erage Fl                                                                             | ow (Aver  | age of 1        | 954, 190 | 66, 1977 | , 2002, 2 | 2004) |      |       |      |       |       |      |  |
| No Action Flow                             | 25.3                                                                                 | 16.7      | 14.6            | 12.3     | 11.9     | 11.5      | 19.8  | 35.6 | 28.7  | 31.4 | 49.2  | 21.2  | 23.2 |  |
| Proposed Action Flow                       | 25.3                                                                                 | 20.9      | 14.6            | 12.3     | 11.9     | 11.5      | 19.8  | 35.6 | 28.6  | 31.4 | 45.2  | 21.2  | 23.2 |  |
| Flow Change                                | 0.0                                                                                  | 4.2       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0   | 0.0  | 0.0   | 0.0  | -4.0  | 0.0   | 0.0  |  |
| Percent Change                             | 0.0%                                                                                 | 25.1%     | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%  | 0.0% | -0.2% | 0.0% | -8.2% | 0.0%  | 0.0% |  |
| Average Flow During S                      | Substitu                                                                             | tion Year | rs <sup>2</sup> |          |          |           |       |      |       |      |       |       |      |  |
| No Action Flow                             | 23.0                                                                                 | 16.9      | 14.7            | 12.2     | 11.4     | 11.2      | 20.4  | 46.0 | 49.8  | 43.1 | 56.6  | 28.4  | 27.8 |  |
| Proposed Action Flow                       | 23.0                                                                                 | 21.1      | 14.7            | 12.2     | 11.4     | 11.2      | 20.4  | 46.0 | 49.8  | 43.1 | 54.1  | 28.7  | 28.0 |  |
| Flow Change                                | 0.0                                                                                  | 4.2       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0   | 0.0  | 0.0   | 0.0  | -2.5  | 0.3   | 0.2  |  |
| Percent Change                             | 0.0%                                                                                 | 24.8%     | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%  | 0.0% | 0.0%  | 0.0% | -4.5% | 1.1%  | 0.6% |  |

Table 3-2Blue River below the Continental-Hoosier SystemModeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs)

<sup>1</sup>A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.



the year. Under the Proposed Action, flows would decrease in August of substitution years when the total substitution obligation is greater than the contents in Upper Blue Reservoir less 250 AF. This amount of water must be reserved in Upper Blue Reservoir for release later in the year.

Springs Utilities' Continental-Hoosier System diversions deplete the Blue River, therefore, these diversions affect the ability to meet the CWCB instream flow requirements above Dillon Reservoir, which are junior to Springs Utilities' water rights and the Blue River Decree. However, in order to ensure the Proposed Action protects

the natural environments in a manner consistent with the CWCB instream flow requirements above Dillon Reservoir, during substitution years, Springs Utilities would refrain from diverting to the extent necessary in order to maintain flows at the instream flow levels as described in Section 2.4. Therefore, there would be no impact on these instream flow requirements as a result of the Proposed Action. Compliance for this mitigation will be to maintain a flow of 5 cfs just upstream of Goose Pasture Tarn Reservoir. Flows at this location will be estimated based on the USGS gage 09046490 Blue River at Blue River, which is located just downstream of Goose Pasture

| Table 3-3                                                                            |
|--------------------------------------------------------------------------------------|
| Blue River below Dillon Reservoir at USGS Gage 09050700                              |
| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |

T-LL 2 2

|                                            | Oct                                        | Nov      | Dec              | Jan      | Feb      | Mar      | Apr   | May     | Jun     | Jul   | Aug   | Sep  | Avg   |  |
|--------------------------------------------|--------------------------------------------|----------|------------------|----------|----------|----------|-------|---------|---------|-------|-------|------|-------|--|
| Maximum Monthly Flo                        | Maximum Monthly Flow Decrease <sup>1</sup> |          |                  |          |          |          |       |         |         |       |       |      |       |  |
| No Action Flow                             | N/A                                        | N/A      | N/A              | N/A      | 52.9     | N/A      | N/A   | 225.6   | 121.1   | 390.8 | 454.7 | N/A  |       |  |
| Proposed Action Flow                       | N/A                                        | N/A      | N/A              | N/A      | 52.4     | N/A      | N/A   | 217.7   | 117.0   | 386.8 | 448.8 | N/A  |       |  |
| Flow Change                                | 0.0                                        | 0.0      | 0.0              | 0.0      | -0.5     | 0.0      | 0.0   | -7.8    | -4.1    | -3.9  | -5.9  | 0.0  |       |  |
| Percent Change                             | 0.0%                                       | 0.0%     | 0.0%             | 0.0%     | -1.0%    | 0.0%     | 0.0%  | -3.5%   | -3.4%   | -1.0% | -1.3% | 0.0% |       |  |
| Maximum Monthly Flow Increase <sup>1</sup> |                                            |          |                  |          |          |          |       |         |         |       |       |      |       |  |
| No Action Flow                             | N/A                                        | N/A      | N/A              | 51.9     | 68.2     | N/A      | N/A   | 1,061.1 | 1,711.1 | N/A   | 174.8 | N/A  |       |  |
| Proposed Action Flow                       | N/A                                        | N/A      | N/A              | 51.9     | 68.2     | N/A      | N/A   | 1,061.2 | 1,711.1 | N/A   | 174.8 | N/A  |       |  |
| Flow Change                                | 0.0                                        | 0.0      | 0.0              | 0.0      | 0.0      | 0.0      | 0.0   | 0.1     | 0.0     | 0.0   | 0.0   | 0.0  |       |  |
| Percent Change                             | 0.0%                                       | 0.0%     | 0.0%             | 0.0%     | 0.0%     | 0.0%     | 0.0%  | 0.0%    | 0.0%    | 0.0%  | 0.0%  | 0.0% |       |  |
| Dry Year Monthly Ave                       | erage Flo                                  | ow (Ave  | rage of i        | 1954, 19 | 66, 1977 | 7, 2002, | 2004) |         |         |       |       |      |       |  |
| No Action Flow                             | 73.0                                       | 66.8     | 58.5             | 58.0     | 60.0     | 60.3     | 50.0  | 50.0    | 71.9    | 185.3 | 151.6 | 59.8 | 78.8  |  |
| Proposed Action Flow                       | 73.0                                       | 66.8     | 58.5             | 58.0     | 60.0     | 60.3     | 50.0  | 50.0    | 71.9    | 185.3 | 150.5 | 59.8 | 78.7  |  |
| Flow Change                                | 0.0                                        | 0.0      | 0.0              | 0.0      | 0.0      | 0.0      | 0.0   | 0.0     | 0.0     | 0.0   | -1.2  | 0.0  | -0.1  |  |
| Percent Change                             | 0.0%                                       | 0.0%     | 0.0%             | 0.0%     | 0.0%     | 0.0%     | 0.0%  | 0.0%    | 0.0%    | 0.0%  | -0.8% | 0.0% | -0.1% |  |
| Average Flow During S                      | Substitu                                   | tion Yea | ars <sup>2</sup> |          |          |          |       |         |         |       |       |      |       |  |
| No Action Flow                             | 58.8                                       | 56.5     | 53.3             | 53.2     | 54.2     | 55.8     | 50.0  | 50.0    | 103.3   | 141.3 | 155.9 | 53.8 | 73.8  |  |
| Proposed Action Flow                       | 58.8                                       | 56.5     | 53.3             | 53.2     | 54.2     | 55.8     | 50.0  | 50.0    | 103.3   | 141.3 | 155.4 | 53.8 | 73.8  |  |
| Flow Change                                | 0.0                                        | 0.0      | 0.0              | 0.0      | 0.0      | 0.0      | 0.0   | 0.0     | 0.0     | 0.0   | -0.5  | 0.0  | 0.0   |  |
| Percent Change                             | 0.0%                                       | 0.0%     | 0.0%             | 0.0%     | 0.0%     | 0.0%     | 0.0%  | 0.0%    | 0.0%    | 0.0%  | -0.3% | 0.0% | -0.1% |  |
| 1 A decrease means that the                | . • .                                      | C (1 D   | 1                |          | 1 .1     | .1       |       |         | 37 4 .* |       |       | •    |       |  |

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.



Tarn Reservoir, plus diversions to storage at Goose Pasture Tarn.

Refer to Table 3-3 for a summary of monthly average changes in flows in the Blue River downstream of Dillon Reservoir. Changes in flow downstream of Dillon Reservoir would occur due to small differences in reservoir end-of-month contents when Dillon Reservoir fills and spills. These flow changes would occur due to the release of 250 AF from Upper Blue Reservoir for West Slope users in the Blue River basin under the Proposed Action.

Since this water would be used to extinction it would not be available for storage in Dillon Reservoir. Therefore, Dillon Reservoir contents would decrease by 250 AF in substitution years under the Proposed Action. Changes in Dillon Reservoir contents would also occur under the Proposed Action due to slight differences in the amount and timing of Denver Water's substitution payback from Dillon Reservoir. However, these changes in contents would be small and infrequent. Differences in Dillon Reservoir contents would carry forward from year to year, which would result in less water spilled in years when the reservoir fills.

Refer to Table 3-4 for a summary of monthly average changes in flows in the Blue River downstream of Green Mountain

| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |                                            |          |                  |          |           |         |       |       |         |         |       |       |       |  |
|--------------------------------------------------------------------------------------|--------------------------------------------|----------|------------------|----------|-----------|---------|-------|-------|---------|---------|-------|-------|-------|--|
|                                                                                      | Oct                                        | Nov      | Dec              | Jan      | Feb       | Mar     | Apr   | May   | Jun     | Jul     | Aug   | Sep   | Avg   |  |
| Maximum Monthly Flo                                                                  | Maximum Monthly Flow Decrease <sup>1</sup> |          |                  |          |           |         |       |       |         |         |       |       |       |  |
| No Action Flow                                                                       | 307.5                                      | 241.8    | 240.6            | 241.6    | 251.1     | 237.3   | N/A   | N/A   | 1,828.1 | 1,179.4 | 841.1 | 395.6 |       |  |
| Proposed Action Flow                                                                 | 306.1                                      | 241.1    | 240.0            | 240.9    | 250.4     | 236.6   | N/A   | N/A   | 1,820.0 | 1,175.4 | 836.4 | 394.5 |       |  |
| Flow Change                                                                          | -1.4                                       | -0.7     | 0.0              | -0.7     | -0.7      | -0.7    | 0.0   | 0.0   | -8.1    | -3.9    | -4.7  | -1.2  |       |  |
| Percent Change                                                                       | -0.5%                                      | -0.3%    | 0.0%             | -0.3%    | -0.3%     | -0.3%   | 0.0%  | 0.0%  | -0.4%   | -0.3%   | -0.6% | -0.3% |       |  |
| Maximum Monthly Flow Increase <sup>1</sup>                                           |                                            |          |                  |          |           |         |       |       |         |         |       |       |       |  |
| No Action Flow                                                                       | 241.8                                      | 185.2    | 166.5            | 162.5    | 169.4     | 191.7   | 276.2 | 580.8 | 1,935.7 | 2,329.6 | 612.9 | 229.5 |       |  |
| Proposed Action Flow                                                                 | 243.0                                      | 185.5    | 166.7            | 162.8    | 169.7     | 192.0   | 276.3 | 580.9 | 1,935.7 | 2,329.6 | 613.2 | 229.9 |       |  |
| Flow Change                                                                          | 1.2                                        | 0.3      | 0.3              | 0.3      | 0.3       | 0.3     | 0.0   | 0.1   | 0.0     | 0.0     | 0.3   | 0.4   |       |  |
| Percent Change                                                                       | 0.5%                                       | 0.2%     | 0.2%             | 0.2%     | 0.2%      | 0.1%    | 0.0%  | 0.0%  | 0.0%    | 0.0%    | 0.0%  | 0.2%  |       |  |
| Dry Year Monthly Ave                                                                 | erage Flo                                  | ow (Ave  | rage of 1        | 954, 190 | 56, 1977, | 2002, 2 | 004)  |       |         |         |       |       |       |  |
| No Action Flow                                                                       | 519.4                                      | 240.0    | 218.2            | 249.9    | 208.0     | 236.8   | 259.8 | 84.6  | 253.7   | 568.5   | 252.9 | 189.0 | 273.4 |  |
| Proposed Action Flow                                                                 | 519.4                                      | 240.0    | 218.3            | 249.9    | 208.0     | 236.8   | 259.8 | 84.6  | 253.7   | 568.5   | 252.4 | 188.9 | 273.4 |  |
| Flow Change                                                                          | 0.0                                        | 0.1      | 0.1              | 0.1      | 0.1       | 0.1     | 0.0   | 0.0   | 0.0     | 0.0     | -0.5  | -0.1  | 0.0   |  |
| Percent Change                                                                       | 0.0%                                       | 0.0%     | 0.0%             | 0.0%     | 0.0%      | 0.0%    | 0.0%  | 0.0%  | 0.0%    | 0.0%    | -0.2% | 0.0%  | 0.0%  |  |
| Average Flow During                                                                  | Substitu                                   | tion Yea | ars <sup>2</sup> |          |           |         |       |       |         |         |       |       |       |  |
| No Action Flow                                                                       | 444.5                                      | 217.4    | 204.7            | 207.7    | 198.4     | 214.2   | 216.6 | 82.1  | 204.4   | 544.6   | 348.5 | 236.6 | 260.0 |  |
| Proposed Action Flow                                                                 | 444.5                                      | 217.4    | 204.8            | 207.8    | 198.5     | 214.2   | 216.6 | 82.1  | 204.4   | 544.6   | 348.2 | 236.6 | 260.0 |  |
| Flow Change                                                                          | 0.0                                        | 0.0      | 0.0              | 0.0      | 0.0       | 0.0     | 0.0   | 0.0   | 0.0     | 0.0     | -0.3  | 0.0   | 0.0   |  |
| Percent Change                                                                       | 0.0%                                       | 0.0%     | 0.0%             | 0.0%     | 0.0%      | 0.0%    | 0.0%  | 0.0%  | 0.0%    | 0.0%    | -0.1% | 0.0%  | 0.0%  |  |

Table 3-4Blue River below Green Mountain ReservoirModeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs)

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Substitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.



Reservoir. The reduction in flows downstream of Dillon Reservoir would be translated downstream to the confluence

with the Colorado River. Reductions in flows downstream of Dillon Reservoir would decrease the inflow to Green Mountain Reservoir, and therefore, reduce the amount and possibly timing of spills at Green Mountain Reservoir. Small increases and decreases in flows downstream of Green Mountain Reservoir would also occur due to slight differences in the timing of HUP releases from Green Mountain Reservoir. While the total amount released would be the same under both the No Action and Proposed Action alternatives, the timing of these releases may be offset by a few months. These slight differences are likely a function of the reservoir storage targets and the sequence and priority of operating rules in the CDSS Model and may not occur under actual operations.

As discussed in Section 3.3.1.7, Phase 2 of the Grand County SMP identified environmental flows to support ecological needs in relation to fisheries for the reach below Green Mountain Reservoir. The preferred range for summer environmental flows is 200 to 250 cfs below Green Mountain Reservoir. As indicated in the Phase 2 report, flow records for the USGS gage station 09057500 below Green Mountain Reservoir, show the recommended summer environmental flow range is typically present and often exceeded within this reach. Flow reductions under the Proposed Action in this reach would be infrequent and small and not affect the ability to meet these recommendations.

Based on the magnitude and frequency of flow changes along the Blue River below Dillon and Green Mountain reservoirs, there would be little to no impact on potential future projects such as the Green Mountain Reservoir Pumpback Project or on the BLM's potential Wild and Scenic River designations in the Blue River basin.

In summary, flows in the Blue River downstream of the Continental-Hoosier System and upstream of Dillon Reservoir. would decrease by up to 4.6 cfs or 8.9% in August and increase by up to 4.2 cfs or 21.5% in November. Maximum flow increases and decreases at this location would be similar in the driest years and substitution years. Flows below Dillon Reservoir would decrease by up to 7.8 cfs or 3.5% in May. Flows below Green Mountain Reservoir, would decrease by up to 8.1 cfs or 0.4% in June and increase by up to 1.2 cfs or 0.5% in December. In the driest years and substitution years, monthly average flows would decrease by less than 1.2 cfs below Dillon and Green Mountain Reservoirs.

The changes in flows along the Blue River downstream of the Continental-Hoosier System, Dillon Reservoir and Green Mountain Reservoir under the Proposed Action would be well within the normal range of flows that have historically occurred at these locations, as shown in Figures 3-2, 3-3, and 3-4.

#### Upper Blue Reservoir

Refer to Table 3-5 for a summary of monthly average changes in contents in Upper Blue Reservoir. In summary, end-ofmonth contents in Upper Blue Reservoir would increase by up to 250 AF in August, September and October. Under the Proposed Action, Upper Blue Reservoir contents would increase because 250 AF must be reserved in Upper Blue Reservoir



| Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |           |            |                    |          |       |      |      |      |       |       |       |       |  |
|----------------------------------------------------------------------------------------|-----------|------------|--------------------|----------|-------|------|------|------|-------|-------|-------|-------|--|
|                                                                                        | Oct       | Nov        | Dec                | Jan      | Feb   | Mar  | Apr  | May  | Jun   | Jul   | Aug   | Sep   |  |
| <b>Maximum Monthly</b>                                                                 | Content   | Decrease   | e <sup>1</sup>     |          |       |      |      |      |       |       |       |       |  |
| No Action Content                                                                      | N/A       | N/A        | N/A                | N/A      | N/A   | N/A  | N/A  | N/A  | N/A   | N/A   | 319   | 2,090 |  |
| Proposed Action<br>Content                                                             | N/A       | N/A        | N/A                | N/A      | N/A   | N/A  | N/A  | N/A  | N/A   | N/A   | 318   | 2,087 |  |
| Content Change                                                                         | 0         | 0          | 0                  | 0        | 0     | 0    | 0    | 0    | 0     | 0     | -1    | -3    |  |
| Percent Change                                                                         | 0.0%      | 0.0%       | 0.0%               | 0.0%     | 0.0%  | 0.0% | 0.0% | 0.0% | 0.0%  | 0.0%  | -0.3% | -0.1% |  |
| Maximum Monthly                                                                        | Content   | Increase   | 1                  |          |       |      |      |      |       |       |       |       |  |
| No Action Content                                                                      | 0         | N/A        | N/A                | N/A      | N/A   | N/A  | N/A  | N/A  | 2,053 | 1,269 | 0     | 0     |  |
| Proposed Action<br>Content                                                             | 250       | N/A        | N/A                | N/A      | N/A   | N/A  | N/A  | N/A  | 2,066 | 1,281 | 250   | 250   |  |
| Content Change                                                                         | 250       | 0          | 0                  | 0        | 0     | 0    | 0    | 0    | 13    | 12    | 250   | 250   |  |
| Percent Change                                                                         | N/A       | 0.0%       | 0.0%               | 0.0%     | 0.0%  | 0.0% | 0.0% | 0.0% | 0.6%  | 0.9%  | N/A   | N/A   |  |
| Dry Year Content (A                                                                    | Average   | of 1954, 1 | 1966, 197          | 7, 2002, | 2004) |      |      |      |       |       |       |       |  |
| No Action Content                                                                      | 0         | 0          | 0                  | 0        | 0     | 0    | 18   | 432  | 1,500 | 1,379 | 0     | 0     |  |
| Proposed Action<br>Content                                                             | 250       | 0          | 0                  | 0        | 0     | 0    | 18   | 432  | 1,503 | 1,381 | 250   | 250   |  |
| Content Change                                                                         | 250       | 0          | 0                  | 0        | 0     | 0    | 0    | 0    | 3     | 2     | 250   | 250   |  |
| Percent Change                                                                         | N/A       | 0.0%       | 0.0%               | 0.0%     | 0.0%  | 0.0% | 0.0% | 0.0% | 0.2%  | 0.2%  | N/A   | N/A   |  |
| Average Content Du                                                                     | iring Sul | ostitution | Years <sup>2</sup> |          |       |      |      |      |       |       |       |       |  |
| No Action Content                                                                      | 0         | 0          | 0                  | 0        | 0     | 0    | 7    | 482  | 1,636 | 1,699 | 449   | 344   |  |
| Proposed Action<br>Content                                                             | 250       | 0          | 0                  | 0        | 0     | 0    | 7    | 482  | 1,637 | 1,700 | 622   | 497   |  |
| Content Change                                                                         | 250       | 0          | 0                  | 0        | 0     | 0    | 0    | 0    | 1     | 1     | 173   | 154   |  |
| Percent Change                                                                         | N/A       | 0.0%       | 0.0%               | 0.0%     | 0.0%  | 0.0% | 0.0% | 0.0% | 0.1%  | 0.1%  | 38.5% | N/A   |  |

#### Table 3-5 Upper Blue Reservoir Iodeled Differences in Content Between No Action and Proposed Action Alternatives (AF

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month. <sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.

for release in November for West Slope users in the Blue River basin. Under the No Action alternative, this water would be released earlier in the year for either substitution payback or delivery through Hoosier Tunnel. The same amount of water would be released from Upper Blue Reservoir under the Proposed Action; however, the timing of the release would change slightly. Since this water likely will be released later in the year under the Proposed Action, storage contents would be higher from August through October.

#### Dillon Reservoir

Refer to Table 3-6 for a summary of monthly average changes in contents in Dillon Reservoir. In summary, end-ofmonth contents in Dillon Reservoir would increase by up to 113 AF or 0.1% and decrease by up to 522 AF or 0.3%. In the driest years and substitution years, average end-of-month contents would decrease by



| Mode                       | Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |            |                    |                 |           |         |         |         |         |         |         |         |  |  |
|----------------------------|----------------------------------------------------------------------------------------|------------|--------------------|-----------------|-----------|---------|---------|---------|---------|---------|---------|---------|--|--|
|                            | Oct                                                                                    | Nov        | Dec                | Jan             | Feb       | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep     |  |  |
| Maximum Mon                | thly Con                                                                               | tent Dec   | rease <sup>1</sup> |                 |           |         |         |         |         |         |         |         |  |  |
| No Action<br>Content       | 134,664                                                                                | 130,949    | 126,819            | 124,275         | 120,406   | 115,275 | 112,363 | 135,890 | 202,413 | 235,097 | 155,891 | 142,785 |  |  |
| Proposed Action<br>Content | 134,144                                                                                | 130,429    | 126,299            | 123,754         | 119,913   | 114,783 | 111,871 | 135,400 | 201,925 | 234,610 | 155,369 | 142,264 |  |  |
| Content Change             | -520                                                                                   | -520       | 0                  | -521            | -493      | -492    | -492    | -490    | -488    | -487    | -522    | -521    |  |  |
| Percent Change             | -0.4%                                                                                  | -0.4%      | 0.0%               | -0.4%           | -0.4%     | -0.4%   | -0.4%   | -0.4%   | -0.2%   | -0.2%   | -0.3%   | -0.4%   |  |  |
| Maximum Mon                | Maximum Monthly Content Increase <sup>1</sup>                                          |            |                    |                 |           |         |         |         |         |         |         |         |  |  |
| No Action<br>Content       | 102,089                                                                                | 95,649     | 88,579             | 83,080          | 77,805    | 71,532  | 71,946  | 118,491 | 189,471 | 205,009 | 131,006 | 113,703 |  |  |
| Proposed Action<br>Content | 102,202                                                                                | 95,762     | 88,692             | 83,193          | 77,918    | 71,645  | 72,059  | 118,603 | 189,583 | 205,121 | 131,119 | 113,816 |  |  |
| Content Change             | 113                                                                                    | 113        | 113                | 113             | 113       | 113     | 113     | 112     | 112     | 112     | 113     | 113     |  |  |
| Percent Change             | 0.1%                                                                                   | 0.1%       | 0.1%               | 0.1%            | 0.1%      | 0.2%    | 0.2%    | 0.1%    | 0.1%    | 0.1%    | 0.1%    | 0.1%    |  |  |
| Dry Year Conte             | ent (Aver                                                                              | age of 19  | 954, 1966,         | 1977, 200       | )2, 2004) |         |         |         |         |         |         |         |  |  |
| No Action<br>Content       | 215,246                                                                                | 210,606    | 205,097            | 200,972         | 196,133   | 192,422 | 186,344 | 192,098 | 192,939 | 171,538 | 150,546 | 135,011 |  |  |
| Proposed Action<br>Content | 215,268                                                                                | 210,628    | 205,119            | 200,994         | 196,155   | 192,444 | 186,366 | 192,120 | 192,958 | 171,557 | 150,391 | 134,856 |  |  |
| Content Change             | 22                                                                                     | 22         | 22                 | 22              | 22        | 22      | 21      | 22      | 19      | 19      | -156    | -155    |  |  |
| Percent Change             | 0.0%                                                                                   | 0.0%       | 0.0%               | 0.0%            | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | -0.1%   | -0.1%   |  |  |
| Average Conter             | t During                                                                               | g Substiti | ution Yea          | rs <sup>2</sup> |           |         |         |         |         |         |         |         |  |  |
| No Action<br>Content       | 194,852                                                                                | 190,639    | 185,768            | 181,561         | 177,292   | 173,793 | 168,403 | 181,521 | 193,463 | 180,732 | 166,511 | 156,485 |  |  |
| Proposed Action<br>Content | 194,803                                                                                | 190,590    | 185,719            | 181,512         | 177,242   | 173,744 | 168,354 | 181,472 | 193,413 | 180,682 | 166,334 | 156,328 |  |  |
| Content Change             | -49                                                                                    | -49        | -49                | -49             | -49       | -49     | -49     | -49     | -50     | -50     | -176    | -157    |  |  |
| Percent Change             | 0.0%                                                                                   | 0.0%       | 0.0%               | 0.0%            | 0.0%      | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | -0.1%   | -0.1%   |  |  |

## Table 3-6 Dillon Reservoir Madalad Differences in Content Potycon No Action and Proposed Action Alternatives (AF)

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month. <sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.

up to 176 AF or 0.1% and increase by up to 22 AF or less than 0.1%.

Changes in content at Dillon Reservoir would primarily occur due to the release of 250 AF from Upper Blue Reservoir for West Slope users in the Blue River basin under the Proposed Action instead of being released for substitution purposes by Springs Utilities. Since this water would be used to extinction it would not be available for storage in Dillon Reservoir in substitution years. Therefore, Dillon Reservoir contents would decrease by 250 AF in substitution years under the Proposed Action. Changes in Dillon Reservoir contents would also occur under the Proposed Action due to slight differences in the amount and timing of Denver Water's substitution payback from Dillon Reservoir. However, these



changes in content would be small and infrequent. Differences in contents under the Proposed Action would carry forward from year to year until Dillon Reservoir fills.

#### Green Mountain Reservoir

Refer to Table 3-7 for a summary of monthly average changes in contents in Green Mountain Reservoir. In summary, end-of-month contents in Green Mountain Reservoir would increase by up to 414 AF or 0.3% in August and decrease by up to 479 AF or 0.6% in May. In the driest years and substitution years, average end-of-month contents would increase by up to 24 AF or less than 0.1%.

Decreases in contents at Green Mountain Reservoir would be due primarily to reduced inflow when Dillon Reservoir fills. Reduced spills from Dillon Reservoir would decrease the inflow to Green Mountain Reservoir, and therefore, reduce the amount and possibly timing of spills at Green Mountain Reservoir. Increases in contents

| Table 3-7                                                                              |
|----------------------------------------------------------------------------------------|
| Green Mountain Reservoir                                                               |
| Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |

|                                               | Oct        | Nov       | Dec               | Jan       | Feb    | Mar    | Apr    | May     | Jun     | Jul     | Aug     | Sep     |
|-----------------------------------------------|------------|-----------|-------------------|-----------|--------|--------|--------|---------|---------|---------|---------|---------|
| Maximum Monthly Co                            | ontent De  | ecrease1  |                   |           |        |        |        |         |         |         |         |         |
| No Action Content                             | 107,962    | 64,490    | 64,021            | 63,523    | 63,007 | 63,115 | 70,506 | 81,884  | 146,782 | 129,697 | 75,348  | 73,593  |
| Proposed Action<br>Content                    | 107,759    | 64,302    | 63,833            | 63,335    | 62,819 | 62,927 | 70,317 | 81,405  | 146,544 | 129,456 | 75,027  | 73,319  |
| Content Change                                | -203       | -188      | 0                 | -188      | -188   | -188   | -189   | -479    | -238    | -241    | -321    | -274    |
| Percent Change                                | -0.2%      | -0.3%     | 0.0%              | -0.3%     | -0.3%  | -0.3%  | -0.3%  | -0.6%   | -0.2%   | -0.2%   | -0.4%   | -0.4%   |
| Maximum Monthly Content Increase <sup>1</sup> |            |           |                   |           |        |        |        |         |         |         |         |         |
| No Action Content                             | 105,573    | 96,410    | 87,381            | 78,322    | 69,148 | N/A    | 75,031 | 150,073 | 107,138 | 120,612 | 143,684 | 131,295 |
| Proposed Action<br>Content                    | 105,926    | 96,693    | 87,593            | 78,463    | 69,219 | N/A    | 75,032 | 150,074 | 107,139 | 120,625 | 144,098 | 131,649 |
| Content Change                                | 353        | 283       | 212               | 141       | 71     | 0      | 1      | 1       | 1       | 13      | 414     | 354     |
| Percent Change                                | 0.3%       | 0.3%      | 0.2%              | 0.2%      | 0.1%   | 0.0%   | 0.0%   | 0.0%    | 0.0%    | 0.0%    | 0.3%    | 0.3%    |
| Dry Year Content (Ave                         | erage of i | 1954, 196 | 56, 1977,         | 2002, 200 | 4)     |        |        |         |         |         |         |         |
| No Action Content                             | 101,583    | 95,220    | 88,989            | 82,729    | 76,351 | 69,926 | 65,243 | 80,405  | 89,872  | 78,994  | 80,287  | 77,814  |
| Proposed Action<br>Content                    | 101,601    | 95,234    | 88,999            | 82,736    | 76,354 | 69,926 | 65,243 | 80,405  | 89,872  | 78,994  | 80,312  | 77,835  |
| Content Change                                | 18         | 14        | 10                | 7         | 3      | 0      | 0      | 0       | 0       | 0       | 24      | 21      |
| Percent Change                                | 0.0%       | 0.0%      | 0.0%              | 0.0%      | 0.0%   | 0.0%   | 0.0%   | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    |
| Average Content Durin                         | ng Substi  | itution Y | ears <sup>2</sup> |           |        |        |        |         |         |         |         |         |
| No Action Content                             | 97,644     | 91,916    | 86,316            | 80,689    | 74,947 | 69,157 | 66,844 | 85,955  | 105,664 | 95,615  | 93,186  | 88,728  |
| Proposed Action<br>Content                    | 97,653     | 91,923    | 86,322            | 80,693    | 74,948 | 69,157 | 66,844 | 85,955  | 105,664 | 95,616  | 93,195  | 88,735  |
| Content Change                                | 9          | 7         | 5                 | 3         | 2      | 0      | 0      | 0       | 0       | 1       | 9       | 8       |
| Percent Change                                | 0.0%       | 0.0%      | 0.0%              | 0.0%      | 0.0%   | 0.0%   | 0.0%   | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    |

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.



at Green Mountain Reservoir would be due to slight differences in the timing of releases from the HUP pool. While, the operation and use of Green Mountain's HUP pool would not change under the Proposed Action, there may be slight differences in the timing of HUP releases from Green Mountain Reservoir. While the total amount released from Green Mountain Reservoir would be the same under both the No Action and Proposed Action alternatives, the timing of these releases may be offset by a few months. These slight differences are likely a function of the reservoir storage targets and the sequence and priority of operating rules in the CDSS Model and may not occur

under actual operations.

#### Williams Fork River Basin

#### Williams Fork River

Flow changes in Williams Fork River downstream of Williams Fork Reservoir are shown in Table 3-8. In summary, monthly average flows in Williams Fork River would decrease by a maximum of 8.3 cfs or 11.5% in March and increase by a maximum of 3.4 cfs or 2.5% in June. In the driest years and substitution years, monthly average flows would increase or decrease by less than 0.6 cfs or less than 0.7%. The changes in flows in the Williams Fork River under the Proposed Action would be well within the

| Table 3-8                                                                            |
|--------------------------------------------------------------------------------------|
| Williams Fork River below Williams Fork Reservoir                                    |
| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |

**T** 11 20

|                                            | Oct       | Nov                  | Dec       | Jan                                                                                                                                              | Feb       | Mar        | Apr  | May  | Jun   | Jul   | Aug   | Sep   | Avg   |  |  |
|--------------------------------------------|-----------|----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------|------|-------|-------|-------|-------|-------|--|--|
| Maximum Monthly Flow Decrease <sup>1</sup> |           |                      |           |                                                                                                                                                  |           |            |      |      |       |       |       |       |       |  |  |
| No Action Flow                             | 264.0     | N/A                  | 48.6      | 75.6                                                                                                                                             | 59.1      | 72.1       | N/A  | N/A  | 657.0 | 222.3 | 310.9 | 110.2 |       |  |  |
| Proposed Action Flow                       | 263.1     | N/A                  | 48.4      | 75.6                                                                                                                                             | 59.0      | 63.8       | N/A  | N/A  | 656.3 | 222.3 | 308.9 | 109.3 |       |  |  |
| Flow Change                                | -0.9      | 0.0                  | 0.0       | 0.0                                                                                                                                              | -0.2      | -8.3       | 0.0  | 0.0  | -0.6  | 0.0   | -2.0  | -0.9  |       |  |  |
| Percent Change                             | -0.3%     | 0.0%                 | 0.0%      | 0.0%                                                                                                                                             | -0.3%     | -11.5%     | 0.0% | 0.0% | -0.1% | 0.0%  | -0.6% | -0.9% |       |  |  |
| Maximum Monthly Flow Increase <sup>1</sup> |           |                      |           |                                                                                                                                                  |           |            |      |      |       |       |       |       |       |  |  |
| No Action Flow                             | 93.4      | N/A                  | N/A       | 87.2                                                                                                                                             | 64.4      | N/A        | N/A  | N/A  | 134.1 | 273.5 | 186.2 | 207.2 |       |  |  |
| Proposed Action Flow                       | 94.8      | N/A                  | N/A       | 88.6                                                                                                                                             | 64.9      | N/A        | N/A  | N/A  | 137.4 | 273.5 | 187.7 | 208.8 |       |  |  |
| Flow Change                                | 1.4       | 0.0                  | 0.0       | 1.4                                                                                                                                              | 0.5       | 0.0        | 0.0  | 0.0  | 3.4   | 0.0   | 1.5   | 1.6   |       |  |  |
| Percent Change                             | 1.6%      | 0.0%                 | 0.0%      | 1.6%                                                                                                                                             | 0.8%      | 0.0%       | 0.0% | 0.0% | 2.5%  | 0.0%  | 0.8%  | 0.8%  |       |  |  |
| Dry Year Monthly Avera                     | ge Flow   | (Averag              | ge of 195 | 54, 1966                                                                                                                                         | , 1977, 2 | 2002, 2004 | l)   |      |       |       |       |       |       |  |  |
| No Action Flow                             | 143.0     | 107.2                | 94.4      | 77.7                                                                                                                                             | 62.2      | 87.3       | 95.1 | 32.8 | 55.4  | 95.0  | 242.9 | 107.0 | 100.0 |  |  |
| Proposed Action Flow                       | 143.3     | 107.2                | 94.4      | 77.7                                                                                                                                             | 62.2      | 87.3       | 95.1 | 32.8 | 55.4  | 95.0  | 242.6 | 106.9 | 100.0 |  |  |
| Flow Change                                | 0.3       | 0.0                  | 0.0       | 0.0                                                                                                                                              | 0.0       | 0.0        | 0.0  | 0.0  | 0.0   | 0.0   | -0.3  | -0.2  | 0.0   |  |  |
| Percent Change                             | 0.2%      | 0.0%                 | 0.0%      | 0.0%                                                                                                                                             | 0.0%      | 0.0%       | 0.0% | 0.0% | 0.0%  | 0.0%  | -0.1% | -0.2% | 0.0%  |  |  |
| Average Flow During Sul                    | bstitutio | n Years <sup>2</sup> | 2         |                                                                                                                                                  |           |            |      |      |       |       |       |       |       |  |  |
| No Action Flow                             | 169.2     | 117.0                | 98.4      | 85.3                                                                                                                                             | 69.3      | 88.6       | 87.6 | 37.4 | 83.7  | 84.7  | 247.7 | 156.3 | 110.4 |  |  |
| Proposed Action Flow                       | 169.3     | 117.0                | 98.4      | 85.3                                                                                                                                             | 69.3      | 87.9       | 87.6 | 37.4 | 83.7  | 84.7  | 247.4 | 156.4 | 110.4 |  |  |
| Flow Change                                | 0.1       | 0.0                  | 0.0       | 0.0                                                                                                                                              | 0.0       | -0.6       | 0.0  | 0.0  | 0.0   | 0.0   | -0.4  | 0.1   | -0.1  |  |  |
| Percent Change                             | 0.1%      | 0.0%                 | 0.0%      | 0.0%                                                                                                                                             | 0.0%      | -0.7%      | 0.0% | 0.0% | 0.0%  | 0.0%  | -0.1% | 0.0%  | -0.1% |  |  |
|                                            |           |                      |           | Percent Change $0.1\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $0.0\%$ $-0.1\%$ $0.0\%$ $-0.1\%$ |           |            |      |      |       |       |       |       |       |  |  |

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004 N/A: Not applicable.



normal range of flows that have historically occurred downstream of Williams Fork Reservoir, as shown in Figure 3-8.

Flow changes in the Williams Fork River would occur under the Proposed Action due to differences in the amount and timing of water released from Williams Fork Reservoir for substitution payback. Under the Proposed Action, substitution releases from Wolford Mountain and Homestake reservoirs would increase, while substitution releases from Williams Fork Reservoir would decrease by a commensurate amount. Changes in substitution releases from Williams Fork Reservoir would only occur in years the last increment of Denver Water's substitution obligation is released from Williams Fork Reservoir. A reduced substitution release under the Proposed Action would result in higher contents in Williams Fork Reservoir. As a result, less water would be stored in subsequent months depending on storage targets at Williams Fork Reservoir as the reservoir refills. Reductions in the amount stored would increase flows below the reservoir in some months under the Proposed Action. Changes in flows in some months would also occur due to differences in the timing of substitution releases from Williams Fork Reservoir. While the total amount released would be the same under both alternatives, the timing of the substitution releases may be offset by a few months. For example, a reduction in flow in one month due to a reduced substitution release would be offset by a corresponding increase in flow in subsequent months due to an increased substitution release. These differences are small and infrequent and likely a function of modeling assumptions such as reservoir storage targets and the sequence and priority of operating rules in the CDSS Model and may not occur under actual operations.

There would be no impact on the ability to meet the bypass requirement at Williams Fork Reservoir under the Proposed Action.

As discussed in Section 3.3.1.7. Phase 2 of the Grand County SMP identified environmental flows to support ecological needs in relation to fisheries for the reach below Williams Fork Reservoir. The preferred range for summer environmental flows is 40 to 140 cfs below Williams Fork Reservoir. As indicated in the Phase 2 report, flow records for the USGS gage station 09038500 below Williams Fork Reservoir show the recommended summer environmental flow range is quite commonly present in this reach. Flow reductions under the Proposed Action would be infrequent and minor and would not affect the ability to meet these flow recommendations particularly since substitution releases from William Fork Reservoir augment flows in this reach during the late summer and fall.

#### Williams Fork Reservoir

Refer to Table 3-9 for a summary of monthly average changes in contents in Williams Fork Reservoir. In summary, endof-month contents in Williams Fork Reservoir would increase by up to 564 AF or 2.8% in March and decrease by up to 37 AF or 0.1% in February, March, April and May. In the driest years and substitution years, monthly average contents would increase by up to 85 AF or 0.2%.

Changes in content at Williams Fork Reservoir would primarily occur due to differences in the timing and amount of releases for substitution payback. In substitution years when the last increment of Denver Water's substitution obligation is released from Williams Fork Reservoir, substitution releases from Wolford Mountain Reservoir and possibly



| Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |            |            |                     |            |          |        |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------|------------|------------|---------------------|------------|----------|--------|--------|--------|--------|--------|--------|--------|
|                                                                                        | Oct        | Nov        | Dec                 | Jan        | Feb      | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    |
| Maximum Mon                                                                            | thly Con   | tent Decr  | ease <sup>1</sup>   |            |          |        |        |        |        |        |        |        |
| No Action<br>Content                                                                   | 3,042      | 1,479      | 4,288               | 54,709     | 53,188   | 51,415 | 66,434 | 92,205 | N/A    | N/A    | 89,267 | 18,573 |
| Proposed Action<br>Content                                                             | 3,025      | 1,462      | 4,279               | 54,672     | 53,151   | 51,378 | 66,397 | 92,168 | N/A    | N/A    | 89,266 | 18,571 |
| Content Change                                                                         | -17        | -17        | 0                   | -37        | -37      | -37    | -37    | -37    | 0      | 0      | -1     | -2     |
| Percent Change                                                                         | -0.6%      | -1.1%      | 0.0%                | -0.1%      | -0.1%    | -0.1%  | -0.1%  | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |
| Maximum Monthly Content Increase <sup>1</sup>                                          |            |            |                     |            |          |        |        |        |        |        |        |        |
| No Action<br>Content                                                                   | 19,686     | 16,423     | 13,747              | 11,356     | 9,228    | 19,930 | 16,057 | 26,229 | 32,254 | 32,168 | 28,783 | 23,165 |
| Proposed Action<br>Content                                                             | 20,234     | 16,971     | 14,295              | 11,905     | 9,777    | 20,494 | 16,619 | 26,788 | 32,811 | 32,722 | 29,335 | 23,714 |
| Content Change                                                                         | 548        | 548        | 548                 | 549        | 549      | 564    | 562    | 559    | 557    | 554    | 552    | 549    |
| Percent Change                                                                         | 2.8%       | 3.3%       | 4.0%                | 4.8%       | 5.9%     | 2.8%   | 3.5%   | 2.1%   | 1.7%   | 1.7%   | 1.9%   | 2.4%   |
| Dry Year Conte                                                                         | ent (Avera | age of 195 | 5 <b>4, 1966,</b> 1 | 1977, 2002 | 2, 2004) |        |        |        |        |        |        |        |
| No Action<br>Content                                                                   | 46,241     | 43,526     | 40,926              | 38,906     | 37,710   | 35,670 | 35,158 | 39,824 | 43,156 | 40,602 | 27,832 | 23,010 |
| Proposed Action<br>Content                                                             | 46,294     | 43,580     | 40,979              | 38,960     | 37,764   | 35,723 | 35,212 | 39,877 | 43,209 | 40,654 | 27,902 | 23,091 |
| Content Change                                                                         | 53         | 53         | 53                  | 53         | 54       | 53     | 54     | 53     | 53     | 53     | 70     | 81     |
| Percent Change                                                                         | 0.1%       | 0.1%       | 0.1%                | 0.1%       | 0.1%     | 0.1%   | 0.2%   | 0.1%   | 0.1%   | 0.1%   | 0.3%   | 0.4%   |
| Average Conter                                                                         | t During   | Substitut  | tion Year           | $s^2$      |          |        |        |        |        |        |        |        |
| No Action<br>Content                                                                   | 47,083     | 43,568     | 40,499              | 37,866     | 36,303   | 33,964 | 33,812 | 41,302 | 48,369 | 47,547 | 35,033 | 27,858 |
| Proposed Action<br>Content                                                             | 47,107     | 43,592     | 40,524              | 37,891     | 36,328   | 34,028 | 33,876 | 41,366 | 48,433 | 47,610 | 35,118 | 27,939 |
| Content Change                                                                         | 25         | 25         | 25                  | 25         | 25       | 64     | 64     | 64     | 63     | 63     | 85     | 80     |
| Percent Change                                                                         | 0.1%       | 0.1%       | 0.1%                | 0.1%       | 0.1%     | 0.2%   | 0.2%   | 0.2%   | 0.1%   | 0.1%   | 0.2%   | 0.3%   |

Table 3-9 Williams Fork Reservoir Iodeled Differences in Content Between No Action and Proposed Action Alternatives (AF

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.

Homestake Reservoir would increase, while substitution releases from Williams Fork Reservoir would decrease by a commensurate amount. A reduced substitution release under the Proposed Action would result in higher contents in Williams Fork Reservoir until the reservoir refills. Some increases and decreases in contents would also occur due to slight differences in the timing of substitution releases from Williams Fork Reservoir under the Proposed Action. While the total amount released would be the same under both the No Action and Proposed Action alternatives, the timing of substitution releases may be offset by a



few months. These slight differences are likely a function of modeling assumptions such as reservoir storage targets and the sequence and priority of operating rules in the CDSS Model and may not occur under actual operations.

#### **Muddy Creek Basin**

#### Muddy Creek

Flow changes in Muddy Creek downstream of Wolford Mountain Reservoir are shown in Table 3-10. In summary, monthly average flows in Muddy Creek would decrease by a maximum of 5.7 cfs or 4.3% in June and increase by a maximum of 6.1 cfs or 4.4% in October. In the driest years and substitution years, monthly average flows would increase or decrease by less than 0.2 cfs or less than 0.5%. The changes in Muddy Creek flows under the Proposed Action would be well within the range of flows that have historically occurred downstream of Wolford Mountain Reservoir, as shown in Figure 3-10.

Flow changes in Muddy Creek would occur due to differences in the amount and timing of water released for substitution payback from Wolford Mountain Reservoir. In substitution years when the last increment of Denver Water's substitution obligation is

| Table 3-10                                                                           |
|--------------------------------------------------------------------------------------|
| Muddy Creek below Wolford Mountain Reservoir                                         |
| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |

| Modeled Differences in Flow Detween No Action and Floposed Action Atternatives (cis) |           |          |          |          |         |           |       |       |       |       |       |       |      |
|--------------------------------------------------------------------------------------|-----------|----------|----------|----------|---------|-----------|-------|-------|-------|-------|-------|-------|------|
|                                                                                      | Oct       | Nov      | Dec      | Jan      | Feb     | Mar       | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Avg  |
| Maximum Monthly Flow Decrease <sup>1</sup>                                           |           |          |          |          |         |           |       |       |       |       |       |       |      |
| No Action Flow                                                                       | 316.2     | N/A      | N/A      | 39.6     | 12.9    | N/A       | 86.0  | 66.5  | 132.9 | 139.8 | 78.5  | 34.9  |      |
| Proposed Action Flow                                                                 | 311.7     | N/A      | N/A      | 38.2     | 12.9    | N/A       | 85.9  | 64.9  | 127.2 | 139.7 | 77.9  | 33.3  |      |
| Flow Change                                                                          | -4.4      | 0.0      | 0.0      | -1.4     | 0.0     | 0.0       | 0.0   | -1.6  | -5.7  | 0.0   | -0.7  | -1.6  |      |
| Percent Change                                                                       | -1.4%     | 0.0%     | 0.0%     | -3.5%    | -0.1%   | 0.0%      | 0.0%  | -2.4% | -4.3% | 0.0%  | -0.8% | -4.6% |      |
| Maximum Monthly Flow Increase <sup>1</sup>                                           |           |          |          |          |         |           |       |       |       |       |       |       |      |
| No Action Flow                                                                       | 137.2     | N/A      | N/A      | N/A      | N/A     | 130.3     | 461.0 | 355.8 | 319.5 | N/A   | 270.4 | 33.1  |      |
| Proposed Action Flow                                                                 | 143.3     | N/A      | N/A      | N/A      | N/A     | 131.3     | 461.4 | 356.1 | 324.2 | N/A   | 271.2 | 34.0  |      |
| Flow Change                                                                          | 6.1       | 0.0      | 0.0      | 0.0      | 0.0     | 1.0       | 0.4   | 0.3   | 4.6   | 0.0   | 0.8   | 0.9   |      |
| Percent Change                                                                       | 4.4%      | 0.0%     | 0.0%     | 0.0%     | 0.0%    | 0.8%      | 0.1%  | 0.1%  | 1.5%  | 0.0%  | 0.3%  | 2.8%  |      |
| Dry Year Monthly Avera                                                               | age Flov  | w (Avera | age of 1 | 954, 196 | 6, 1977 | , 2002, 2 | 004)  |       |       |       |       |       |      |
| No Action Flow                                                                       | 14.5      | 22.0     | 14.2     | 13.4     | 10.5    | 26.5      | 89.2  | 177.3 | 104.3 | 93.4  | 224.8 | 38.9  | 69.1 |
| Proposed Action Flow                                                                 | 14.5      | 22.0     | 14.2     | 13.4     | 10.5    | 26.5      | 89.2  | 177.3 | 104.3 | 93.4  | 224.8 | 39.1  | 69.1 |
| Flow Change                                                                          | 0.0       | 0.0      | 0.0      | 0.0      | 0.0     | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.2   | 0.0  |
| Percent Change                                                                       | 0.0%      | 0.0%     | 0.0%     | 0.0%     | 0.0%    | 0.0%      | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.5%  | 0.0% |
| Average Flow During Su                                                               | ıbstituti | on Year  | $s^2$    |          |         |           |       |       |       |       |       |       |      |
| No Action Flow                                                                       | 55.7      | 23.6     | 15.6     | 13.9     | 11.4    | 26.9      | 88.2  | 156.5 | 137.8 | 92.1  | 194.9 | 56.2  | 72.7 |
| Proposed Action Flow                                                                 | 55.7      | 23.6     | 15.6     | 13.9     | 11.4    | 27.0      | 88.2  | 156.6 | 137.8 | 92.1  | 194.9 | 56.1  | 72.7 |
| Flow Change                                                                          | 0.0       | 0.0      | 0.0      | 0.0      | 0.0     | 0.1       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | -0.1  | 0.0  |
| Percent Change                                                                       | 0.0%      | 0.0%     | 0.0%     | 0.0%     | 0.0%    | 0.3%      | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 0.0%  | -0.1% | 0.0% |

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.



released from Wolford Mountain Reservoir, there would be no change in the total substitution release from Wolford Mountain. In those years, the total amount released from Wolford Mountain Reservoir for substitution payback would be the same: however, the releases would be allocated from different accounts in that reservoir and from Williams Fork Reservoir. Under the No Action alternative, water would be released from Denver Water's Williams Fork Reservoir for Springs Utilities and a larger proportion of Denver Waters' release would be allocated to Wolford Mountain Reservoir, whereas, under the Proposed Action, water would be released from Springs Utilities' Wolford Mountain Reservoir account. An exception to this would be when Springs Utilities account in Wolford Mountain is not sufficient to fully payback their obligation and an additional substitution release would be needed from Homestake Reservoir. Under the Proposed Action, substitution releases from Homestake Reservoir would occur infrequently (once in the 56-year study period). A reduced substitution release from Wolford Mountain Reservoir under the Proposed Action would result in higher contents in Wolford Mountain Reservoir. As a result, less water would be stored in subsequent months depending on storage targets as Wolford Mountain Reservoir refills. Reductions in the amount stored would increase flows in some months under the Proposed Action.

Changes in flows in some months would also occur due to differences in the timing of substitution releases from Wolford Mountain Reservoir. While the total amount released would be the same under both alternatives, the timing of substitution releases may be offset by a few months. These slight differences are likely a function of modeling assumptions such as reservoir storage targets and the sequence and priority of operating rules in the CDSS Model and may not occur under actual operations.

There would be no impact on the ability to meet the bypass requirement at Wolford Mountain Reservoir or the CWCB instream flow requirements below the reservoir under the Proposed Action.

As discussed in Section 3.3.1.7. Phase 2 of the Grand County SMP identified environmental flows to support ecological needs in relation to fisheries for the reach below Wolford Mountain Reservoir. The preferred range for summer environmental flows is 60 to 90 cfs below Wolford Mountain Reservoir. As indicated in the Phase 2 report, flow records for the USGS gage station 09041400 below Wolford Mountain Reservoir show the recommended summer environmental flow range is typically present in this reach. Flow reductions under the Proposed Action would be infrequent and minor and would not affect the ability to meet these recommendations, particularly since substitution releases from Wolford Mountain Reservoir augment flows in this reach during the late summer and fall.

### Wolford Mountain Reservoir

Refer to Table 3-11 for a summary of monthly average changes in contents in Wolford Mountain Reservoir. In summary, end-of-month contents in Wolford Mountain Reservoir would increase by a maximum of 280 AF or 1.3% in December, January and February and decrease by a maximum of 343 AF or 1.7% in January and February. In the driest years and substitution years, monthly average contents would increase by up to 6 AF or less than 0.1% and decrease by up to 8 AF or less than 0.1%.



| Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |           |            |                      |            |        |        |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------|-----------|------------|----------------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                                                                        | Oct       | Nov        | Dec                  | Jan        | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    |
| Maximum Monthl                                                                         | y Conten  | t Decreas  | e <sup>1</sup>       |            |        |        |        |        |        |        |        | •      |
| No Action Content                                                                      | 19,790    | 19,724     | 19,699               | 19,684     | 19,639 | 19,551 | 19,386 | 48,920 | 50,859 | 50,445 | 45,286 | 38,423 |
| Proposed Action<br>Content                                                             | 19,448    | 19,382     | 19,356               | 19,341     | 19,296 | 19,209 | 19,045 | 48,582 | 50,755 | 50,342 | 45,184 | 38,323 |
| Content Change                                                                         | -342      | -342       | 0                    | -343       | -343   | -342   | -341   | -338   | -104   | -103   | -102   | -100   |
| Percent Change                                                                         | -1.7%     | -1.7%      | 0.0%                 | -1.7%      | -1.7%  | -1.7%  | -1.8%  | -0.7%  | -0.2%  | -0.2%  | -0.2%  | -0.3%  |
| Maximum Monthl                                                                         | y Conten  | t Increas  | e <sup>1</sup>       |            |        |        |        |        |        |        |        |        |
| No Action Content                                                                      | 20,914    | 20,844     | 20,821               | 20,812     | 20,763 | 20,673 | 22,136 | 51,363 | 45,605 | 39,507 | 62,196 | 46,444 |
| Proposed Action<br>Content                                                             | 21,193    | 21,123     | 21,101               | 21,092     | 21,043 | 20,952 | 22,414 | 51,639 | 45,613 | 39,516 | 62,236 | 46,542 |
| Content Change                                                                         | 279       | 279        | 280                  | 280        | 280    | 279    | 278    | 276    | 8      | 9      | 40     | 98     |
| Percent Change                                                                         | 1.3%      | 1.3%       | 1.3%                 | 1.3%       | 1.3%   | 1.3%   | 1.3%   | 0.5%   | 0.0%   | 0.0%   | 0.1%   | 0.2%   |
| Dry Year Content                                                                       | (Average  | e of 1954, | 1966, 197            | 7, 2002, 2 | 2004)  |        |        |        |        |        |        |        |
| No Action Content                                                                      | 54,312    | 54,236     | 54,258               | 54,298     | 54,253 | 54,138 | 53,862 | 57,469 | 57,938 | 55,234 | 41,894 | 39,825 |
| Proposed Action<br>Content                                                             | 54,317    | 54,241     | 54,263               | 54,303     | 54,258 | 54,143 | 53,867 | 57,474 | 57,943 | 55,240 | 41,897 | 39,817 |
| Content Change                                                                         | 5         | 5          | 5                    | 5          | 5      | 5      | 5      | 5      | 5      | 6      | 3      | -8     |
| Percent Change                                                                         | 0.0%      | 0.0%       | 0.0%                 | 0.0%       | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |
| Average Content I                                                                      | During Su | ibstitutio | n Years <sup>2</sup> |            |        |        |        |        |        |        |        |        |
| No Action Content                                                                      | 50,986    | 50,737     | 50,685               | 50,657     | 50,561 | 50,183 | 49,925 | 58,838 | 59,909 | 57,609 | 46,308 | 43,364 |
| Proposed Action<br>Content                                                             | 50,988    | 50,738     | 50,686               | 50,658     | 50,562 | 50,180 | 49,922 | 58,832 | 59,904 | 57,604 | 46,303 | 43,363 |
| Content Change                                                                         | 1         | 1          | 1                    | 2          | 1      | -3     | -3     | -6     | -5     | -5     | -5     | -1     |
| Percent Change                                                                         | 0.0%      | 0.0%       | 0.0%                 | 0.0%       | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |

#### Table 3-11 Wolford Mountain Reservoir Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month. <sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.

Changes in content at Wolford Mountain Reservoir would primarily occur due to differences in the amount and timing of releases for substitution payback. In substitution years when the last increment of Denver Water's substitution obligation is

released from Williams Fork Reservoir, substitution releases from Wolford Mountain Reservoir would increase while substitution releases from Williams Fork Reservoir would decrease by a commensurate amount. An increased substitution release under the Proposed Action would result in lower contents in Wolford Mountain Reservoir until the reservoir refills. In substitution years when the last increment of Denver Water's substitution obligation is released from Wolford Mountain Reservoir, there would often be no change in contents in Wolford Mountain Reservoir. In those years, the total amount released from Wolford Mountain Reservoir for substitution payback



would be the same; however, releases would be allocated differently as described previously. If Springs Utilities account in Wolford Mountain Reservoir is not sufficient to fully payback their obligation an additional substitution release would be needed from Homestake Reservoir. In those years, Wolford Mountain Reservoir contents would be higher until the reservoir refills, because some water would be released from Homestake Reservoir under the Proposed Action instead of Wolford Mountain Reservoir.

Some small increases and decreases in contents under the Proposed Action reflect slight differences in the timing of substitution releases from Wolford Mountain Reservoir under the Proposed Action. While the total amount released would be the same under both the No Action and Proposed Action alternatives, the timing of substitution releases may be offset by a few months. These slight differences are likely a function of modeling assumptions such as reservoir storage targets and the sequence and priority of operating rules in the CDSS Model and may not occur under actual operations.

### **Colorado River Basin**

### Colorado River

Flow changes in the Colorado River downstream of the confluence with Williams Fork River, at the USGS gage near Kremmling (09058000), and downstream of the confluence with the Eagle River are shown in Tables 3-12, 3-13, and 3-14, respectively.

Flow changes in the Colorado River downstream of the confluence with the Williams Fork River reflect changes in the amount and timing of substitution releases from Williams Fork Reservoir and the amounts stored as the reservoir refills. Model results indicate there would be a slight difference in the magnitude of flow change downstream of Williams Fork Reservoir compared to the Colorado River downstream of the confluence with the

Williams Fork River due to differences in the amount diverted by HUP beneficiaries downstream of Williams Fork Reservoir under the Proposed Action. This change may or may not occur depending on the location, amount and timing of HUP demands and their associated consumptive use and return flows.

The Municipal Subdistrict (Subdistrict) of the Northern Colorado Water Conservancy District (NCWCD) expressed concerns that the Proposed Action would result in decreased flows in the Colorado River below the confluence with the Williams Fork River. The Subdistrict indicated that decreased flows in the Colorado River below the Williams Fork River during the spring could affect the Windy Gap Project water rights because those rights cannot legally divert unless certain downstream minimum stream flows in the Colorado River below the Williams Fork River are maintained and downstream senior water rights are satisfied. As discussed above, substitution releases from Williams Fork Reservoir would decrease under the Proposed Action, while substitution releases from Wolford Mountain and Homestake reservoirs would increase. The decrease in substitution releases from Williams Fork Reservoir would occur from August through March of dry years when Windy Gap is not diverting. A reduced substitution release under the Proposed Action would result in higher contents in Williams Fork Reservoir. As a result, less water would be stored in subsequent months as the reservoir refills. Reductions in the amount stored would



| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |           |                  |                 |         |         |         |          |         |         |       |       |       |       |
|--------------------------------------------------------------------------------------|-----------|------------------|-----------------|---------|---------|---------|----------|---------|---------|-------|-------|-------|-------|
|                                                                                      | Oct       | Nov              | Dec             | Jan     | Feb     | Mar     | Apr      | May     | Jun     | Jul   | Aug   | Sep   | Avg   |
| <b>Maximum Monthly Flov</b>                                                          | v Decrea  | ase <sup>1</sup> |                 |         |         |         |          |         |         |       |       |       |       |
| No Action Flow                                                                       | 345.3     | 203.0            | 230.0           | 166.8   | 147.1   | 169.1   | 288.9    | 156.2   | 2,591.7 | 172.0 | 232.6 | 231.7 |       |
| Proposed Action Flow                                                                 | 344.4     | 203.0            | 229.7           | 166.8   | 147.0   | 162.8   | 287.9    | 155.9   | 2,590.3 | 171.9 | 228.5 | 230.5 |       |
| Flow Change                                                                          | -0.9      | 0.0              | 0.0             | 0.0     | 0.0     | -6.3    | -1.0     | -0.3    | -1.4    | -0.1  | -4.1  | -1.2  |       |
| Percent Change                                                                       | -0.3%     | 0.0%             | 0.0%            | 0.0%    | 0.0%    | -3.7%   | -0.3%    | -0.2%   | -0.1%   | -0.1% | -1.7% | -0.5% |       |
| <b>Maximum Monthly Flov</b>                                                          | v Increa  | se <sup>1</sup>  |                 |         |         |         |          |         |         |       |       |       |       |
| No Action Flow                                                                       | 158.9     | N/A              | N/A             | 211.2   | 159.6   | N/A     | 300.9    | 1,350.5 | 2,434.5 | 274.7 | 294.7 | 299.9 |       |
| Proposed Action Flow                                                                 | 160.4     | N/A              | N/A             | 212.6   | 160.1   | N/A     | 301.3    | 1,350.9 | 2,438.6 | 274.7 | 296.1 | 301.8 |       |
| Flow Change                                                                          | 1.4       | 0.0              | 0.0             | 1.4     | 0.5     | 0.0     | 0.4      | 0.4     | 4.1     | 0.0   | 1.4   | 1.9   |       |
| Percent Change                                                                       | 0.9%      | 0.0%             | 0.0%            | 0.7%    | 0.3%    | 0.0%    | 0.1%     | 0.0%    | 0.2%    | 0.0%  | 0.5%  | 0.6%  |       |
| Dry Year Monthly Avera                                                               | age Flov  | v (Aver          | age of          | 1954, 1 | 966, 19 | 77, 200 | 2, 2004) |         |         |       |       |       |       |
| No Action Flow                                                                       | 226.8     | 239.9            | 209.0           | 183.1   | 168.4   | 235.1   | 228.6    | 157.6   | 173.1   | 276.8 | 368.3 | 216.0 | 223.6 |
| Proposed Action Flow                                                                 | 227.1     | 239.9            | 209.0           | 183.1   | 168.4   | 235.1   | 228.6    | 157.6   | 173.1   | 276.8 | 368.1 | 215.8 | 223.6 |
| Flow Change                                                                          | 0.3       | 0.0              | 0.0             | 0.0     | 0.0     | 0.0     | 0.0      | 0.0     | 0.0     | 0.0   | -0.2  | -0.2  | 0.0   |
| Percent Change                                                                       | 0.1%      | 0.0%             | 0.0%            | 0.0%    | 0.0%    | 0.0%    | 0.0%     | 0.0%    | 0.0%    | 0.0%  | -0.1% | -0.1% | 0.0%  |
| Average Flow During Su                                                               | ıbstituti | on Yea           | rs <sup>2</sup> |         |         |         |          |         |         |       |       |       |       |
| No Action Flow                                                                       | 261.7     | 255.4            | 198.6           | 184.5   | 173.4   | 224.5   | 239.9    | 177.4   | 209.7   | 241.5 | 375.0 | 274.7 | 234.7 |
| Proposed Action Flow                                                                 | 261.9     | 255.4            | 198.6           | 184.5   | 173.3   | 224.0   | 239.8    | 177.3   | 209.7   | 241.5 | 374.4 | 274.8 | 234.6 |
| Flow Change                                                                          | 0.1       | 0.0              | 0.0             | 0.0     | 0.0     | -0.5    | -0.1     | 0.0     | 0.0     | 0.0   | -0.6  | 0.1   | -0.1  |
| Percent Change                                                                       | 0.0%      | 0.0%             | 0.0%            | 0.0%    | 0.0%    | -0.2%   | 0.0%     | 0.0%    | 0.0%    | 0.0%  | -0.2% | 0.0%  | 0.0%  |

#### Table 3-12 Colorado River below the Confluence with the Williams Fork River Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.

increase flows along the Colorado River in some months under the Proposed Action and potentially benefit the Windy Gap Project. Model results show there would be no impact on Windy Gap diversions under the Proposed Action.

The ability to meet the CWCB instream flow requirements along the Colorado River below the confluence with the Williams Fork River under the Proposed Action was evaluated. The analysis focused on August and September, which are key low flow months during which there are occasionally flow changes under the Proposed Action due to differences in substitution releases from Williams Fork Reservoir. Springs Utilities diversions from the Upper Blue River do not deplete the Colorado River from the confluence of the Williams Fork downstream to the confluence to the Blue River. Springs Utilities' Continental-Hoosier System diversions deplete the Blue River and Colorado River mainstem from the confluence of the Blue River downstream. In substitution years, water released from Williams Fork Reservoir in August and September for substitution payback augments flows in the Colorado River below the confluence Williams Fork River. Therefore, the only potential impact



### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |          |                    |                 |          |          |         |         |         |         |         |         |       |       |
|--------------------------------------------------------------------------------------|----------|--------------------|-----------------|----------|----------|---------|---------|---------|---------|---------|---------|-------|-------|
|                                                                                      | Oct      | Nov                | Dec             | Jan      | Feb      | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep   | Avg   |
| Maximum Monthly Flov                                                                 | v Decrea | ase <sup>1,3</sup> |                 |          |          |         |         |         |         |         |         |       |       |
| No Action Flow                                                                       | 880.9    | 668.9              | 546.6           | 557.5    | 527.2    | 411.3   | 707.5   | 663.2   | 5,485.8 | 1,329.6 | 921.3   | 376.0 |       |
| Proposed Action Flow                                                                 | 876.8    | 668.2              | 545.9           | 556.8    | 526.5    | 405.3   | 706.6   | 661.6   | 5,477.7 | 1,325.7 | 915.6   | 375.0 |       |
| Flow Change                                                                          | -4.1     | -0.7               | 0.0             | -0.7     | -0.7     | -5.9    | -0.9    | -1.6    | -8.1    | -3.9    | -5.7    | -0.9  |       |
| Percent Change                                                                       | -0.5%    | -0.1%              | 0.0%            | -0.1%    | -0.1%    | -1.4%   | -0.1%   | -0.2%   | -0.1%   | -0.3%   | -0.6%   | -0.2% |       |
| Maximum Monthly Flov                                                                 | v Increa | se <sup>1,3</sup>  |                 |          |          |         |         |         |         |         |         |       |       |
| No Action Flow                                                                       | 636.4    | 568.4              | 452.6           | 421.3    | 460.7    | 400.8   | 1,334.3 | 2,802.2 | 1,402.3 | 2,676.4 | 1,437.4 | 859.7 |       |
| Proposed Action Flow                                                                 | 641.0    | 568.7              | 452.9           | 421.6    | 461.0    | 401.3   | 1,335.2 | 2,802.6 | 1,406.9 | 2,676.4 | 1,438.9 | 861.2 |       |
| Flow Change                                                                          | 4.6      | 0.3                | 0.3             | 0.3      | 0.3      | 0.5     | 0.9     | 0.4     | 4.6     | 0.0     | 1.5     | 1.5   |       |
| Percent Change                                                                       | 0.7%     | 0.1%               | 0.1%            | 0.1%     | 0.1%     | 0.1%    | 0.1%    | 0.0%    | 0.3%    | 0.0%    | 0.1%    | 0.2%  |       |
| Dry Year Monthly Avera                                                               | age Flov | w (Aver            | age of i        | 1954, 19 | 966, 197 | 7, 2002 | , 2004) |         |         |         |         |       |       |
| No Action Flow                                                                       | 817.5    | 581.4              | 501.3           | 469.1    | 476.5    | 578.6   | 620.9   | 363.0   | 435.9   | 871.4   | 863.5   | 484.8 | 588.6 |
| Proposed Action Flow                                                                 | 817.8    | 581.5              | 501.3           | 469.1    | 476.5    | 578.7   | 620.9   | 363.0   | 435.9   | 871.4   | 862.9   | 484.6 | 588.6 |
| Flow Change                                                                          | 0.3      | 0.1                | 0.1             | 0.1      | 0.1      | 0.1     | 0.0     | 0.0     | 0.0     | 0.0     | -0.6    | -0.2  | 0.0   |
| Percent Change                                                                       | 0.0%     | 0.0%               | 0.0%            | 0.0%     | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | -0.1%   | 0.0%  | 0.0%  |
| Average Flow During Su                                                               | bstituti | on Yea             | rs <sup>2</sup> |          |          |         |         |         |         |         |         |       |       |
| No Action Flow                                                                       | 807.8    | 578.1              | 485.3           | 464.4    | 471.5    | 559.1   | 623.9   | 434.2   | 514.0   | 821.0   | 934.6   | 599.6 | 607.8 |
| Proposed Action Flow                                                                 | 808.0    | 578.1              | 485.3           | 464.4    | 471.5    | 558.7   | 623.8   | 434.2   | 514.0   | 821.0   | 933.8   | 599.6 | 607.7 |
| Flow Change                                                                          | 0.1      | 0.0                | 0.0             | 0.0      | 0.0      | -0.4    | -0.1    | 0.0     | 0.0     | 0.0     | -0.8    | 0.0   | -0.1  |
| Percent Change                                                                       | 0.0%     | 0.0%               | 0.0%            | 0.0%     | 0.0%     | -0.1%   | 0.0%    | 0.0%    | 0.0%    | 0.0%    | -0.1%   | 0.0%  | 0.0%  |

# Table 3-13Colorado River near Kremmling at USGS Gage 09058000Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cf

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month. <sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004.

<sup>3</sup>The first year of the study period was not included in the analysis of maximum increases and decreases due to start-up conditions in the model. N/A: Not applicable.

on CWCB instream flow rights along the Colorado River from the confluence with the

Williams Fork River downstream to the confluence with the Blue River would be a reduction in the amount of water *added* to the river due to a change in substitution releases from Williams Fork Reservoir.

CDSS Model results show that average monthly flows in the Colorado River below the confluence with the Williams Fork River would occasionally be less than the instream flow requirement of 135 cfs in August and September under the Proposed Action. However, flows can be less than 135 cfs in August and September in non-substitution years because water is not released from Williams Fork Reservoir for substitution payback purposes. Flows in August and September would not decrease under the Proposed Action in non-substitution years. Model results show the average monthly flow exceeded the instream flow requirement of 135 cfs in all months that flows in the Colorado River below the confluence with the Williams Fork River would decrease under the Proposed Action. Therefore, a reduction in substitution releases from Williams Fork Reservoir



| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |           |                    |         |         |         |         |         |         |          |         |         |         |         |
|--------------------------------------------------------------------------------------|-----------|--------------------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|
|                                                                                      | Oct       | Nov                | Dec     | Jan     | Feb     | Mar     | Apr     | May     | Jun      | Jul     | Aug     | Sep     | Avg     |
| Maximum Monthly Flor                                                                 | w Decrea  | ase <sup>1,3</sup> |         | •       |         |         | •       |         |          |         |         |         |         |
| No Action Flow                                                                       | 1,142.9   | 1,070.3            | 891.0   | 882.8   | 809.6   | 626.7   | 1,061.2 | 2,399.7 | 10,746.8 | 3,367.2 | 1,654.5 | 554.4   |         |
| Proposed Action Flow                                                                 | 1,138.8   | 1,069.6            | 890.3   | 882.1   | 808.9   | 620.7   | 1,060.3 | 2,398.1 | 10,738.7 | 3,363.2 | 1,649.8 | 553.4   |         |
| Flow Change                                                                          | -4.1      | -0.7               | 0.0     | -0.7    | -0.7    | -5.9    | -0.9    | -1.6    | -8.1     | -4.0    | -4.7    | -0.9    |         |
| Percent Change                                                                       | -0.4%     | -0.1%              | 0.0%    | -0.1%   | -0.1%   | -0.9%   | -0.1%   | -0.1%   | -0.1%    | -0.1%   | -0.3%   | -0.2%   |         |
| Maximum Monthly Flo                                                                  | w Increa  | se <sup>1,3</sup>  |         |         |         |         |         |         |          |         |         |         |         |
| No Action Flow                                                                       | 858.8     | 887.4              | 728.1   | 663.0   | 687.3   | 632.4   | 3,008.5 | 5,970.7 | 5,764.7  | 2,928.5 | 1,330.9 | 1,404.1 |         |
| Proposed Action Flow                                                                 | 863.4     | 887.7              | 728.4   | 663.3   | 687.6   | 632.9   | 3,009.4 | 5,971.1 | 5,769.4  | 2,928.5 | 1,332.8 | 1,405.6 |         |
| Flow Change                                                                          | 4.6       | 0.3                | 0.3     | 0.3     | 0.3     | 0.5     | 0.9     | 0.4     | 4.6      | 0.0     | 1.9     | 1.5     |         |
| Percent Change                                                                       | 0.5%      | 0.0%               | 0.0%    | 0.0%    | 0.0%    | 0.1%    | 0.0%    | 0.0%    | 0.1%     | 0.0%    | 0.1%    | 0.1%    |         |
| Dry Year Monthly Aver                                                                | age Flov  | v (Avera           | ge of 1 | 954, 19 | 66, 197 | 7, 2002 | , 2004) |         |          |         |         |         |         |
| No Action Flow                                                                       | 1,138.6   | 924.8              | 775.3   | 731.0   | 699.0   | 856.9   | 1,097.9 | 1,453.7 | 1,309.1  | 1,170.5 | 1,063.8 | 706.9   | 994.0   |
| Proposed Action Flow                                                                 | 1,138.9   | 924.8              | 775.4   | 731.1   | 699.1   | 857.0   | 1,097.9 | 1,453.7 | 1,309.1  | 1,170.5 | 1,063.4 | 706.7   | 994.0   |
| Flow Change                                                                          | 0.3       | 0.1                | 0.1     | 0.1     | 0.1     | 0.1     | 0.0     | 0.0     | 0.0      | 0.0     | -0.5    | -0.2    | 0.0     |
| Percent Change                                                                       | 0.0%      | 0.0%               | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0%    |
| Average Flow During S                                                                | ubstituti | on Years           | $s^2$   |         |         |         |         |         |          |         |         |         |         |
| No Action Flow                                                                       | 1,114.1   | 932.0              | 758.2   | 707.4   | 703.6   | 821.7   | 1,099.7 | 1,779.6 | 1,842.8  | 1,246.9 | 1,217.3 | 887.7   | 1,092.6 |
| Proposed Action Flow                                                                 | 1,114.2   | 932.0              | 758.3   | 707.4   | 703.6   | 821.3   | 1,099.6 | 1,779.6 | 1,842.7  | 1,246.8 | 1,217.1 | 887.6   | 1,092.5 |
| Flow Change                                                                          | 0.1       | 0.0                | 0.0     | 0.0     | 0.0     | -0.4    | -0.1    | 0.0     | 0.0      | 0.0     | -0.2    | 0.0     | 0.0     |
| Percent Change                                                                       | 0.0%      | 0.0%               | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%    | 0.0%     | 0.0%    | 0.0%    | 0.0%    | 0.0%    |

#### Table 3-14 Colorado River Below the Confluence with the Eagle River Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cf

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month. <sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. <sup>3</sup>The first year of the study period was not included in the analysis of maximum increases and decreases due to start-up conditions in the model. N/A: Not applicable.

under the Proposed Action would have negligible impact on the ability to meet the CWCB instream flow requirements along the Colorado River.

This analysis coincides with a review of flow data for the gage maintained by the Northern Colorado Water Conservancy District (NCWCD), Colorado River below the confluence of the Williams Fork River at Parshall. Since 1992, recorded flows at that gage in August and September were less than 135 cfs for only 4 days in early September 2006. Since 2006 was not a substitution year, Springs Utilities

U.S. DEPARTMENT OF THE INTERIOR BUREAU OF RECLAMATION operations had no effect on flows in the Colorado River in that reach.

As discussed in Section 3.3.1.7, Phase 2 of the Grand County SMP identified environmental flows to support ecological needs in relation to fisheries for several stream reaches along the Colorado River. The preferred range for summer environmental flows in the Colorado River is 250 to 450 cfs below the confluence with the Williams Fork River and 600 to 1000 cfs below the confluence with the Blue River. As indicated in the Phase 2 SMP, flow records for gage stations near Parshall and below the KB Ditch, which are operated by NCWCD, and the USGS gage 09058000 Colorado River near Kremmling, show the recommended summer environmental flow ranges are quite commonly present in these reaches. Substitution releases from Williams Fork Reservoir and Wolford Mountain Reservoir contribute to meeting these flow recommendations since they augment naturally occurring flow along the Colorado River in the fall. Flow reductions along the Colorado River under the Proposed Action would be infrequent and minor and would have negligible affect on the ability to meet these flow recommendations particularly since substitution releases augment flows in this reach during the late summer and fall.

Flow changes in the Colorado River near Kremmling reflect changes in the amount and timing of substitution releases from Williams Fork Reservoir and Wolford Mountain Reservoir and the amounts stored as these reservoirs refill. These changes in flows are translated downstream. Slight changes in flow may also occur due to the location, amount and timing of HUP demands and their associated consumptive use and return flows.

Flow changes in the Colorado River downstream of the Eagle River reflect changes in the timing of substitution releases from Williams Fork, Wolford Mountain, and Homestake Reservoirs, reservoir spills, and the additional 250 AF that would be used by West Slope users in the Blue River basin. Slight changes in flow may also occur due to the location, amount and timing of HUP demands and their associated consumptive use and return flows. Downstream of the Eagle River there would be little change in the total flow across the year since the total substitution payback by Springs Utilities and Denver Water would not change at this location. The majority of flow changes downstream of the Eagle River would be due to changes in the timing of reservoir releases and spills.

In summary, average monthly flows in the Colorado River downstream of the confluence with Williams Fork River would decrease up to 6.3 cfs or 3.7% in March and increase by up to 4.1 cfs or 0.2% in June. Monthly average flows in the Colorado River near Kremmling would decrease by up to 8.1 cfs or 0.1% in June and increase by up to 4.6 cfs or 0.7% in October. Monthly average flows in the Colorado River downstream of the Eagle River would decrease by up to 8.1 cfs or 0.1% in June and increase by up to 4.6 cfs or 0.5% in October. In the driest years and substitution years, monthly average flows at all these locations would increase or decrease by less than 0.8 cfs.

The changes in flows under the Proposed Action would be well within the normal range of flows that have historically occurred along the Colorado River at these locations, as shown in Figure 3-12 for the Colorado River near Kremmling. Based on the magnitude and frequency of flow changes along the Colorado River, there would be little to no impact on the BLM's potential Wild and Scenic Rivers designation along the Colorado River.



### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

### **Eagle River Basin**

### Homestake Creek

Flow changes downstream of the Homestake Project on Homestake Creek are shown in Table 3-15. In summary, monthly average flows in Homestake Creek would increase by a maximum of 7.6 cfs or 18.1% in August. In substitution years, average monthly flows would increase by up to 0.6 cfs or 2.3%. There would be no change in flows in the driest years. Flows in Homestake Creek would change under the Proposed Action due to a substitution release from Homestake Reservoir in one year during the 56-year study period. This substitution release would result in a reduced delivery through Homestake Tunnel. The increase in flows under the Proposed Action would be well within the normal range of flows that have historically occurred in Homestake Creek downstream of the Homestake Project, as shown in Figure 3-13.

There would be no impact on the ability to meet the instream flow requirements along Homestake Creek and the Eagle River under the Proposed Action.

| Modeled Diffe                              | erences i             | n Flov             | v Betw  | een No         | o Actio | on and   | Prop | osed A | ction A | Altern | atives ( | cfs) |      |  |
|--------------------------------------------|-----------------------|--------------------|---------|----------------|---------|----------|------|--------|---------|--------|----------|------|------|--|
|                                            | Oct                   | Nov                | Dec     | Jan            | Feb     | Mar      | Apr  | May    | Jun     | Jul    | Aug      | Sep  | Avg  |  |
| Maximum Monthly Flow Decrease <sup>1</sup> |                       |                    |         |                |         |          |      |        |         |        |          |      |      |  |
| No Action Flow                             | N/A                   | N/A                | N/A     | N/A            | N/A     | N/A      | N/A  | N/A    | N/A     | N/A    | N/A      | N/A  |      |  |
| Proposed Action Flow                       | N/A                   | N/A                | N/A     | N/A            | N/A     | N/A      | N/A  | N/A    | N/A     | N/A    | N/A      | N/A  |      |  |
| Flow Change                                | 0.0                   | 0.0                | 0.0     | 0.0            | 0.0     | 0.0      | 0.0  | 0.0    | 0.0     | 0.0    | 0.0      | 0.0  |      |  |
| Percent Change                             | 0.0%                  | 0.0%               | 0.0%    | 0.0%           | 0.0%    | 0.0%     | 0.0% | 0.0%   | 0.0%    | 0.0%   | 0.0%     | 0.0% |      |  |
| <b>Maximum Monthly Flow</b>                | Increase <sup>1</sup> |                    |         |                |         |          |      |        |         |        |          |      |      |  |
| No Action Flow                             | N/A                   | N/A                | N/A     | N/A            | N/A     | N/A      | N/A  | N/A    | N/A     | 82.9   | 42.1     | N/A  |      |  |
| Proposed Action Flow                       | N/A                   | N/A                | N/A     | N/A            | N/A     | N/A      | N/A  | N/A    | N/A     | 83.1   | 49.8     | N/A  |      |  |
| Flow Change                                | 0.0                   | 0.0                | 0.0     | 0.0            | 0.0     | 0.0      | 0.0  | 0.0    | 0.0     | 0.1    | 7.6      | 0.0  |      |  |
| Percent Change                             | 0.0%                  | 0.0%               | 0.0%    | 0.0%           | 0.0%    | 0.0%     | 0.0% | 0.0%   | 0.0%    | 0.1%   | 18.1%    | 0.0% |      |  |
| Dry Year Monthly Averag                    | ge Flow (A            | verage             | of 1954 | <b>, 1966,</b> | 1977, 2 | 002, 200 | )4)  |        |         |        |          |      |      |  |
| No Action Flow                             | 11.2                  | 5.4                | 4.2     | 4.1            | 3.8     | 6.7      | 24.7 | 69.0   | 82.9    | 35.3   | 20.5     | 11.3 | 23.3 |  |
| Proposed Action Flow                       | 11.2                  | 5.4                | 4.2     | 4.1            | 3.8     | 6.7      | 24.7 | 69.0   | 82.9    | 35.3   | 20.5     | 11.3 | 23.3 |  |
| Flow Change                                | 0.0                   | 0.0                | 0.0     | 0.0            | 0.0     | 0.0      | 0.0  | 0.0    | 0.0     | 0.0    | 0.0      | 0.0  | 0.0  |  |
| Percent Change                             | 0.0%                  | 0.0%               | 0.0%    | 0.0%           | 0.0%    | 0.0%     | 0.0% | 0.0%   | 0.0%    | 0.0%   | 0.0%     | 0.0% | 0.0% |  |
| Average Flow During Sub                    | stitution             | Years <sup>2</sup> |         |                |         |          |      |        |         |        |          |      |      |  |
| No Action Flow                             | 10.4                  | 6.6                | 4.9     | 4.2            | 4.0     | 5.7      | 19.8 | 55.6   | 68.2    | 49.0   | 25.7     | 14.1 | 22.3 |  |
| Proposed Action Flow                       | 10.4                  | 6.6                | 4.9     | 4.2            | 4.0     | 5.7      | 19.8 | 55.6   | 68.2    | 49.0   | 26.3     | 14.1 | 22.4 |  |
| Flow Change                                | 0.0                   | 0.0                | 0.0     | 0.0            | 0.0     | 0.0      | 0.0  | 0.0    | 0.0     | 0.0    | 0.6      | 0.0  | 0.0  |  |
| Percent Change                             | 0.0%                  | 0.0%               | 0.0%    | 0.0%           | 0.0%    | 0.0%     | 0.0% | 0.0%   | 0.0%    | 0.0%   | 2.3%     | 0.0% | 0.2% |  |

Table 3-15Homestake Creek below Homestake Project at USGS Gage 09064000Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs)

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.



### Homestake Reservoir

Refer to Table 3-16 for a summary of monthly average changes in contents in Homestake Reservoir. Changes in contents at Homestake Reservoir under the Proposed Action would be infrequent and minor. End-of-month contents would decrease in seven months during the 56-year study period by up to 469 AF or 18.9% in August. Contents would decrease under the Proposed Action due to a substitution release from Homestake Reservoir in one year during the study period.

| Table 3-16                                                                             |
|----------------------------------------------------------------------------------------|
| Homestake Reservoir                                                                    |
| Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |

| Modeled Differences in Content Detween No Action and Proposed Action Alternatives (AF) |           |            |                       |            |         |        |        |        |        |        |        |        |  |
|----------------------------------------------------------------------------------------|-----------|------------|-----------------------|------------|---------|--------|--------|--------|--------|--------|--------|--------|--|
|                                                                                        | Oct       | Nov        | Dec                   | Jan        | Feb     | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    |  |
| Maximum Monthly Content Decrease <sup>1</sup>                                          |           |            |                       |            |         |        |        |        |        |        |        |        |  |
| No Action<br>Content                                                                   | 2,464     | 2,462      | 2,471                 | 2,482      | 2,484   | N/A    | N/A    | N/A    | N/A    | 8,118  | 4,895  | 4,814  |  |
| Proposed Action<br>Content                                                             | 1,998     | 1,996      | 2,004                 | 2,014      | 2,015   | N/A    | N/A    | N/A    | N/A    | 8,111  | 4,426  | 4,347  |  |
| Content Change                                                                         | -466      | -466       | -467                  | -468       | -469    | 0      | 0      | 0      | 0      | -7     | -469   | -467   |  |
| Percent Change                                                                         | -18.9%    | -18.9%     | 0.0%                  | -18.9%     | -18.9%  | 0.0%   | 0.0%   | 0.0%   | 0.0%   | -0.1%  | -9.6%  | -9.7%  |  |
| Maximum Month                                                                          | ly Conte  | nt Increa  | se <sup>1</sup>       |            |         |        |        |        |        |        |        |        |  |
| No Action<br>Content                                                                   | 18,967    | N/A        | 14,187                | N/A        | N/A     | N/A    | 169    | 5,052  | 17,401 | N/A    | 29,055 | N/A    |  |
| Proposed Action<br>Content                                                             | 18,968    | N/A        | 14,188                | N/A        | N/A     | N/A    | 170    | 5,053  | 17,402 | N/A    | 29,056 | N/A    |  |
| Content Change                                                                         | 1         | 0          | 1                     | 0          | 0       | 0      | 1      | 1      | 1      | 0      | 1      | 0      |  |
| Percent Change                                                                         | 0.0%      | 0.0%       | 0.0%                  | 0.0%       | 0.0%    | 0.0%   | 0.6%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |  |
| Dry Year Content                                                                       | t (Averag | e of 1954  | , 1966, 19            | 977, 2002, | , 2004) |        |        |        |        |        |        |        |  |
| No Action<br>Content                                                                   | 25,768    | 25,016     | 25,038                | 25,063     | 25,068  | 20,981 | 13,410 | 17,249 | 19,324 | 19,137 | 17,786 | 16,190 |  |
| Proposed Action<br>Content                                                             | 25,768    | 25,016     | 25,038                | 25,063     | 25,068  | 20,981 | 13,410 | 17,249 | 19,324 | 19,137 | 17,786 | 16,190 |  |
| Content Change                                                                         | 0         | 0          | 0                     | 0          | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0      |  |
| Percent Change                                                                         | 0.0%      | 0.0%       | 0.0%                  | 0.0%       | 0.0%    | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   |  |
| Average Content                                                                        | During S  | ubstitutio | on Years <sup>2</sup> | 2          |         |        |        |        |        |        |        |        |  |
| No Action<br>Content                                                                   | 24,860    | 24,555     | 24,577                | 24,602     | 24,607  | 19,327 | 11,170 | 16,221 | 21,104 | 19,592 | 18,357 | 17,279 |  |
| Proposed Action<br>Content                                                             | 24,824    | 24,519     | 24,541                | 24,566     | 24,571  | 19,327 | 11,170 | 16,221 | 21,104 | 19,592 | 18,321 | 17,242 |  |
| Content Change                                                                         | -36       | -36        | -36                   | -36        | -36     | 0      | 0      | 0      | 0      | -1     | -37    | -37    |  |
| Percent Change                                                                         | -0.1%     | -0.1%      | -0.1%                 | -0.1%      | -0.1%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | 0.0%   | -0.2%  | -0.2%  |  |

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.



### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

#### South Platte River Basin

Middle Fork South Platte River

Flow changes downstream of Montgomery Reservoir on the Middle Fork South Platte River are shown in Table 3-17. Springs Utilities' flow measurements at the outlet of Montgomery Reservoir were used to evaluate changes in streamflows along the Middle Fork South Platte River. Changes in flow reflect a 6% transit loss which would be assessed on deliveries from Montgomery Reservoir to Elevenmile Canyon Reservoir per the 2003 MOA. In summary, average monthly flows in the Middle Fork South Platte River would decrease by 34.1 cfs or 61.6% and increase by 4.3 cfs or 14.6% in August. The decrease in flows would be greater than 7 cfs in only one month during the study period. In the driest years and substitution years, average monthly flows in

| Table 3-17                                                                           |
|--------------------------------------------------------------------------------------|
| Middle Fork South Platte River below Montgomery Reservoir <sup>3</sup>               |
| Modeled Differences in Flow Between No Action and Proposed Action Alternatives (cfs) |

|                         | Oct                                        | Nov       | Dec             | Jan      | Feb      | Mar       | Apr       | May  | Jun  | Jul  | Aug    | Sep  | Avg   |  |
|-------------------------|--------------------------------------------|-----------|-----------------|----------|----------|-----------|-----------|------|------|------|--------|------|-------|--|
| Maximum Mont            | Maximum Monthly Flow Decrease <sup>1</sup> |           |                 |          |          |           |           |      |      |      |        |      |       |  |
| No Action Flow          | N/A                                        | N/A       | N/A             | N/A      | N/A      | N/A       | N/A       | N/A  | N/A  | N/A  | 55.3   | N/A  |       |  |
| Proposed<br>Action Flow | N/A                                        | N/A       | N/A             | N/A      | N/A      | N/A       | N/A       | N/A  | N/A  | N/A  | 21.2   | N/A  |       |  |
| Flow Change             | 0.0                                        | 0.0       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | -34.1  | 0.0  |       |  |
| Percent Change          | 0.0%                                       | 0.0%      | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%      | 0.0% | 0.0% | 0.0% | -61.6% | 0.0% |       |  |
| Maximum Mont            | hly Flow                                   | v Increas | se <sup>1</sup> |          |          |           |           |      |      |      |        |      |       |  |
| No Action Flow          | N/A                                        | N/A       | N/A             | N/A      | N/A      | N/A       | N/A       | N/A  | N/A  | N/A  | 29.6   | N/A  |       |  |
| Proposed<br>Action Flow | N/A                                        | N/A       | N/A             | N/A      | N/A      | N/A       | N/A       | N/A  | N/A  | N/A  | 33.9   | N/A  |       |  |
| Flow Change             | 0.0                                        | 0.0       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | 4.3    | 0.0  |       |  |
| Percent Change          | 0.0%                                       | 0.0%      | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%      | 0.0% | 0.0% | 0.0% | 14.6%  | 0.0% |       |  |
| Dry Year Month          | ly Avera                                   | age Flow  | (Avera          | ge of 19 | 54, 1966 | , 1977, 2 | 2002, 200 | )4)  |      |      |        |      |       |  |
| No Action Flow          | 2.9                                        | 0.1       | 0.0             | 0.0      | 0.0      | 0.0       | 0.7       | 16.7 | 33.7 | 28.7 | 30.6   | 6.9  | 10.0  |  |
| Proposed<br>Action Flow | 2.9                                        | 0.1       | 0.0             | 0.0      | 0.0      | 0.0       | 0.7       | 16.7 | 33.7 | 28.7 | 27.5   | 6.9  | 9.8   |  |
| Flow Change             | 0.0                                        | 0.0       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | -3.0   | 0.0  | -0.3  |  |
| Percent Change          | 0.0%                                       | 0.0%      | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%      | 0.0% | 0.0% | 0.0% | -10.0% | 0.0% | -2.5% |  |
| Average Flow D          | uring Su                                   | bstitutio | on Years        | 2        |          |           |           |      |      |      |        |      |       |  |
| No Action Flow          | 2.8                                        | 0.1       | 0.0             | 0.0      | 0.0      | 0.0       | 0.9       | 19.8 | 40.1 | 36.2 | 26.8   | 7.9  | 11.2  |  |
| Proposed<br>Action Flow | 2.8                                        | 0.1       | 0.0             | 0.0      | 0.0      | 0.0       | 0.9       | 19.8 | 40.1 | 36.2 | 23.0   | 7.9  | 10.9  |  |
| Flow Change             | 0.0                                        | 0.0       | 0.0             | 0.0      | 0.0      | 0.0       | 0.0       | 0.0  | 0.0  | 0.0  | -3.8   | 0.0  | -0.3  |  |
| Percent Change          | 0.0%                                       | 0.0%      | 0.0%            | 0.0%     | 0.0%     | 0.0%      | 0.0%      | 0.0% | 0.0% | 0.0% | -14.3% | 0.0% | -2.8% |  |

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004.

<sup>3</sup> Middle Fork South Platte River flows below Montgomery Reservoir were assumed to equal the measured outflow to the river. Measured outflows were not available prior to 1990, therefore, monthly flows prior to 1990 were assumed to be the average of flows from 1990 through 2005.

N/A: Not applicable.



August would decrease by 3.8 cfs or 14.3%. The decrease in flows under the Proposed Action would be well within the normal range of flows that have historically occurred in the Middle Fork South Platte River.

Flows in the Middle Fork South Platte River would change under the Proposed Action due to differences in releases from Montgomery Reservoir. Under the Proposed Action, less water would be released from Montgomery Reservoir to payback Denver Water for substitution releases made for Springs Utilities on the West Slope. Under the Proposed Action, Denver Water would release less water from Williams Fork and Wolford Mountain Reservoirs to meet Springs Utilities' substitution obligation, therefore, Springs Utilities' releases from Montgomery Reservoir to payback Denver Water would also decrease. Flows in the Middle Fork South Platte River would change in eight months during the 56-year study period.

The only potential impact on CWCB instream flow rights along the Middle Fork South Platte River below Montgomery Reservoir would be a reduction in the amount of water added to the river below the reservoir. There would be no increase in depletions to the Middle Fork South Platte River under the Proposed Action, however, less water would be released from Montgomery Reservoir to payback Denver Water for substitution releases made for Springs Utilities on the West Slope as described above. A review of Springs Utilities' flow measurements at the outlet of Montgomery Reservoir indicates there would be no impact on the ability to meet the instream flow requirements along the Middle Fork South Platte River below Montgomery Reservoir under the Proposed Action alternative.

### Montgomery Reservoir

Refer to Table 3-18 for a summary of monthly average changes in contents in Montgomery Reservoir. In summary, endof-month contents in Montgomery Reservoir would decrease by a maximum of 271 AF or 24.1% and increase by a maximum of 2,096 AF or 355%. The change in contents would be greater than approximately 400 AF in only one year during the study period. In the driest years and substitution years, average end-of-month contents would decrease by up to 250 AF or 11.1% and increase by up to 218 AF or 6.4%.

Changes in content at Montgomery Reservoir would primarily occur due to differences in the amount of water Springs Utilities would release to payback Denver Water for substitution releases on the West Slope. In substitution years when there is sufficient water in Upper Blue Reservoir to fully payback Springs Utilities' substitution obligation there would be no water released from Montgomery Reservoir for Denver Water under both alternatives. In years, when the contents in Upper Blue Reservoir are not sufficient to fully pack back the substitution obligation, Springs Utilities would release water from Montgomery Reservoir to Elevenmile Canyon Reservoir to payback Denver Water for substitution releases on the West Slope. Under the Proposed Action, Denver Water's substitution releases for Springs Utilities would decrease on average, therefore, Springs Utilities' releases from Montgomery Reservoir to payback Denver Water would also decrease. If less water is released from Montgomery Reservoir to the Middle Fork South Platte River under the Proposed Action, contents would be higher on average from August through March following



| Modeled Differences in Content Between No Action and Proposed Action Alternatives (AF) |           |           |                    |                  |           |        |       |       |       |       | (AF)   |        |
|----------------------------------------------------------------------------------------|-----------|-----------|--------------------|------------------|-----------|--------|-------|-------|-------|-------|--------|--------|
|                                                                                        | Oct       | Nov       | Dec                | Jan              | Feb       | Mar    | Apr   | May   | Jun   | Jul   | Aug    | Sep    |
| Maximum Montl                                                                          | hly Cont  | ent Dec   | rease <sup>1</sup> |                  |           |        |       |       | •     |       |        |        |
| No Action<br>Content                                                                   | 3,881     | 3,534     | 2,994              | 2,455            | 1,876     | 1,124  | N/A   | N/A   | N/A   | N/A   | 3,568  | 3,586  |
| Proposed Action<br>Content                                                             | 3,610     | 3,263     | 2,723              | 2,184            | 1,604     | 853    | N/A   | N/A   | N/A   | N/A   | 3,302  | 3,320  |
| Content Change                                                                         | -271.1    | -271.1    | -271               | -271.1           | -271.1    | -271.1 | 0.0   | 0.0   | 0.0   | 0.0   | -266.0 | -266.0 |
| Percent Change                                                                         | -7.0%     | -7.7%     | 0.0%               | -11.0%           | -14.5%    | -24.1% | 0.0%  | 0.0%  | 0.0%  | 0.0%  | -7.5%  | -7.4%  |
| Maximum Montl                                                                          | hly Cont  | ent Inci  | rease <sup>1</sup> |                  |           |        |       |       | •     |       |        |        |
| No Action<br>Content                                                                   | 1,144     | 590       | 206                | 206              | 206       | 1,119  | N/A   | N/A   | N/A   | N/A   | 2,548  | 2,190  |
| Proposed Action<br>Content                                                             | 3,240     | 2,686     | 2,113              | 1,541            | 1,019     | 1,525  | N/A   | N/A   | N/A   | N/A   | 4,644  | 4,286  |
| Content Change                                                                         | 2,096     | 2,096     | 1,908              | 1,335            | 814       | 405    | 0     | 0     | 0     | 0     | 2,096  | 2,096  |
| Percent Change                                                                         | 183%      | 355%      | 927%               | 649%             | 395%      | 36%    | 0%    | 0%    | 0%    | 0%    | 82%    | 96%    |
| Dry Year Conter                                                                        | nt (Avera | age of 19 | 954, 1966          | , 1977, 20       | 002, 2004 | )      |       |       |       |       |        |        |
| No Action<br>Content                                                                   | 4,145     | 3,774     | 3,331              | 3,056            | 2,255     | 1,514  | 1,004 | 1,853 | 3,736 | 4,154 | 2,922  | 2,706  |
| Proposed Action<br>Content                                                             | 3,895     | 3,524     | 3,081              | 2,806            | 2,005     | 1,307  | 1,004 | 1,853 | 3,736 | 4,154 | 3,109  | 2,893  |
| Content Change                                                                         | -250      | -250      | -250               | -250             | -250      | -207   | 0     | 0     | 0     | 0     | 187    | 187    |
| Percent Change                                                                         | -6.0%     | -6.6%     | -7.5%              | -8.2%            | -11.1%    | -13.6% | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 6.4%   | 6.9%   |
| Average Content                                                                        | During    | Substit   | ution Yea          | ars <sup>2</sup> |           |        |       |       | •     |       |        |        |
| No Action<br>Content                                                                   | 3,822     | 3,507     | 3,053              | 2,642            | 1,938     | 1,213  | 732   | 1,612 | 3,822 | 4,080 | 3,433  | 3,399  |
| Proposed Action<br>Content                                                             | 3,825     | 3,510     | 3,042              | 2,586            | 1,837     | 1,056  | 732   | 1,612 | 3,822 | 4,080 | 3,651  | 3,617  |
| Content Change                                                                         | 3         | 3         | -11                | -55              | -100      | -157   | 0     | 0     | 0     | 0     | 218    | 218    |
| Percent Change                                                                         | 0.1%      | 0.1%      | -0.4%              | -2.1%            | -5.2%     | -12.9% | 0.0%  | 0.0%  | 0.0%  | 0.0%  | 6.3%   | 6.4%   |

# Table 3-18 Montgomery Reservoir odeled Differences in Content Between No Action and Proposed Action Alternatives (AF

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase

means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month.

<sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004.

N/A: Not applicable.

substitution years. There would likely be no change in contents from April through July since Montgomery Reservoir is typically drawn down to the dead pool by the end of April due to deliveries through the Blue River Pipeline through the winter months. Increased storage under the Proposed Action would likely result in higher deliveries through the Blue River Pipeline to Springs Utilities North Slope reservoirs through the winter months. For the purposes of this analysis it was assumed there would no change in diversions to Montgomery Reservoir from the Middle Fork South Platte



River, particularly since the reservoir's water right is relatively junior and storage contents at the end of April would be similar under both alternatives.

Montgomery Reservoir contents would also decrease slightly in non-substitution years due to a reduction in Hoosier Tunnel deliveries under the Proposed Action. The release of 250 AF each year from Upper Blue Reservoir for West Slope users in the Blue River basin would decrease the amount of water delivered through the Hoosier Tunnel to Montgomery Reservoir by a commensurate amount. Deliveries through the Blue River Pipeline to Springs Utilities' North Slope reservoirs through the winter months would likely decrease by 250 AF due to this reduction in storage contents. There would likely be no change in contents from April through July since Montgomery Reservoir is typically drawn down to the dead pool by the end of April.

### Elevenmile Canyon Reservoir

Refer to Table 3-19 for a summary of monthly average changes in contents in Elevenmile Canyon Reservoir. There would likely be no change in Elevenmile Canyon Reservoir contents under the Proposed Action because the reservoir is operated for long-term drought storage and typically remains full during most years. In substitution years when there is sufficient water in Upper Blue Reservoir to fully payback Springs Utilities' substitution obligation there would be no water released from Montgomery Reservoir to Elevenmile Canyon Reservoir under both alternatives. In years when the contents in Upper Blue Reservoir are not sufficient to fully payback Spring Utilities' substitution obligation, water would be released from Montgomery Reservoir to Elevenmile Canyon Reservoir to payback Denver Water for substitution

releases made for Springs Utilities. Under the Proposed Action, more water would be released from Springs Utilities' accounts in Wolford Mountain and Homestake Reservoirs in lieu of Denver Water's substitution releases for Springs Utilities from Wolford Mountain Reservoir and/or Williams Fork Reservoir. As a result, the amount of water released from Montgomery Reservoir would decrease under the Proposed Action in eight months during the 56-year study period. Releases from Montgomery Reservoir would likely be passed through Elevenmile Canyon Reservoir since Elevenmile Canyon Reservoir would typically be full.

# 3.3.3 Cumulative Impacts

Actions that meet all of the following criteria were considered reasonably foreseeable and were included in the cumulative effects analysis:

- The action would occur within the same geographic area.
- The action would affect the same environmental resources and measurably contribute to the total resource impact.
- There is reasonable certainty as to the likelihood of the action occurring; the action is not speculative.
- There is sufficient information available to define the action and conduct a meaningful analysis.



| Modele                     | d Differ   | ences in   | Conter           | nt Betw  | een No   | Action | ı and P | ropose | d Actio | n Altern | atives (Al | F)     |
|----------------------------|------------|------------|------------------|----------|----------|--------|---------|--------|---------|----------|------------|--------|
|                            | Oct        | Nov        | Dec              | Jan      | Feb      | Mar    | Apr     | May    | Jun     | Jul      | Aug        | Sep    |
| Maximum Mont               | hly Conte  | nt Decrea  | ase <sup>1</sup> |          |          |        |         |        |         |          |            |        |
| No Action<br>Content       | N/A        | N/A        | N/A              | N/A      | N/A      | N/A    | N/A     | N/A    | N/A     | N/A      | N/A        | N/A    |
| Proposed Action<br>Content | N/A        | N/A        | N/A              | N/A      | N/A      | N/A    | N/A     | N/A    | N/A     | N/A      | N/A        | N/A    |
| Content Change             | 0          | 0          | 0                | 0        | 0        | 0      | 0       | 0      | 0       | 0        | 0          | 0      |
| Percent Change             | 0.0%       | 0.0%       | 0.0%             | 0.0%     | 0.0%     | 0.0%   | 0.0%    | 0.0%   | 0.0%    | 0.0%     | 0.0%       | 0.0%   |
| Maximum Mont               | hly Conte  | nt Increa  | se <sup>1</sup>  |          |          |        |         |        |         |          |            |        |
| No Action<br>Content       | N/A        | N/A        | N/A              | N/A      | N/A      | N/A    | N/A     | N/A    | N/A     | N/A      | N/A        | N/A    |
| Proposed Action<br>Content | N/A        | N/A        | N/A              | N/A      | N/A      | N/A    | N/A     | N/A    | N/A     | N/A      | N/A        | N/A    |
| Content Change             | 0          | 0          | 0                | 0        | 0        | 0      | 0       | 0      | 0       | 0        | 0          | 0      |
| Percent Change             | 0.0%       | 0.0%       | 0.0%             | 0.0%     | 0.0%     | 0.0%   | 0.0%    | 0.0%   | 0.0%    | 0.0%     | 0.0%       | 0.0%   |
| Dry Year Conter            | nt (Averag | ge of 1954 | , 1966, 1        | 977, 200 | 2, 2004) |        |         |        |         |          |            |        |
| No Action<br>Content       | 95,465     | 95,377     | 95,281           | 95,054   | 94,929   | 94,804 | 94,742  | 94,689 | 94,819  | 95,408   | 95,614     | 95,062 |
| Proposed Action<br>Content | 95,465     | 95,377     | 95,281           | 95,054   | 94,929   | 94,804 | 94,742  | 94,689 | 94,819  | 95,408   | 95,614     | 95,062 |
| Content Change             | 0          | 0          | 0                | 0        | 0        | 0      | 0       | 0      | 0       | 0        | 0          | 0      |
| Percent Change             | 0.0%       | 0.0%       | 0.0%             | 0.0%     | 0.0%     | 0.0%   | 0.0%    | 0.0%   | 0.0%    | 0.0%     | 0.0%       | 0.0%   |
| Average Conten             | t During S | Substituti | on Years         | $s^2$    |          |        |         |        |         |          |            |        |
| No Action<br>Content       | 95,155     | 94,892     | 94,512           | 93,724   | 93,064   | 92,443 | 92,038  | 91,743 | 91,827  | 92,334   | 92,287     | 91,627 |
| Proposed Action<br>Content | 95,155     | 94,892     | 94,512           | 93,724   | 93,064   | 92,443 | 92,038  | 91,743 | 91,827  | 92,334   | 92,287     | 91,627 |
| Content Change             | 0          | 0          | 0                | 0        | 0        | 0      | 0       | 0      | 0       | 0        | 0          | 0      |
| Percent Change             | 0.0%       | 0.0%       | 0.0%             | 0.0%     | 0.0%     | 0.0%   | 0.0%    | 0.0%   | 0.0%    | 0.0%     | 0.0%       | 0.0%   |

# Table 3-19 Elevenmile Canyon Reservoir Jodeled Differences in Content Between No Action and Proposed Action Alternatives (AF)

<sup>1</sup> A decrease means that the quantity for the Proposed Action is less than the comparable quantity for the No Action alternative, and an increase means that the quantity in the Proposed Action is greater than the comparable quantity for the No Action alternative.

The maximum monthly flow increase and decrease due to the Proposed Action may occur in different years from month to month. <sup>2</sup>Subsitution years during the 56-year study period include 1954, 1955, 1961, 1963, 1964, 1966, 1977, 1981, 1992, 1994, 2001, 2002, and 2004. N/A: Not applicable.

# Cumulative Effects for the Proposed Action

Cumulative changes in reservoir contents and streamflows, including those segments of the Blue and Colorado rivers potentially eligible for Wild and Scenic Rivers designation, resulting from the Proposed Action would follow a pattern similar to direct effects.

Within the Study Area for this EA, the reasonably foreseeable projects would primarily affect flows along the Colorado River from the confluence with the Williams Fork River downstream. Growth in Summit County and the exchanges applied for in



Case No. 03CW314 would affect flows in the Blue River basin, however, increased water demands and depletions are expected to occur primarily in areas below Dillon Reservoir. It is possible that flows could be reduced below the Continental-Hoosier System in late summer/early fall if Springs Utilities exercises their pending exchange rights. These additional diversions could potentially overlap with flow reductions associated with differences in substitution payback in August under the Proposed Action. However, typically flows are higher in August in years that substitution releases are made from Upper Blue Reservoir. In addition, flows in the Blue River would generally need to be higher than average for exchange potential to exist. While it is difficult to predict the frequency and magnitude that these exchange rights would be exercised, the cumulative effect of Springs Utilities' pending exchange rights is expected to be negligible to minor given the circumstances that must occur for exchange potential to exist. The Homestake Project to Blue River exchange has only been operated once in the past in late July and August in 1966.

The cumulative effects projects discussed above would likely have negligible effect on Springs Utilities' Continental-Hoosier System diversions under the Blue River Decree and their corresponding substitution obligation since that system is located high in the Blue River basin. It is possible that Springs Utilities' substitution obligation may increase slightly in the future if Xcel Energy's Shoshone Power Plant call comes on sooner and/or extends for a longer period in years that Green Mountain Reservoir does not fill.

The potential hydrologic effects associated with reasonably foreseeable actions focused on dry years since the Proposed Action

would cause flow changes primarily during substitution years, which coincide with dry years. There would be negligible cumulative effects from the Proposed Action in average and wet years since flow changes in those years would be infrequent and minor and generally a result of differences in reservoir spills. In dry years, the critical low-flow period along the Colorado River that coincides with potential flow reductions under the Proposed Action is August and September. Therefore, the following analysis focuses on potential flow changes associated with reasonably foreseeable actions in dry years during August and September, which would occur in combination with flow reductions associated with the Proposed Action.

There would be no change in flows along the Colorado River in dry years due to the WGFP and Denver Water's Moffat Collection System Project because the Windy Gap Project and Denver Water already divert the maximum amount physically and legally available under their existing water rights without additional storage in their systems in those years.

The expiration of Denver Water's Contract with Big Lake Ditch would result in less depletion and a corresponding increase in flows on average in the Williams Fork River basin. This increase in flow may be translated downstream to the Colorado River depending on whether Denver Water stores additional water in Williams Fork Reservoir when their water rights are in priority.

Increased water use and wastewater discharges associated with urban growth in Grand and Summit counties would result in changes in the quantity and timing of streamflows along the Colorado River. However, cumulative changes in flows in the fall in dry years would be minor since



the majority of additional water diverted for indoor use (80% to 90%) would be returned to the river as wastewater effluent. Additional diversions in the fall would also be limited since municipal water providers already typically divert the maximum amount physically and legally available under their existing water rights in dry years similar to Denver Water and the Windy Gap Project.

The reasonably foreseeable action with the greatest potential to effect flows along the Colorado River in dry years would be a reduction of Xcel Energy's Shoshone Power Plant call. Increased in-priority diversions and reduced reservoir releases for exchange and/or substitution under a call reduction would decrease flows in the Colorado River during the relaxation period. However, the Shoshone call relaxation could be invoked between March 14 and May 20, therefore, there would be no impact on flows in the months of August and September from this action.

Increased contract releases from Wolford Mountain Reservoir would increase flows in Muddy Creek below the reservoir and along the Colorado River mainstem in August and September. Since contract demands would likely be out-of-priority in dry years during the fall, contract releases would be made to cover those depletions. This increase in flow in the fall could offset decreases in flow resulting from the Proposed Action.

Reductions in releases from Williams Fork and Wolford Mountain reservoirs to meet USFWS flow recommendations for the 15-Mile Reach would decrease flows along the Colorado River downstream of the confluence of the Williams Fork during the late summer and early fall. Historical releases for fish flow purposes from 2000 through 2006 were reviewed. Typically

releases are on the order of 50 to 75 cfs. however, the maximum amount released from Wolford Mountain Reservoir and Williams Fork Reservoir was 140 cfs and 150 cfs, respectively. Typically these releases are offset in terms of timing however, occasionally releases from both reservoirs are made at the same time. While releases from these reservoirs for the agreed upon flow recommendations in the 15-mile reach (i.e., 10,825 AF) would decrease in the future, it is possible a portion of this water would be released from Lake Granby instead. The ongoing 10,825 Study is evaluating options to release a portion of the 10,825 obligation from Lake Granby. This would reduce potential impacts on flows high in the basin associated with reductions in releases from Williams Fork and Wolford Mountain reservoirs.

During August and September, the Proposed Action would result in average monthly flow reductions of up to 0.2 cfs or 0.1% in dry years and 0.6 cfs or 0.2% in substitution years in the Colorado River below the confluence with the Williams Fork River. The reasonably foreseeable projects that reduce flows in August and September include increased water use due to urban growth in Grand and Summit counties and reductions in releases from Williams Fork and Wolford Mountain reservoirs for fish flow purposes. If these actions reduce average monthly flows in August and September by an additional 150 cfs in dry years below the confluence with the Williams Fork River, the incremental effect of the Proposed Action would still be a flow reduction of less than 0.4% on average at that location. A flow reduction of 150 cfs was selected because that is the maximum amount that has been released from Williams Fork Reservoir for fish flow purposes in relation to the agreed upon flow recommendations in the 15-mile reach (i.e.,



10,825 AF). In August and September of dry years, the potential cumulative effects on flows along the Colorado River from the confluence with the Williams Fork River downstream to the confluence with the Blue River would primarily be a reduction in the amount of water *added* to the river as compared to the No Action alternative since releases for fish flow purposes and substitution payback augment flows in that reach. The Proposed Action does not cause depletions in this reach of the river.

A similar analysis was conducted for the Colorado River near Kremmling gage. The Proposed Action would result in average monthly flow reductions of up to 0.6 cfs or 0.1% in dry years and 0.8 cfs or 0.1% in substitution years in the Colorado River near Kremmling gage. The reasonably foreseeable projects that reduce flows in August and September include increased water use due to urban growth in Grand and Summit counties and reductions in releases from Williams Fork and Wolford Mountain reservoirs for fish flow purposes. If these actions reduce average monthly flows in August and September by an additional 300 cfs in dry years, the incremental effect of the Proposed Action would still be a flow reduction of less than 0.1%. A flow reduction of 300 cfs was selected because that is approximately the maximum amount that has been released from both Williams Fork and Wolford Mountain reservoirs for fish flow purposes in relation to the agreed upon flow recommendations in the 15-mile reach (i.e., 10,825 AF).

The incremental cumulative hydrologic effect of the Proposed Action would be negligible to minor in comparison to other past actions and the reasonably foreseeable actions described above. In general, the reasonably foreseeable actions would result in additional water use in the future, which would cumulatively reduce streamflows and reservoir contents in the Study Area. While the magnitude of hydrologic changes under the Proposed Action would be similar under cumulative effects, the percentage change in flows and reservoir contents under the Proposed Action may be slightly higher under cumulative effects than described for direct effects.

# 3.4 Hydroelectric Generation

Six hydroelectric facilities occur within the Study Area and were evaluated in this section (refer to Figure 3-1 for the location of these facilities).

- 1) Dillon Reservoir Power Plant
- 2) Roberts Tunnel Power Plant
- 3) Green Mountain Reservoir Power Plant
- 4) Shoshone Power Plant
- 5) Mt. Elbert Power Plant
- 6) Williams Fork Reservoir Power Plant

For the purposes of this analysis, it is assumed all of the power plants have the same generation efficiencies. In other words, if the same volume of water is passed through one hydroelectric facility instead of another hydroelectric facility due to an exchange or substitution, then the same power is generated.

# 3.4.1 Affected Environment

### **Dillon Reservoir Power Plant**

Two power plants are associated with the Roberts Tunnel Collection System. The first is the Dillon Reservoir Power Plant, owned and operated by Denver Water, which generates power from Dillon Reservoir releases to the Blue River. The outlet works



from the Dillon Reservoir are equipped with a hydroelectric generating facility, with a capacity of about 110 cfs. Power releases from Dillon Reservoir are discharged to the power plant through a penstock (pipe or conduit) branching off of the outlets works tunnel. The Dillon Reservoir Power Plant contains a single turbine with a rated capacity of 1,750 kilowatt (Kw). When possible releases from the Dillon Reservoir to the Blue River are maintained between 50 and 110 cfs, the latter being the flow required for full power generation. There is no direct flow right for the hydroelectric operation (CDWR 2007).

### **Roberts Tunnel Power Plant**

The Roberts Tunnel Power Plant associated with the Roberts Tunnel Collection System is owned and operated by Denver Water. The Roberts Tunnel Power Plant generates power from Dillon Reservoir releases through Roberts Tunnel. Power releases from the Roberts Tunnel are conveyed to the Roberts Tunnel Power Plant through a penstock bifurcating off of the tunnel upstream of the outlet works. The power plant consists of a single turbine connected to a generator with a rated capacity of 5.5 megawatts (MW).

### **Green Mountain Reservoir Power Plant**

The Green Mountain Reservoir Power Plant, owned and operated by Reclamation, is a 26 MW facility located at the base of Green Mountain Reservoir Dam. It is one of six power plants - the only one on the West Slope - in the C-BT Project. Green Mountain Reservoir was constructed for the primary purposes of providing replacement storage for transmountain diversions by the C-BT Project and to preserve existing and future water rights and interests on the West Slope. Power generation is a secondary purpose for Green Mountain Reservoir. Releases from the reservoir are made through the Green Mountain Reservoir Power Plant. The Green Mountain Reservoir Power Plant has a decree for 1,726 cfs (CDWR 2007).

Historically, power interference has been administered on a year-to-year basis. Springs Utilities' operations on the Blue River impacts Reclamation's ability to produce hydropower; therefore Springs Utilities is required to replace the power that would have been generated by the water that Springs Utilities diverts under its 1948 water rights. During the months the Blue River System is operated, Springs Utilities provides Reclamation with daily operations data. Reclamation then determines the amount of power interference calculated at a rate of 210 kilowatt-hours per AF of depletion. Since Springs Utilities owns and operates power generation facilities, power interference is typically repaid with power. Springs Utilities coordinates with WAPA to deliver the required amount of replacement power at a time and location determined by WAPA. Springs Utilities may also pay WAPA with cash.

### **Shoshone Power Plant**

The Shoshone Power Plant, owned by Xcel Energy, is a 3 MW facility located on the mainstem of the Colorado River in Glenwood Canyon eight miles upstream of Glenwood Springs. The plant has two identical horizontal turbine-generator units. This facility has water rights to divert 1,408 cfs from the Upper Colorado River.

Water is diverted at the Shoshone Power Plant on a year-round basis, although the plant is often closed during January for maintenance and power production is curtailed in the winter in direct proportion to the decrease in flow in the river. Below 800 cfs, one unit is normally shut down and the full flow is routed through the other unit. Both units are typically operated at full



capacity when the flow at Dotsero (eight miles upstream of the power plant) is 1,408 cfs or above. There is no consumptive use associated with the operation of the power plant and all diverted water is returned back to the river at a point located about three miles downstream of the diversion dam. There are no other water rights in the intervening reach of the river (CDWR 2007).

During times when the streamflow at the Dotsero gage is less than 1,408 cfs, the power plant diverts generally all of the river flow, leaving only a small amount of leakage through the diversion dam as the flow in the river throughout the three mile reach. At times when the flow is less than 1,250 or 1,408 cfs, the division engineer strictly enforces the call by the Shoshone Power Plant. The right for 1,250 cfs is senior in comparison with the majority of upstream water rights, so the Shoshone Power Plant is generally the controlling call on the river during the late summer, winter, and early spring. During unusually dry years, the Shoshone call can be enforced throughout the period of late June through mid-April of the following year. During unusually wet years, the call does not go into effect until November or December (CDWR 2007).

### Mt. Elbert Power Plant

The Mt. Elbert Power Plant is a 200 MW facility owned and operated by Reclamation near Leadville, Colorado. This facility is a pumped-storage hydroelectric plant, which is a facility with both an upper and lower reservoir for water storage. It operates by releasing water for generation from the upper reservoir to the lower reservoir during periods of high demand and then pumping the water back into the upper reservoir during the evening or other periods of low demand. Pumped-storage plants allow existing off-peak generation to be shifted to peak periods, and thus reduce the need for new generating plants (Renewable Resource Generation Development Areas Task Force 2007).

The Mt. Elbert Power Plant generates hydroelectric power for the Fryingpan-Arkansas Project and supports peak capacity needs of the interconnected power system. The power generated at Mt. Elbert derives from water originally pumped from Twin Lakes Reservoir, which acts as the Mt. Elbert afterbay, and also from supplemental water delivered from Turquoise Reservoir via the Mt. Elbert conduit to the Mt. Elbert forebay. The majority of the power plant structure is below ground on the edge of Twin Lakes Reservoir. Water is stored in the forebay to build up "head" or energy before being dropped down over half a mile in elevation to the hydroelectric Mt. Elbert Plant. Water exiting the Mt. Elbert Power Plant helps to fill Twin Lakes Reservoir.

### Williams Fork Reservoir Power Plant

The Williams Fork Reservoir Power Plant is a 3 MW facility on a secondary outlet from the Williams Fork Reservoir and is owned and operated by Denver Water. The primary purpose of Williams Fork Reservoir is to provide replacement water for out-ofpriority diversions by Denver Water and to generate power. Power operations generally influence reservoir releases during much of the year. Depending upon the available pressure head in the reservoir and the number of turbines in operation, the flow required for hydroelectric generation ranges from about 100 cfs (1 MW) to 280 cfs (3 MW) (CDWR 2007). Most of the power generated at Williams Fork Reservoir Power Plant is provided to Reclamation as partial payment for power generation interference caused to the Green Mountain Reservoir Power Plant by Denver Water's upstream depletions to the Blue River at Dillon



Reservoir and Roberts Tunnel. The minimum flow for the power plant to function is 105 cfs and the maximum flow is 300 cfs.

# 3.4.2 Environmental Consequences

# 3.4.2.1 No Action Alternative

Under the No Action alternative, Springs Utilities would continue to operate according to the Blue River Decree during substitution years. Therefore, hydroelectric power generation would not change as a result of Springs Utilities' substitution operations. Per the Blue River Decree, Springs Utilities would continue to pay Reclamation and WAPA at Green Mountain Reservoir Power Plant on an as-needed basis for lost power generation due to their diversions from the Blue River. As a result, this alternative is expected to have no direct, indirect, or cumulative impacts on hydroelectric power generation.

# 3.4.2.2 Proposed Action

Under the Proposed Action, a long-term Power Interference Agreement would be formalized with Reclamation and WAPA. Under the agreement, Springs Utilities would compensate Reclamation and WAPA for lost hydropower in substitution years with power generated from their own facilities, at a time and location determined by WAPA. Springs Utilities may pay WAPA in cash or with power.

Model results indicate there would be 13 substitution years during the 56-year study period from 1950 through 2005. In those years, there would be no change in Springs Utilities' *total* substitution obligation between the No Action and Proposed Action alternatives because there would be no difference in the deficit at Green Mountain Reservoir in those years. Springs Utilities

would divert the same amount of water under the Proposed Action from the Blue River at their Continental-Hoosier System diversion points. As a result, there would be little to no change in hydropower generation under the Proposed Action. However, even though the Springs Utilities' total substitution obligation would not change under the Proposed Action, the timing and sources of water used for substitution payback would change. Small changes in the timing and amount of releases from Dillon Reservoir, Green Mountain Reservoir, Homestake Reservoir, Wolford Mountain Reservoir, and Williams Fork Reservoir could have a minor impact on hydroelectric power generation.

The biggest difference in the payback of the substitution obligation under the Proposed Action would occur when the substitution obligation is greater than 2,100 AF. The substitution bill is greater than 2,100 AF in approximately seven of the substitution years during the 56-year study period. In those years, contents in the Upper Blue Reservoir would not be sufficient to fully pay back the substitution obligation. Therefore, under the Proposed Action more water would be released from Springs Utilities' accounts in Wolford Mountain and Homestake reservoirs while Denver Water's substitution releases for Springs Utilities from either Wolford Mountain Reservoir or Williams Fork Reservoir would decrease. Changes in hydropower generation at each facility due to changes in the timing and source of water used for substitution payback are discussed below.

### **Dillon Reservoir Power Plant**

Changes in releases from Dillon Reservoir to the Blue River would occur due to small differences in reservoir end-of-month contents when Dillon Reservoir fills and spills. These flow changes would occur in



part to the release of 250 AF from Upper Blue Reservoir for West Slope users in the Blue River basin under the Proposed Action. Since this water would be used to extinction it would not be available for storage in Dillon Reservoir, in which case Dillon Reservoir contents would decrease by 250 AF in substitution years under the Proposed Action. Under the No Action alternative, this water would be delivered through the Hoosier Tunnel to Montgomery Reservoir. Differences in Dillon Reservoir contents would carry forward from year to year, which would result in changes in spills in years when the reservoir fills. Since there would be no change in releases from Dillon Reservoir in the 50 cfs to 110 cfs range, there would be no change in hydroelectric power generation at the Dillon Reservoir Power Plant. No impacts are anticipated.

### **Roberts Tunnel Power Plant**

The Roberts Tunnel Power Plant generates power from Dillon Reservoir releases through Roberts Tunnel. Since there would be no difference in the amount of water diverted through Roberts Tunnel under the Proposed Action, there would be no impact on hydropower generation at this facility. Minor changes in inflow to Dillon Reservoir described in Section 3.3.2 would result in changes in storage contents, however, there would be no impact on Roberts Tunnel deliveries since there is always sufficient storage in Dillon Reservoir and water available under the Roberts Tunnel direct flow water right to meet that demand.

### Green Mountain Reservoir Power Plant

Springs Utilities would divert the same amount of water under the Proposed Action from the Blue River at their Continental-Hoosier System diversion points. As a result, hydropower generation at the Green

Mountain Reservoir Power Plant would not change in substitution years under the Proposed Action. There could be a minor adverse short-term impact on hydropower generation in years that Green Mountain Reservoir fills and spills. There would be a small decrease in spills from Green Mountain Reservoir in some years under the Proposed Action, due primarily to reduced inflow when Dillon Reservoir fills. Reduced spills from Dillon Reservoir would decrease the inflow to Green Mountain Reservoir, and therefore, reduce the amount and possibly timing of spills at Green Mountain Reservoir. This could decrease the amount of water released through the Green Mountain Reservoir Power Plant, however, these changes are expected to be negligible.

### **Shoshone Power Plant**

To evaluate potential changes in hydroelectric power generation at the Shoshone Power Plant, flow changes in the Colorado River near Kremmling were evaluated. Flow changes at this location reflect changes in the amount and timing of substitution releases from Williams Fork Reservoir and Wolford Mountain Reservoir and the amounts stored as these reservoirs refill. These changes in flows are translated downstream. Slight changes in flow may also occur due to the location, amount, and timing of HUP demands and their associated consumptive use and return flows. The maximum increases and decreases in flow would be less than 1% at the Colorado River near Kremmling, therefore, changes in hydropower generation are expected to be minor adverse and short-term.

### **Mt. Elbert Power Plant**

Under the No Action alternative, substitution releases would not be made from Springs Utilities' Homestake Reservoir



account. However, under the Proposed Action, substitution releases from Springs Utilities' account in Homestake Reservoir would occur in one year out of the 56-year study period in the amount of 469 AF, as shown in Table 3-1. Due to this substitution release, Springs Utilities' diversions through the Homestake Tunnel would decrease by a comparable amount. This decrease in diversion through the Homestake Tunnel could result in a minor adverse short-term decrease in power generation at the Mt. Elbert Power Plant under the Proposed Action.

### Williams Fork Reservoir Power Plant

Changes in releases from Williams Fork Reservoir would occur due to differences in the amount and timing of water released from Williams Fork Reservoir for substitution payback. Under the Proposed Action, substitution releases from Wolford Mountain and Homestake reservoirs would increase, while substitution releases from Williams Fork Reservoir would decrease by a commensurate amount. A reduced substitution release under the Proposed Action would result in higher contents in Williams Fork Reservoir. As a result, less water would be stored in subsequent months depending on storage targets at Williams Fork Reservoir as the reservoir refills. Changes in reservoir releases in some months would also occur due to differences in the timing of substitution releases from Williams Fork Reservoir under the Proposed Action. While the total amount released from Williams Fork Reservoir would essentially be the same under both alternatives, the timing of substitution releases may be offset by a few months. Because there would be little to no change in the total amount released from Williams Fork Reservoir, changes in the total hydroelectric power generation at the



Williams Fork Reservoir Power Plant would be negligible. However, there could be minor adverse short-term changes in the timing of hydroelectric power generation in some years.

# 3.4.3 Cumulative Impacts

The incremental hydrologic effect of the Proposed Action would be negligible to minor in comparison to other past actions and the reasonably foreseeable water-based actions considered in the cumulative effects analysis as described in Section 3.1.3. In general, the reasonably foreseeable actions relevant to this study would result in additional water use in the future, which would reduce streamflows and reservoir contents in the Study Area. While the magnitude of hydrologic changes under the Proposed Action would be similar under cumulative effects, the percentage change in flows and reservoir contents under the Proposed Action may be slightly higher under cumulative effects than described for direct effects. However, hydropower generation operations would be maintained per existing contracts at the facilities described previously. Therefore, there would be no cumulative change to operations at these power plants.

# 3.5 Water Quality

This section describes the existing water quality in the Study Area per the CDPHE Water Quality Control Commission (WQCC) water quality standards (classifications and designated uses) and qualitatively describes the potential effects of the No Action and Proposed Action alternatives on water quality in streams and reservoirs. Potentially affected river segments and reservoirs in the Study Area are shown in Figure 3-1. It is assumed, for the purposes of this water quality assessment, that any impacts to the existing

### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

flow conditions of a water body, may in turn, have the potential to change the existing water quality. This section provides a summary of the water quality standards for each of the affected river basins in the Study Area (river basins are shown on Figure 3-1). Any existing water quality concerns such as Total Maximum Daily Load (TMDL) and/or other use protection designations, area also included in this section.

The TMDL process is designed by the Federal Water Pollution Control Act ("Clean Water Act") to insure that all sources of pollutant loading are accounted for when devising strategies to meet Water Quality Standards. Consistent with the Section 3.3 Hydrology, the water quality assessment was conducted on a watershed/basin basis for those waterbodies identified as potentially affected. In order to be consistent with the structure of water quality standards in Colorado, water quality is evaluated on a broader basin basis for the Upper Colorado River Basin and the South Platte River Basins only; these two basins contain potentially affected stream segments.

Issues raised during scoping that relate to water quality are similar to those identified in Section 3.3 Hydrology. These issues include:

- Effects on Colorado River stream flows below the Windy Gap Project diversion point due to using Williams Fork Reservoir as a source of substitution replacement, and
- Effect of transfers on water temperatures in affected streams

In general, water quality conditions correlate to water quantity and flow conditions and therefore any potentially affected stream segments evaluated in Section 3.3 may impact water quality.

# Water Quality Standards and Regulations

The "health" of a water body is measured by whether or not it is maintaining the assigned water quality standards. The Water Quality Standards Program in Colorado is a system based on protection of designated uses, also referred to as classifications. Specific uses (such as aquatic life, agriculture, and recreation) have been established by the WQCC and water quality standards (numeric criteria) have been developed to protect those uses. Different uses and standards may be assigned to different portions or segments of a water body.

In Colorado, water quality standards are set for specific water body segments through the use of statewide adopted Table Value Standards (TVS). TVS are the levels that are protective of the uses under general conditions. Segments may have TVS standards or site-specific standards. Sitespecific standards require a great deal more data collection and background information to support their adoption by showing the levels would be protective of the uses of the segment.

In addition to numeric criteria to protect specific uses, WQCC has adopted numeric standards for radionuclides and narrative standards for such parameters as sediment deposition, floating debris, odor, taste, and shore deposits. A summary of the numeric criteria for the Upper Colorado and South Platte River Basins is provided in Appendix C.

Regulation No. 31, the Basic Standards and Methodologies for Surface Water (CDPHE 2008c) defines the use classifications for Recreation, Agriculture, Aquatic Life, and Domestic Water Supply.



#### **Affected Environment** 3.5.1

The Study Area encompasses portions of the Upper Colorado River and South Platte River basins. Potentially affected river segments and reservoirs in the Upper Colorado River Basin and South Platte River Basin are discussed in detail in Section 3.3 Hydrology and are presented in Figure 3-1. The existing water quality the Upper Colorado and South Platte River basins are discussed in the following sections.

### **Upper Colorado River Basin**

The potentially affected river segments and reservoirs in the Upper Colorado River Basin are presented in Figures 3-1 and 3-17, and are listed in Table 3-20. Water quality standards for the Upper Colorado River Basin are provided in Regulation No. 33, Upper Colorado River Basin (see Appendix C) (CDPHE 2008d). The water quality appendix provides a summary of the

designated uses and criteria for the waterbodies within the Upper Colorado River Basin.

Waterbodies currently not meeting water quality standards are listed on the 303(d) List and are provided on associated TMDL. The WQCC updates the 303(d) List of impaired stream segments every two years. Section 303(d) List Water-Quality Limited Stream Segments Requiring TMDLs is stated in Regulation No. 93 (CDPHE 2008e).

Table 3-20 summarizes the potentially affected stream segments within the Upper Colorado River Basin and are shown on Figure 3-17.

Reservoir

| TMDLs for the Upper Colorado River Basin |                                                                               |                     |            |          |  |  |  |  |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------|---------------------|------------|----------|--|--|--|--|--|--|--|--|
| Segment/<br>Waterbody ID                 | Stream Segment                                                                | Portion             | Parameters | Priority |  |  |  |  |  |  |  |  |
| COUCEA05a                                | Eagle River, Belden to Hwy 24 Bridge                                          | All                 | Cu, Zn*    | Н        |  |  |  |  |  |  |  |  |
| COUCEA05b                                | Eagle River, Hwy 24 Bridge to Martin Creek                                    | All                 | Zn*        | Н        |  |  |  |  |  |  |  |  |
| COUCEA05c                                | Eagle River, Martin Creek to Gore Creek                                       | All                 | Zn*        | Н        |  |  |  |  |  |  |  |  |
| COUCUC05                                 | Lakes and Reservoirs tributary to the<br>Colorado River from RMNP/ANRA to the | Wolford<br>Mountain | D.O.       | L        |  |  |  |  |  |  |  |  |

**Table 3-20** 

Source: CDPHE 2008c

Notes:

\* - Carryover listings from the 1998 303(d) List; All are high priority

**Roaring Fork not on National Forest** 

| Cd – Cadmium            | Mn – Manganese           | H - High   |
|-------------------------|--------------------------|------------|
| Cu – Copper             | Pb – Lead                | M - Medium |
| D.O. – Dissolved Oxygen | Trec – Total recoverable | L - Low    |
| Fe – Iron               | Zn – Zinc                |            |



### Dillon Reservoir

The WQCC has developed a specific regulation which controls both point sources and nonpoint sources of total phosphorus to Dillon Reservoir over the long term. This regulation is based on a state-local partnership in controlling total phosphorus. Regulation No. 71, Dillon Reservoir Control Regulation (CDPHE 2007a). Specific wasteload and load (nonpoint source) allocations have been established for this reservoir. See Regulation No. 71 for specific information regarding the numeric and narrative criteria.

### South Platte River Basin

Potentially affected river segments and reservoirs in the South Platte River basin are presented in Figures 3-1. Water quality standards for the South Platte River Basin are stated in Regulation No. 38, Classifications and Numeric Standards for South Platte River Basin (Appendix C) (CDPHE 2008f). There are no affected river segments within the South Platte River Basin that are classified as impaired.

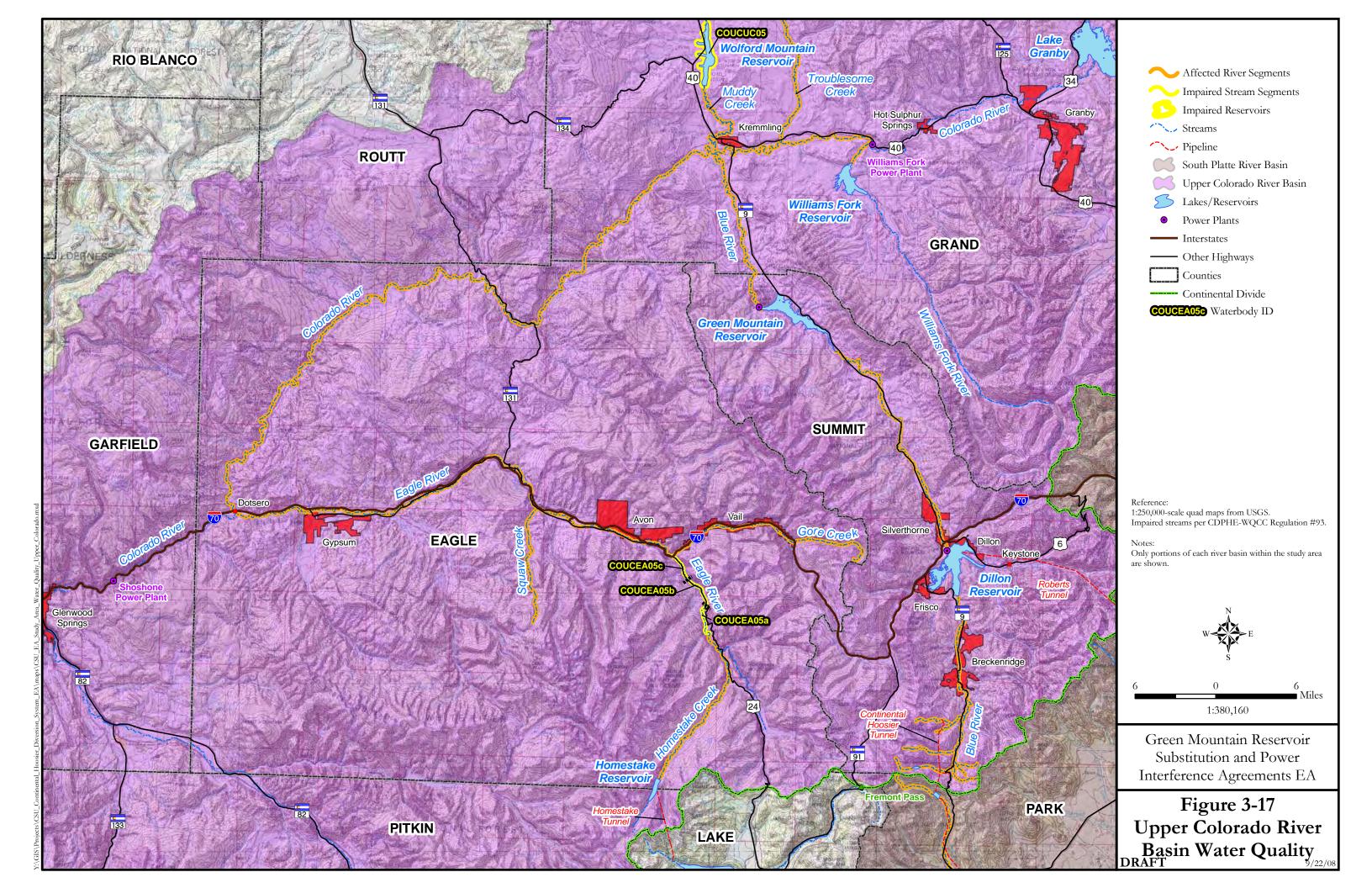
### 3.5.2 Environmental Consequences

### **No Action Alternative**

As described in Section 3.3.2 Hydrology, the No Action alternative would have no hydrologic impacts. Rather, stream flows and reservoir contents would continually fluctuate as they have historically under the Blue River Decree. Typically, water quality correlates with surface water fluctuations; thus no impacts to water quality are anticipated under the No Action alternative.

### **Proposed Action**

As described in Section 3.3.2 Hydrology, the Proposed Action would create none to minor short-term impacts to surface water resources. Similarly, none to minimal stream flow changes within all segments of the potentially affected rivers segments in the Upper Colorado River and South Platte River basins and fluctuations within all reservoirs in these river basins would occur infrequently during substitution years and are thus not anticipated to degrade water quality in these water bodies within the Study Area. The greatest potential for water quality impacts is for those stream segments listed in the TMDL tables for the Upper Colorado (refer to Table 3-20 and Figure 3-17). It should be noted that the CDPHE WQCC (Regulation No. 93) TMDL list is updated every two years.


Consistent with the conclusions discussed in Section 3.3.1.7, there will be little to no change in flows under the Proposed Action along the Williams Fork River, Muddy Creek, Eagle River, and Colorado River mainstem. Therefore, it is anticipated that there will be negligible water quality and temperature impacts to these river reaches.

The timing and location of the releases from reservoirs (e.g., releasing water from the base of reservoirs where the water is colder) in late summer and early fall could assist in enhancing "environmental" benefits as defined in the Grand County SMP. This management strategy is a type of administrative mitigation measure that can assist with minimizing and/or eliminating any impacts to the existing water quality and temperature in the river reaches included in the Grand County SMP.

# 3.5.3 Cumulative Impacts

Refer to Section 3.1.3 for a general description of the reasonably foreseeable water-based actions that are considered and to Section 3.3.3 for the cumulative impacts discussion as it relates to hydrology. As a general rule, any changes in the quantity of





water in a stream or reservoir may have an effect on water quality. The timing of the change in flow, both on a daily basis and seasonal basis, and where the flow is being diverted may affect water quality.

### Windy Gap Firming Project

The cumulative effect of the WGFP in reduction of flows in the Colorado River downstream of the Windy Gap diversion may have the potential to impact water quality. The water quality standards and data for the Colorado River Basin are provided in Appendix C.

There are several TMDLs listed for the Upper Colorado River (Table 3-21).

### **Denver Water Moffat Collection** System Project

The additional diversions anticipated to result from this project, primarily from the upper Fraser River and Williams Fork River basins, may affect the water quality of those basins and specifically reduce water quality in the Colorado River, Williams Fork River, and Blue River in average and wet years primarily during runoff.

# Other Increased Water Use in Grand and Summit Counties

Any construction-related activities as a result of growth in Grand and Summit counties and within the Study Area river basins have the potential to contribute pollutants to receiving waters. Increased water use and wastewater discharges are also expected to result in changes in the quantity and timing of streamflows and water quality.

### **Reduction of Xcel Energy's Shoshone Power Plant Call**

Reduced flows as a result of any reduction in the call at Shoshone primarily may have an effect on water quality in the Williams



Fork River, Muddy Creek, the Blue River, and the Colorado River Mainstem below the Windy Gap diversion and may affect the water quality along the Lower Colorado River below the point of diversion.

### Changes in Releases from Williams Fork and Wolford Mountain Reservoirs to Meet USFWS Flow Recommendations for Endangered Fish in the 15-Mile Reach

Water quality standards supporting the uses for these endangered fish exist along this 15-Mile reach of the Colorado River. Any cumulative reduction in flows may affect the water quality standards supporting the designated uses for these species, such as dissolved oxygen, temperature, and increased sediment loads.

# Cumulative Effects for the Proposed Action

Any changes in streamflows and reservoir contents due to the Proposed Action under cumulative effects would follow a pattern similar to direct effects. The incremental hydrologic effect of the Proposed Action would be negligible, as would the water quality affects. In general, the reasonably foreseeable actions described above would result in additional water use in the future. which would reduce streamflows and reservoir contents in the Study Area. While the magnitude of hydrologic changes under the Proposed Action would be similar under cumulative effects, the percentage change in water quality conditions under the Proposed Action may be slightly higher under cumulative effects than described for direct effects.

# 3.6 Aquatic Resources and Special Status Species

This section describes the aquatic resources in the Study Area and the potential environmental consequences of the Proposed Action and No Action alternatives. The alternatives could potentially affect aquatic resources through changes in flow regimes, habitat, and water quality. The aquatic resources described in this section include active river channels and fish populations. Fisheries data, specifically abundance of species locally and throughout the Study Area, was selected as a benchmark for determining the environmental consequences associated with changes to flow regimes due to the availability of historic Colorado Division of Wildlife (CDOW) fish survey data (CDOW 2008a) and detailed literature documentation of fish habitat impacts associated with changes to flow regimes. Aquatic resource evaluations can include a multitude of factors (i.e., benthic macroinvertebrates, habitat quality and water quality); however, for the purposes of this study fish species have been utilized as indicators of potential effects. No other data set encompassing the entire Study Area was as consistently useful or available to compare changes in aquatic habitat characteristics between the Proposed Action and the No Action alternatives without more intensive field evaluation. In addition, site specific resource evaluation was conducted as part of this study. A summary of the fish populations for each basin within the Study Area is provided.

This section also provides an assessment of the potential environmental consequences of the Proposed Action and No Action alternatives to aquatic habitat of special status species. In particular, the impact assessment provides an effect determination in relation to Section 7 of the Endangered Species Act (ESA) for the four endangered fish in the 15-mile reach of the Colorado River. The effect determination is included in Section 3.6.2.2 for the special status fish species and is indicated by parentheses [( )].

# 3.6.1 Affected Environment

The CDPHE WQCD provides a classification system for surface waters, which establishes beneficial use categories (CDPHE 2008). Waters are classified according to the uses for which they are presently suitable or intended to become suitable. Classifications may be established for any state surface waters, except water in ditches and other manmade conveyance structures. Waters assessed within the Study Area are defined as Class 1 – Cold Water Aquatic Life. These are waters that (1) currently are capable of sustaining a wide variety of cold water biota, including sensitive species, or (2) could sustain such biota but for correctable water quality conditions. Waters shall be considered capable of sustaining such biota where physical habitat, water flows or levels, and water quality conditions result in no substantial impairment of the abundance and diversity of species. In addition, several of the waters within the Study Area are designated Gold Medal Waters by the Colorado Wildlife Commission. Gold Medal Waters are defined as lakes or streams that support a trout standing stock of at least 60 pounds per acre, and contains an average of at least 12 quality trout (any trout 14 inches or longer) per acre (CWC 2008). Potentially affected aquatic resources include active channels within sections of the Blue River, Williams Fork River, Muddy Creek, Colorado River, Homestake Creek, Eagle River, Middle Fork South Platte



River, and South Platte River (refer to Figure 3-1).

A desktop review of available CDOW fisheries survey data was utilized to provide an understanding of fish species distribution throughout the Study Area (CDOW 2008a). Data provided by the CDOW for each basin was collected using one of three methods (1) mark – recapture; (2) multi-pass removal; (3) presence – absence surveys. The CDOW surveys represent data recorded from 70 sample station locations within the Study Area between 1985 and 2007. Information presented in this section has not been field verified for accuracy.

Whirling disease was introduced to Colorado in 1987 and has spread throughout the state. Whirling disease is caused by a parasite that affects fish in the trout and salmon family. By damaging cartilage, whirling disease can kill young fish directly, or cause infected fish to swim in an uncontrolled whirling motion. This can make it impossible for them to escape predators or to effectively seek food, ultimately decimating trout populations before they have an opportunity to mature. Fish less than 13 centimeters (cm) are most at risk to whirling disease. Larger fish are less susceptible to the disease and are not affected, but may be vectors. There are also differences in the susceptibility of different trout species to the parasite, although rainbow trout and cutthroat trout are particularly susceptible. The parasite that causes the disease, Myxobolus cerebralis, has two hosts during its life cycle: trout and tubificid worms. All watersheds within the Study Area have tested positive for whirling disease, although particular streams within these watersheds may still be negative. Whirling disease has greatly reduced the population of rainbow trout within the Study Area basins as well as throughout Colorado.

Over five hundred miles of five major trout streams (Cache La Poudre, Colorado, Gunnison, South Platte and Rio Grande rivers) are showing partial to complete loss of wild rainbow trout recruitment (CDOW 2008b).

# 3.6.1.1 Blue River Basin

Portions of the Blue River in the Study Area are classified as Aquatic Life Cold Class 1. The Blue River downstream of Dillon Reservoir to the confluence with the Colorado River is designated Gold Medal Waters by CDOW.

Fish population survey data at 30 separate sampling locations on the Blue River was reviewed for sampling years 1985 – 1997 (CDOW 2008a). Fish species and subspecies collected during these sampling periods are shown in Table 3-21. Dominant trout species upstream of the Green Mountain Reservoir include brook trout, rainbow trout and brown trout. Dominant species downstream of the Green Mountain Reservoir are primarily rainbow trout and brown trout.

The section of the Blue River between Dillon Reservoir and Green Mountain Reservoir is stocked annually by CDOW with small (6 inches or less) rainbow trout. CDOW also annually stocks Dillon and Green Mountain reservoirs with species that may include rainbow trout, Snake River cutthroat trout, and kokanee salmon in any given year. These fish may also move into the section of the Blue River between these two reservoirs.

# 3.6.1.2 Williams Fork River Basin

The Surface Water classification for the Williams Fork River downstream of Williams Fork Reservoir is Aquatic Life Cold Class 1.



Fish population survey data at 2 separate sampling locations on the Williams Fork River was reviewed for sampling years 1993-2003 (CDOW 2008a). Fish species and subspecies collected during these sampling periods are shown in Table 3-21. Brown trout, followed by rainbow trout, represent the most abundant fish species within the Williams Fork River Basin.

# 3.6.1.3 Muddy Creek Basin

The Surface Water classification for Muddy Creek downstream of Wolford Mountain Reservoir is Aquatic Life Cold Class 1.

Fish population survey data at 2 separate sampling locations within Muddy Creek was reviewed for sampling years 1993 and 2000 (CDOW 2008a). Fish species and subspecies collected during these sampling periods are shown in Table 3-21.

Rainbow trout represent the most abundant fish species within the Muddy Creek Basin (407 recorded in 2000), followed by brook trout (59 recorded in 2000). Kokanee salmon are also strongly represented in the September 27, 2000 sampling data at Sample Station CR 0397. These individuals probably represent species collected during a spawning run, and do not necessarily represent species living permanently within Muddy Creek.

# 3.6.1.4 Colorado River Basin

The surface water classification for the Colorado River below the confluence with the Williams Fork River downstream to the confluence with the Eagle River is Aquatic Life Cold Class 1. The reach of the Colorado River between Windy Gap and the confluence with Troublesome Creek is designated Gold Medal Waters by the CDOW. This section of the Colorado River is stocked annually by CDOW with small (6 inches or less) rainbow trout.

Fish population survey data at 4 separate sampling locations along the Colorado River between the confluence with the Williams Fork River and the confluence with the Eagle River was reviewed for sampling years 1993, 2003, and 2004 (CDOW 2008a). Local diversity of fish species within the Colorado River can vary temporally and spatially based on a variety of factors. Fish species and subspecies collected during these sampling periods are shown in Table 3-21. Rainbow trout and brown trout are the most abundant trout species within this reach of the Colorado River.

# Special Status Fish Species in the Colorado River Basin

Water depletions to West Slope tributaries of the Colorado River may affect four endangered fish species where they occur downstream in the Colorado River. These species include bonytail chub, Colorado pike minnow, humpback chub, and razorback sucker. Critical habitat for endangered Colorado River fish extends from Rifle, Colorado downstream to Lake Powell.

The decline of these fish species throughout the Colorado Basin is a result of extensive loss, fragmentation, modification of habitat, and barriers to fish movement associated with dam construction and operations. In addition, loss of stream flows due to upstream depletions in the watershed is a major factor that has contributed to the decline of the endangered fish species. Each of these endangered fish species is discussed in more detail below.

### Bonytail Chub

Bonytail chubs were historically found throughout the Colorado River drainage.



Wild adult bonytail have been captured in Powell, Mohave, and Havasu lakes, and in rivers within the Upper Colorado River Basin, including the Green River in Colorado and Utah and in the Colorado River, west of Grand Junction near the Colorado-Utah border. Since 1977, only 11 wild adults have been reported from the upper basin. Currently, no self-sustaining populations of bonytail chub exist in the wild (USFWS 2002a). CDOW has been stocking some bonytail chub in the river near Grand Junction.

### Colorado Pikeminnow

Currently, Colorado pikeminnow occur primarily in the Green River below the confluence with the Yampa River, the lower Duchesne River in Utah, the Yampa River below the town of Craig in Colorado, the White River from Taylor Draw Dam near the town of Rangely downstream to the confluence with the Green River, the Gunnison River in Colorado, and the Colorado River from Palisade, Colorado, downstream to Lake Powell (USFWS 2002b).

### Humpback Chub

Historically, humpback chubs occurred in Colorado, Green, Yampa, White and Little Colorado Rivers. Currently humpback chub populations are found in canyon portions of the Colorado River near the Colorado-Utah border at Westwater Canyon in Utah and Black Rocks in Colorado. Smaller populations inhabit the Yampa and Green rivers in Dinosaur National Monument in Colorado, Desolation and Gray canyons on the Green River in Utah, Cataract Canyon on the Colorado River in Utah and the Colorado River and Little Colorado River in the Grand Canyon in Arizona.

### Razorback Sucker

In the upper Colorado River Basin, reproducing razorback suckers are currently only found in the upper Green River in Utah and in an off-channel pond of the Colorado River near Grand Junction. Razorback suckers also occur in the lower Yampa River in Colorado and Lake Powell at the mouths of the Dirty Devil, San Juan and Colorado rivers. Approximately 500 wild razorback suckers are thought to occur in the upper Colorado River basin. Most of these individuals are adults likely more than 25 years old, and are reproducing, but few young are surviving. Razorback suckers are being stocked in the Green, Colorado, Gunnison and San Juan rivers to develop and augment adult populations (CDOW 2006b).

### 3.6.1.5 Eagle River Basin

The surface water classification for Homestake Creek and the Eagle River below the confluence with the Homestake Creek downstream to the confluence with the Colorado River is Aquatic Life Cold Class 1.

Fish population survey data at 15 separate sampling locations within the Eagle River Basin was reviewed for sampling years 1991-2005 (CDOW 2008a). Fish species and subspecies collected during these sampling are shown in Table 3-21. Species diversity and abundance can vary greatly based on timing and location of sampling efforts. Brown trout, followed by rainbow trout and brook trout are the most abundant trout species within the Eagle River Basin. Colorado River cutthroat trout, though not the most abundant species, also appear regularly throughout sampling efforts.



### 3.6.1.6 South Platte River Basin

The surface water classification for the Middle Fork South Platte River and South Platte River downstream to Elevenmile Canyon Reservoir is Aquatic Life Cold Class 1 by CDPHE. The Middle Fork South Platte River downstream from the Highway 9 Bridge is designated Gold Medal Waters by the CDOW. Fish population survey data at nine sampling locations within the South Platte River was reviewed for sampling years 1993–2005 (CDOW 2008a). Fish species and subspecies collected during these sampling periods are shown in Table 3-21. Brown trout are the most abundant species in the South Platte River Basin, followed by rainbow trout. Brook trout do not constitute a significant population (4 individuals in 1995).

|                                | Blue<br>River | Williams<br>Fork<br>River | Muddy<br>Creek | Colorado<br>River | Eagle<br>River | South<br>Platte<br>River |
|--------------------------------|---------------|---------------------------|----------------|-------------------|----------------|--------------------------|
| Fish Species                   | Basin         | Basin                     | Basin          | Basin             | Basin          | Basin                    |
| Brook Trout                    | $\checkmark$  |                           | ✓              |                   | $\checkmark$   | ✓                        |
| Brown Trout                    | $\checkmark$  | $\checkmark$              | ~              | $\checkmark$      | ✓              | $\checkmark$             |
| Rainbow Trout                  | $\checkmark$  | $\checkmark$              | $\checkmark$   | $\checkmark$      | ✓              | $\checkmark$             |
| Colorado River Rainbow Trout   | $\checkmark$  |                           |                |                   |                |                          |
| Colorado River Cutthroat Trout |               |                           |                |                   | $\checkmark$   |                          |
| Kamloop Form Rainbow Trout     | $\checkmark$  |                           |                |                   |                |                          |
| Emerald Lake Rainbow Trout     | ✓             |                           |                |                   |                |                          |
| Rainbow Trout x Natural Hybrid | ✓             |                           | ✓              |                   | ✓              |                          |
| Steelhead Form Rainbow Trout   | ✓             |                           |                |                   |                |                          |
| Snake River Cutthroat Trout    | ✓             |                           |                |                   |                | ✓                        |
| Kokanee (Sockeye) Salmon       | ✓             |                           | ✓              |                   |                |                          |
| Cutthroat Trout                | ✓             |                           |                |                   |                |                          |
| Cutthroat Trout S.U.*          |               |                           |                |                   | ✓              |                          |
| Bluehead Sucker                | ✓             |                           |                | ✓                 | ✓              |                          |
| Flannelmouth Sucker            | ✓             |                           |                | ✓                 | √              |                          |
| Longnose Sucker                | ✓             | $\checkmark$              |                | ✓                 | ✓              | $\checkmark$             |
| White Sucker                   | ✓             | ✓                         | ✓              | ✓                 |                | ✓                        |
| Creek Chub                     | $\checkmark$  |                           | $\checkmark$   |                   |                |                          |
| Mottled Sculpin                | ✓             | $\checkmark$              | ✓              |                   | ✓              |                          |
| Speckled Dace                  | $\checkmark$  | $\checkmark$              | ~              | ✓                 |                |                          |
| Northern Pike                  |               | $\checkmark$              |                |                   |                | ✓                        |
| Longnose Dace                  |               | $\checkmark$              |                | ✓                 |                | $\checkmark$             |
| Chub S.U.*                     |               |                           | $\checkmark$   |                   |                |                          |
| Dace S.U.*                     |               |                           | $\checkmark$   |                   |                |                          |
| Paiute Sculpin                 |               |                           | $\checkmark$   |                   |                |                          |
| Sucker S.U.*                   |               |                           | $\checkmark$   |                   |                |                          |
| Red Shiner                     |               |                           |                | ✓                 |                |                          |
| Sand Shiner                    |               |                           |                | ✓                 |                |                          |

 Table 3-21

 Fish Species Identified within Study Area Stream Reaches



| Fish Species       | Blue<br>River<br>Basin | Williams<br>Fork<br>River<br>Basin | Muddy<br>Creek<br>Basin | Colorado<br>River<br>Basin | Eagle<br>River<br>Basin | South<br>Platte<br>River<br>Basin |
|--------------------|------------------------|------------------------------------|-------------------------|----------------------------|-------------------------|-----------------------------------|
| Roundtail Chub     |                        |                                    |                         | ~                          |                         |                                   |
| Channel Catfish    |                        |                                    |                         | ~                          |                         |                                   |
| Common Carp        |                        |                                    |                         | ✓                          |                         |                                   |
| Fathead Minnow     |                        |                                    |                         | ✓                          | ✓                       |                                   |
| Yellow Bullhead    |                        |                                    |                         | ✓                          |                         |                                   |
| Mountain Whitefish |                        |                                    |                         |                            | $\checkmark$            |                                   |
| Trout S.U*         |                        |                                    |                         |                            | ✓                       |                                   |

Table 3-21Fish Species Identified within Study Area Stream Reaches

S.U.\* = Species unidentified

 $\checkmark$ 

= Species identified in CDOW samples within basin

= Species identified as a dominant species within basin

### 3.6.2 Environmental Consequences

The CDOW has collected routine fish population census data for each Study Area basin. Trout were selected as a reference species because of the availability of survey data throughout each Study Area basin and potential sensitivity to flow change. Within all river Study Area basins, 34 species or subspecies of fish have been documented by the CDOW. Three species, brown trout, rainbow trout and brook trout, represent over 50% of the total number of fish counted in CDOW surveys. When different trout species occur in the same high gradient river systems, they tend to occupy the suitable trout habitat in a longitudinally stratified manner from headwater areas downstream. Typically, brook or cutthroat trout tend to occupy the colder, swifter, less fertile headwater region; rainbow trout the midregion of the river system with intermediate habitat conditions; and brown trout the deeper, lower velocity, warmer, more fertile downstream region. Although trout species can utilize different habitat during critical periods of the year, all trout require food,

shelter, breeding, migratory and overwintering habitat that could potentially be affected by flow changes.

Brown trout are the only species of fish documented at all CDOW sample stations and within all river Study Area basins. In addition, the areas potentially affected by changes in flow are primarily characterized by lower velocity, warmer downstream habitat, which is optimal habitat for brown trout, and mid-region intermediate habitat, which is optimal habitat for rainbow trout. Consistent with these habitats, brown trout represent approximately 33% of all the fish observed in the survey, followed by rainbow trout (12%). No other species accounts for more than 10% of the fish surveyed. Based on the abundance of brown and rainbow trout utilizing relatively similar habitat types, brown trout habitat requirements, as outlined by Raleigh et al., (1986) in Habitat Suitability Index Models and Instream Flow Suitability Curves: Brown Trout, were assessed to evaluate the effects of changes in flow between the No Action alternative and the Proposed Action.



### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

Optimal brown trout riverine habitat is characterized by clear, cool to cold water; a relatively silt-free rocky substrate in rifflerun areas; a 50% to 70% pool to 30% to 50% riffle –run combination with areas of slow deep water; well-vegetated, stable stream banks; abundant instream cover; and relatively stable annual water flow and temperature regimes. Fundamental habitat requirements potentially affected by changes in flow are described on a life stage basis: embryo, fry, juvenile and adult.

The embryo stage includes egg incubation and fry development up to emergence from gravel. Redds are shallow depressions in the gravel substrate of a stream channel, in which spawning fish deposit eggs and sperm. When the process is complete, the female covers the redd with gravel to protect the embryos until fry emerge from the gravel. Brown trout construct well-defined redds. Waters (1976) set the optimal water depth for brown trout redd construction at 0.80 feet to 1.5 feet, with a suitable range of 0.40 feet to 2.9 feet. A range of water velocity between 1.75 feet per second (ft/s) and 2.25 ft/s is believed to be optimal, with 0.498 ft/s to 2.9 ft/s considered suitable.

A critical period for brown trout is the time between egg deposition in late summer and fall and fry emergence the following spring. Although flows must be adequate to meet the needs of the developing embryos and yolk sac fry in the gravel, abnormally low or high flows can be destructive. Generally low flow periods are most critical to adult trout. Prolonged periods of shallow water can increase temperatures and reduce the amount of dissolved oxygen, negatively affecting trout throughout all portions of their life stages.

The fry stage extends from emergence from the redd until the end of the first year of life. Dispersal of fry takes place immediately after emergence. Fry are often found in shallow, smooth bottomed stream reaches where older trout are absent. Brown trout fry are often found along the margins of rivers, in sections with water depths between 0.66 feet and 0.98 feet (Lindroth 1955; Raleigh 1986).

The juvenile stage is the second year of life. Juvenile brown trout occur at shallower depths and lower velocities than adults. Both fry and juvenile brown trout prefer velocities of less than 0.492 ft/s (Wesche 1980). As growth progresses, depths greater than 0.492 feet are preferred (Wesche 1980).

The adult stage begins when the individual reaches sexual maturity after its second year. Water depths greater than 0.492 feet and a focal point velocity of less than 0.492 ft/s are recommended for optimal adult brown trout resting and feeding habitat (Raleigh et al. 1986; Wesche 1980). During the winter, brown trout exhibit strong hiding or cover behavior. Adult brown trout tend to move into deep, low-velocity water (Bjornn 1971).

Changes in flow were evaluated to determine changes in channel characteristics potentially affecting aquatic resources within each Study Area basin. Three flow parameters were selected for evaluation: (1) depth (feet); (2) wetted perimeter (feet); and (3) velocity (ft/s).

The effects of large changes in flow parameters could significantly affect the feeding, breeding, sheltering, migratory and overwintering habitats associated with trout life histories. For instance:

• a dramatic increase in water depth could upset predator-prey interactions



occurring within trout microhabitat such as pool-riffle-run areas;

- a dramatic increase in flow velocity could disrupt preferred sheltering habitat for juvenile and adult trout;
- a dramatic decrease in water depth could expose optimal spawning habitat, exposing shallow gravel areas and leaving mature fish with no potential redds;
- a dramatic decrease in flow velocity could decrease dissolved oxygen content and increase temperatures; and
- a dramatic decrease in wetted area could reduce the usable habitat available for overwintering habitat, subjecting all species to additional predator-prey related stress.

The following critical guideline thresholds were established to determine if a change in flow would effect trout and therefore the aquatic resource.

- Depths utilized by trout generally range from 0.2 feet to 5.5 feet. A water depth of greater than 0.5 feet is recommended for optimal adult brown trout resting and feeding habitat. Depths below 0.2 feet are considered critical and unusable to brown trout. Flow changes which result in water depths less than 0.4 feet are considered a potential effect. Flow change fluctuations of greater than 0.5 feet for a monthly average are also considered a potential effect. Flow changes which do not result in water depths less than 0.4 feet or fluctuations greater than 0.5 feet are considered negligible and are not expected to have discernable effects on aquatic resources.
- Wetted perimeter is the perimeter of the cross sectional area of a channel or river that is "wet". In theory, if the wetted



perimeter of a river decreases, less water is available and additional substrate is exposed. Conversely, if wetted perimeter increases, more water is available in the river to aquatic resources. In regards to trout habitat, significant decreases in wetted perimeter could expose adult, embryo and young trout resulting in a potential effect. For the purpose of this EA, a conservative estimate of a 5 feet decrease or increase in wetted perimeter is considered a potential effect. Flow changes resulting in less than a 5 feet change in wetted perimeter are considered negligible and are not expected to have a discernable effect on aquatic resources.

Velocity preferences of adult brown • trout range from 0 to 0.7 ft/s for resting and 0.5 to 1.5 ft/s for feeding. A velocity of 0.5 ft/s is recommended for optimal adult brown trout resting and feeding habitat. For the purpose of this analysis, velocity below 0.5 ft/s is considered a potential effect. Monthly average changes in velocity greater than 0.5 ft/s are also considered a potential effect. Flow changes that do not result in velocities below 0.5 ft/s and fluctuations of more than 0.5 ft/s are considered negligible and not expected to have discernable effects on aquatic resources.

Differences in flow between the No Action and Proposed Action alternatives described in Section 3.2.2 Hydrology were utilized as the basis for determining potential effects to aquatic resources along affected river segments, which are described in the following sections. The hydrology comparison tables (Tables 3.1 through 3.19) were reviewed to determine the maximum *percentage* decrease and increase in average monthly flow in any month at each location. The corresponding maximum changes in flow were evaluated to determine changes in flow parameters (water depth, wetted perimeter and velocity). Channel characteristics, including average channel width, slope and cross-section shape, at key locations in the Study Area were used to calculate water depth, wetted perimeter and velocity for a given flow rate. Modeled flow parameters were then compared to the critical guideline thresholds, which were established for water depth, wetted perimeter and velocity.

Differences in reservoir contents between the No Action and Proposed Action alternatives described in Section 3.3.2 Hydrology were utilized as the basis for determining potential effects to aquatic resources in reservoirs. The Proposed Action and No Action alternatives storage contents and water levels within the reservoirs encompassed in the Study Area are very similar. Average monthly changes in content in the driest years and all substitution years are less than 1% at all reservoirs except Montgomery Reservoir. At Montgomery Reservoir, dry year average monthly contents decrease by up to 13.6% in March, as shown in Table 3-18. However, Montgomery Reservoir functions as a regulating reservoir for deliveries from the Continental-Hoosier System. The reservoir is filled each summer and then is typically drawn down to less than 1,000 AF by the end of April. Given that Montgomery Reservoir is operated as a regulating facility, it is intended to have fluctuating contents and water levels. The fluctuations in contents and levels that would occur at Montgomery Reservoir under the Proposed Action would be well within the normal range of fluctuations that have historically occurred.

Based on the magnitude and frequency of changes in reservoir contents and water

levels that would occur under the Proposed Action, there would be no measurable, discernable effects on aquatic resources in the affected reservoirs.

# 3.6.2.1 No Action Alternative

Under the No Action alternative, Springs Utilities would continue to operate according to the Blue River Decree during substitution years. Therefore, river flows and reservoir contents would continue to fluctuate as they have historically as a result of Springs Utilities substitution operations. The No Action alternative is expected to have no direct, indirect or cumulative impacts on aquatic resources or on threatened and endangered fish species (no effect).

# 3.6.2.2 Proposed Action

### **Blue River Basin**

Refer to the flow changes expected along the Blue River as described in Section 3.3.2 Hydrology. The maximum changes in flow shown in Tables 3-2 through 3-4 were used to estimate changes in water depth, wetted perimeter and velocity.

Refer to Tables 3-22 and 3-23 for the changes in water depth, wetted perimeter, and velocity expected for the No Action and Proposed Action along the Blue River. In summary, expected changes in flows along the Blue River downstream of the Continental-Hoosier System, Dillon Reservoir and the Green Mountain Reservoir under the Proposed Action would result in minimal change in flow parameters (less than: 0.04 feet change in water depth, 0.2 feet change in wetted perimeter and 0.2 ft/s change in velocity) within the aquatic environment. Flow changes of this magnitude under the Proposed Action would have no discernable effect on aquatic resources. In addition, critical threshold



guidelines established for this EA as described in Section 3.6.2 would not be exceeded.

#### Williams Fork River Basin

Refer to the flow changes expected along the William Fork River as described in the Section 3.3.2 Hydrology. The maximum changes in flow shown in Table 3-8 were used to estimate changes in water depth, wetted perimeter and velocity.

Refer to Tables 3-22 and 3-23 for the changes in water depth, wetted perimeter, and velocity expected for the No Action and Proposed Action alternatives along the Williams Fork River. In summary, expected changes in flows along the Williams Fork River downstream of Williams Fork Reservoir would result in minimal change in flow parameters (less than: 0.03 feet change in water depth, 0.1 feet change in wetted perimeter and 0.2 ft/s change in velocity) within the aquatic environment. Flow changes of this magnitude under the Proposed Action would have no discernable effect on aquatic resources. In addition, critical threshold guidelines established for this analysis would not be exceeded.

#### **Muddy Creek Basin**

Refer to the flow changes expected along Muddy Creek as described in Section 3.3 Hydrology. The maximum changes in flow shown in Table 3-10 were used to estimate changes in water depth, wetted perimeter and velocity.

Refer to Tables 3-22 and 3-23 for the changes in water depth, wetted perimeter, and velocity expected for the No Action and Proposed Action alternatives along Muddy Creek. In summary, expected changes in flows along Muddy Creek downstream of Wolford Mountain Reservoir would result in minimal change in flow parameters (less



than: 0.03 feet reduction in water depth, 0.1 feet reduction in wetted perimeter and no measurable change in velocity) within the aquatic environment. Flow changes of this magnitude under the Proposed Action would have no discernable effect on aquatic resources. In addition, critical threshold guidelines established for this analysis would not be exceeded.

#### **Colorado River Basin**

Refer to the flow changes expected along the Colorado River as described in Section 3.3.2 Hydrology. The maximum changes in flow shown in Tables 3-12, 3-13, and 3-14 were used to estimate changes in water depth, wetted perimeter and velocity.

Refer to Tables 3-22 and 3-23 for the changes in water depth, wetted perimeter, and velocity expected for the No Action and Proposed Action alternatives along the Colorado River. In summary, expected changes in flows along the Colorado River would result in minimal change in flow parameters (less than: 0.02 feet reduction in water depth, 0.1 feet reduction in wetted perimeter, and 0.1 ft/s reduction in velocity) within the aquatic environment. Flow changes of this magnitude under the Proposed Action would have no discernable effect on aquatic resources. In addition, critical threshold guidelines established for this analysis would not be exceeded.

#### Special Status Fish Species in the Colorado River Basin

Consultation with USFWS is required under Section 7 of the ESA prior to authorization of any federal action that may adversely modify critical habitat, which includes alteration of flow volume or timing (i.e., depletion). Flow depletions adversely affect the listed species by reducing peak spring and base flows that limit access to and the extent of off-channel waters such as

#### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

backwaters, eddies, and oxbows, which are necessary as rearing areas for young fish. To evaluate potential depletions to the Colorado River under the Proposed Action, flows in the Colorado River downstream of the confluence with the Eagle River were evaluated.

Downstream of the Eagle River there would be no change in the average annual flow in the Colorado River under the Proposed Action since diversions at Springs Utilities' Continental-Hoosier System and the total substitution payback by Springs Utilities and Denver Water would not change. However, there would be infrequent, minor changes in the timing of flows due primarily to changes in the timing of substitution releases from Williams Fork, Wolford Mountain, and Homestake reservoirs, reservoir spills, and the additional 250 AF that would be used by West Slope users in the Blue River basin.

Monthly average flows in the Colorado River downstream of the confluence with the Eagle River would decrease by a maximum of 8.1 cfs or 0.1% in June and increase by a maximum of 4.6 cfs or 0.5% in October, as shown in Table 3-14. These changes in flow would be translated downstream along the Colorado River, but changes would be smaller relative to the total stream, which is growing. These changes in flow would not alter the water depth, wetted perimeter, or velocity by any measurable amount within the aquatic environment. In addition, critical threshold guidelines established for this analysis would not be exceeded. Flow changes of this magnitude under the Proposed Action would have no adverse effect on the endangered fish species along the Colorado River (no effect).

#### **Eagle River Basin**

Refer to the flow changes expected along Homestake Creek as described in Section 3.3.2 Hydrology. The maximum changes in flow shown in Table 3-15 were used to estimate changes in water depth, wetted perimeter and velocity.

Refer to Tables 3-22 and 3-23 for the changes in water depth, wetted perimeter, and velocity expected for the No Action and Proposed Action alternatives along Homestake Creek. In summary, expected changes in flow along Homestake Creek downstream of the Homestake Project would result in minimal change in flow parameters (less than: 0.09 feet increase in water depth, 0.5 feet increase in wetted perimeter and 0.2 ft/s increase in velocity) within the aquatic environment. Flow changes of this magnitude under the Proposed Action would have no discernable effect on aquatic resources. In addition, critical threshold guidelines established for this analysis would not be exceeded.

#### South Platte River Basin

Refer to the flow changes expected along the Middle Fork South Platte River as described in Section 3.3.2 Hydrology. The maximum changes in flow shown in Table 3-17 were used to estimate changes in water depth, wetted perimeter and velocity.

Refer to Tables 3-22 and 3-23 for the changes in water depth, wetted perimeter, and velocity expected for the No Action and Proposed Action alternatives along the Middle Fork South Platte River. In summary, the maximum decrease in flow would result in a reduction in water depth of 0.37 feet, a reduction in wetted perimeter of 2.0 feet and a reduction in velocity of 0.8 ft/s. The maximum



| Summary of Maximum Average Monthly Flow Decreases and Associated Changes in Water Depth, Wetted Perimeter, |                            |                                                                            |        |                   |                     |       |       |                     |          |                 |       |
|------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|--------|-------------------|---------------------|-------|-------|---------------------|----------|-----------------|-------|
|                                                                                                            | Channel P                  | Channel Parameters Max Avg Monthly Flow Decrease No Action Flow Parameters |        |                   |                     |       |       |                     |          | Proposed Action |       |
| Location Description                                                                                       | Average<br>Bottom<br>Width | Average<br>Slope                                                           | Month  | Change in<br>Flow | % Change<br>in Flow | Flow  | Depth | Wetted<br>Perimeter | Velocity | Flow            | Depth |
|                                                                                                            | (ft)                       | (%)                                                                        |        |                   | (%)                 | (cfs) | (ft)  | ( <b>f</b> t)       | (ft/s)   | (cfs)           | (ft)  |
| Blue River below the Continental-Hoosier System                                                            | 27                         | 1.93%                                                                      | August | -4.6              | -8.9%               | 51.0  | 0.58  | 30.1                | 3.1      | 46.5            | 0.55  |
| Blue River below Dillon Reservoir                                                                          | 83                         | 0.82%                                                                      | June   | -4.1              | -3.4%               | 121.1 | 0.64  | 86.5                | 2.2      | 117.0           | 0.63  |
| Blue River below Green Mountain Reservoir                                                                  | 105                        | 1.05%                                                                      | August | -4.7              | -0.6%               | 841.1 | 1.66  | 114.0               | 4.6      | 836.4           | 1.66  |
| Williams Fork River below Williams Fork Reservoir                                                          | 47                         | 2.14%                                                                      | March  | -8.3              | -11.5%              | 72.1  | 0.5   | 49.7                | 3.0      | 63.8            | 0.47  |
| Muddy Creek below Wolford Mountain Reservoir                                                               | 67                         | 0.41%                                                                      | June   | -5.7              | -4.3%               | 132.9 | 0.96  | 72.1                | 2.0      | 127.2           | 0.93  |
| Colorado River below the Confluence with the Williams Fork<br>River                                        | 108                        | 0.35%                                                                      | March  | -6.3              | -3.7%               | 169.1 | 0.87  | 112.7               | 1.8      | 162.8           | 0.85  |
| Colorado River near Kremmling                                                                              | 317                        | 0.59%                                                                      | March  | -5.9              | -1.4%               | 411.3 | 0.67  | 320.6               | 1.9      | 405.3           | 0.66  |
| Colorado River below the confluence with the Eagle River                                                   | 194                        | 0.10%                                                                      | March  | -5.9              | -0.9%               | 626.7 | 1.96  | 204.5               | 1.6      | 620.7           | 1.94  |
| Homestake Creek below Homestake Project                                                                    | 17                         | 0.83%                                                                      | N/A    | N/A               | N/A                 | N/A   | N/A   | N/A                 | N/A      | N/A             | N/A   |
| Middle Fork South Platte River below Montgomery Reservoir                                                  | 21                         | 1.03%                                                                      | August | -34.1             | -61.6%              | 55.3  | 0.85  | 25.6                | 2.8      | 21.2            | 0.48  |

**Table 3-22** Summary of Maximum Average Monthly Flow Decreases and Associated Changes in Water Depth, Wetted Perimeter, and Velocity

**Table 3-23** 

Summary of Maximum Average Monthly Flow Increases and Associated Changes in Water Depth, Wetted Perimeter, and Velocity

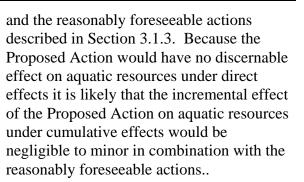
|                                                                     | Channel P                  | arameters        | Max Av   | g Monthly Flo     | ow Increase         | ]     | No Action F | low Paramete        | rs       | Pro   | posed Actio | on Flow Paran       | neters   | Chang              | ge in Flow Par                   | ameters               |
|---------------------------------------------------------------------|----------------------------|------------------|----------|-------------------|---------------------|-------|-------------|---------------------|----------|-------|-------------|---------------------|----------|--------------------|----------------------------------|-----------------------|
|                                                                     | Average<br>Bottom<br>Width | Average<br>Slope | Month    | Change in<br>Flow | % Change<br>in Flow | Flow  | Depth       | Wetted<br>Perimeter | Velocity | Flow  | Depth       | Wetted<br>Perimeter | Velocity | Change<br>in Depth | Change in<br>Wetted<br>Perimeter | Change in<br>Velocity |
| Location Description                                                | (ft)                       | (%)              |          |                   | (%)                 | (cfs) | (ft)        | (ft)                | (ft/s)   | (cfs) | (ft)        | (ft)                | (ft/s)   | (ft)               | (ft)                             | (ft/s)                |
| Blue River below the Continental-Hoosier System                     | 27                         | 1.93%            | November | 4.2               | 21.8%               | 19.3  | 0.33        | 28.8                | 2.1      | 23.5  | 0.37        | 29.0                | 2.3      | 0.04               | 0.20                             | 0.20                  |
| Blue River below Dillon Reservoir                                   | 83                         | 0.82%            | N/A      | N/A               | N/A                 | N/A   | N/A         | N/A                 | N/A      | N/A   | N/A         | N/A                 | N/A      | N/A                | N/A                              | N/A                   |
| Blue River below Green Mountain Reservoir                           | 105                        | 1.05%            | October  | 1.2               | 0.5%                | 241.8 | 0.79        | 109.3               | 2.9      | 243.0 | 0.79        | 109.3               | 2.9      | 0.00               | 0.00                             | 0.00                  |
| Williams Fork River below Williams Fork Reservoir                   | 47                         | 2.14%            | June     | 3.4               | 2.5%                | 134.1 | 0.72        | 50.9                | 3.8      | 137.4 | 0.73        | 51.0                | 3.8      | 0.01               | 0.10                             | 0.00                  |
| Muddy Creek below Wolford Mountain Reservoir                        | 67                         | 0.41%            | October  | 6.1               | 4.4%                | 137.2 | 0.97        | 72.2                | 2.0      | 143.3 | 1.00        | 72.4                | 2.1      | 0.03               | 0.20                             | 0.10                  |
| Colorado River below the Confluence with the Williams Fork<br>River | 108                        | 0.35%            | October  | 1.4               | 0.9%                | 158.9 | 0.84        | 112.5               | 1.7      | 160.4 | 0.84        | 112.5               | 1.7      | 0.00               | 0.00                             | 0.00                  |
| Colorado River near Kremmling                                       | 317                        | 0.59%            | October  | 4.6               | 0.7%                | 636.4 | 0.87        | 321.7               | 2.3      | 641.0 | 0.87        | 321.7               | 2.3      | 0.00               | 0.00                             | 0.00                  |
| Colorado River below the confluence with the Eagle River            | 194                        | 0.10%            | October  | 4.6               | 0.5%                | 858.8 | 2.36        | 206.7               | 1.8      | 863.4 | 2.36        | 206.7               | 1.8      | 0.00               | 0.00                             | 0.00                  |
| Homestake Creek below Homestake Project                             | 17                         | 0.83%            | August   | 7.6               | 18.1%               | 42.1  | 0.87        | 21.7                | 2.5      | 49.8  | 0.96        | 22.2                | 2.7      | 0.09               | 0.50                             | 0.20                  |
| Middle Fork South Platte River below Montgomery Reservoir           | 21                         | 1.03%            | August   | 4.3               | 14.6%               | 29.6  | 0.59        | 24.2                | 2.2      | 33.9  | 0.64        | 24.4                | 2.4      | 0.05               | 0.20                             | 0.20                  |



#### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

#### tion Flow Parameters **Change in Flow Parameters** Change in Change Wetted Change in Wetted Perimeter Velocity in Depth Perimeter Velocity (ft) (ft/s) (ft) (ft) (ft/s) 30.0 3.0 -0.03 -0.10 -0.10 86.4 2.2 -0.01 -0.10 0.00 114.0 4.6 0.00 0.00 0.00 49.5 2.8 -0.03 -0.20 -0.20 0.00 72.0 2.0 -0.03 -0.10 112.6 1.7 -0.02 -0.10 -0.10 320.6 1.9 -0.01 0.00 0.00 204.5 -0.02 0.00 1.6 0.00 N/A N/A N/A N/A N/A 23.6 2.0 -0.37 -2.00 -0.80




increase in flow would result in an increase in water depth of 0.05 feet, an increase in wetted perimeter of 0.2 feet and an increase of velocity of 0.2 ft/s (Table 3-23).

In summary, the changes in flow along the Middle Fork of the South Platte River downstream of Montgomery Reservoir would result in minimal change in flow parameters (less than: 0.37 feet change in water depth, 2.0 feet change in wetted perimeter and 0.2 ft/s change in velocity) within the aquatic environment. Flow changes of this magnitude under the Proposed Action would have no discernable effect on aquatic resources. In addition, critical threshold guidelines established for this analysis would not be exceeded.

### 3.6.3 Cumulative Impacts

Cumulative impacts of reasonably foreseeable water-based actions are summarized in Section 3.3.3. Reasonably foreseeable projects would likely result in cumulative changes in flow that could have a potential effect on aquatic resources.

In general, reasonably foreseeable actions would result in additional water use in the future, which would reduce streamflows and reservoir contents and levels in the Study Area. While the magnitude of hydrologic changes caused by the Proposed Action would be similar under cumulative effects, the percentage change in flows and reservoir contents under the Proposed Action may be slightly higher under cumulative effects than described for direct effects. This could result in a slightly greater effect on aquatic resources in the Study Area. The analysis of potential flow changes in dry years due to reasonably foreseeable actions described in Section 3.3.3 showed that the incremental cumulative hydrologic effect of the Proposed Action would be negligible to minor in combination with other past actions



## 3.7 Wetland and Riparian Resources and Special Status Species

This section describes the existing wetland and riparian resources in the Study Area and the effects of the Proposed Action and No Action alternatives on these resources. An evaluation of special status species associated with wetland and riparian areas within the Study Area is also provided in this section. The effect determination is included in Section 3.7.2.2 for the special status species and is indicated by parentheses [()].

Wetland and riparian resources generally occur along streams and reservoir perimeters and other locations where surface or groundwater is sufficient to support the vegetation types. The Study Area basins associated with this EA provide suitable conditions for wetland and riparian resources that could potentially be affected by the Proposed Action.

#### Wetlands

Wetlands are valuable biological resources that perform many functions including groundwater recharge, flood flow attenuation, erosion control, and water quality improvement. They also provide habitat for many plants and animals.



Wetlands have three general diagnostic characteristics; hydrophytic vegetation, hydric soils, and wetland hydrology.

#### **Riparian Areas**

Riparian areas generally serve as transitional zones between active river channels and uplands. They are vegetated corridors that border creeks, rivers, or other bodies of water.

Because of their proximity to water, topographic relief, and high degree of vegetative cover, these areas provide a unique and important habitat for many plant and animal species. From a watershed perspective, riparian areas occupy only a small percentage of the land; however, they represent an extremely important component of the overall landscape by performing many of the same functions as wetlands such as trapping sediment and pollutants, absorbing excess nutrients from runoff, attenuating flood flow, moderating water temperature, and providing habitat for wildlife.

Riparian habitats are often viewed as an element of wetlands as a result of their hydrologic similarities; however, they differ in that riparian areas are generally linear, more terrestrial, and are often dependent on the varying flow regimes of rivers (Naiman and Latterell 2005). Riparian areas are not typically classified as wetland because they often do not meet the general diagnostic characteristics established by the USACE and U.S. Environmental Protection Agency (EPA).

#### Wetland and Riparian Resource Assessment

A qualitative assessment of wetland and riparian resources was used to describe the affected environment within the Study Area, which included documentation of existing wetland/riparian resources and the general magnitude of these habitat types within the Study Area. The wetland information included in this assessment was derived from 44 National Wetland Inventory (NWI) Maps produced by the USFWS (USFWS 1983; USFWA 1984). Review of the **CDOW** Natural Diversity Information Source (NDIS) digital riparian vegetation mapping was also conducted to further identify wetland and riparian resources within the Study Area.

NWI Maps were developed by the USFWS as topical overlays to the USGS Quadrangle (Quad) Maps. The data represents the extent, approximate location, and type of wetlands and deepwater habitats; however it is in no way intended as a formal wetland delineation or federal jurisdictional determination.

The methodology used to assess the wetland and riparian resources in the Study Area included a visual review of NWI maps to determine the type of wetlands and river habitats located within each Study Area basin. The percent cover of wetland and river type was then visually estimated and compiled for each length of potentially affected river segment. The data collected from the NWI maps was compiled to determine a relative coverage estimate for the length of the river basin within the Study Area (Table 3-24). The following sections provide a description of the wetland types present (as defined by the Cowardin et al. wetland classification system) within the Study Area basins.



#### Riverine

Riverine Systems are all wetlands and deepwater habitats contained within a channel except those wetlands which (1) are dominated by trees, shrubs, persistent emergents, emergent mosses or lichens and (2) which have habitats with ocean derived salinities in excess of 0.5 parts per thousand (ppt) (Cowardin 1979).

Within the Riverine classification, stream systems can be further categorized as Upper Perennial (R3) and Lower Perennial (R2).

#### Palustrine

Palustrine Systems are all nontidal wetlands dominated by trees, shrubs, persistent emergents, emergent mosses or lichens and all such tidal wetlands where ocean derived salinities are below 0.5 ppt. This category also includes wetlands lacking such hydric vegetation but with all of the following characteristics: (1) area less than 20 acres, (2) lacking an active wave formed or bedrock boundary, (3) water depth in the deepest part of the basin is less than 6.6 feet at low water and (4) ocean derived salinities less than 0.5 ppt (Cowardin 1979).

Within the Palustrine classification, wetlands can be further categorized into Emergent (PEM), Scrub-Shrub (PSS), Forested (PFO), and Aquatic Bed (AB) Subsystems.

Additional qualifiers exist for both Riverine and Palustrine Systems with regard to

substrate type (Class and Subclass). However, the level of detail required for this assessment did not necessitate the utilization of these additional qualifiers.

Review of the CDOW riparian vegetation mapping was also conducted to further qualitatively identify riparian resources within each Study Area basin. This review documented the type and relative coverage of riparian resources depicted by the CDOW riparian vegetation mapping within the Study Area basins. The CDOW riparian mapping was incomplete for some basins and not available in other basins. Mapping was not available for review in the Muddy Creek Basin.

### 3.7.1 Affected Environment

Potentially affected wetland and riparian resources include areas immediately adjacent to or within sections of the Blue River, Williams Fork River, Muddy Creek, Colorado River, Homestake Creek, Eagle River, Middle Fork South Platte River, and South Platte River. The data provided in this section is based on visual relative estimates of the type of habitat and is intended to provide an understanding of magnitude and composition of wetland and riparian resources within the Study Area basins (Table 3-24). The information presented in this section has not been investigated on the ground for accuracy.



|                                 | Cowardin Classification System |                            |                   |                          |                   |                         |                           |                                                  |
|---------------------------------|--------------------------------|----------------------------|-------------------|--------------------------|-------------------|-------------------------|---------------------------|--------------------------------------------------|
|                                 | Riverine Palustrine            |                            |                   |                          |                   |                         |                           |                                                  |
|                                 | Upper<br>Perennial<br>(R2)     | Lower<br>Perennial<br>(R3) | Emergent<br>(PEM) | Scrub-<br>Shrub<br>(PSS) | Forested<br>(PFO) | Aquatic<br>Bed<br>(PAB) | Total<br>Wetland<br>Cover | Dominant<br>Vegetation<br>Classification         |
| Blue River<br>Basin             | N/A                            | 74%                        | 17%               | 9%                       | <1%               | N/A                     | 100%                      | riparian<br>herbaceous,<br>riparian shrub        |
| Muddy<br>Creek Basin            | N/A                            | 77%                        | 15%               | 7%                       | 1%                | N/A                     | 100%                      | N/A                                              |
| Colorado<br>River Basin         | N/A                            | 75%                        | 10%               | 10%                      | ≈ 2.5%            | ≈ 2.5%                  | 100%                      | riparian<br>herbaceous,<br>riparian shrub        |
| South Platte<br>River Basin     | 20%                            | 40%                        | 30%               | 10%                      | <1%               | N/A                     | 100%                      | riparian<br>herbaceous                           |
| Eagle River<br>Basin            | N/A                            | 70%                        | 15%               | 10%                      | ≈2.5%             | ≈2.5%                   | 100%                      | riparian<br>deciduous,<br>riparian<br>herbaceous |
| Williams<br>Fork River<br>Basin | N/A                            | 75%                        | ≈ 12.5%           | ≈12.5%                   | N/A               | N/A                     | 100%                      | riparian<br>evergreen,<br>riparian shrub         |

 Table 3-24

 Dominant Riparian and Wetland Classifications in the Study Area

#### **Blue River Basin**

Approximately 63 miles of the Blue River was assessed. The river type through the length of the basin is classified as R3, with an approximate average cover of 74%. The dominant wetland type is PEM, with an approximate average cover of 17%, followed by PSS wetland with an approximate average cover of 9%. Areas of PFO wetland were noted along the river; however cover was negligible at approximately 1%. Wetlands adjacent to the Blue River were minimal throughout the Study Area. The total average cover for wetlands adjacent to the Blue River is approximately 27% (Table 3-24).

CDOW riparian vegetation mapping is incomplete within the Blue River Basin. Based on a review of available CDOW riparian vegetation mapping for the affected river reach, the dominant vegetation types along the river consist of riparian herbaceous – both general and sedges/rushes/mesic grasses and riparian shrub – willow.

#### Williams Fork River Basin

Approximately 2.1 miles of the Williams Fork River was assessed. NWI Maps were not available for the potentially affected reach below Williams Fork Reservoir; therefore percent cover estimates of wetlands along this reach were not completed. Because of relatively similar geographic characteristics, wetland and riparian resources are assumed to be similar to that of the Blue River and the Muddy Creek Basins. For the purpose of this assessment, the river type through the length of the system is assumed classified as R3, with an approximate average cover of 75%.



The remaining dominant wetland type is assumed a mix of PSS, PEM, and PFO with an approximate average cover of 25% (Table 3-24). Based on a review of available CDOW riparian vegetation mapping for the affected river reach, the dominant vegetation types along the river consist of riparian evergreen and riparian shrub – willow.

#### Muddy Creek Basin

Approximately 10.5 miles of Muddy Creek was assessed. The river type through this reach is classified as R3, with an approximate average cover of 77%. The dominant wetland cover type is PEM, with an approximate average cover of 15%, followed by PSS wetland with an approximate average cover of 7%. Areas of PFO wetland were noted along the river; however cover was negligible at approximately 1% (Table 3-24). Wetlands adjacent to the Muddy Creek were minimal throughout the Study Area. The total average cover for wetlands adjacent to the Muddy Creek is approximately 23%. CDOW riparian vegetation mapping was not available for review within the Muddy Creek Basin.

#### **Colorado River Basin**

Approximately 84.5 miles of the Colorado River was assessed. The dominant river type through the system is R3, with an approximate average cover of 75%. The dominant wetland cover types are PEM with an approximate average cover of 10% and PSS with an approximate average cover of 10%. Areas of PFO and PAB wetland were noted along the river; however cover was negligible at approximately 5% (Table 3-24). The majority of the Study Area basin had minimal wetland complexes located adjacent to the river. The total average cover for wetlands adjacent to the Colorado River is approximately 25%. Based on review of available data CDOW riparian vegetation mapping for this affected river reach, the dominant vegetation types along the river consist of riparian herbaceous – both general and sedges/rushes/mesic grasses and riparian shrub – willow. Long sections of the river were noted where no riparian vegetation was mapped. These areas appear to be sections where the river has steep banks and is deeply incised.

#### **Eagle River Basin**

Approximately 63.8 total miles of river was assessed, including 13.45 miles of Homestake Creek and 50.3 miles of Eagle River.

The entire length of affected river is categorized as R3, with an approximate average cover of 70%. Wetland habitat through this reach of the Eagle River is dominated by PSS (average cover of 15%), followed by PEM (average cover of 10%). Areas of PFO and PAB wetland were noted along the river; however cover was minimal at less than 5% (Table 3-24). Large sections of the Eagle River were observed to be highly channelized, resulting in minimal wetland complex development adjacent to the river channel.

CDOW riparian vegetation mapping is incomplete within the Eagle River Basin. Based on review of available data for the affected river reach, the dominant vegetation types consists of riparian deciduous cottonwood trees and riparian herbaceous consisting of sedges, rushes and mesic grasses.

#### South Platte River Basin

The area assessed in the Upper South Platte River basin includes approximately 52.4 miles of river. The upper reach of the river is characterized as R3 (with an average



cover of 40%) and the lower reach is characterized as R2 (with an average cover of 20%). Wetland habitat was dominated by PEM wetlands, with an average of approximately 30% cover. PSS cover along the river was approximately 10%; areas of PFO and PAB wetland were noted along the river, however cover was negligible (Table 3-26). The river is characterized by a meandering pattern, resulting in the existence of large wetland complexes adjacent to the channel along the length of the reach assessed.

Based on review of available CDOW riparian vegetation mapping for this river reach, the dominant vegetation type in the basin is riparian herbaceous – both general and sedges/rushes/mesic grasses. The river is highly meandering and the majority of the section assessed had mapped riparian vegetation along the banks.

# Special Status Species Associated with Wetland and Riparian Areas

Special status species include federal and state listed threatened, endangered, and candidate species. Federally-listed species are protected under the ESA and Bald and Golden Eagle Protection Act while state listed species are protected under Colorado State law. Bald eagle (*Haliaeetus leucocephalus*), boreal toad (*Bufo boreas boreas*), and river otter (*Lontra Canadensis*) have been documented to occur, or have the potential to occur within the Study Area.

Bald eagles mainly subsist on fish, waterfowl, and carrion but are also opportunistic feeders and often rely on rabbits and ground squirrels (Griffin et al. 1982). In Colorado, nest trees are located in various forest types from old-growth ponderosa pine to linear groups of riparian woodland. Nests and roosts are usually located in tall trees near water in areas free of human activity and development. Roost sites are trees that provide diurnal and/or nocturnal perches for less than 15 wintering bald eagles and includes a <sup>1</sup>/<sub>4</sub>-mile buffer zone (NDIS 2005). An active bald eagle nest is located just west of the western end of the Colorado River segment, west of the town of Parshall. This segment of the Colorado River is used by bald eagles during winter foraging and the western end of the segment is a foraging area in summer (NDIS 2005). Two inactive nests and several bald eagle roost sites are located along the Blue River. Inactive nests are defined as nests in which neither courtship, breeding, or brooding activity has been observed at any time during the last 5 years (NDIS 2005).

River otters inhabit high-quality, perennial rivers that support abundant fish or crustaceans within many habitats ranging from semi-desert shrublands to montane and subalpine forests. Other habitat features that may be important include the presence of ice-free reaches of stream in winter, water depth. stream width, and suitable access to shoreline (Fitzgerald et al. 1994). An approximately 0.5-mile reach of the Colorado River, two miles east of the town of Hot Sulphur Springs is a river otter concentration area. Concentration areas are where otter sightings and signs of otter activity are higher than in the overall range (NDIS 2006). River otters have also been documented in the Blue River between the Town of Silverthorne and Green Mountain Reservoir (McKinney 2001; Taylor Young 2000). CDOW has identified only a small area of river otter range several miles north of the town of Silverthorne (NDIS 2006).

Historic records indicate boreal toads were present along the Williams Fork River (CDOW 2005). Areas of potential habitat include shallow, abandoned, or active



beaver ponds and other areas of still, shallow water. The Colorado Natural Heritage Program (CNHP) monitors and surveys boreal toads in Colorado; nonbreeding boreal toads were surveyed in Williams Fork River in 2005 (CNHP 2005). Boreal toads have also been recorded from the Blue River watershed (Keinath and McGee 2005), however, the habitat conditions along the river in the Study Area are only marginally suitable to support the species.

#### 3.7.2 Environmental Consequences

Over 75% of the potentially affected river Study Area basins are classified as R3. This river type is typically lined with cobbles or gravel and has very little floodplain development due to rapidly moving water (Cowardin 1979). Wetland or riparian areas along these river types are typically narrow and less developed if at all present. However, water typically moves through these systems throughout the year. One basin section, the Middle Fork of the South Platte River in its lower reaches, was characterized as R2. This type of river system typically has flowing water throughout the year and a substrate that consists mainly of sand and mud. The gradient is lower than the R3 system, which allows for a relatively more developed floodplain. Thus, wetland or riparian areas along this type of river are typically larger and more complex.

The correlation between in-channel river flows and adjacent wetland/riparian habitat is very site specific and not easily determined for an entire river basin without more intensive field evaluation. Wetlands and riparian areas may be directly connected to flows of a river system, with sustaining hydrology provided by in-channel flows.

Other wetland and riparian areas may be directly connected to inflows from other sources draining towards the river and not directly connected to in-channel flows. As a general theoretic rule, the less water available within a river system, the less water will be available for wetland and riparian resources. As in-channel flows increase and water depths become higher more water is available to adjacent wetland and riparian resources. As in-channel flows decrease depths become lower and less water is available to adjacent wetland and riparian resources. In addition, as inchannel flows decrease, groundwater hydrologic gradient can increase, creating additional drainage of adjacent wetland and riparian resources.

Differences in flow between the No Action and Proposed Action alternatives described in Section 3.3 were utilized as the basis for determining potential effects to wetland and riparian resources. The hydrology comparison tables (Tables 3.2 through 3.19) were reviewed to determine the maximum percentage increase and decrease in average monthly flow in any month at each location. The corresponding maximum changes in flow were evaluated to determine changes in flow parameters (water depth and wetted perimeter). Changes in flow parameters were calculated using average channel width, slope and cross-section shape at each location.

Two flow parameters were selected as they related to this resource, including depth (feet) and wetted perimeter (feet). These flow parameters were selected as part of this analysis as indicators of potential effects to wetland and riparian resources immediately adjacent to the river channels. Large changes in these flow parameters under the Proposed Action could be considered an effect to the resources. Modeled flow



#### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

parameters were compared to critical guideline thresholds, which were established for water depth and wetted perimeter.

The following critical guideline thresholds were established to determine if changes in flow could potentially affect wetland and riparian resources:

- Depth: Wetlands and riparian resources are typically adapted to tolerate seasonal relatively short duration increases and decreases in stream flows (i.e., flooding and drying). However, for the purposes of this study, flow changes which result in a monthly average fluctuation in water depth of more than 0.5 feet are considered a potential effect. Flow changes that result in water depth fluctuations of less than 0.5 feet are considered negligible and expected to have no discernable effect on the resource.
- Wetted Perimeter: Wetted Perimeter is the perimeter of the cross sectional area of a channel or river that is "wet". In theory, if the wetted perimeter of a river decreases, less water is available to the adjacent wetland and riparian resources. Conversely, if wetted perimeter increases, more water is available in the river to the adjacent wetland and riparian resources. For the purpose of this study a conservative estimate of a 5 feet decrease or increase in the wetted perimeter is considered a potential effect. Flow changes resulting in a change in wetted perimeter less than 5 feet are considered negligible and expected to have no discernable effect on the resource.

#### 3.7.2.1 No Action Alternative

Under the No Action alternative, Springs Utilities would continue to operate according to the Blue River Decree during substitution years. Therefore, river flows and reservoir contents would continue to fluctuate as they have historically as a result of Springs Utilities' substitution operations. This alternative is expected to have no direct, indirect or cumulative impacts on streamflows or reservoirs. Therefore, the No Action alternative is expected to have no direct, indirect or cumulative impacts on wetland or riparian resources within the Study Area. Likewise, there are no anticipated impacts (no effect) to special status species associated with wetland and riparian areas under the No Action alternative.

#### 3.7.2.2 Proposed Action

#### **Blue River Basin**

Refer to Section 3.6.2.2 for a discussion of maximum flow increases and decreases and the associated changes in water depth and wetted perimeter along the Blue River downstream of the Continental-Hoosier System, Dillon Reservoir and the Green Mountain Reservoir. Flow changes of this magnitude and frequency would have no effect on the adjacent wetland and riparian resources. In addition, the critical threshold guidelines established for this study would not be exceeded.

#### Williams Fork River Basin

Flow changes along the Williams Fork River would likely occur under the Proposed Action as described in the Section 3.3.2 Hydrology.

Refer to Section 3.6.2.2 for a discussion of maximum flow increases and decreases and the associated changes in water depth and wetted perimeter along the Williams Fork River. Flow changes of this magnitude and frequency would have no effect on the adjacent wetland and riparian resources. In



addition, the critical threshold guidelines established for this study would not be exceeded.

#### Muddy Creek Basin

Flow changes along Muddy Creek would likely occur under the Proposed Action as described in the Section 3.3.2 Hydrology.

Refer to Section 3.6.2.2 for a discussion of maximum flow increases and decreases and the associated changes in water depth and wetted perimeter along Muddy Creek. Flow changes of this magnitude and frequency would have no effect on the adjacent wetland and riparian resources. In addition, the critical threshold guidelines established for this study would not be exceeded.

#### **Colorado River Basin**

Flow changes along the Colorado River would likely occur under the Proposed Action as described in the Section 3.3.2 Hydrology.

Refer to Section 3.6.2.2 for a discussion of maximum flow increases and decreases and the associated changes in water depth and wetted perimeter along the Colorado River. Flow changes of this magnitude and frequency are expected to have no effect on the adjacent wetland and riparian resources. In addition, the critical threshold guidelines established for this study would not be exceeded.

#### **Eagle River Basin**

Flow changes along Homestake Creek and the Eagle River would likely occur under the Proposed Action as described in the Section 3.3.2 Hydrology.

Refer to Section 3.6.2.2 for a discussion of maximum flow increases and decreases and the associated changes in water depth and wetted perimeter along Homestake Creek.

Flow changes of this magnitude and frequency would have no effect on the adjacent wetland and riparian resources. In addition, the critical threshold guidelines established for this analysis would not be exceeded.

#### South Platte River Basin

Flow changes along the Middle Fork South Platte River and South Platte River would likely occur under the Proposed Action as described in the Section 3.3.2 Hydrology.

Refer to Section 3.6.2.2 for a discussion of maximum flow increases and decreases and the associated changes in water depth and wetted perimeter along the Middle Fork South Platte River. While changes in flow along the Middle Fork of the South Platte River downstream of Montgomery Reservoir indicate some of the largest flow parameter changes calculated as part of the assessment, the changes still indicate relative insignificant effect on wetland and riparian resources. Flow changes of this magnitude as part of the Proposed Action would have no effect on the adjacent wetland and riparian resource. In addition, critical threshold guidelines established for this analysis would not be exceeded.

# Special Status Species Associated with Wetland and Riparian Areas

No ground disturbing activities associated with the Proposed Action would occur in the Study Area that would directly impact special status species' habitat. Thus, potential impacts to special status species were assessed in relation to the changes in hydrology described in Section 3.3. Habitat for bald eagles, river otters and boreal toads occur along the Colorado and Blue rivers. As previously described, flow changes associated with the Proposed Action would have no impact (no effect) on the adjacent



riparian/wetland habitats that sustain these special status species in the Study Area.

### 3.7.3 Cumulative Impacts

Cumulative impacts of reasonably foreseeable water-based actions are summarized in Section 3.3.3. These projects would likely result in changes in flow that could have a potential effect on wetland and riparian resources.

In general, reasonably foreseeable actions would result in additional water use in the future, which would reduce streamflows and reservoir contents in the Study Area. While the magnitude of hydrologic changes caused by the Proposed Action would be similar under cumulative effects, the percentage change in flows and reservoir contents under the Proposed Action may be slightly higher under cumulative effects than described for direct effects. This could result in a slightly greater effect on wetland and riparian resources in the Study Area. The analysis of potential flow reductions in dry years due to reasonably foreseeable actions described in Section 3.3.3 showed that the incremental cumulative hydrologic effect of the Proposed Action would be negligible to minor in combination with other past actions and the reasonably foreseeable actions described in Section 3.1.3. Because the Proposed Action would have no effect on wetland and riparian resources under direct effects it is likely that the incremental effect of the Proposed Action on wetland and riparian resources under cumulative effects would be negligible to minor in combination with the reasonably foreseeable actions previously described.

# 3.8 Recreation

This section provides an overview of existing recreational resources within the

Study Area and evaluates the potential effects of the No Action and Proposed Action alternatives.

During scoping for this project, the following comments were recorded that were considered for this recreational analysis (URS 2008):

- Effect of implementing the 2003 MOAs on stream flow variations including, effect on recreational uses, in particular the Blue River (kayaking and fishing)
- Effects of changes in streamflow and reservoir contents on fish habitat and subsequently fishing opportunities
- The effect of streamflow changes on stream reaches deemed eligible for BLM Wild and Scenic River designation

#### 3.8.1 Affected Environment

Numerous recreational opportunities exist in the potentially affected reaches of streams and reservoirs within the Study Area. The primary recreational opportunities in the streams include fishing, rafting, and kayaking. Fishing can occur on all public sections of the streams and with landowner permission, on many of the private land parcels. One of the higher use areas for fishing along the Blue River is the 10 miles of public access from the Dillon Reservoir Dam to Green Mountain Reservoir. The Breckenridge Kayak Park is located on the Blue River within the Study Area. Indirect recreational uses also come from streams within the Study Area including snowmaking for ski areas in Breckenridge and Vail and irrigation for golf courses.

Several reservoirs are located within the Study Area. The recreational opportunities within each reservoir and on the surrounding property of each reservoir are described below.



Dillon Reservoir provides boating, canoeing, kayaking, sailboarding, fishing, and wildlife viewing within the reservoir. Other recreational opportunities on the property include camping, hiking, and biking in the summer; and cross-country skiing and ice fishing in the winter. Green Mountain Reservoir is used for boating and fishing. Recreational activities in the area include hiking, biking, off-highway vehicle (OHV) riding, snowmobiling, wildlife viewing, and camping. Several rental cabins are located at the south end of the reservoir.

Wolford Mountain Reservoir is used for boating, canoeing, kayaking, fishing, and water sports such as jet skiing. Recreational activities in the area include camping, picnicking, hiking, biking, and volleyball. Recreational opportunities in and around Williams Fork Reservoir include fishing, ice fishing, boating, sailboarding, canoeing, kayaking, camping, picnicking, wildlife viewing, and big game hunting.

Elevenmile Canyon Reservoir is contained within Eleven Mile State Park. Recreational activities within this park include biking; wildlife viewing; boating, including winter ice boating; canoeing; kayaking; sailboarding; camping, including backcountry camping and winter camping; cross-country skiing; educational programs; fishing, including ice fishing; big game, small game, and water fowl hunting; ice skating; OHV riding; and picnicking.

Upper Blue Reservoir and Montgomery Reservoir are used for fishing. Hiking trails exist in the areas surrounding these reservoirs. Homestake Reservoir is used for boating and fishing. Recreational opportunities around the reservoir include hiking and biking.

Gold Medal waters are the highest quality cold water habitats and have the capability

to produce many quality size (14 inches or longer) trout (Colorado Wildlife Commission 2008). Several waters within the Study Area are designated Gold Medal waters:

- Below the Dillon Reservoir dam (Denver Water no date).
- The Middle Fork South Platte River from the confluence of the Middle Fork and South Fork downstream to Spinney Mountain Reservoir (CDOW 2008).
- Spinney Mountain Reservoir (CDOW 2008).
- The South Platte River at the outlet of Spinney Mountain Reservoir downstream to the inlet of Elevenmile Reservoir (CDOW 2008).
- The Colorado River between Windy Gap and the confluence with Troublesome Creek (CDOW 2008). This section is partially within the project Study Area.

As described in Section 3.3.1.7, Grand County is currently developing a SMP for the County. Some of stream reaches evaluated in the SMP overlap portions of the Colorado and Blue rivers that were evaluated in the EA. Appendix D of the Phase 2 SMP defines water users flow recommendations for maintaining recreational activities including kayaking, rafting and angling in these reaches (Grand County 2008). The table below summarizes minimal and optimal flows for recreational activities in the Colorado River from the confluence with the Williams Fork River downstream and Blue River downstream of Green Mountain Reservoir as defined in Phase 2 of the SMP.



| Colorado River           |                                    |                                    |  |  |  |  |
|--------------------------|------------------------------------|------------------------------------|--|--|--|--|
| Recreational<br>Activity | Range of<br>Optimum<br>Flows (cfs) | Range of<br>Minimum<br>Flows (cfs) |  |  |  |  |
| Kayaking                 | 600 - 1,400                        | 500 - 700                          |  |  |  |  |
| Rafting                  | 800 - 1,300                        | 700 - 800                          |  |  |  |  |
| Angling                  | 200 - 1,000                        | 60 - 450                           |  |  |  |  |
|                          | <b>Blue River</b>                  |                                    |  |  |  |  |
| Recreational<br>Activity | Range of<br>Optimum<br>Flows (cfs) | Range of<br>Minimum<br>Flows (cfs) |  |  |  |  |
| Kayaking                 | 600 - 1,000                        | 400                                |  |  |  |  |
| Rafting                  | 700 - 1,400                        | 550                                |  |  |  |  |
| Angling                  | 200 - 1,200                        | 100                                |  |  |  |  |

An independent review of the SMP recreational flow recommendations has not been conducted, and the recommendations are currently being evaluated by basin stakeholders as to their validity and applicability, however, they were recognized in the impact analysis.

# Wild and Scenic Rivers Designation

As described in Section 3.3.1.4, the BLM is in the process of identifying eligible river segments in Colorado for Wild and Scenic River designations. Three segments of the Blue River have been preliminarily classified as recreational and wild for purpose of being deemed eligible for Wild and Scenic River status. The BLM also has an established fishing access and boat takeout at the downstream end of this segment. ORVs for these segments that may make them eligible for designation include high quality fishing and floatboating, wildlife habitat, and high biodiversity.

#### 3.8.2 Environmental Consequences

#### 3.8.2.1 No Action Alternative

Under the No Action alternative, Springs Utilities would operate according to the Blue River Decree during substitution years. River flows and reservoir contents would fluctuate as they have in the past. Therefore, no changes in stream flow or reservoir contents are expected, and there would be no direct, indirect, or cumulative impacts on recreational resources.

#### 3.8.2.2 Proposed Action

The potential for impacts to recreation are related to changes in stream flow or reservoir content that could impact the quality of recreational activities, especially fishing, rafting/kayaking, and boating. The Proposed Action would change how Springs Utilities pays back their substitution obligation based on the 2003 MOAs. To put the potential for impact into context, it is important to consider that for the historical period evaluated by the hydrologic model, there were 13 substitution years during the 56-year study period. Additionally, changes in how Springs Utilities pays back their substitution obligation would only occur when the substitution obligation is greater than about 2,100 AF or the contents in Upper Blue Reservoir, which would occur in 7 of the 13 substitution years during the hydrologic modeling study period. This trend indicates that potential changes in stream flow caused by the Proposed Action would occur infrequently. The total substitution obligation would not change, and there would be very minimal change in the total amount of water flowing down rivers in the Study Area, but the timing and sources of substitution releases would change.



Based on the results of the hydrologic modeling presented in Section 3.3 Hydrology, the Blue River below the Continental-Hoosier System, and the Middle Fork South Platte River would experience the greatest change in average monthly flow during substitution years (4.5 % decrease in flow in August, and a 24.8% increase in flow in November). Average monthly flows in August would decrease from 56.6 cfs to 54.1 cfs. The minimum change in flow is not enough of a change to have any noticeable impact to water-based recreation activities. The increase in flow during November occurs when there is little onwater recreation use. The Breckenridge Ski Area is usually involved in snowmaking operations in November - the increase of water in the river would not have an adverse impact on their operations. On the Middle Fork South Platte River, the average monthly flow during substitution years would decrease by 14.3% in August, changing flow from 26.8 cfs to 23 cfs. The primary recreational activity on this river reach is fishing. The estimated change in flow would not have an impact on fish, or the quality of fishing opportunities.

All of the other river segments potentially affected by flow changes would experience substantially less changes than those described above for the Blue River and the Middle Fork South Platte River, and would not experience noticeable effects to waterbased recreation. The aquatic ecosystem analysis, presented in Section 3.6 Aquatic Resources and Special Status Species, predicts no impact to fish habitat or populations, and therefore the quality or quantity of fish available to anglers would not be impacted.

Montgomery Reservoir and the Upper Blue Reservoir would be the only reservoirs that could experience a noticeable change in



average content during substitution years (a 5.2% and a 12.9% decrease in average content during the months of February and March, respectively). This level of change during winter months at these high mountain reservoirs would not impact recreation. During the months of August and September, there would be an average increase in contents of 6.3 % and 6.4 %, respectively. This small increase in contents would not have a noticeable effect on fish or fishing opportunities. In the month of August, the contents of the Upper Blue Reservoir could increase by an average of 38.5%. Except for June and July, which would experience an increase in content of less than 1%, August is the only month where a noticeable change in content is predicted. The additional water content of the reservoir should slightly improve conditions for fish and fishing.

The river segments in the Study Area that have been deemed eligible by BLM for Wild and Scenic Rivers designation would not experience noticeable changes in stream flow; the important values associated with those river segments should not be affected by the Proposed Action.

To summarize, because of the infrequent occurrence of substitution-related changes in stream flow, and the generally modest changes predicted to occur during those infrequent events, recreation is anticipated to experience adverse negligible short-term impacts.

As discussed in Section 3.8.1, Phase 2 of the Grand County SMP identified recreational flows recommendations to support activities such as kayaking, rafting, and angling. Flow reductions under the Proposed Action in the Blue and Colorado rivers would be infrequent and negligible (see Section 3.3.2.2) and would have no noticeable

effects to the minimum and optimum flows for recreational activities in the Study Area.

### 3.8.3 Cumulative Impacts

Several reasonably foreseeable water projects, described in Section 3.1.3, could affect streams and reservoirs in the project Study Area. The Proposed Action would have a negligible to minor incremental hydrological effect, and therefore would have a corresponding minor cumulative effect on recreation resources.

# 3.9 Socioeconomics

This section provides a brief overview of existing socioeconomic conditions and evaluates potential socioeconomic effects of the No Action and Proposed Action alternatives.

None of the issues, questions or comments received during public scoping identified socioeconomic concerns associated with the Proposed Action. One scoping commenter did identify potential effects on recreational uses (e.g., fishing and kayaking) on the Blue River as an issue to be examined; recreational impacts on the Blue River are described in Section 3.8.

This socioeconomic evaluation focuses on Summit County. Three of the signatories to the 2003 MOA that describes the Proposed Action are Summit County entities: Summit County; Vail Summit Resorts, Inc., and; the Town of Breckenridge. The county encompasses the Blue River Basin from the headwaters of the Blue River near Hoosier Pass, and from the headwaters of Ten Mile Creek near Fremont Pass, to the boundary with Grand County below Green Mountain Reservoir. Several of the water storage facilities that would be affected by the Proposed Action are located in Summit County, including Upper Blue Reservoir, Dillon Reservoir, and Green Mountain Reservoir.

#### 3.9.1 Affected Environment

Summit County was home to nearly 28,000 permanent residents in 2006. Fifty-eight percent of the county's residents lived in unincorporated areas, with approximately 36% of permanent residents living in Silverthorne, Breckenridge, and Frisco, the three largest municipalities in the county (SDO 2008a). Throughout most of the past four decades, the county has been one of the fastest growing areas in Colorado. From 1970 through 2005, Summit County's population increased by an average of 6.5% per year (Headwaters Economics 2007). In general, Summit County has a relatively young, fairly affluent and predominantly non-minority population (Census 2000b).

Summit County is home to four major ski resorts – Breckenridge, Keystone, Copper Mountain and Arapahoe Basin. Due in part to proximity to these resorts, as well as relatively easy access to the Denver Metropolitan Area via Interstate 70, Summit County also has a large population of parttime residents and second home owners. With a large number of second homes, a substantial hotel bed base and many day use visitors, the effective peak population in Summit County on weekends and holidays can be several times the number of permanent residents.

The attractiveness of Summit County real estate has some negative consequences for county residents. In general, housing affordability in Summit County has declined between 1990 and 2000 where the median family income is not enough to buy the median value home (Headwaters Economics 2007a; Headwaters Economics 2007b).



While Summit County was founded during Colorado's mining boom in the 1800s, tourism, broadly defined, is now the primary source of employment in the county. The four Summit County ski resorts received over 4.2 million skier visits during the 2006-2007 season and accounted for just over one-third of all skier visits in Colorado (CSCUSA 2008). Fishing is another example of tourism in Summit County. Preliminary estimates developed for the CDOW indicate that fishing activity generated \$37 million in Summit County economic output in 2007 (BBC 2008).

There were 23,850 jobs in Summit County in 2006 (SDO 2008b). The high number of jobs relative to the size of the population reflects both the prevalence of multiple job holding that is common in Colorado resort communities and extensive in-commuting by workers that live in nearby counties. The Colorado State Demography Office estimates that almost two-thirds of Summit County's economic base is tied to tourism, generally in the accommodations and food services industry (Headwaters Economics 2007a; SDO 2008c). Consistent with the emerging, broader definition of "tourism" that includes second home-related activity, 22% of Summit County jobs are in construction and real estate (Headwaters Economics 2007a).

#### 3.9.2 Environmental Consequences

#### 3.9.2.1 No Action Alternative

Under the No Action alternative, Springs Utilities would continue to operate according to the Blue River Decree during substitution years. River flows and reservoir contents would continue to fluctuate as they have historically as a result of Springs Utilities substitution operations. The No Action alternative is expected to have no



direct, indirect or cumulative impacts on streamflows or reservoirs and would have no effect on available water supplies in Summit County. Consequently, there would be no socioeconomic effects as a result of the No Action alternative.

### 3.9.2.2 Proposed Action

Under the Proposed Action, there would be minimal changes to the flow in the Blue River and to the contents and levels of Summit County reservoirs (e.g., Upper Blue, Dillon and Green Mountain). However, these changes are expected to have little or no noticeable impact on recreation opportunities. Fish populations are not expected to be affected. Consequently, the economic benefits to Summit County from river and lake-related recreation activity are not anticipated to be affected by the Proposed Action.

Under the Proposed Action, Springs Utilities would make 250 AF of water available from Upper Blue Reservoir each year to a West Slope Account for use by the River District's marketing program and its contractees in exchange for a like amount of water stored by the River District in Wolford Mountain Reservoir. The River District, in turn, intends to enter into contracts with the Summit County entities. It is anticipated that Summit County would contract for 100 AF of this new supply, Vail Summit Resorts would contract for 100 AF and the Town of Breckenridge would contract for 50 AF.

Exactly how this new water supply would be used has not been specified or documented. However, Summit County is generally in need of additional water supplies to meet anticipated growth in demands. The Statewide Water Supply Initiative (SWSI) identified a gap between identified supplies for Summit County and anticipated demands by 2030 of 1,900 AF. This gap reflects a number of anticipated water needs, including a projected need for 505 AF for development in unincorporated portions of the county (SWSI 2004). Snowmaking demands are projected to grow from 1,500 AF in 2000 to 3,700 AF by 2030 (SWSI 2004).

Precisely quantifying the economic value of the 250 AF of new supply available to Summit County entities under the Proposed Action is not possible. A minimum estimate of the economic value can be estimated, however, based on the prices charged under the River District's marketing program. Under the current marketing policy for contracts issued after July 2006, the River District charges \$1,301.25 per AF for Blue River supplies (River District 2008). Under these terms, the Summit County entities would pay a total of approximately \$325,000 per year to contract for the 250 AF made available under the Proposed Action. The willingness of the Summit County entities to enter into contracts for this water at the specified price indicates that the benefits from this new supply would likely be greater than the contract price.

### 3.9.3 Cumulative Impacts

Several reasonably foreseeable actions were identified for cumulative impact assessment in Section 3.1.3. Among these actions, the most relevant in terms of socioeconomic effects are:

- Other increased water use in Grand and Summit counties, and
- Increases in Wolford Mountain Reservoir Contract Demands.

Ongoing urban growth in Summit County will continue to increase the demand for water for municipal, domestic and commercial purposes. Given the limited supply available to the area, the value of the 250 AF made available to the Summit County entities would likely continue to increase in the future.

Increases in Wolford Mountain Reservoir Contract Demands would add to the value of the water that the River District stores in that reservoir on behalf of Springs Utilities in exchange for the supply that Springs Utilities makes available to the River District (and the Summit County entities) from Upper Blue Reservoir. This activity would somewhat reduce the net economic benefit of the new supply provided to the Summit County entities because the "cost" of that supply to the River District would increase. However, the amount of water that the River District will hold for Springs Utilities in Wolford Mountain is capped at 1,750 AF (MOA, May 15, 2003). This cap would limit the offsetting cost of the water to the River District.

# 3.10 Summary of Impacts

Detailed discussions of the impact analyses for affected resources in the Study Area are presented in Sections 3.3 through 3.9. Table 3-25 presents a summary of impacts to resources evaluated as a result of the Proposed Action and provides a comparison of the potential effects for each resource. In general, the Proposed Action would either result in no impacts, or minor short-term adverse impacts to the affected environment.

Under the No Action alternative, for all resources, Springs Utilities would continue to operate according to the Blue River Decree during substitution years. River flows and reservoir contents would continue to fluctuate as they have historically as a result of Springs Utilities substitution operations. The No Action alternative is



expected to have no direct, indirect, or cumulative impacts on streamflows or reservoirs and would have no effect on available water supplies in Summit County. Consequently, there would be no effects to resources evaluated as a result of the No Action alternative.



| Affected Resources          | Proposed Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hydrology                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Blue River                  | Average monthly flows in the Blue River downstream of the Continental-Hoosier System and upstream of Dillon<br>Reservoir would decrease by up to 4.6 cfs or 8.9% in August and increase by up to 4.2 cfs or 21.5% in November.<br>Flows below Dillon Reservoir would decrease by up to 7.8 cfs or 3.5% in May. Flows below Green Mountain<br>Reservoir, would decrease by up to 8.1 cfs or 0.4% in June and increase by up to 1.2 cfs or 0.5% in October.                                                                                                                                 |
| Williams Fork River         | Monthly average flows in the Williams Fork River would decrease by a maximum of 8.3 cfs or 11.5% in March and increase by a maximum of 3.4 cfs or 2.5% in June.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Muddy Creek                 | Average monthly flows would decrease by a maximum of 5.7 cfs or 4.3% in June and increase by a maximum of 6.1 cfs or 4.4% in October.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Colorado River              | Average monthly flows in the Colorado River downstream of the confluence with the Williams Fork River would decrease up to 6.3 cfs or 3.7% in March and increase by up to 4.1 cfs or 0.2% in June. Average monthly flows in the Colorado River near Kremmling would decrease by up to 8.1 cfs or 0.1% in June and increase by up to 4.6 cfs or 0.7% in October. Average monthly flows in the Colorado River downstream of the Eagle River would decrease by up to 8.1 cfs or 0.1% in June and increase by up to 8.1 cfs or 0.1% in June and increase by up to 4.6 cfs or 0.5% in October. |
| Eagle River                 | Average monthly flows in Homestake Creek would increase by a maximum of 7.6 cfs or 18.1% in August. In substitution years, average monthly flows would increase by up to 0.6 cfs or 2.3%.                                                                                                                                                                                                                                                                                                                                                                                                 |
| South Platte River          | Average monthly flows in the Middle Fork South Platte River would decrease by 34.1 cfs or 61.6% and increase by 4.3 cfs or 14.6% in August.                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Upper Blue Reservoir        | End-of-month contents in Upper Blue Reservoir would increase by up to 250 AF in August, September and October.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dillon Reservoir            | End-of-month contents in Dillon Reservoir would increase by up to 113 AF or 0.1% in all months and decrease by up to 522 AF or 0.3% in August.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Green Mountain Reservoir    | End-of-month contents in Green Mountain Reservoir would increase by up to 414 AF or 0.3% in August and decrease by up to 479 AF or 0.6% in May.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Williams Fork Reservoir     | End-of-month contents in Williams Fork Reservoir would increase by up to 564 AF or 2.8% in March and decrease by up to 37 AF or 0.1% in January through May.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Wolford Mountain Reservoir  | End-of-month contents in Wolford Mountain Reservoir would increase by a maximum of 280 AF or 1.3% in December, January and February and decrease by a maximum of 343 AF or 1.7% in January and February.                                                                                                                                                                                                                                                                                                                                                                                  |
| Homestake Reservoir         | End-of-month contents in Homestake Reservoir would decrease in seven months during the 56-year study period by up to 469 AF or 18.9% in August.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Montgomery Reservoir        | End-of-month contents in Montgomery Reservoir would decrease by a maximum of 271 AF or 24.1% from October through March and increase by a maximum of 2,096 AF or 355% from August through November.                                                                                                                                                                                                                                                                                                                                                                                       |
| Elevenmile Canyon Reservoir | There would likely be no change in Elevenmile Canyon Reservoir contents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

# Table 3-25Summary of Impacts from the Proposed Action



|                                                                                                                          | Summary of impacts from the Proposed Action                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Affected Resources                                                                                                       | Proposed Action                                                                                                                                                                                                                  |
| Hydroelectric Generation                                                                                                 |                                                                                                                                                                                                                                  |
| Hydroelectric generation at power plants                                                                                 | • Flow changes would result in none to negligible changes in hydroelectric power generation at the following facilities: Dillon Reservoir Power Plant, Roberts Tunnel Power Plant, and Green Mountain Reservoir Power Plant.     |
|                                                                                                                          | • Flow changes in the Colorado River near Kremmling could result in minor adverse short-term impacts to hydropower generation at the Shoshone Power Plant.                                                                       |
|                                                                                                                          | • Changes in the diversions through Homestake Tunnel could result in minor adverse short-term impacts to hydropower generation at the Mt. Elbert Power Plant.                                                                    |
|                                                                                                                          | • Changes in the timing of substitution releases from the Williams Fork Reservoir may result in minor adverse short-term impacts to hydropower generation at the Williams Fork Reservoir Power Plant.                            |
| Water Quality                                                                                                            |                                                                                                                                                                                                                                  |
| River basins: Upper Colorado<br>River and South Platte River                                                             | Flow changes would have negligible effect on water quality in the Upper Colorado River Basin or the South Platte River Basin.                                                                                                    |
| Aquatic Resources and Special Stat                                                                                       | tus Species                                                                                                                                                                                                                      |
| River basins: Blue River, Williams<br>Fork River, Muddy Creek,<br>Colorado River, Eagle River, and<br>South Platte River | Flow changes would have negligible effect on aquatic resources.                                                                                                                                                                  |
| Special status fish species in the Colorado River Basin                                                                  | Flow changes in the Colorado River downstream of the confluence with the Eagle River would have no adverse effect on the endangered fish species along the Colorado River (no effect).                                           |
| Wetlands and Riparian Resources a                                                                                        | und Special Status Species                                                                                                                                                                                                       |
| River basins: Blue River, Williams<br>Fork River, Muddy Creek,<br>Colorado River, Eagle River, and<br>South Platte River | Flow changes would have negligable effect on wetlands and riparian resources.                                                                                                                                                    |
| Special status species<br>associated with wetland and<br>riparian areas                                                  | Flow changes would have no impact (no effect) on the adjacent riparian/wetland habitats that sustain special status species in the Study Area.                                                                                   |
| Recreation                                                                                                               |                                                                                                                                                                                                                                  |
| Recreational activities,<br>including: fishing, rafting,<br>kayaking, and boating                                        | Because of the infrequent occurrence of substitution-related changes in stream flow, and the generally modest changes predicted to occur during those infrequent events, impacts to recreation are anticipated to be negligible. |

Table 3-25Summary of Impacts from the Proposed Action



| Affected Resources                                                                                            | Proposed Action                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Socioeconomics                                                                                                |                                                                                                                                                                                                                                                                                                                                                                  |
| Economic benefits related to<br>recreational opportunities and<br>economic value of available<br>water supply | Minimal flow changes would have no discernable effect on recreation opportunities, such as fishing.<br>Consequently, the economic benefits to Summit County from river and lake-related recreation activity are<br>not anticipated to be affected.                                                                                                               |
|                                                                                                               | The new water supply (250 AF of water from Upper Blue Reservoir each year to a West Slope Account for use by the River District's marketing program and its contractees) in Summit County would satisfy a portion of the needed supply to meet anticipated growth in demands. The benefits from this new supply would likely be greater than the contract price. |

# Table 3-25Summary of Impacts from the Proposed Action



# 4.0 Consultation and Coordination

# 4.1 Scoping Process

Reclamation used several methods to inform the public and interested agencies of the proposed project and to solicit their input, including: scoping announcements, agency scoping interviews, and a public scoping meeting.

Public notices were published on February 20 and 27, 2008 in *The Summit Daily News*. A postcard, "Notice of Public Open House," was mailed to all individuals on Reclamation's project mailing list, totaling over 50 people.

Reclamation issued a press release on February 29, 2008. The press release was electronically mailed to approximately 130 people on Reclamation's project-specific mailing list. The press release announced the scoping meeting and provided an overview of the project, the dates of the scoping comment period, and a contact for more information.

A scoping newsletter was provided at the Public Scoping Meeting (described below) and to agencies as part of the agency scoping interview process. The newsletter described the project purpose and need, proposed alternatives, and the NEPA process.

Agency scoping was conducted through individual stakeholder telephone interviews. These interviews were conducted in March and April 2008 and included representatives from four federal agencies, three state agencies, five municipal and regional agencies, and one county agency. A summary of the agency scoping process is described in the *Scoping Summary Report* (URS 2008).

A public scoping meeting was held by Reclamation on March 6, 2008 at the Silverthorne Library in Silverthorne, Colorado. A total of eight attendees signedin. The scoping newsletter, described above, was provided at the meeting. The meeting was an open house format with eight display boards.

The public comment period extended 30 days between March 6 and April 4, 2008. Two written comments were submitted by the CDPHE and the Municipal Subdistrict regarding the project and may be found in the *Scoping Summary Report* (URS 2008).

As a result of this scoping process Reclamation received written or oral feedback on the project. The comments are summarized below, and have been considered in the development of the EA.

- Effect of implementing the 2003 MOAs on stream flow variations including:
  - Fluctuations related to timing and amount of flow
  - Effect on aquatic biological resources in the Colorado River and Blue River
  - Effect on recreational uses, in particular the Blue River (kayaking and fishing)
- Effects on Colorado River stream flows below the Windy Gap Project diversion point from utilizing water from the Williams Fork Reservoir as a substitute supply.
- Effects of water transfers on water temperature and subsequently fish.
- What is Reclamation's power right and how is it administered?



- How does the Historic Users Pool (HUP) operate and would the HUP be affected by stream flow variations as a result of implementing the 2003 MOAs?
- Would the Green Mountain Reservoir Pumpback project (also known as the Blue River Pumpback) considered by Denver Water be affected by implementation of the 2003 MOAs?
- The effect of Springs Utilities' re-use and conservation programs on the water substitution agreement.
  - Is Springs Utilities maximizing their efforts to reuse transbasin water to extinction under their existing conservation program?
- The effect of BLM's Wild and Scenic River designations on stream reaches within the study area of this project.
- Will additional water be diverted from the West Slope to the East Slope as part of the project?

## 4.2 Comments on the Draft EA

A Draft EA was prepared and made available for comment during a 2-week comment period between September 30 through October 14, 2008. An electronic copy of the Draft EA, as well as other project-related information, is available at Reclamation's website at: http://www.usbr.gov/gp/nepa/quarterly.cfm. A hardcopy of the Draft EA was available for public review at the following repositories:

Summit County Library North Branch 651 Center Circle Silverthorne, CO 80498

Summit County Library South Branch 504 Airport Road Breckenridge, CO 80424 A postcard notification of the availability of the EA was distributed to the project mailing list, attendees at the scoping meeting, and agencies.

Comments on the Draft EA were received by: Colorado Department of Public Health and the Environment, Water Quality Control Division; Bureau of Land Management; Trout Unlimited; Petros and White, LLC on behalf of the Board of Commissioners, Summit County, Colorado, and; White and Jankowski, L.L.P. on behalf of the Board of County Commissioners, Grand County, Colorado. A summary of the comments contained in these letters as well as responses can be found in Appendix D.

# 4.3 Preparers

URS Corporation (URS), a third-party contractor, prepared the Green Mountain Reservoir Substitution Agreement and Power Interference Agreement EA working under the direction of and in cooperation with the lead agency for the project, Reclamation. The following subcontractors assisted Reclamation and URS with the preparation of the EA: Ecological Resource Consultants, Inc. (ERC) assisted conducted hydrologic analysis and modeling, surface water resources, aquatic resources, and special status species associated with aquatic resources; BBC Research & Consulting conducted socioeconomic analysis, and; Seamless Composition, LLC assisted with the public involvement process for the project. Table 4-1 provides the names of the individuals who were principally involved with preparing the EA.



| Table 4-1         |
|-------------------|
| List of Preparers |

| Name                         | Title                                                                                         | Contribution                                                                   |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Bureau of Reclamation        |                                                                                               | •                                                                              |  |  |  |
| Carlie Ronca                 | Project Manager                                                                               | Project management for<br>environmental compliance and<br>document production  |  |  |  |
| Kara Lamb                    | Public Involvement Specialist                                                                 | Public and agency involvement and notification                                 |  |  |  |
| Ron Thomasson                | Hydraulic Engineer                                                                            | Water scheduling consideration,<br>hydrologic analysis, and document<br>review |  |  |  |
| URS Corporation              |                                                                                               |                                                                                |  |  |  |
| Paula Daukas                 | Project Manager<br>(Nov 2007 – May 2008)                                                      | Project management for<br>environmental compliance and<br>document production  |  |  |  |
| Andrea Parker                | Project Manager<br>(May 2008 - present)<br>Assistant Project Manager<br>(Nov 2007 – May 2008) | Project management, environmental<br>compliance, and document<br>production    |  |  |  |
| Rachel Badger                | Environmental Planner                                                                         | Technical report writing and document production                               |  |  |  |
| Angie Fowler                 | Water Resources Engineer                                                                      | Water quality                                                                  |  |  |  |
| Sarah Jensen                 | Environmental Planner                                                                         | Recreation                                                                     |  |  |  |
| David Jones                  | Senior Environmental Planner                                                                  | Recreation                                                                     |  |  |  |
| John Sikora, P.E.            | Senior Water Resources Engineer                                                               | Water resources, hydroelectric generation                                      |  |  |  |
| Ecological Resource Consulta | nts, Inc.                                                                                     |                                                                                |  |  |  |
| David Blauch                 | Ecologist                                                                                     | Floodplains, aquatic resources, wetland and riparian resources                 |  |  |  |
| Heather Thompson, P.E.       | Water Resource Engineer                                                                       | Surface water, hydrology and modeling                                          |  |  |  |
| Troy Thompson, P.E.          | Troy Thompson, P.E. Water Resource Engineer                                                   |                                                                                |  |  |  |
| BBC Research & Consulting    |                                                                                               |                                                                                |  |  |  |
| Doug Jeavons                 | Economist                                                                                     | Social and economic analysis                                                   |  |  |  |
| Seamless Composition, LLC    |                                                                                               |                                                                                |  |  |  |
| Lisa Pine                    | Public Involvement Specialist                                                                 | Public and agency involvement and notification                                 |  |  |  |



#### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

## 5.0 References

Algermissen, S.T., Perkins, D.M., Thenhaus, P.C., Hanson, S.L., and Bender, B.L.
1990. Probabilistic Earthquake Acceleration and Velocity Maps for the United States and Puerto Rico: U.S. Geological Survey Miscellaneous Field Studies Map MF-2120, 2 sheets, scale 1:7,500,000.

BBC Research & Consulting, LLC (BBC).
2008. Economic Impact of Hunting,
Fishing and Watchable Wildlife in
Colorado (draft). BBC Research &
Consulting, prepared for Colorado
Division of Wildlife. July.

- Bureau of Land Management (BLM). 2007. Wild and Scenic River Eligibility Final Report for the Kremmling and Glenwood Springs Field Offices, Colorado. March 28. Available online at: http://www.blm.gov/rmp/co/kfogsfo/rmp\_revision\_docs.htm.
- Colorado Department of Public Health and Environment (CDPHE). 2003. Water Quality Control Division. Section 303(d) Listing Methodology – 2004 Listing Cycle. Available online at: http://www.cdphe.state.co.us/op/wqcc/S pecialTopics/303(d)/303(d)ListMeth200 4final.pd September 9, 2003.

\_\_\_\_\_. 2007a. Water Quality Control Commission. Dillon Reservoir Control Regulation (5 CCR 1002-71). Available online at: http://www.cdphe.state.co.us/regulations /wqccregs/reg712007.pdf. Effective

May 30, 2007.

\_\_\_\_\_. 2008. Water Quality Control Division. Introduction to Water Quality Standards. Available online at: http://www.cdphe.state.co.us/wq/Assess ment/introduction\_to\_colorado\_surface. html. Accessed on July 23, 2008.

\_\_\_\_\_. 2008a. TMDL Listing Process. Available online at: http://www.cdphe.state.co.us/wq/Assess ment/TMDL/tmdlmain.html.

\_\_\_\_\_. 2008b. Water Quality Control Division. Water Quality Classifications and Standards Review. Available online at:

http://www.cdphe.state.co.us/op/wqcc/W QClassandStandards/ClassAndStand.ht ml. Accessed on July 30.

. 2008c. Water Quality Control Division. Regulation 31 The Basic Standards and Methodologies for Surface Water (5 CCR 1002-31). Effective May 31, 2008.

\_\_\_\_\_. 2008d. Water Quality Control Commission. Regulation 33 Classifications and Numeric Standards for Upper Colorado River Basin and North Platte River (Planning Region 12) (5 CCR 1002-33). Effective March 1, 2008.

. 2008e. Water Quality Control Commission. Regulation No. 93 Section 303(d) List Water Quality Limited Segments Requiring TMDLs. April 30, 2008.

. 2008f. Water Quality Control Commission. Regulation 38 Classifications and Numeric Standards for Arkansas River Basin (5 CCR 1002-38). Effective March 1, 2008.

Colorado Division of Water Resources (CDWR). 2007. Upper Colorado River Basin Information. Colorado's Decision Support Systems. January.



#### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

\_\_\_\_. 2008. CDSS Database; Diversion Records. Office of the State Engineer.

- Colorado Division of Wildlife. 2005. Colorado Herpetofaunal Atlas, Boreal Toad Observations. Accessed at: http://ndis.nrel.colostate.edu/herpatlas/co herpatlas on November 28.
  - \_\_\_\_\_. 2008. 2008 Colorado Fishing and Property Directory. Available online at: http://wildlife.state.co.us/NR/rdonlyres/6 DE0299B-B621-4248-B56A-00DFF8A66BB3/0/08fishbrochure.pdf. Accessed July 21, 2008.
- Colorado Foundation for Water Education. 2004. Citizen's Guide to Colorado Water Law.
- Colorado Natural Heritage Program (CNHP). 2005b. Fraser Valley Parkway Boreal Toad Habitat Inventory: A Report to the Grand County Planning Commission. Prepared by Chris Gaughan and Lee Grunau. August.
- Colorado River Water Conservation District (River District). 2008. Water Marketing Policy of the Colorado River Water Conservation District's Colorado River Water Projects Enterprise. January 16.
- Colorado Ski Country USA (CSCUSA). 2008. (Untitled) Annual Skier Visits by Area. Colorado Ski Country USA. Downloaded July 28.
- Colorado Springs Utilities (Springs Utilities). 2006. Colorado Springs Utilities Water Supply System.

Colorado Springs Utilities, Colorado River Water Conservation District, Denver Board of Water Commissioners, Northern Colorado Water Conservancy District, Summit County Commissioners, Vail Summit Resorts and Town of Breckenridge. 2003. Memorandum of Agreement (MOA) Regarding Colorado Springs Substitution Operations. May 15.

Colorado State Parks. 2007. Winter at Spinney Mountain State Park. Last updated August 20, 2007. Available online at: http://parks.state.co.us/Parks/SpinneyMo untain/Winter/. Accessed July 22, 2008.

- Colorado Water Conservation Board (CWCB). 2007a. Upper Colorado River Basin Information. January.
- \_\_\_\_\_. 2007b. Upper Colorado River Basin Water Resources Planning Model User's Manual. January.
- Colorado Wildlife Commission. 2008. Wild and Gold Medal Trout Management. Colorado Wildlife Commission Policy Number D-6. Revised February 26, 2008. Available online at: http://wildlife.state.co.us/NR/rdonlyres/2 CBE95D0-C5DA-487A-A4D9-332B65F71297/0/CurrentWTGMPolicy Draft32008.pdf. Accessed July 21, 2008.
- Denver Board of Water Commissioners (Denver Water). 2003. Operating Information for Green Mountain Reservoir. September.
  - \_\_\_\_\_. 2005. Diversion Data for Roberts Tunnel. Transmitted from Denver Water to Boyle Engineering.



\_\_\_\_. 2008. Letter from H.J. Barry, Manager, Denver Water, to Kevin Lusk, Colorado Springs Utilities, regarding Denver Waters' replacement water operations. July 23.

\_\_\_\_\_. No date. Dillon Reservoir. Available online at http://www.water.denver.co.gov/recreati on/dillon.html. Accessed July 21, 2008.

- Ecological Resource Consultants, Inc. (ERC). 2008. Model Selection and Parameters. Technical Memorandum. March.
- Garfin, G. and M. Lenart. 2007. Climate Change Effects on Southwest Water Resources. Southwest Hydrology. Volume 6/Number 1. January/February.
- Grand County. 2008. Draft Report, Grand County Stream Management Plan: Phase 2 Environmental and Water Users Flow Recommendations, Grand County, Colorado. Prepared for Grand County, Colorado. Prepared by Tetra Tech, Habitech, Inc., And Walsh Aquatic, Inc. April.
- Griffin, C. R., T.S. Baskett, and R.D. Sparrowe. 1982. Ecology of Bald Eagles Wintering Near a Waterfowl Concentration. USFWS Special Sci. Rept. Wildl. No. 247. 12 pp.
- Headwaters Economics. 2007a. A Socioeconomic Profile: Summit County, Colorado. November 30.

\_\_\_\_. 2007b. A Socioeconomic Profile: Colorado. November 30.

Hoerling, M. and J. Eischeid. 2007. Past Peak Water in the Southwest. Southwest Hydrology. Volume 6/Number 1. January/February. Hydrosphere Resource Consultants, Inc. (Hydrosphere). 1989. Summit County Small Reservoir Feasibility Study. September.

- \_\_\_\_\_. 2003. Upper Colorado River Basin Study Phase II Final Report. May.
- International Panel on Climate Change (IPPC). 2008. Technical Paper on Climate Change and Water. April.
- Keinath, D. and M. McGee. 2005. Boreal Toad (*Bufo boreas boreas*): A Technical Conservation Assessment. USDA Forest Service, Rocky Mountain Region. May 25. Accessed at: http://www.fs.fed.us/r2/projects/scp/asse ssments/borealtoad.pdf on October 4, 2006.
- Letheby, P. 2007. Western Water is Petering Out. High Country News. November 19.
- McKinney, D. 2001. Guide to Colorado State Wildlife Areas. Westcliffe Publishers, Inc., Englewood, Colorado.
- Natural Diversity Information Source (NDIS). 2005. Database and online mapping for Colorado wildlife species. Available online at: http://ndis.nrel.colostate.edu. Accessed on November 28.
  - \_\_\_\_\_. 2006. Database and online mapping for Colorado Wildlife Species. Available online at: http://ndis.nrel.colostate.edu.
- National Research Council of the National Academies. 2007. Colorado River Basin Water Management, Evaluating and Adjusting to Hydroclimatic Variability. The National Academies Press, Washington, D.C.



- Natural Resource Conservation Service (NRCS). 2008a. Personal Communication between Andrea Parker, URS and Matt Barnes, NRCS, Kremmling Service Center. August 1.
- \_\_\_\_\_. 2008b. Personal Communication between Andrea Parker, URS and Dennis Davidson, NRCS, Glenwood Springs Service Center. August 1.
- Nijhuis, M. 2006a. What Happened to Winter? High Country News Special Report. High and Dry: Dispatches on Global Warming from the American West.
- \_\_\_\_\_. 2006b. Save our Snow: Can Aspen and Other Western Towns Put a Dent in a Global Problem? High Country News Special Report. High and Dry: Dispatches on Global Warming from the American West.
- Renewable Resource Generation Development Areas Task Force. 2007. Report of the Task Force on Renewable Resource Generation Development Areas Pursuant to Colorado Senate Bill 07-091. Submitted to Colorado Governor Bill Ritter, Jr. and the General Assembly of the State of Colorado. December 21.
- Springs Utilities. 2007. Colorado Springs Utilities Water System Tour.
- Springs Utilities. 2008. Diversion Data for Hoosier and Homestake Tunnels and End-of-Month Content Data for Upper Blue Reservoir, Homestake Reservoir, and Montgomery Reservoir. Transmitted from Springs Utilities to ERC. February and March.
- State Demography Office (SDO). 2008a.Table 5. Colorado Population for Counties & Municipalities. November 2007. Accessed on July 28.

- SDO. 2008b. Colorado Jobs by Sector (NAICS-based). Accessed on July 30.
- SDO. 2008c. Colorado 2005 Economic Base Analysis. Accessed on July 28.
- Statewide Water Supply Initiative (SWSI). 2004. Prepared by CDM, prepared for the Colorado Water Conservation Board. November.
- Taylor Young, M. 2000. Colorado Wildlife Viewing Guide. Second Edition. Falcon Publishing, Inc. Helena, Montana.
- URS Corporation (URS). 2008. Green Mountain Reservoir Substitution and Power Interference Agreements Environmental Assessment (EA) Scoping Summary Report. Prepared for the U.S. Bureau of Reclamation. June.
- U.S. Bureau of Census (Census). 2000a. Table DP-1, Profile of General Demographic Characteristics: 2000. For Geographic Areas: Eagle County, Grand County, Park County, and Summit County, Colorado. Available online at: http://quickfacts.census.gov/cgibin/qfd/demolink?08.
- \_\_\_\_\_. 2000b. STF1: Census 2000 Summary Tape File 1, and STF3: Census 2000 Summary Tape File 3. Accessed on July 29, 2008.
- \_\_\_\_\_. 2000c. Census Journey to Work. Residence County to Workplace County Flows for Colorado. U.S. Bureau of Census. Accessed on July 30, 2008.
- . 2008. Census Building Permit Data. Monthly New Privately-Owned Residential Building Permits, Summit County, Colorado. Accessed on July 30.
- U.S. Department of Agriculture (USDA). 1995. Landscape Aesthetics: Handbook for Scenery Management. Agriculture Handbook Number 701.



#### Green Mountain Reservoir Substitution and Power Interference Agreements Final EA

- \_\_\_\_\_. 2007. United States Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory. Running Dry: Where Will the West Get Its Water? Scientific Findings. Issue 97. October.
- U.S. Department of the Interior, Bureau of Reclamation. 2000. National Environmental Policy Act Handbook (NEPA) Handbook, Public Review Draft.
- U.S. Fish and Wildlife Service (USFWS). 1983. National Wetlands Inventory Maps, Scale 1:58,000. U.S. Department of the Interior, Washington, D.C.
- \_\_\_\_\_. Sugarloaf Mountain, CO.
- \_\_\_\_\_. Burns South, CO.
- \_\_\_\_\_. Burns North, CO.
- \_\_\_\_. Blue Hill, CO.
- \_\_\_\_\_. McCoy, CO.
- \_\_\_\_\_. State Bridge, CO.
- \_\_\_\_\_. Radium, Colorado.
- \_\_\_\_\_. Junction Butte, Colorado.
- \_\_\_\_\_. Parshall, Colorado.
- \_\_\_\_\_. Alma, Colorado.
- \_\_\_\_\_. Fairplay West, Colorado.
- \_\_\_\_\_. Fairplay East, Colorado.
- \_\_\_\_\_. Garo, Colorado.
- \_\_\_\_. Hartsell, Colorado.
- \_\_\_\_\_. Sulphur Mountain, Colorado.
- \_\_\_\_\_. Guffee, Colorado.
- \_\_\_\_\_. Battle Mountain, Colorado.
- \_\_\_\_\_. Breckenridge, Colorado.
- \_\_\_\_\_. Corral Peaks, Colorado.
- \_\_\_\_\_. Gunsight Pass, Colorado.
- \_\_\_\_\_. Mount of the Holy Cross, Colorado.
- \_\_\_\_\_. Vail Pass, Colorado.
- \_\_\_\_\_. Frisco, Colorado.
- \_\_\_\_\_. Dillon, Colorado.
- \_\_\_\_\_. Willow Lakes, Colorado.



- \_\_\_\_\_. Squaw Creek, Colorado.
- \_\_\_\_\_. Mount Powell, Colorado.
- \_\_\_\_\_. King Creek, Colorado.
- \_\_\_\_\_. Kremmling, Colorado.
- \_\_\_\_\_. Hinman Reservoir, Colorado.
- \_\_\_\_\_. Dotsero, Colorado.
- \_\_\_\_\_. Gypsum, Colorado.
- \_\_\_\_\_. Eagle, Colorado.
- \_\_\_\_\_. Wolcott, Colorado.
- \_\_\_\_\_. Edwards, Colorado.
- \_\_\_\_\_. Minturn, Colorado.
- \_\_\_\_\_. Redcliff, Colorado.
- \_\_\_\_\_. Pando, Colorado.
- \_\_\_\_\_. Homestake Reservoir, Colorado.
- \_\_\_\_\_. Leadville North, Colorado.

U.S. Fish and Wildlife Service (USFWS). 1984. National Wetlands Inventory Maps, Scale 1:58,000. U.S. Department of the Interior, Washington, D.C.

- \_\_\_\_\_. Vail West, Colorado.
- \_\_\_\_\_. Sheephorn Mountain, Colorado.
- \_\_\_\_\_. Vail East, Colorado.
- \_\_\_\_\_. Climax, Colorado.

U.S. Geological Survey (USGS). 2002. Geologic Map of the Frisco Quadrangle, Summit County, Colorado.

- \_\_\_\_\_. 2005. Changes in Streamflow Timing in the Western United States in Recent Decades. Fact Sheet 2005-3018. March.
- Watershed Management Council Networker. 2005. Spring Arriving Earlier in Western Streams. Southwest Hydrology. Volume 6/Number 1. January/February 2007.
- Western Regional Climate Center (WRCC). 2005. Available online at: http://www.wrcc.dri.edu.

Western Water Assessment. 2008. Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation. A report for the Colorado Water Conservation Board.

Woodhouse, B. 2007. Climate Change Through the Eyes of Water Managers. Southwest Hydrology. Volume 6/ Number 1. January/February.



#### Glossary

Acre-foot – A uniform volume of water that will cover one acre (43,560 square feet) to a depth of one foot (often averaged to 326,000 gallons).

**Appropriation** – The diversion of water and the placing of it to a beneficial use, also may refer to the amount of water a user has the legal right to withdraw from a water source.

**Call** – Demand for administration of water rights.

**Consumptive use** – Water use that permanently withdraws water from its source; water that is no longer available because it has evaporated, been transpired by plants, incorporated into products or crops, consumed by people or livestock, or otherwise removed from the immediate water environment.

**Denver Water's Platte and Colorado Simulation Model (PACSM)** – PACSM is a water allocation and accounting model that was developed by Denver Water to model the operations of raw water supply systems belonging to Denver Water and others within portions of the Colorado and Platte River basins. The water supply system is represented as a system of linked nodes. The diversion structures, reservoirs, water rights, operations, instream flow requirements, demands and stream gages included in the PACSM model are very similar to the CDSS Model for the Colorado River Basin.

**Diversion** – An alteration in the natural course of a stream for the purpose of water supply, usually causing some of the water to leave the natural channel. In Colorado Springs this includes taking water through a ditch, tunnel, pipe or other conduit.

**Drought** – A water supply shortage that is caused by natural conditions such as an

extended period of below-normal precipitation.

**Historic User's Pool (HUP)** – The HUP in Green Mountain Reservoir is 66,000 acrefeet. When the administration of water under the priority system would result in curtailment in whole or in part of a water right for irrigation or domestic uses within western Colorado, which was perfected by use on or before October 15, 1977, releases are made from the HUP pool to the extent necessary to permit diversions to the full amount of said decrees.

**Hydroelectric Power** – Electric current produced from water power.

**Hydroelectric Power Plant** – A building in which turbines are operated, to drive generators, by the energy of natural or artificial waterfalls.

**Priority (in & out)** – The right to divert or store water, based on the Doctrine of Prior Appropriation. In Colorado this is regulated by the Division of Water Resources, and is based on the date of the water right, i.e., "First in time, first in right."

**Pumped-Storage Hydroelectric Plant** – A plant that usually generates electric energy during peak-load periods by using water previously pumped into an elevated storage reservoir during off-peak periods when excess generating capacity is available to do so. When additional generating capacity is needed, the water can be released from the reservoir through a conduit to turbine generators located in a power plant at a lower level.

**Reusable Water** – Water with the legal characteristic of being able to be used, reused, and subsequently used to extinction. Sources typically are transbasin water, nontributary (e.g. Denver Basin) groundwater, and agricultural consumptive use water.



**Riparian Areas** – Those plant communities adjacent to and affected by surface or groundwater of perennial or ephemeral water bodies such as rivers, streams, lakes, ponds, playas, or drainage ways. These areas have distinctly different vegetation than adjacent areas or have species similar to surrounding areas that exhibit a more vigorous or robust growth form. (CDOW 2006a).

#### State of Colorado's Colorado Decision Support System Model (CDSS Model) –

The CDSS Model is a surface water allocation model of the Upper Colorado River Basin. The model covers the entire Colorado River drainage, except the Gunnison River, from the headwaters to the Colorado-Utah state line. The water supply system is represented as a system of nodes, which correspond with features such as diversion structures, reservoirs, instream flow requirements, demands, or stream gages.

**Transmountain diversion** – A water project that diverts water from one river basin to another. For Colorado Springs, this typically is a project to divert water from the Colorado River Basin to the Arkansas River Basin.

**Transmountain water** (Transbasin water) – Water produced by a transmountain diversion (e.g. water diverted from the western slope of the continental divide for use on the eastern slope). See also Reusable Water.

Water right – A property right created by the diversion of water and the placing of it to a beneficial use (appropriation). Water rights become officially recognized and administrable when documented in a decree of the State water court (adjudicated).

**Wetlands** – As defined by the USACE and EPA, wetlands are: those areas that are inundated or saturated by surface or

groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. (EPA 2006; USACE 2007)



MODEL SELECTION AND PARAMETERS



35715 US Hwy. 40, Sulte D204 ~ Evergreen, CO 80439 ~ 303.679.4820

# Technical Memorandum

| Date:    | August 20, 2008                                                               |
|----------|-------------------------------------------------------------------------------|
| To:      | Andrea Parker, URS Corporation, Carlie Ronca, U.S. Bureau of Reclamation      |
| From:    | Heather Thompson, Ecological Resource Consultants                             |
| Project: | Green Mountain Reservoir Substitution and Power Interference<br>Agreements EA |
| Re:      | Model Selection and Parameters                                                |

The following memorandum describes the model selected for the Environmental Assessment (EA) and the model parameters associated with the No Action and Proposed Action alternatives.

### 1.0 MODEL SELECTION

Alternatives that will be evaluated for the EA will have hydrologic effects due to differences in the manner in which Springs Utilities repays its substitution obligation to Green Mountain Reservoir. These impacts could increase or reduce flows or change reservoir operations and water levels resulting in impacts to water rights, instream flows, and diversions. A tool is needed to evaluate these and other hydrologic effects and assess mitigation measures, if any. Two models were reviewed to assess their suitability for accomplishing the modeling objectives of this EA. These models include the State's Upper Colorado Water Resource Planning Model from the Colorado Decision Support System (CDSS Model) and Denver Water's Platte and Colorado Simulation Model (PACSM). A brief overview of each model is provided below.

#### CDSS Model Overview

The State of Colorado has invested significantly in the development of the CDSS Model to provide an integrated system of databases and model of the Upper Colorado River that is available to the public. The CDSS Model is widely known and has been used for analysis of historical and future water management policies in the Upper Colorado River basin. It covers the entire Colorado River drainage, except the Gunnison River, from the headwaters to the Colorado-Utah state line. The water supply system is represented as a system of links and nodes, which correspond with features such as diversion structures, reservoirs, instream flow requirements, demands, or stream gages. In general, the model allocates water to a node based on available flow, water rights, diversion or storage capacity and water demand. The physical system represented in the model is constrained by Colorado's water rights laws and numerous contractual and operating agreements. The model is extremely detailed, containing more than 400 diversions nodes, 30 reservoirs, and 80 USGS gages. The model includes operating rules for all major reservoirs, including complex and unique operations. Physical features, times series inputs, and operating criteria can be directly edited in the CDSS Model input files.

#### PACSM Overview

PACSM is a water allocation and accounting model that was developed by Denver Water to model the operations of raw water supply systems belonging to Denver Water and others within portions of the Colorado and Platte River basins. Similar to the CDSS Model, the water supply system is represented as a system of linked nodes. The diversion structures, reservoirs, water rights, operations, instream flow requirements, demands and stream gages included in the PACSM model are very similar to the CDSS Model for the Colorado River Basin. In addition, both PACSM and the CDSS Model use direction solution algorithms to assure that water is allocated according to physical, hydrological, and institutional parameters.

The primary difference between PACSM and the CDSS Model is the model study areas. The area modeled in PACSM extends from the headwaters of the Colorado River downstream to the 15-Mile Reach (excluding the Gunnison River) and the headwaters of the South Platte River downstream to the Kersey gage, whereas the CDSS Model does not include the South Platte River basin.

#### Criteria and Decision

The three basic criteria considered in the selection of the model include:

- 1. Required functionality: The model must be capable of representing the hydrology and operations to which the Colorado River system is subject.
- 2. Ease of Modification: The user must be able to customize and modify the model to reflect operations specific to this EA.
- 3. Accessibility: The model must be readily accessible for use on this EA in a timely manner.

Based on a review of these models it was determined that both models have similar functionality, although PACSM has the slight benefit of including the South Platte River basin. The majority of the EA study area is located in the Upper Colorado River Basin with a small portion in the upper South Platte River Basin. PACSM offers a slight benefit over the CDSS Model because it could be used to evaluate hydrologic effects in the South Platte River basin. Both models can be modified to incorporate the changes needed to model the No Action and Proposed Action alternatives. Regarding accessibility, CDSS is owned by and available to the public whereas because Denver Water owns and operates the PACSM model, its availability for use in the EA is less certain. Therefore, after reviewing the two potential models, ERC selected the CDSS Model for assessing hydrologic effects in the Colorado River Basin.

While the majority of the study area for the EA is located in the upper Colorado River basin, a small portion is located in the upper South Platte River basin, including Springs Utilities' Montgomery Reservoir, Denver Water's Elevenmile Canyon Reservoir and the Middle Fork South Platte River from the headwaters to Elevenmile Canyon Reservoir. The CDSS model does not include the South Platte River basin, therefore, potential hydrologic effects in that portion of the study area will be based on an assessment of USGS gage data, historical reservoir endof-month contents for those reservoirs, and data provided by Denver Water from PACSM, which includes the South Platte River basin.

## 2.0 MODEL PARAMETERS

## 2.1 Study Period and Time Step

The recommended model study period extends from 1950 through 2005. A study period should be long enough to include a variety of hydrologic conditions, including average, wet and dry years. At the same time, it should not be so long that many streamflows or reservoir contents must be synthesized to fill in missing data. The selected study period contains a balance of dry years (1954, 1966, 1977, 1981, and 2002), wet years (1957, 1983, 1984, 1995, and 1996), and average years. Of particular concern for this EA was the inclusion of several dry years, since hydrologic effects associated with the Proposed Action would occur primarily in substitution years, which typically correspond with dry years. Starting the model a few years prior to the 1950's drought period minimizes the influence of initial conditions, including reservoir contents, on model results for those years. The study period ends in 2005 because the CDSS Model data sets currently available extends through 2005.

The CDSS Model is available in both a daily and monthly time step format. Based on the magnitude and timing of hydrologic effects anticipated under the Proposed Action alternative a monthly time step was determined to be adequate for the purposes of this EA.

## 2.2 Model Scenarios

The CDSS Model Baseline Data Set was selected as the basis for representing the No Action and Proposed Action alternatives. The Baseline Data Set is used to simulate current conditions and operations imposed on historical hydrology to understand and evaluate the hydrologic effects of the No Action and Proposed Action alternatives.

A detailed description of the entire CDSS Model and the associated datasets is provided in the following reports: Upper Colorado River Basin Information (CWCB 2007a) and Upper Colorado River Basin Water Resources Planning Model User's

Manual (CWCB 2007b). The specific facilities and operations that would be affected under the Proposed Action alternative include Springs Utilities' Continental-Hoosier System and Homestake Project, and Blue River Decree operations, including substitution replacement at Upper Blue Reservoir, Dillon Reservoir, Williams Fork Reservoir and Wolford Mountain Reservoir. The manner in which these facilities and operations are reflected in the CDSS Model is summarized below.

### Continental-Hoosier System Operations

The Continental-Hoosier System diverts water from several tributaries at the headwaters of the Blue River and delivers it through the Continental-Hoosier Tunnel (Hoosier Tunnel) into Montgomery Reservoir in the headwaters of the Middle Fork of the South Platte River. The system has been in operation since 1953.

The Continental-Hoosier System has several direct flow water rights to divert water from East Hoosier Creek, Hoosier Creek, Bemrose Creek, Crystal Creek, Spruce Creek, McCullough Gulch, and Monte Cristo Creek through Hoosier Tunnel. The capacity of the Hoosier Tunnel is 500 cfs. In addition, water can be stored in Upper Blue Reservoir under a storage right. The capacity of Upper Blue Reservoir is approximately 2,100 AF. The water rights associated with the Continental-Hoosier System that are included in the CDSS Model are summarized in **Table 1**.

| Name                          | Decreed Amount | Appropriation Date |
|-------------------------------|----------------|--------------------|
| 1929 Water Rights             |                |                    |
| East Hoosier Creek            | 40 cfs         | Aug 5, 1929        |
| Hoosier Creek                 | 20 cfs         | Aug 5, 1929        |
| Bemrose Creek (Silver Ck)     | 17 cfs         | Aug 5, 1929        |
| Subtotal                      | 77 cfs         |                    |
| 1948 Water Rights             |                |                    |
| Upper Blue Reservoir          | 2,140 AF       | May 13, 1948       |
| East Hoosier Creek            | 50 cfs         | May 13, 1948       |
| Hoosier Creek                 | 40 cfs         | May 13, 1948       |
| Bemrose Creek (Silver Ck)     | 20 cfs         | May 13, 1948       |
| Crystal Creek                 | 40 cfs         | May 13, 1948       |
| Spruce Creek                  | 60 cfs         | May 13, 1948       |
| McCullough Gulch              | 60 cfs         | May 13, 1948       |
| Monte Cristo Creek            | 200 cfs        | May 13, 1948       |
| Interceptor Ditch (to Tunnel) | 50 cfs         | May 13, 1948       |
| Tunnel Seepage                | 20 cfs         | May 13, 1948       |
| Subtotal                      | 540 cfs        |                    |

Table 1. Summary of Continental Hoosier System Absolute Water Rights

<sup>1</sup> The maximum diversion under the 1948 decrees is limited to 400 cfs.

The 1929 water rights are senior to Green Mountain Reservoir's water rights and Denver Water's rights at Dillon Reservoir and Roberts Tunnel. Therefore, diversions under the 1929 water rights are generally controlled by an administrative call from the Shoshone Power plant water right and the physical water supply at the headgates. The 1948 water rights are junior to the Green Mountain Reservoir senior storage right, therefore, diversions under these water rights are subject to the Blue River Decree, which is explained in the following section on Blue River Decree operations.

The 1929 water rights are decreed for diversion from three relatively small tributaries to the Blue River near the top of the basin. The tributary drainage area available to these rights is about 2 square miles, which is about 14 percent of the total drainage basin tributary to the entire collection system (approximately 14.3 square miles (CWCB, 2007b). Therefore, in the CDSS model, 14 percent of the natural flow is placed above one node that represents all the 1929 rights and the remaining 86 percent is placed above one node that represents all the 1948 water rights and a node for Upper Blue Reservoir.

Historical deliveries through the Hoosier Tunnel are shown in **Table 2**. The average annual flow through the tunnel was approximately 8,540 acre-feet (AF). Deliveries occur from April through October, with the majority in May through September. Diversions from the Blue River and its tributaries through the tunnel and into storage are limited by the water right to the period of May through September. However, flow through the Hoosier Tunnel also includes releases of previously stored water from Upper Blue Reservoir. In accordance with the Blue River Decree, the total diversions at the Continental-Hoosier System "... shall not exceed in any calendar year, ten percent of the natural flow of the Blue River near Dillon below its confluence with the Snake River and Ten Mile Creek." This requirement is generally not a limiting factor with respect to Continental-Hoosier System diversions based on an evaluation of streamflow data and conversations with Springs Utilities staff. Therefore, this requirement is not incorporated in the CDSS Model.

Historical end-of-month (EOM) contents for Upper Blue Reservoir are shown in **Table 3**. Water is stored in Upper Blue Reservoir during runoff and the reservoir generally fills by the end of June. As shown in **Table 3**, Upper Blue Reservoir filled in all but seven years (1977, 1980, 1981, 1985, 1989, 2002, and 2004). Water is typically released from August through October to meet Springs Utilities' substitution obligation or for delivery through Hoosier Tunnel as needed to supplement direct diversions. The reservoir was emptied by the end of October in all years. The operating rules in the CDSS Model for Upper Blue Reservoir reflect these historical operations. End-of-month reservoir targets equal to historical contents were included for the seven years the reservoir did not fill historically since the EOM contents are indicative of the physical supply in those years. The EOM reservoir targets prevent the reservoir from storing above the target but do not force the reservoir to release to those targets.

Since the Continental Hoosier System is a core component of Springs Utilities' water supply system and diversions are typically limited by the physical water supply, the demand placed at the Hoosier Tunnel was set equal to historical tunnel diversions from 1953 through 2005. From 1950 through 1952 the demand at Hoosier Tunnel was estimated as follows. Each of those years was classified as average, wet or dry based on total natural flow from April through September at the USGS gage Colorado River near Kremmling (#09058000). Natural flows are defined as gaged flows plus adjustments for reservoir releases and filling, diversions, gaged inflows, transbasin imports, and irrigation or other returns to the river. It reflects the hydrology that existed prior to the development of water supply systems, or the hydrology that would exist if the effects of water diversions, reservoirs and return flows were removed. The Kremmling gage was used as an indicator gage of hydrologic conditions because it is centrally located in the study area and could be used for multiple locations. Average, wet and dry monthly diversions were developed based on the historical diversion data shown in Table 2. Wet diversions were assumed to be the average of the five wettest years, dry diversions the average of the five driest years, and average diversions the average of the remaining years. For example, 1952 which was classified as a wet year. therefore, it was filled with the monthly averages of the five wettest years. Hoosier Tunnel demands may be underestimated in September and October from 1953 through 1966 in average and wet years prior to Upper Blue Reservoir coming online in 1967. Since the years in which Green Mountain Reservoir does not fill are typically dry years, this would not affect Springs Utilities' substitution obligation or the manner in which their substitution releases are made. In addition, Upper Blue Reservoir is emptied every year, therefore, potential differences in reservoir EOM contents would not be carried forward from year to year. Because Hoosier Tunnel diversions in average and wet years are not anticipated to cause hydrologic effects under the Proposed Action alternative, September and October diversions attributable to Upper Blue Reservoir releases were not estimated for the period from 1953 through 1966. The modeled demand at the Hoosier Tunnel is shown in Table 4. In the CDSS Model, direct diversions and releases from Upper Blue Reservoir are made to meet the total demand at Hoosier Tunnel.

#### **Homestake Project Operations**

The Homestake Project is a transmountain diversion project that diverts water from the Eagle River basin for municipal use by Springs Utilities and Aurora. The Homestake Project has facilities located in both the Eagle and Arkansas River basins, however, this section describes the facilities in the Eagle River Basin since they are the focus of the EA. Facilities in the Eagle River basin include the Missouri Tunnel, Homestake Reservoir, and the Homestake Tunnel.

The Homestake Project has several direct flow water rights to divert water from the East Fork and Middle Fork of Homestake Creek, French Creek, Fancy Creek, Missouri Creek and Sopris Creek. Water diverted from French Creek, Fancy Creek, Missouri Creek and Sopris Creek is conveyed through the Missouri Tunnel

to Homestake Reservoir. The capacity of Homestake Reservoir is approximately 43,000 AF. All flows diverted into Homestake Reservoir, which is located on the Middle Fork of Homestake Creek, can be stored under a storage right. From Homestake Reservoir, water is delivered via Homestake Tunnel under the Continental Divide to Turquoise Lake, which is located in the Arkansas River Basin. The capacity of Homestake Tunnel is 300 cfs. The water rights associated with the Homestake Project that are included in the CDSS Model are summarized in **Table 5**.

| Name                                  | Decreed Amount | Appropriation Date |
|---------------------------------------|----------------|--------------------|
| East Fork Homestake Creek             | 70.8           | Sep 22, 1952       |
| French Creek                          | 60.1           | Sep 22, 1952       |
| Fancy Creek                           | 38.6           | Sep 22, 1952       |
| Missouri Creek                        | 39.8           | Sep 22, 1952       |
| Sopris Creek                          | 41.3           | Sep 22, 1952       |
| Subtotal                              | 250.6          | Sep 22, 1952       |
| Missouri Tunnel                       | 179.8          | Sep 22, 1952       |
| Homestake Project Tunnel <sup>1</sup> | 300.0          | Sep 22, 1952       |
| Homestake Reservoir                   | 43504.7 AF     | Sep 22, 1952       |

 Table 5. Summary of Homestake Project (Eagle River Basin) Absolute Water

 Rights

<sup>1</sup> Absolute decree amount of 300 cfs for Homestake Project Tunnel may include storable inflows from Middle Fork Homestake Creek in addition to the 250.6 cfs from the collection system.

Historical diversions through the Homestake Tunnel are shown in **Table 6**. The average annual diversion was approximately 23,970 AF. Based on more recent operations (since approximately 1992), deliveries through Homestake Tunnel typically occur from March through August with occasional releases in September, October and November. Deliveries through the tunnel are greatest in March and April as water is released from Homestake Reservoir to make space available to store water during runoff.

Historical EOM contents for Homestake Reservoir are shown in **Table** 7. Water is stored in Homestake Reservoir during runoff and the reservoir generally fills by the end of June in average and wet years. Water is released to Homestake Tunnel primarily in March and April and in summer months to a lesser degree to supplement direct diversions. The operating rules in the CDSS Model for Homestake Reservoir reflect these historical operations.

Since the Homestake Project is a core component of Springs Utilities' water supply system, the demand placed at Homestake Tunnel was assumed to equal historical diversions from 1992 through 2005. Prior to 1992, operations were clearly different with diversions through Homestake Tunnel occurring throughout the year. From 1950 through 1991 the demand at Homestake Tunnel was estimated as follows. Each of those years was classified as average, wet or dry based on total natural flow from April through September at the USGS gage Colorado River near

Kremmling (#09058000). Average, wet and dry monthly diversions were developed based on historical diversion data from 1992 through 2007. Wet diversions were assumed to be the average of the five wettest years, dry diversions the average of the five driest years, and average diversions the average of the remaining years. Therefore, 1952 which was classified as a wet year was filled with the monthly averages of the five wettest years. The modeled demand at the Homestake Tunnel is shown in **Table 8**. In the CDSS Model, direct diversions and releases from Homestake Reservoir are made to meet the total demand at Homestake Tunnel.

### **Blue River Decree Operations**

In the Blue River Decree (Consolidated Case Nos. 2782, 5016, and 5017), the relative priorities of the storage and hydroelectric rights for Green Mountain Reservoir and the upstream rights at Dillon Reservoir and the Continental-Hoosier System were specified as follows:

| 77 cfs     | August 5, 1929                                                         |
|------------|------------------------------------------------------------------------|
| 154,645 AF | August 1, 1935                                                         |
| 1726 cfs   | August 1, 1935                                                         |
| 6,315 AF   | August 1, 1935                                                         |
| 788 cfs    | June 24, 1946                                                          |
| 252,578 AF | June 24, 1946                                                          |
| 400 cfs    | May 13, 1948                                                           |
| 2,140 AF   | May 13, 1848                                                           |
|            | 154,645 AF<br>1726 cfs<br>6,315 AF<br>788 cfs<br>252,578 AF<br>400 cfs |

<sup>1</sup> The maximum diversion under the 1948 decrees is limited to 400 cfs. Source: (CWCB, 2007b).

Under the Blue River Decree, Springs Utilities and Denver Water can divert and store water at their facilities which are upstream of Green Mountain Reservoir, on an out-of-priority basis against Green Mountain Reservoir's senior first fill storage right. The Blue River Decree also provides for replacement of power to mitigate impacts to Reclamation's operations resulting from Springs Utilities' exercising their 1948 water rights. The representation of Green Mountain Reservoir power and fill operations in the CDSS Model per the Blue River Decree is discussed below.

#### Green Mountain Reservoir Power Operations

Hydropower diversions at Green Mountain Reservoir are made under the direct flow hydropower right. The CDSS model also reflects Elliot Creek Feeder Canal diversions to demands at Green Mountain Reservoir for power generation. Baseline power demands are based on average use from 1975 through 1991. There would be no difference in hydropower diversions at Green Mountain Reservoir between the No Action and Proposed Action alternatives. Springs Utilities has historically provided replacement power year-to-year by mutual agreement with the Western Area Power Authority (WAPA) at a time and location requested by WAPA. The only difference in power interference substitution would be the formalization of a long-term Power Interference Agreement with Reclamation and WAPA.

#### Green Mountain Reservoir Fill Operations

The CDSS Model is configured to represent the Interim Policy, which was adopted by the State Engineer and is the current administration of the Blue River Decree. The Blue River Decree has been administered under the Interim Policy since 2003. The State Engineer does not intend that the Interim Policy create any precedent binding on the U.S. Bureau of Reclamation or any other water user in the future. The U.S. Bureau of Reclamation does not endorse the administrative and accounting principles included in the Interim Policy.

The Interim Policy defines the administrative and accounting principles concerning Green Mountain Reservoir and specifically outlines the paper fill of Green Mountain Reservoir under its senior storage right. The paper fill is met when 154,645 acre-feet is equal to the sum of:

- Initial storage in Green Mountain Reservoir at the beginning of the administrative year, which is April 1<sup>st</sup> for modeling purposes,
- Stored water in Green Mountain Reservoir after the beginning of the administrative year,
- Bypassed water in excess of 60 cfs or the demand of a downstream call senior to August 1, 1935,
- Out-of-priority depletions from Historic User's Pool and Green Mountain Reservoir contract beneficiaries upstream of Green Mountain Reservoir, (this in not explicitly modeled in the CDSS Model because it is minor), and
- Out-of-priority diversions and storage made by Denver Water and Springs Utilities.

After the paper fill has been met Green Mountain's 1935 storage right is satisfied and can no longer place a call. Green Mountain Reservoir can continue to store under an October 5, 1955 priority date up to the amount of water stored and diverted out-of-priority to its 1935 right by Denver Water and Springs Utilities. When the amount stored under the October 5, 1955 priority date equals the out-ofpriority diversions/storage by both entities, there is no substitution required.

The CDSS Model tracks Springs Utilities' direct diversions through the Hoosier Tunnel and water stored in Upper Blue Reservoir, which is out-of-priority to Green Mountain's senior storage right. As water is stored in Green Mountain Reservoir under the October 5, 1955 priority date, the out-of-priority obligation owed by Springs Utilities and Denver Water is reduced proportional to their out-of-priority diversions/storage. On August 1, the remaining out-of-priority obligation owed by Springs Utilities equals their substitution bill. Denver Water's substitution bill is calculated in a similar manner. The date of August 1<sup>st</sup> is assumed for modeling

purposes, and represents a proxy for the date that the senior Shoshone water right calls out Green Mountain Reservoir, thus ending its fill season and allowing for calculation of any fill deficit.

The only difference between the No Action and Proposed Action alternatives is the manner in which Springs Utilities substitution obligation is paid back. The model assumptions related to substitution payback that are specific to each alternative are summarized in Chapter 2 of the Environmental Assessment.

### 3.0 REFERENCES

Colorado Water Conservation Board. 2007a. Upper Colorado River Basin Information

Colorado Water Conservation Board, 2007b. Upper Colorado River Basin Water Resources Planning Model User's Manuel

| Table 2                                               |
|-------------------------------------------------------|
| Historical Continental-Hoosiar Tunnel Diversions (AF) |

| Year    | Jan | Feb | Mar | Apr | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov | Dec | Total   |
|---------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-----|-----|---------|
| 1953    | 0   | 0   | 0   | 0   | 294   | 2,315 | 1,496 | 646   | 85    | 0     | 0   | 0   | 4,835   |
| 1954    | ō   | 0   | 0   | 0   | 1,060 | 1,404 | 1,048 | 42    | 0     | 0     | 0   | 0   | 3,554   |
| 1955    | ō   | ō   | 0   | 0   | 688   | 1,777 | 2,110 | 1,870 | 1,113 | 0     | 0   | 0   | 7,559   |
| 1956    | ŏ   | ō   | Ō   | Ō   | 2,205 | 4,760 | 1,843 | 492   | 0     | 0     | 0   | 0   | 9,300   |
| 1957    | ŏ   | õ   | õ   | ō   | 374   | 4,657 | 2,080 | 0     | 0     | 0     | 0   | 0   | 7,111   |
| 1958    | ŏ   | õ   | õ   | õ   | 3,042 | 2,126 | 1,249 | 0     | 0     | Q     | 0   | 0   | 6,417   |
| 1959    | ŏ   | õ   | õ   | ŏ   | 489   | 5,040 | 2,471 | 496   | õ     | 0     | 0   | 0   | 8,496   |
| 1960    | ŏ   | ŏ   | õ   | õ   | 901   | 4,608 | 2,386 | 315   | Ō     | Ō     | 0   | 0   | 8,210   |
|         | o   | 0   | 0   | õ   | 1,180 | 3,836 | 428   | 0     | 751   | 432   | 4 T | 0   | 6,689   |
| 1961    | 0   | 0   | 0   | ŏ   | 1,524 | 4,998 | 3,087 | 1,393 | 87    | 0     | 0   | 0   | 11,088  |
| 1962    |     | ŏ   | 0   | 49  | 2,293 | 3,257 | 98    | 2,983 | 1,257 | 311   | ō   | 0   | 10,246  |
| 1963    | 0   |     |     |     | 1,839 | 3,452 | 2,542 | 1,429 | 0     | 0     | õ   | ō   | 9,263   |
| 1964    | 0   | 0   | 0   | 0   |       |       | 615   | 1,053 | 842   | 325   | 38  | õ   | 8,415   |
| 1965    | 0   | 0   | 0   | 0   | 651   | 4,891 |       | 1,009 | 0     | 0     | õ   | ŏ   | 7,456   |
| 1966    | 0   | 0   | 0   | 0   | 1,311 | 2,404 | 2,732 |       | 968   | ő     | ŏ   | õ   | 10,087  |
| 1967    | 0   | 0   | 0   | 100 | 1,074 | 3,265 | 3,457 | 1,224 |       | 1,108 | õ   | õ   | 11,369  |
| 1968    | 0   | 0   | 0   | 0   | 644   | 5,099 | 2,473 | 898   | 1,148 | -     |     |     |         |
| 1969    | 0   | 0   | 0   | 73  | 2,590 | 735   | 1,396 | 609   | 1,470 | 888   | 0   | 0   | 7,562   |
| 1970    | 0   | Ó   | 0   | 0   | 1,542 | 743   | 131   | 1,584 | 1,433 | 1,880 | 0   | 0   | 7,313   |
| 1971    | 0   | 0   | 0   | 0   | 780   | 4.906 | 1,856 | 1,938 | 1,729 | 1,495 | 0   | 0   | 12,703  |
| 1972    | 0   | 0   | 0   | 0   | 1,422 | 3,448 | 1,626 | 1,609 | 973   | 0     | 0   | 0   | 9,079   |
| 1973    | 0   | 0   | 0   | 0   | 370   | 1,581 | 849   | 1,083 | 1,846 | 472   | 0   | 0   | 5,201   |
| 1974    | 0   | 0   | 0   | 0   | 1,202 | 4,033 | 2,074 | 1,222 | 1,855 | 0     | 0   | 0   | 10,386  |
| 1975    | 0   | 0   | 0   | 0   | 378   | 3,133 | 2,092 | 1,296 | 1,584 | 491   | 0   | 0   | 8,974   |
| 1976    | í o | 0   | 0   | 0   | 1,013 | 4,566 | 1,993 | 1,598 | 1,282 | 0     | 0   | 0   | 10,452  |
| 1977    | 0   | 0   | 0   | 27  | 158   | 1,915 | 410   | 0     | 18    | 0     | 0   | 0   | 2,527   |
| 1978    | 0   | 0   | 0   | 49  | 684   | 4,762 | 1,088 | 1,241 | 1,822 | 0     | 0   | 0   | 9,648   |
| 1979    | 0   | Ō   | 0   | 0   | 1,064 | 3,863 | 1,653 | 1,510 | 1,782 | 202   | 0   | 0   | 10,074  |
| 1980    | Ō   | 0   | 0   | 0   | 188   | 1,678 | 1,595 | 2,068 | 0     | 0     | 0   | 0   | 5,528   |
| 1981    | ō   | ō   | ō   | 38  | 757   | 3,135 | 734   | 785   | 258   | 0     | 0   | 0   | 5,707   |
| 1982    | ŏ   | ŏ   | õ   | 0   | 803   | 4,236 | 3,370 | 1,263 | 1,230 | 892   | 0   | 0   | 11,593  |
| 1983    | ŏ   | ŏ   | ŏ   | 0   | 274   | 3,238 | 414   | 874   | 538   | 1,874 | 0   | 0   | 7,212   |
| 1984    | ŏ   | õ   | õ   | õ   | 968   | 1,783 | 741   | 739   | 1,373 | 1,065 | 0   | 0   | 6,850   |
| 1985    | o   | õ   | ő   | õ   | 865   | 2,279 | 1,141 | 970   | 1,227 | 61    | 0   | 0   | 6,544   |
|         | ŏ   | õ   | õ   | ŏ   | 989   | 5,625 | 2,541 | 1,809 | 1,818 | 1,059 | 0   | 0   | 13,842  |
| 1986    |     |     | ŏ   | 167 | 2,404 | 2,098 | 720   | 1,450 | 979   | 0     | ō   | ō   | 7,819   |
| 1987    | 0   | 0   |     |     |       | 5,470 | 1,691 | 781   | 1,205 | õ     | ŏ   | ō   | 10,353  |
| 1988    | 0   | 0   | 0   | 14  | 1,212 | 3,516 | 3,973 | 1,320 | 0     | õ     | 30  | ō   | 10,825  |
| 1989    | 0   | 0   | 0   | 80  | 1,807 |       |       | 2,102 | 26    | ŏ     | 0   | õ   | 11,130  |
| 1990    | 0   | 0   | 0   | 7   | 996   | 5,148 | 2,851 |       |       | 12    | ŏ   | o   | 12,150  |
| 1991    | 0   | 0   | 0   | 0   | 1,299 | 4,559 | 3,353 | 1,768 | 1,158 | 0     | õ   | 0   | \$1,571 |
| 1992    | 0   | 0   | 0   | 86  | 2,318 | 3,827 | 3,425 | 1,958 | 158   |       | 0   | ŏ   | 12,944  |
| 1993    | 0   | 0   | 0   | 0   | 1,386 | 4.814 | 2,599 | 1,965 | 422   | 1,758 | 0   | 0   | 8,262   |
| 1984    | 0   | 0   | 0   | 103 | 1,652 | 4,272 | 148   | 15    | 1,241 | 831   | -   |     |         |
| 1995    | 0   | 0   | 0   | 0   | 0     | 2,643 | 26    | 704   | 329   | 1,265 | 864 | 0   | 5,831   |
| 1996    | 0   | 0   | Q   | 0   | 482   | 5,823 | 1,422 | 1,004 | 1,382 | 333   | 0   | Q   | 10,426  |
| 1997    | 0   | 0   | 0   | 0   | 631   | 4,082 | 791   | 412   | 1,016 | 1,311 | 0   | 0   | 8,242   |
| 1998    | 0   | 0   | 0   | 0   | 876   | 1,489 | 3,570 | 775   | 1,898 | 295   | 0   | 0   | 8,703   |
| 1989    | 0   | 0   | 0   | з   | 950   | 3,610 | 1,727 | 1,745 | 1,687 | 1,077 | 0   | 0   | 10,800  |
| 2000    | 0   | 0   | 0   | 0   | 2,232 | 3,893 | 1,686 | 1,451 | 0     | 0     | 0   | 0   | 9,062   |
| 2001    | 0   | 0   | 0   | 5   | 2,122 | 1,403 | 207   | 147   | 1,020 | 1,039 | 0   | 0   | 5,944   |
| 2002    | 0   | 0   | 0   | 49  | 756   | 1,549 | 0     | 0     | 0     | 0     | 0   | 0   | 2,354   |
| 2003    | 0   | 0   | 0   | 23  | 2,088 | 3,126 | 812   | 79    | 978   | 935   | 108 | 0   | 8,129   |
| 2004    | 0   | 0   | 0   | 119 | 1,334 | 2,525 | 1,180 | 48    | 19    | 0     | 0   | 0   | 5,224   |
| 2005    | 0   | 0   | 0   | 107 | 1,661 | 3,669 | 2,641 | 1,148 | 719   | 1,208 | 0   | 0   | 11,152  |
| 2006    | 0   | 0   | 0   | 235 | 2,213 | 4,698 | 2,781 | 1,447 | 852   | 4     | 95  | 0   | 12,125  |
| 2007    | 0   | 0   | 0   | 187 | 2,048 | 1,227 | 1,944 | 395   | 131   | 0     | 0   | 0   | 5,931   |
| Average | Ū.  | 0   | 0   | 28  | 1,193 | 3,392 | 1,688 | 1,032 | 791   | 408   | 23  | D   | 8,564   |
| Min     | 0   | 0   | 0   | 0   | 0     | 735   | 0     | 0     | 0     | Q     | 0   | 0   | 2,354   |
|         | 0   | 0   | 0   | 235 | 3,042 | 5,823 | 3,973 | 2,983 | 1,898 | 1,880 | 864 | 0   | 13,842  |

Source: Data provided by Colorado Springs Utilitias.

.

.

Table 3 Upper Blue Reservoir Historical End-of-Month Contents (AF)

| Year    | Jan | Feb | Mar | Apr | May | jun     | luL   | Aug   | Sep      | Öct     | Nov | Dec |
|---------|-----|-----|-----|-----|-----|---------|-------|-------|----------|---------|-----|-----|
| 1961    | 0   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | ö        | 0       | 0   | 0   |
| 1962    | 0   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | 0        | 0       | 0   | 0   |
| 1963    | 0   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | 0        | 0       | 0   | 0   |
| 1964    | Ō   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | 0        | 0       | 0   | 0   |
| 1965    | 0   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | 0        | 0       | 0   | 0   |
| 1966    | 0   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | 0        | 0       | 0   | 0   |
| 1967    | 0   | 0   | 0   | 0   | 172 | 1,334   | 2,219 | 1,018 | 0        | 0       | 0   | 0   |
| 1968    | 0   | 0   | 0   | 0   | 0   | 1,783   | 2,282 | 2,282 | 1,268    | 0       | 0   | 0   |
| 1969    | 0   | 0   | 0   | 77  | 776 | 1,857   | 2,282 | 2,282 | 788      | 0       | 0   | 0   |
| 1970    | 0   | 0   | 0   | 0   | 414 | 2,062   | 2,119 | 2,119 | 1,818    | 0       | 0   | 0   |
| 1971    | 0   | 0   | 0   | 0   | 0   | 1,496   | 2,119 | 2,119 | 1,414    | 0       | 0   | 0   |
| 1972    | 0   | 0   | 0   | 0   | 0   | 1,621   | 2,119 | 1,001 | 0        | 0       | 0   | 0   |
| 1973    | 0   | 0   | 0   | 0   | 0   | 1,374   | 2,119 | 2,006 | 575      | 0       | 0   | 0   |
| 1974    | 0   | 0   | 0   | 0   | 0   | 1,931   | 2,119 | 1,850 | 0        | 0       | 0   | 0   |
| 1975    | 0   | 0   | 0   | 0   | 0   | 788     | 2,119 | 2,119 | 572      | 0       | 0   | 0   |
| 1976    | Ō   | 0   | 0   | 0   | 0   | 910     | 2,119 | 1,498 | 0        | 0       | 0   | 0   |
| 1977    | 0   | 0   | 0   | 0   | 246 | 1,042   | 614   | 614   | 0        | 0       | 0   | 0   |
| 1978    | Ő   | 0   | 0   | 0   | 162 | 1,840   | 2,119 | 1,796 | 0        | 0       | 0   | 0   |
| 1979    | 0   | 0   | 0   | 0   | 332 | 1,664   | 2.119 | 1,978 | 295      | 0       | 0   | 0   |
| 1980    | 0   | 0   | 0   | 0   | 0   | 1,751   | 1,621 | 0     | 0        | 0       | 0   | 0   |
| 1981    | 0   | 0   | 0   | 28  | 176 | 573     | 870   | 219   | 0        | 0       | 0   | 0   |
| 1962    | 0   | 0   | 0   | 0   | 0   | 1,253   | 2,119 | 2,119 | 946      | 0       | 0   | 0   |
| 1963    | 0   | 0   | 0   | Ū   | 0   | 1,111   | 2,119 | 2,119 | 2,073    | 0       | 0   | 0   |
| t984    | 0   | 0   | 0   | 0   | 0   | 1,376   | 2,119 | 2,119 | 1,281    | 0       | 0   | 0   |
| 1985    | 0   | 0   | 0   | 0   | 0   | 1,432   | 1,377 | 1,078 | 111      | 0       | 0   | 0   |
| 1986    | 0   | 0   | 0   | 0   | 80  | 1,990   | 2,119 | 2,095 | 1,178    | 0       | 0   | 0   |
| 1987    | 0   | 0   | 0   | 0   | 200 | 1,623   | 2,013 | 1,292 | 0        | 0       | 0   | 0   |
| 1988    | 0   | 0   | 0   | 0   | 0   | 2,119   | 2,119 | 1,596 | 330      | 0       | 0   | 0   |
| 7989    | 0   | 0   | 0   | 36  | 508 | 1,638   | 974   | 0     | 0        | 0       | 0   | 0   |
| 1990    | 0   | 0   | 0   | 0   | 298 | 2,095   | 2,119 | 144   | 0        | 0       | 0   | 0   |
| 1991    | 0   | 0   | 0   | 0   | 325 | 1,751   | 2,119 | 1,178 | 95       | 0       | 0   | 0   |
| 1992    | 0   | 0   | 0   | 0   | 614 | 1,734   | 2,119 | 310   | 0        | 0       | 0   | 0   |
| 1993    | 0   | 0   | 0   | 0   | 69  | 1,251   | 2,119 | 2,119 | 1,824    | 0       | 0   | 0   |
| 1994    | 0   | 0   | 0   | 0   | 480 | 2,119   | 2,119 | 2,119 | 958      | 0       | 0   | 0   |
| 1995    | 0   | 0   | 0   | 0   | 0   | 1,324   | 2,119 | 2,119 | 2,119    | 968     | 0   | 0   |
| 1996    | 0   | 0   | 0   | 0   | 109 | 2,119   | 2,119 | 1,725 | 523      | 0       | 0   | 0   |
| 1997    | 0   | 0   | 0   | 0   | 130 | 1,886   | 2,119 | 2,119 | 1,416    | 0       | 0   | 0   |
| 1996    | 0   | 0   | 0   | 0   | 212 | 1,158   | 2,119 | 2,119 | 404      | 0       | 0   | 0   |
| 1999    | 0   | 0   | 0   | 0   | 121 | 1,973   | 2,119 | 2,119 | 1,195    | 0       | 0   | 0   |
| 2000    | 0   | 0   | 0   | 0   | 561 | 2.010   | 1,621 | 0     | 0        | 0       | 0   | 0   |
| 2001    | 0   | 0   | 0   | 0   | 488 | 2,001   | 2,119 | 2,119 | 1,221    | 146     | 0   | 0   |
| 2002    | 0   | 0   | 0   | 22  | 321 | 961     | 961   | 961   | 961      | 508     | 0   | 0   |
| 2003    | 0   | 0   | 0   | 0   | 577 | 2,124   | 2,124 | 2,124 | 1,194    | 304     | 0   | 0   |
| 2004    | 0   | 0   | 0   | 70  | 422 | 1,457   | 1,691 | 1,891 | },875    | 557     | 0   | 0   |
| 2005    | 0   | 0   | 0   | 27  | 528 | 1,701   | 2,124 | 2,124 | 1,443    | 216     |     |     |
| 2006    | 0   | 0   | 0   | 0   | 557 | 2,124   | 2,122 | 1,233 | 326      | 292     | 0   | 0   |
| 2007    | 0   | 0   | 0   | 0   | 0   | 0       | 0     | 0     | 0<br>600 | 0<br>64 | 0   | 0   |
| Average | 0   | 0   | 0   | 5   | 189 | 1,369   | 1,661 | 1,316 | 000      | 04      | 0   | 0   |
| Min     | 0   | 0   | 0   | 0   | 0   | 0 2,124 | 2,282 | 2,282 | 2,119    | 968     | 0   | 0   |
| Max     | 0   | 0   | 0   | 77  | 776 | 2,124   | 2,202 | 2,202 | 4,110    | 800     | 9   | 5   |

Source: Data provided by Colorado Springs Utilities. Data were not available from 1962 through 1966.

.

.

|         | Tabl   | ie 4         |
|---------|--------|--------------|
| Hoosler | Tunnel | Demands (AF) |

| Yeer    | Jan | Feb | Mar | Apr | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov | Dec | Total  | Yr Typ |
|---------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-----|-----|--------|--------|
| 1950    | 0   | 0   | 0   | 24  | 1,231 | 3,383 | 1,091 | 1,048 | 1,017 | 518   | 0   | 0   | 8,525  | Avg    |
| 1951    | ō   | Ō   | ō   | 24  | 1,231 | 3,383 | 1,891 | 1,048 | 1,017 | 516   | 0   | ٥   | 8,525  | Avg    |
| 1952    | 0   | Ō   | Ō   | 47  | 1,334 | 4,920 | 2,628 | 1,785 | 1,156 | 386   | 0   | 0   | 12,753 | Wel    |
| 1953    | ŏ   | 0   | ō   | 0   | 294   | 2,316 | 1,496 | 046   | 85    | 0     | 0   | 0   | 4,835  |        |
| 1954    | ŏ   | ŏ   | õ   | ō   | 1,060 | 1,404 | 1,048 | 42    | 0     | 0     | 0   | 0   | 3,564  |        |
| 1955    | lő  | õ   | ŏ   | ŏ   | 688   | 1,777 | 2,110 | 1,870 | 1,113 | 0     | 0   | 0   | 6,446  |        |
|         |     | ő   | ő   | ŏ   | 2,205 | 4,780 | 1,643 | 492   | 0     | ō     | ō   | Ō   | 9,300  |        |
| 1958    | 0   |     | -   | 0   | 374   | 4,760 | 2,080 | 0     | ŏ     | ō     | ō   | ŏ   | 7,111  |        |
| 1957    | 0   | 0   | 0   |     |       | 2,126 | 1,249 | õ     | ŏ     | ŏ     | ŏ   | ō   | 6,417  |        |
| 1958    | 0   | 0   | 0   | 0   | 3,042 |       |       | 498   | õ     | ŏ     | ŏ   | õ   | 6,496  |        |
| 1959    | 0   | 0   | 0   | 0   | 489   | 5,040 | 2,471 |       | 0     | õ     | õ   | õ   | 6,210  |        |
| 1960    | 0   | 0   | 0   | 0   | 901   | 4,606 | 2,386 | 316   |       |       | 41  | ő   | 6,685  | ĺ      |
| 1961    | ] 0 | 0   | 0   | 0   | 1,180 | 3,838 | 428   | 0     | 761   | 432   |     | õ   |        |        |
| 1962    | 0   | 0   | 0   | 0   | 1,624 | 4,998 | 3,087 | 1,393 | 67    | 0     | 0   |     | 11,088 |        |
| 1963    | 0   | 0   | 0   | 49  | 2,293 | 3,257 | 98    | 2,983 | 1,257 | 311   | 0   | 0   | 10,246 |        |
| 1964    | 0   | 0   | 0   | 0   | 1,839 | 3,452 | 2,542 | 1,429 | 0     | 0     | 0   | 0   | 9,263  |        |
| 1965    | 0   | 0   | 0   | 0   | 861   | 4,891 | 615   | 1,053 | 842   | 326   | 38  | 0   | 8,415  |        |
| 1966    | ō   | ō   | 0   | 0   | 1,311 | 2,404 | 2,732 | 1,009 | 0     | 0     | 0   | 0   | 7,466  |        |
| 1967    | ŏ   | ō   | ō   | 100 | 1,074 | 3,265 | 3,457 | 1,224 | 968   | 0     | 0   | 0   | 10,087 |        |
| 1968    | lõ  | õ   | õ   | 0   | 644   | 5,099 | 2,473 | 898   | 1,148 | 1,108 | 0   | 0   | 11,369 |        |
| 1969    | lő  | ŏ   | ŏ   | 73  | 2,590 | 735   | 1,396 | 609   | 1,470 | 688   | 0   | 0   | 7,682  | (      |
|         |     | õ   | ŏ   | 0   | 1,642 | 743   | 131   | 1,584 | 1,433 | 1,680 | 0   | 0   | 7,313  |        |
| 1970    | Ö   | 0   | 0   | 0   | 760   | 4,906 | 1,656 | 1,938 | 1,729 | 1,495 | õ   | ō   | 12,703 |        |
| 1971    |     |     |     |     | 1,422 | 3,448 | 1,626 | 1,609 | 973   | 0     | õ   | ŏ   | 9,079  |        |
| 1972    | 0   | 0   | 0   | 0   |       |       | 849   | 1.083 | 1,646 | 472   | ŏ   | ŏ   | 6,201  |        |
| 1973    | 0   | 0   | 0   | 0   | 370   | 1,501 |       |       |       | 0     | õ   | ŏ   | 10,388 |        |
| 1974    | 0   | 0   | 0   | 0   | 1,202 | 4,033 | 2,074 | 1,222 | 1,855 |       |     |     |        |        |
| 1975    | 0   | 0   | 0   | 0   | 378   | 3,133 | 2,092 | 1,296 | 1,684 | 491   | 0   | 0   | 8,974  |        |
| 1976    | 0   | 0   | 0   | 0   | 1,013 | 4,566 | 1,993 | 1.698 | .282  | 0     | 0   | Û   | 10,452 | [      |
| 1977    | 0   | 0   | 0   | 27  | 158   | 1,915 | 410   | 0     | 18    | 0     | 0   | 0   | 2,627  |        |
| 1978    | 0   | 0   | 0   | 49  | 684   | 4.762 | 1,089 | 1.241 | 1,822 | 0     | 0   | 0   | 9,646  |        |
| 1979    | 0   | 0   | 0   | 0   | 1,064 | 3.663 | 1,653 | 1,510 | 1,762 | 202   | 0   | 0   | 10,074 |        |
| 1980    | Ō   | ō   | 0   | 0   | 188   | 1,678 | 1,695 | 2,068 | 0     | 0     | 0   | 0   | 5.528  |        |
| 1981    | lō  | ō   | ō   | 38  | 757   | 3,135 | 734   | 786   | 258   | 0     | 0   | 0   | 5,707  |        |
| 1982    | ŏ   | ō   | ÷0  | 0   | 605   | 4,236 | 3,370 | 1,263 | 1,230 | 892   | 0   | 0   | 11,593 |        |
| 1983    | ŏ   | ŏ   | 0   | ŏ   | 274   | 3,238 | 414   | 674   | 538   | 1,874 | 0   | 0   | 7,212  | ļ      |
|         | lõ  | õ   | Q   | õ   | 968   | 1,763 | 741   | 739   | 1,373 | 1,065 | 0   | 0   | 6,650  |        |
| 1984    | 1   | ŏ   | õ   | õ   | 865   | 2,279 | 1.141 | 970   | 1,227 | 61    | Ō   | 0   | 6,644  |        |
| 1985    | 0   |     |     |     | 989   | 5,625 | 2,641 | 1,809 | 1.618 | 1,059 | 0   | 0   | 13.042 |        |
| 1986    | 0   | 0   | 0   | 0   |       | 2,098 | 720   | 1,450 | 979   | 0     | õ   | ŏ   | 7,819  |        |
| 1987    | 0   | 0   | 0   | 167 | 2,404 |       |       |       |       | õ     | õ   | õ   | 10,353 |        |
| 1968    | 0   | 0   | 0   | 14  | 1,212 | 5,470 | 1,691 | 761   | 1,205 | 0     | 130 | ő   | 10,825 |        |
| 1989    | 0   | 0   | 0   | 80  | 1,807 | 3,516 | 3,973 | 1,320 | 0     |       |     |     |        |        |
| 1990    | 0   | 0   | 0   | 7   | 996   | 6,148 | 2,851 | 2,102 | 26    | 0     | 0   | 0   | 11,130 | 1      |
| 1991    | 0   | 0   | 0   | 0   | 1,299 | 4,559 | 3,353 | 1,768 | 1,158 | 12    | 0   | 0   | 12,150 |        |
| 1992    | 0   | 0   | 0   | 66  | 2,318 | 3,627 | 3,425 | 1,958 | 158   | 0     | 0   | 0   | 11,571 |        |
| 1993    | 0   | 0   | 0   | 0   | 1,368 | 4,814 | 2,599 | 1,965 | 422   | 1,758 | 0   | 0   | 12,944 |        |
| 1994    | 0   | Ō   | 0   | 103 | 1,652 | 4,272 | 148   | 15    | 241   | 631   | Ð   | 0   | 8,262  |        |
| 1995    | ō   | ō   | ō   | 0   | 0     | 2,843 | 26    | 704   | 323   | 1,265 | 864 | 0   | 6,831  |        |
| 1996    | ŏ   | ŏ   | ō   | ō   | 462   | 5,823 | 1,422 | 1,004 | 1,382 | 333   | 0   | 0   | 10,426 |        |
| 1997    | - 0 | ŏ   | õ   | ŏ   | 631   | 4,082 | 791   | 412   | 1,016 | 1,315 | 0   | 0   | 6,242  |        |
| 1998    | 0   | Ğ   | õ   | ŏ   | 876   | 1,489 | 3,570 | 775   | 1,698 | 295   | Ō   | 0   | 8,703  |        |
|         |     | õ   | õ   | 3   | 950   | 3,610 | 1,727 | 1,745 | 1,687 | 1.077 | ō   | 0   | 10,800 | [      |
| 1999    | 0   |     |     | 0   | 2,232 | 3,693 | 1,686 | 1,451 | 0     | 0     | ŏ   | ŏ   | 9,062  |        |
| 2000    | 0   | 0   | 0   | -   |       |       | 207   | 147   | 1.020 | 1.039 | õ   | ŏ   | 6,944  |        |
| 2001    | 0   | ð   | 0   | 5   | 2,122 | 1,403 |       |       | 0     | 0     | ŏ   | ŏ   | 2,354  |        |
| 2002    | 0   | 0   | 0   | 49  | 750   | 1,549 | 0     | 0     |       | 935   | 108 | 0   | 8,129  |        |
| 2003    | 0   | 0   | D   | 23  | 2,068 | 3,126 | 812   | 79    | 978   |       |     | Q   |        |        |
| 2004    | 0   | 0   | 0   | 119 | 1,334 | 2,525 | 1,180 | 48    | 19    | 0     | 0   |     | 5,224  |        |
| 2005    | 0   | 0   | 0   | 107 | 1,661 | 2,000 | 2,641 | 1,148 | 719   | 1,208 |     | 0   | 11,152 | -      |
| Average | 0   | 0   | 0   | 21  | 1,164 | 3,434 | 1,690 | 1,050 | 820   | 434   | 21  | 0   | 6,602  |        |

Notes: Values from 1950 through 1952 were estimated because the Continental-Hooster System did not come un-line until 1953.

.

| Table 6                                     |
|---------------------------------------------|
| Historical Homestake Tunnel Diversions (AF) |

| Year    | Jan   | Feb   | Mar    | Apr    | May    | Jun   | Jul   | Aug    | Sep    | Oct    | Nov   | Dec   | Total  |
|---------|-------|-------|--------|--------|--------|-------|-------|--------|--------|--------|-------|-------|--------|
| 1967    | 0     | 0     | 0      | 0      | Q      | 0     | Q     | 1,035  | 758    | 52     | 0     | 0     | 1,842  |
| 1968    | 0     | 0     | 0      | 2,801  | 7,841  | 0     | 0     | 0      | 1,171  | 2,647  | 2,570 | 2,412 | 19,441 |
| 1969    | 4,511 | 4,784 | 5,677  | 4,298  | 0      | 0     | 0     | 2,365  | 1,850  | 163    | 1,490 | 3,017 | 28,135 |
| 1970    | 1,555 | 1,372 | 3,073  | 3,159  | 0      | 0     | 856   | 3,202  | 2,592  | 4,659  | 4,357 | 1,220 | 26,044 |
| 1971    | 772   | 3,996 | 4,957  | 4,630  | 0      | 0     | 0     | 4,042  | 2,277  | 3,171  | 2,905 | 965   | 27,714 |
| 1972    | 899   | 2,567 | 3,870  | 3,615  | 0      | 0     | Ø     | 290    | 261    | 143    | 1,094 | 2,731 | 15,470 |
| 1973    | 3,858 | 3,034 | 2,038  | 4,803  | 5,480  | 2,359 | 1,483 | 0      | 0      | 0      | 0     | 906   | 23,941 |
| 1974    | 955   | 3,092 | 8,683  | 5,165  | 4,987  | 2,726 | 767   | 0      | 0      | 0      | 0     | 0     | 24,394 |
| 1975    | 0     | 0     | 0      | 7,460  | 14,417 | 7,712 | 8,108 | 12,770 | 9,963  | 0      | 0     | 0     | 60,430 |
| 1976    | 0     | 0     | 0      | 0      | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     | 0      |
| 1977    | 0     | 0     | 2,594  | 10,891 | 6,194  | 6,046 | 5,594 | 0      | 0      | Q      | Û     | 0     | 31,318 |
| 1978    | 0     | 0     | 0      | 0      | 0      | Õ     | 0     | 0      | 0      | 0      | 0     | 0     | 0      |
| 1979    | 0     | 0     | 17,634 | 13,381 | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 4,536 | 35,550 |
| 1980    | 7,281 | 7,696 | 2,361  | 6,157  | 5.677  | 0     | 0     | 0      | 0      | 430    | 0     | 300   | 30,303 |
| 1981    | 6,634 | 6,166 | 10,141 | 155    | 0      | 0     | 0     | 0      | 0      | 0      | 45    | 3,683 | 27,024 |
| 1982    | 4,711 | 4,209 | 4,617  | 2,247  | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     | 15,784 |
| 1983    | 6,522 | 6,960 | 7,663  | 1,605  | 0      | 0     | 0     | 0      | 0      | 0      | 776   | 0     | 23,526 |
| 1984    | 0     | 0     | 2,729  | 0      | 1,678  | 3,132 | 4,229 | 12,684 | 2,533  | 0      | 0     | (,246 | 28,232 |
| 1985    | l o   | 0     | 2,426  | 887    | 0      | 1,310 | 2,343 | 1,793  | 148    | 0      | 0     | 0     | 8,907  |
| 1988    | lo    | a     | 0      | 0      | 7.714  | 4,348 | 3,011 | 1,732  | 95     | 0      | 0     | 3,468 | 20,368 |
| 1987    | 3,558 | 3,291 | 3,546  | 6,667  | 0      | 0     | 0     | 0      | 0      | 0      | 0     | 0     | 17,063 |
| 1986    | 7,689 | 7,666 | 0      | 0      | 0      | 0     | 0     | 2,482  | 4,898  | 5,442  | 4,737 | 0     | 32,913 |
| 1989    | o l   | 0     | 0      | 1,700  | 3,820  | 1,484 | 2,648 | 3,701  | 3,538  | 1,206  | 0     | 0     | 18,097 |
| 1990    | l o   | 0     | 0      | 0      | a      | 0     | 5,394 | 5,513  | 15,065 | 203    | 0     | 0     | 26,176 |
| 1991    | lo    | Ó     | 0      | 0      | 0      | 0     | 119   | 152    | 38     | 2,753  | 4,293 | 0     | 7,354  |
| 1992    | 0     | 0     | 5,056  | 5,326  | 0      | 0     | Q     | 2,339  | 5,596  | 303    | 0     | 0     | 18,620 |
| 1993    | 0     | 0     | 9,024  | 7,616  | 0      | 2,114 | 8,190 | 1,048  | 22     | 0      | 0     | 0     | 28,014 |
| 1994    | 0     | 0     | 8,535  | 10,462 | 0      | 2,928 | 0     | 0      | 2,331  | 11,390 | 0     | 0     | 35,645 |
| 1995    | Ō     | 0     | 312    | 15,250 | Ó      | 1     | 4,414 | 3,687  | o      | 0      | 0     | 0     | 23,664 |
| 1996    | 0     | 0     | 7,255  | 14,852 | 1,730  | 7,237 | 6.372 | 1,131  | 0      | 0      | 0     | 0     | 38,577 |
| 1997    | 0     | 0     | 9,795  | 14,712 | 0      | 4,146 | 5,981 | 2,612  | 0      | 409    | 0     | 0     | 37,855 |
| 8991    | a     | 0     | 6,148  | 725    | 951    | 6,702 | 6,897 | 1,084  | 0      | 0      | 0     | 0     | 24,505 |
| 1999    | Ō     | ō     | 6,445  | 14,760 | 3,302  | o     | 3,218 | 1,304  | 275    | 0      | 0     | 0     | 31,303 |
| 2000    | Ō     | õ     | 4,453  | 9,510  | 0      | 7,530 | 780   | 382    | 392    | 0      | Ō     | Ō     | 23,046 |
| 2001    | Ō     | Ō     | 8,933  | 16,977 | 6,997  | 0     | 0     | 509    | 0      | 1,093  | 3,735 | Ō     | 40,244 |
| 2002    | ō     | ō     | 5,312  | 10,584 | 0      | õ     | ō     | 3,006  | 2,589  | 0      | 0     | õ     | 21,491 |
| 2003    | ō     | Ō     | 0      | 0      | Ō      | 9,843 | ō     | 0      | C      | 14,010 | ō     | ō     | 23,853 |
| 2004    | Ō     | ō     | 212    | 8,713  | Ō      | 0     | ō     | ō      | Ō      | Û      | ō     | õ     | 8,925  |
| 2005    | å     | ŏ     | 8,036  | 14,926 | 431    | õ     | ŏ     | õ      | ō      | ō      | ō     | ŏ     | 23,394 |
| 2006    | Ő     | 9,031 | 9,309  | 6,208  | 7,607  | Ō     | Ō     | ō      | 10     | ō      | ō     | ō     | 32,163 |
| 2007    | ō     | 0     | 9,677  | 2,564  | 8,552  | 0     | õ     | 4      | G      | 0      | 851   | Ō     | 21,848 |
| Average | 1,194 | 1,562 | 4,451  | 5,679  | 2,184  | 1,698 | 1,717 | 1,680  | 1,378  | 1,173  | 655   | 402   | 23,970 |
| Min     | 0     | 0     | 0      | 0      | 0      | 0     | 0     | 0      | Ő      | 0      | Ō     | 0     | 0      |
| MID I   |       |       |        |        |        |       |       |        |        |        |       |       |        |

Source: Data provided by Colorado Springs Utilities.

.

| Table 7                                         |  |
|-------------------------------------------------|--|
| Homestake Historical End-of-Month Contents (AF) |  |

| Year<br>1966   | Jan<br>0 | <u>Feb</u> 0 | Mar0   | Apr<br>0 | May0            | <u></u> 0 |        | Aug<br>1.259 | Sep<br>1,259 | Oct<br>1,078 | Nov<br>1,069 | Dec<br>1,069 |
|----------------|----------|--------------|--------|----------|-----------------|-----------|--------|--------------|--------------|--------------|--------------|--------------|
| 1966           | 1,069    | 1,069        | 1,069  | 1,069    | 9,493           | 22,020    | 26,038 | 25,003       | 24,247       | 24,196       | 24,196       | 24,196       |
| 1967           | 1,089    |              | 24,196 | 21,395   | 9,495<br>13,554 | 28,529    | 31,782 | 34,825       | 33,654       | 31,008       | 28,438       | 26,023       |
|                | -        | 24,196       |        | -        | 16,710          | 27,643    | 32,175 | 29,811       | 27,961       | 27,798       | 28,308       | 23,29        |
| 1969           | 21,515   | 16,751       | 11,075 | 8,776    | •               | 42,145    | 41,289 | 38,087       | 35,495       | 30,836       | 26,480       | 25,26        |
| 1970           | 21,736   | 20,363       | 17,291 | 14,132   | 24,218          |           |        | •            | 20,571       | 17,400       | 14,495       | 13,53        |
| 1971           | 24,488   | 20,492       | 15,536 | 10,906   | 13,985          | 23,176    | 28,890 | 22,848       | 28,914       | 28,771       | 27,577       | 24,94        |
| 1972           | 12,631   | 10,064       | 6,194  | 2,579    | 6,709           | 25,480    | 29,485 | 29,175       | 33,303       | 32,906       | 32,664       | 31.56        |
| 1973           | 20,948   | 17,651       | 15,452 | 10,817   | 8,095           | 22,432    | 32,407 | 33,489       |              | 34,445       | 34,127       | 33,78        |
| 1974           | 30,605   | 27,708       | 20,875 | 15,591   | 19,766          | 32,591    | 35,244 | 35,274       | 34,705       |              |              |              |
| 1975           | 33,414   | 33,022       | 32,694 | 25,555   | 13,201          | 18,293    | 24,353 | 11.811       | 76           | 76           | 76           | 78           |
| 1976           | 76       | 78           | 76     | 76       | 7,968           | 19,574    | 23,387 | 23,429       | 23,132       | 23,122       | 22,832       | 22,82        |
| 1977           | 22,822   | 22,822       | 20,828 | 9,701    | 8,305           | 6,324     | 76     | 76           | 78           | 76           | 78           | 76           |
| 1978           | 76       | 76           | 76     | 194      | 5,825           | 25,741    | 38,345 | 39,059       | 38,842       | 38,609       | 38,355       | 38,347       |
| 1979           | 38,347   | 38,347       | 21,314 | 7,332    | 13.167          | 27,296    | 38,678 | 39,255       | 39,255       | 39,003       | 38,994       | 34,653       |
| 1980           | 27,411   | 19,281       | 18,594 | 10,953   | 7,640           | 25,799    | 32,139 | 32,288       | 32,288       | 31,858       | 31,843       | 31,74        |
| 1981           | 25,134   | 18,965       | 9,025  | 8,585    | 13,270          | 23,863    | 24,379 | 24,379       | 24,379       | 24,379       | 24,379       | 20,60        |
| 1982           | 15,892   | 11,681       | 7,082  | 4,667    | 7,409           | 24,812    | 35,458 | 37,093       | 37,093       | 37,093       | 37,093       | 37,09        |
| 1983           | 30,822   | 23,852       | 16,193 | 14,343   | 15,298          | 32,402    | 43,368 | 43,334       | 43,334       | 43,334       | 42,557       | 42,55        |
| 1984           | 42,557   | 42,557       | 39,828 | 39,828   | 39,828          | 42,652    | 40,307 | 29,245       | 26,214       | 26,214       | 26,166       | 24,82        |
| 1985           | 24,822   | 24,822       | 22,474 | 21,509   | 33,764          | 42,683    | 43,647 | 42,007       | 41.799       | 41,799       | 41,799       | 41,79        |
| 1986           | 41,799   | 41,799       | 41,799 | 41,799   | 34,379          | 43,539    | 43,539 | 39,472       | 39,232       | 39,232       | 39,232       | 35,88        |
| 1987           | 32,326   | 29,031       | 25,483 | 19,139   | 28,823          | 38,499    | 39,459 | 39,009       | 38,815       | 38,297       | 38,003       | 37,99        |
| 1988           | 30,582   | 22,637       | 14,632 | 14,632   | 17,973          | 33,717    | 35,176 | 32,736       | 28,730       | 23,735       | 17,182       | 16,96        |
| 1989           | 16,964   | 16,964       | 16,964 | 15,160   | 19,323          | 27,013    | 25,268 | 21,100       | 17,247       | 15,681       | 15,681       | 15,68        |
| 1990           | 15,681   | 15,681       | 16,681 | 15,786   | 21,003          | 35,643    | 31,872 | 25,772       | 9,843        | 9,112        | 9,112        | 9,112        |
| 1991           | 9,113    | 9,113        | 9,113  | 9,113    | 16,605          | 31,761    | 35,893 | 35,912       | 35,795       | 32,989       | 28,600       | 28,80        |
| 1992           | 28,560   | 28,560       | 22,927 | 18,228   | 29,160          | 38,785    | 41,852 | 39,273       | 33,625       | 33,511       | 33,502       | 33,49        |
| 1993           | 33,491   | 33,491       | 24,427 | 16,785   | 24,980          | 39,557    | 42,547 | 42,557       | 42,480       | 42,447       | 42,447       | 42,44        |
| 1994           | 42,447   | 42,447       | 33,885 | 23,534   | 32,933          | 42,824    | 42,734 | 42,641       | 40,281       | 28,875       | 28,875       | 28,87        |
| 1995           | 28,875   | 28,875       | 28,563 | 13,309   | 15,328          | 33,288    | 42,881 | 42,881       | 42,881       | 42,881       | 42,881       | 42,88        |
| 1996           | 42,881   | 42,681       | 35,624 | 20,772   | 28,986          | 41,782    | 41,915 | 40,893       | 40,893       | 40,893       | 40,893       | 40,89        |
| 1997           | 40,893   | 40,581       | 30,784 | 18,071   | 24,862          | 42,314    | 42,814 | 42,614       | 42,814       | 42,471       | 42,471       | 42,47        |
| 1998           | 42,471   | 42,186       | 34,025 | 33,300   | 39,816          | 42,881    | 41,650 | 41,817       | 41,617       | 41,817       | 41.817       | 41,53        |
| 1999           | 41,247   | 41,214       | 32,769 | 18,009   | 21,278          | 39,041    | 42,280 | 42,447       | 42,172       | 42,172       | 42,172       | 42,17        |
| 2000           | 42,172   | 42,172       | 37,394 | 28,210   | 40,893          | 42,180    | 42,903 | 42,521       | 42,129       | 42,129       | 42,129       | 42,12        |
| 2001           | 42,129   | 42,129       | 33,196 | 18,219   | 19,400          | 31,443    | 32,928 | 32,419       | 32,419       | 31,326       | 27,591       | 27,40        |
| 2002           | 27,185   | 27,185       | 21,873 | 11,289   | 19,288          | 22,987    | 22,987 | 19,643       | 17,054       | 17,055       | 17,055       | 17,05        |
| 2002           | 17,055   | 17,055       | 17,055 | 17,322   | 27,699          | 33,189    | 35,986 | 35,988       | 35,978       | 21,811       | 21,811       | 21.81        |
| 2003           | 21,911   | 21,959       | 21,599 | 13,549   | 23,284          | 32,844    | 34,989 | 34,989       | 34,989       | 34,928       | 34,989       | 34,84        |
| 2005           | 34,783   | 35,034       | 26,998 | 12,337   | 20,171          | 34,035    | 38,721 | 39,202       | 39,108       | 39,589       | 39,589       | 39,46        |
| 2005           | 39,686   | 30,688       | 21,438 | 18,396   | 20,772          | 35,862    | 40,909 | 41,122       | 41,254       | 41,188       | 41,254       | 41.02        |
| 2000           | 40,958   | 41,057       | 31,412 | 29,737   | 32,227          | 42,747    | 42,848 | 42,548       | 42,414       | 42,747       | 41,948       | 41,94        |
|                | 26,946   | 25,394       | 20,840 | 15,398   | 19,686          | 31,409    | 34,323 | 33,069       | 31,625       | 30,445       | 29,730       | 29,11        |
| Average<br>Min | 0        | 20,394       | 20,040 | 0        | 0               | 0         | 0      | 76           | 78           | 76           | 76           | 76           |
| MINT           | 42,881   | 42,881       | 41,799 | 41,799   | 40,893          | 43,539    | 43,647 | 43,334       | 43,334       | 43,334       | 42,881       | 42,88        |

Source: Data provided by Colorado Springs Utilities.

.

| ø        |        |        |        |        |        |        |        |        | _      |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          | _      | _      | _      | _      | _      |        | _      |        |        | _      |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Yr Type  | Avg    | Avg    | We     | Avp    | 0,50   | Ave    | Ava    | Wei    | Avg    | Avg    | Avo    | Avg    | Avg.   | Avg    | Avg    | Avg    | 20     | Avg    | <u>ک</u> | Avç    | Avç    | βνΑ    | Avç    | Avç    | Μθ     | Мe     | Avç    | Ave    | Åvå    | Avo    | Ava    | Å      |
| Total    | 25,789 | 25,789 | 36,857 | 25,789 | 18,746 | 25,789 | 25,789 | 36,857 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 18,746 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 18,746   | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 36,857 | 36,857 | 25,789 | 25,789 | 25,789 | 25,789 | 25,789 | 25.789 |
| 0.ec     | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Nov      | 0      | 0      | 747    | 0      | 170    | 0      | 0      | 747    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 170    | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 170      | 0      | 0      | 0      | 0      | 0      | 747    | 747    | 0      | 0      | 0      | 0      | 0      | 0      |
| 5<br>S   | 2,335  | 2,335  | 2,578  | 2,335  | 61     | 2,335  | 2,335  | 2,578  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 61     | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 61       | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2,578  | 2,578  | 2,335  | 2,335  | 2,335  | 2,335  | 2,335  | 2.335  |
| d<br>XeD | 49     | 49     | 468    | 49     | 1,715  | 49     | 49     | 468    | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 1,715  | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 49     | 1,715    | 49     | 49     | 49     | 49     | 49     | 468    | 468    | 49     | 49     | 49     | 49     | 49     | 49     |
| Aug      | 1,187  | 1,187  | 850    | 1,187  | 1.146  | 1,187  | 1,187  | 850    | 1,187  | 1,187  | 1,187  | 1.187  | 1.187  | 1,187  | 1,187  | 1,187  | 1,146  | 1,187  | 1,187  | 1,187  | 1,187  | 1,187  | 1,187  | 1,187  | 1,187  | 1,187  | 1,187  | 1,146    | 1,187  | 1.187  | 1,187  | 1,187  | 1,187  | 850    | 850    | 1,187  | 1,187  | 1,187  | 1,1.87 | 1,187  | 1.187  |
| M        | 3,786  | 3,786  | 2,471  | 3,786  | 156    | 3,786  | 3,786  | 2,471  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 156    | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 156      | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 2.471  | 2,471  | 3,786  | 3,786  | 3,786  | 3,786  | 3,786  | 3.786  |
| UIL      | 3,110  | 3,110  | 2,862  | 3,110  | 1,506  | 3,110  | 3,110  | 2,862  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 1,506  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 1,506    | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 2,862  | 2,862  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  | 3,110  |
| way      | 781    | 781    | 3,667  | 781    | 1,710  | 781    | 781    | 3,667  | 781    | 781    | 781    | 781    | 781    | 781    | 781    | 781    | 1,710  | 781    | 781    | 781    | 781    | 781    | 781    | 781    | 781    | 781    | 781    | 1,710    | 781    | 781    | 781    | 781    | 781    | 3,667  | 3,667  | 781    | 781    | 781    | 781    | 781    | 781    |
| MM       | 8,880  | 8,880  | 12,642 | 8,880  | 7,339  | 8,880  | 8,880  | 12,642 | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 7,339  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 7,339    | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 12,642 | 12,642 | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  | 8,880  |
| MIGI     | 5.661  | 5,661  | 8,765  | 5,661  | 4,942  | 5,661  | 5,661  | 8,765  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 4,942  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 4,942    | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 8,765  | 8,765  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  | 5,661  |
| 280      | 0      | 0      | 1,806  | 0      | 0      | 0      | 0      | 1,806  | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0 0    | •        | 0 0    | 0 0    | 0 0    |        | 0      | 1,806  | 1,806  | 0      | 0      | o      | 0      | 0      | 0      |
|          | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | ¢      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0 0    | 5 (      | 0 0    | 0 0    | 5 0    | 5 0    | 5 0    | 0 0    | þ      | 0      | 0      | 0      | 0      | 0      | 0      |
|          | 1950   | 1951   | 1952   | 1953   | 1954   | 1955   | 1956   | 1957   | 1958   | 1959   | 1960   | 1961   | 1962   | 1963   | 1964   | 1965   | 1966   | 1967   | 1968   | 1969   | 1970   | 1971   | 1972   | 1973   | 1974   | 1975   | 19/6   | 1970     | R/AL   | 6/61   | 1981   | 1981   | 282    | 1963   | 1964   | 1985   | 1886   | 1987   | 1988   | 1989   | 1990   |

Table 8 Homestake Tunnel Demands (AF)

| Year    | Jan | Feb | Mar   | Apr    | May   | Jun   | וענ   | Aug   | Sep   | 00<br>0 | Nov   | Dec | Total  | Yr Type |
|---------|-----|-----|-------|--------|-------|-------|-------|-------|-------|---------|-------|-----|--------|---------|
| 1992    | 0   | 0   | 5,056 | 5,326  | 0     | 0     | 0     | 2,339 | 5,596 | 303     | ¢     | 0   | 18,620 |         |
| 1993    | 0   | 0   | 9,024 | 7,616  | 0     | 2,114 | 8,190 | 1,048 | 23    | 0       | 0     | 0   | 28,014 |         |
| 1994    | 0   | 0   | 8,535 | 10,462 | 0     | 2,928 | 0     | 0     | 2,331 | 11,390  | 0     | 0   | 35,645 |         |
| 1995    | 0   | 0   | 312   | 15,250 | 0     | ~     | 4,414 | 3,687 | 0     | 0       | 0     | 0   | 23,664 |         |
| 1996    | 0   | 0   | 7,255 | 14,852 | 1,730 | 7,237 | 6,372 | 1,131 | 0     | 0       | 0     | 0   | 38,577 |         |
| 1997    | 0   | 0   | 9,795 | 14,712 | 0     | 4,146 | 5,981 | 2,612 | 0     | 409     | 0     | 0   | 37,655 |         |
| 1998    | 0   | 0   | 8,146 | 725    | 951   | 6,702 | 6,897 | 1,084 | 0     | 0       | 0     | 0   | 24,505 |         |
| 1999    | 0   | 0   | 8,445 | 14,760 | 3,302 | 0     | 3,218 | 1,304 | 275   | 0       | 0     | 0   | 31,303 |         |
| 2000    | 0   | 0   | 4,453 | 9,510  | 0     | 7,530 | 780   | 382   | 392   | 0       | 0     | 0   | 23,048 |         |
| 2001    | 0   | 0   | 8,933 | 16,977 | 8,997 | 0     | 0     | 509   | 0     | 1,093   | 3,735 | 0   | 40,244 |         |
| 2002    | 0   | 0   | 5,312 | 10,584 | 0     | 0     | 0     | 3,006 | 2,589 | 0       | 0     | 0   | 21,491 |         |
| 2003    | 0   | 0   | 0     | 0      | 0     | 9,843 | 0     | 0     | 0     | 14,010  | 0     | 0   | 23,853 |         |
| 2004    | 0   | 0   | 212   | 8,713  | 0     | 0     | 0     | 0     | 0     | 0       | 0     | 0   | 8,925  |         |
| 2005    | 0   | 0   | 8,036 | 14,926 | 431   | 0     | 0     | 0     | 0     | 0       | 0     | 0   | 23,394 |         |
| Average | D   | 129 | 5,920 | 9,425  | 1,117 | 2,952 | 3,191 | 1,170 | 356   | 2,133   | 129   | 0   | 26,522 |         |

Table 8 Homestake Tunnel Demands (AF)

Notes: Values from 1950 through 1991 were estimated because operations of the Homestake Project prior to 1992 were different than current operations.

## MODEL OUTPUT

## NO ACTION ALTERNATIVE

Reservoir Data

Simulated End-of-Month Contents

- Homestake Reservoir
- Wolford Mountain Reservoir
- Williams Fork Reservoir
- Dillon Reservoir
- Upper Blue Reservoir
- Green Mountain Reservoir
- Montgomery Reservoir
- Elevenmile Canyon Reservoir

### Diversions

Simulated Deliveries

- Homestake Tunnel
- Hoosier Tunnel

### Substitution Summary

#### Streamflows

Simulated Flows

- Homestake Creek below Homestake Project at USGS Gage 09064000
- Blue River below Green Mountain Reservoir
- Blue River below Dillon Reservoir at USGS Gage 09050700
- Blue River below Continental-Hoosier Project
- Muddy Creek below Wolford Mountain Reservoir
- Williams Fork River below Williams Fork Reservoir
- Colorado River Below the Confluence with the Eagle River
- Colorado River Above the Confluence with the Eagle River
- Colorado River near Kremmling at USGS Gage 09058000
- Colorado River below the Confluence with the Williams Fork River

• Middle Fork South Platte River below Montgomery Reservoir

## PROPOSED ACTION ALTERNATIVE

**Reservoir Data** 

Simulated End-of-Month Contents

- Homestake Reservoir
- Wolford Mountain Reservoir
- Williams Fork Reservoir
- Dillon Reservoir
- Upper Blue Reservoir
- Green Mountain Reservoir
- Montgomery Reservoir
- Elevenmile Canyon Reservoir

#### Diversions

Simulated Deliveries

- Homestake Tunnel
- Hoosier Tunnel

Substitution Summary

#### Streamflows

Simulated Flows

- Homestake Creek below Homestake Project at USGS Gage 09064000
- Blue River below Green Mountain Reservoir
- Blue River below Dillon Reservoir at USGS Gage 09050700
- Blue River below Continental-Hoosier Project
- Muddy Creek below Wolford Mountain Reservoir
- Williams Fork River below Williams Fork Reservoir
- Colorado River Below the Confluence with the Eagle River
- Colorado River Above the Confluence with the Eagle River
- Colorado River near Kremmling at USGS Gage 09058000
- Colorado River below the Confluence with the Williams Fork River
- Middle Fork South Platte River below Montgomery Reservoir

# NO ACTION ALTERNATIVE

Reservoir Data

Homestake Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| WATER |        |        |        |        |        |        |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR  | 100    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NUL    | JUL    | AUG    | SEP    |
| 1950  | 30,020 | 30,014 | 30,040 | 30,068 | 30,073 | 24,393 | 15,996 | 21,283 | 32,506 | 32,299 | 31.028 | 30.911 |
| 1951  | 28,540 | 28,534 | 28,559 | 28,586 | 28,592 | 22,913 | 13,995 | 20,713 | 34,485 | 42,008 | 42,328 | 42,199 |
| 1952  | 39,822 | 39,816 | 39,845 | 39,877 | 38,077 | 29,291 | 17,172 | 18,893 | 36,503 | 40,700 | 42,075 | 41.528 |
| 1953  | 38,908 | 38,155 | 38,183 | 38,215 | 38,221 | 32,539 | 23,613 | 27,995 | 41,473 | 42,951 | 42,704 | 42,575 |
| 1954  | 40,197 | 40,191 | 40,220 | 40,252 | 40,259 | 35,295 | 27,907 | 34,330 | 32,702 | 32,424 | 31,194 | 29,412 |
| 1955  | 29,315 | 29,139 | 29,164 | 29,191 | 29,197 | 23,518 | 14,600 | 18,444 | 23,833 | 19,947 | 18,696 | 18,594 |
| 1956  | 16,232 | 16,227 | 16,246 | 16,267 | 16,271 | 10,596 | 2,731  | 12,478 | 21,007 | 18,236 | 16,987 | 16,888 |
| 1957  | 14,527 | 14,523 | 14,540 | 14,560 | 12,758 | 3,982  | 189    | 418    | 16,690 | 31,578 | 33,932 | 33,392 |
| 1958  | 30,777 | 30,024 | 30,049 | 30,077 | 30,083 | 24,403 | 15,485 | 23,807 | 31,845 | 29,765 | 28,498 | 28,384 |
| 1959  | 26,014 | 26,009 | 26,032 | 26,058 | 26,064 | 20,386 | 11,471 | 15,497 | 26,520 | 25,305 | 24,045 | 23,935 |
| 1960  | 21,569 | 21,564 | 21,585 | 21,609 | 21.614 | 15,937 | 8,269  | 11,883 | 22,003 | 21,825 | 20,570 | 20,466 |
| 1961  | 18,102 | 18,098 | 18,118 | 18,139 | 18,143 | 12,468 | 3,563  | 8,384  | 13,097 | 9,236  | 8,001  | 10,451 |
| 1962  | 10,239 | 10,235 | 10,251 | 10,268 | 10,272 | 4,600  | 185    | 5,349  | 14,517 | 17,614 | 16,834 | 16,735 |
| 1963  | 14,374 | 14,370 | 14,388 | 14,407 | 14,411 | 8,738  | 175    | 6,165  | 9,974  | 6,122  | 4,895  | 4,814  |
| 1964  | 2,464  | 2,462  | 2,471  | 2,482  | 2,484  | 172    | 169    | 5,640  | 10,991 | 8,118  | 6,886  | 6,801  |
| 1965  | 4,448  | 4,445  | 4,457  | 4,470  | 4,472  | 169    | 166    | 5,052  | 17,401 | 26,629 | 29,055 | 30,490 |
| 1966  | 28,681 | 28,675 | 28,700 | 28,727 | 28,733 | 23,772 | 16,395 | 19,945 | 22,297 | 22,040 | 20,826 | 19,057 |
| 1967  | 18,967 | 18,793 | 18,813 | 18,835 | 18,839 | 13,164 | 4,911  | 12,029 | 20,561 | 20,589 | 19,336 | 19,234 |
| 1968  | 16,871 | 16,867 | 16,886 | 16,907 | 16,911 | 11,236 | 2,333  | 3,209  | 15,359 | 15,001 | 17,529 | 17,429 |
| 1969  | 15,067 | 15,063 | 15,081 | 15,101 | 15,105 | 9,431  | 1,530  | 10,446 | 17,151 | 17,882 | 16,634 | 16,535 |
| 1970  | 14,174 | 14,170 | 14,187 | 14,207 | 14,211 | 8,537  | 179    | 11,225 | 25,243 | 26,170 | 25,209 | 25,217 |
| 1971  | 23,408 | 23,403 | 23,425 | 23,450 | 23,454 | 17,777 | 9,669  | 13,064 | 20,915 | 20,962 | 19,709 | 19,606 |
| 1972  | 17,243 | 17,238 | 17,257 | 17,279 | 17,283 | 11,608 | 2,703  | 6,997  | 21,231 | 21,258 | 20,176 | 20,315 |
| 1973  | 17,951 | 17,947 | 17,966 | 17,988 | 17,992 | 12,317 | 3,412  | 7,730  | 20,897 | 27,171 | 27,998 | 27,884 |
| 1974  | 25,515 | 25,509 | 25,533 | 25,558 | 25,564 | 19,886 | 11,382 | 19,438 | 29,568 | 29,641 | 28,477 | 28,363 |
| 1975  | 25,993 | 25,988 | 26,011 | 26,037 | 26,043 | 20,365 | 11,450 | 13,759 | 23,129 | 32,719 | 32,966 | 32,847 |
| 1976  | 30,474 | 30,469 | 30,494 | 30,522 | 30,528 | 24,848 | 15,929 | 22,754 | 30,075 | 30,320 | 29,658 | 29,543 |
| 1977  | 27,172 | 27,167 | 27,191 | 27,218 | 27,223 | 22,263 | 14,887 | 15,634 | 17,200 | 16,955 | 15,750 | 13,987 |
| 1978  | 13,901 | 13,727 | 13,744 | 13,763 | 13,767 | 8,094  | 186    | 5,706  | 24,159 | 31,068 | 29,799 | 29,683 |
| 1979  | 27,313 | 27,308 | 27,332 | 27,358 | 27,364 | 21,685 | 12,769 | 19,526 | 30,970 | 36,865 | 37,300 | 37,176 |
|       |        |        |        |        |        |        |        |        |        |        |        |        |

Homestake Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| WATER    | OCT    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NDP    |        | AliG   | SED<br>S |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|
|          | 100 10 |        |        |        |        |        |        |        |        |        |        | 5        |
| 1980     | 34,801 | 34,795 | 34,823 | 34,853 | 34,859 | 29,178 | 20,255 | 24,418 | 38,883 | 40,761 | 39,481 | 39,355.  |
| 1981     | 36,979 | 36,973 | 37,001 | 37,032 | 37,038 | 31,356 | 22,431 | 26,515 | 33,230 | 29,324 | 28,058 | 27,944   |
| 1982     | 25,575 | 25,569 | 25,593 | 25,618 | 25,624 | 19,946 | 11,031 | 14,398 | 26,964 | 32,399 | 34,364 | 34,243   |
| 1983     | 31,869 | 31,864 | 31,890 | 31,918 | 30,118 | 21,335 | 8,659  | 7,242  | 21,753 | 32.459 | 36,927 | 36,385   |
| 1984     | 33,767 | 33,015 | 33,041 | 33,070 | 31,270 | 22,487 | 9,810  | 16,699 | 31,391 | 40.810 | 42.996 | 43.011   |
| 1985     | 41,257 | 40,504 | 40,533 | 40,565 | 40,572 | 34,889 | 26,778 | 37,629 | 42,959 | 42.951 | 42.268 | 42,140   |
| 1986     | 40,832 | 40,825 | 40,855 | 40,887 | 40,894 | 35,211 | 27,680 | 33,287 | 42,963 | 42,952 | 41.705 | 41 687   |
| 1987     | 39,310 | 39,304 | 39,333 | 39,365 | 39,371 | 33,688 | 25,940 | 34,353 | 40,277 | 38.928 | 37,650 | 37.525   |
| 1988     | 35,150 | 35,144 | 35,172 | 35,202 | 35,208 | 29,527 | 21,453 | 25,406 | 36,079 | 34,386 | 33,113 | 32,993   |
| 1989     | 30,621 | 30,615 | 30,640 | 30,669 | 30,674 | 24,995 | 17,479 | 24,763 | 29,909 | 28,483 | 27,218 | 27,105   |
| 0661     | 24,736 | 24,731 | 24,754 | 24,779 | 24,784 | 19,107 | 10,193 | 14,778 | 25,300 | 23,819 | 22,560 | 22,453   |
| 1991     | 20,088 | 20,084 | 20,104 | 20,127 | 20,131 | 14,455 | 5,547  | 13,212 | 24,038 | 24,686 | 23,426 | 23,318   |
| 1992     | 20,952 | 20,948 | 20,968 | 20,992 | 20,996 | 15,330 | 9,972  | 19,951 | 28,473 | 28,358 | 25,942 | 20,288   |
| 1993     | 19,955 | 19,951 | 19,971 | 19,993 | 19,998 | 10,960 | 3,319  | 13,699 | 28,202 | 29,931 | 30,327 | 30,238   |
| 1994     | 30,201 | 30,196 | 30,221 | 30,249 | 30,254 | 21,701 | 11,204 | 20,936 | 28,933 | 28,817 | 28,738 | 26,342   |
| 1995     | 14,923 | 14,919 | 14,936 | 14,956 | 14,960 | 14,634 | 186    | 3,202  | 24,469 | 38,551 | 40,698 | 40.668   |
| 1996     | 40,626 | 40,619 | 40,648 | 40,681 | 40,687 | 33,411 | 19,244 | 29,025 | 40,997 | 40,828 | 39,889 | 39,811   |
| 1997     | 39,770 | 39,763 | 39,792 | 39,824 | 39,831 | 30,015 | 15,909 | 25,862 | 42,970 | 42,951 | 42,994 | 43,012   |
| 1998     | 42,560 | 42,553 | 42,583 | 42,616 | 42,623 | 34,455 | 34,140 | 40,791 | 42,957 | 42,952 | 42,995 | 42,915   |
| 1999     | 42,872 | 42,865 | 42,895 | 42,928 | 42,935 | 34,468 | 19,663 | 23,202 | 39,423 | 42,570 | 42,995 | 42,752   |
| 2000     | 42,709 | 42,702 | 42,732 | 42,766 | 42,772 | 38,296 | 29,989 | 42,994 | 42,955 | 42,951 | 42,472 | 42,001   |
| 2001     | 41,958 | 41,951 | 41,981 | 42,014 | 42,021 | 33,066 | 16,046 | 18,598 | 29,206 | 29,090 | 28,502 | 28,437   |
| 2002     | 27,309 | 23,568 | 23,591 | 23,616 | 23,620 | 18,292 | 7,676  | 7,626  | 7,562  | 7.496  | 4,449  | 1.834    |
| 2003     | 1,822  | 1,820  | 1,828  | 1,837  | 1,839  | 1,833  | 1,817  | 12,972 | 16,582 | 19,632 | 19.567 | 19.514   |
| 2004     | 5,480  | 5,478  | 5,490  | 5,504  | 5,507  | 5,285  | 184    | 8,710  | 16,858 | 16.770 | 16.710 | 16,660   |
| 2005     | 16,633 | 16,629 | 16,647 | 16,668 | 16,672 | 8,623  | 172    | 8,559  | 20,588 | 25,076 | 25,002 | 24,940   |
| AVERAGE: | 25,911 | 25,777 | 25,800 | 25,825 | 25,701 | 19,838 | 11,432 | 17,261 | 26,933 | 28,595 | 28,217 | 27,893   |
| MINIMUM: | 1,822  | 1,820  | 1,828  | 1,837  | 1,839  | 169    | 166    | 418    | 7,562  | 6,122  | 4,449  | 1.834    |
| MAXIMUM: | 42,872 | 42,865 | 42,895 | 42,928 | 42,935 | 38,296 | 34,140 | 42,994 | 42,970 | 42,952 | 42,996 | 43,012   |
|          |        |        |        |        |        |        |        |        |        |        |        |          |

Wolford Mountain Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| VEAPOCTNOVDECJANFEBMARAPHMAY195058,82658,87758,85758,92658,91458,87558,92656,613195152,80852,81852,80852,81852,88452,83656,51365,653195556,81156,70156,75056,76156,67556,503195553,32953,33953,40653,35153,22052,92556,503195653,32953,33953,40653,35153,22052,92556,503195652,90554,81756,23334,21354,96556,617195652,90554,81756,23353,43353,43356,565195752,90552,81853,48353,47553,43356,566195652,46452,37552,38452,38557,70655,565195752,30552,38452,38452,38557,70655,56553,47553,47553,34753,34753,34753,34755,74453,46664,81064,82964,86765,56665,56653,47653,34753,34753,34753,34753,34755,56653,46663,47462,97352,88553,44553,44664,64753,46663,75663,47453,47553,34753,44555,56653,41753,34753,34753,34753,34753,44655,566196653,44653,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WATER |        |        |        |        |        |        |        |        |        |        |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 58,826         58,857         58,926         56,914         58,828         58,576         52,471           56,677         56,596         56,618         56,631         56,596         56,462         65,750           56,617         56,596         56,618         56,631         56,596         56,627         56,332           56,811         56,790         56,817         56,790         56,817         56,704         52,471           56,811         56,790         56,817         56,761         57,320         52,927         56,927         56,333           58,3326         57,416         27,361         57,345         57,410         53,433         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,813         52,814         53,404         53,434         56,714         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744         55,744<                                                                                                                                                                 | YEAR  | OCT    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | ΜΑΥ    | NDD    | JUL    | AUG    | SEP    |
| 52,888         52,818         52,818         52,814         52,836         52,471           56,677         56,595         56,608         56,631         56,596         56,462         56,325           56,811         56,700         56,817         56,576         56,325         56,333         53,369         53,369         55,462         56,325           55,369         56,811         56,700         56,817         56,761         57,351         56,905         56,917         34,167         34,061         33,833           55,339         53,339         53,416         57,351         56,905         56,608         56,618         56,517         56,573         52,412           54,905         64,810         64,829         64,863         64,863         64,64         64,340           52,464         52,335         52,314         52,408         52,416         52,711         65,754           52,443         53,354         53,421         53,416         64,340         53,415           52,409         52,820         52,883         52,408         52,711         65,754           53,445         53,421         53,421         53,416         52,711         65,749           53,443 <th>1950</th> <th>58,828</th> <th>58,785</th> <th>58,857</th> <th>58,928</th> <th>58,914</th> <th>58,828</th> <th>58,578</th> <th>65,613</th> <th>65,444</th> <th>65,490</th> <th>59,773</th> <th>58,214</th>        | 1950  | 58,828 | 58,785 | 58,857 | 58,928 | 58,914 | 58,828 | 58,578 | 65,613 | 65,444 | 65,490 | 59,773 | 58,214 |
| 56,677         56,508         56,631         56,531         56,566         56,462         66,750           56,811         56,720         56,817         56,761         56,627         56,325           56,811         56,730         56,817         56,611         56,627         56,837           55,369         53,329         53,370         55,366         56,647         56,697           58,302         58,332         53,370         56,817         34,061         33,833           52,902         52,810         53,4167         56,464         54,340           52,903         52,820         52,830         52,830         52,830         52,412           52,403         52,820         52,830         52,830         52,831         52,711         66,749           52,403         52,820         52,830         52,831         52,408         52,314         53,050           52,443         53,350         63,474         62,973         62,973         51,982           52,403         52,841         52,414         53,475         53,445         53,050           53,443         53,475         53,475         53,444         53,046         56,749           53,475                                                                                                                                                                                                                                              | 1951  | 52,888 | 52,808 | 52,818 | 52,884 | 52,836 | 52,706 | 52,471 | 65,625 | 65,444 | 65,490 | 65,090 | 60,900 |
| 56,811         56,720         56,817         56,761         56,627         56,325           53,369         53,329         53,339         53,406         53,351         53,220         52,927           28,995         28,334         27,851         27,616         27,351         53,220         52,927           34,302         34,225         34,214         34,167         34,167         34,061         33,833           52,902         52,813         52,813         52,813         52,813         52,416         52,412           52,464         52,375         52,833         52,406         53,456         64,340         52,412           52,464         52,375         53,443         52,418         52,416         52,711         65,744           53,443         53,456         63,474         62,973         62,385         57,006         65,749           53,443         53,377         53,424         53,474         52,373         51,982           53,474         53,474         62,973         62,385         57,006         65,749           53,475         53,377         53,428         53,744         53,794         56,714           53,5709         65,474         62,973                                                                                                                                                                                                                                 | 1952  | 56,677 | 56,595 | 56,608 | 56,631 | 56,596 | 56,462 | 65,750 | 65,598 | 65,444 | 65,490 | 65,090 | 65,646 |
| 53,369         53,329         53,339         53,406         53,351         53,220         52,927           28,995         28,354         27,851         27,616         27,351         26,905         26,697           34,302         34,225         34,214         34,218         34,167         34,061         33,833           52,902         52,813         52,823         52,890         52,835         52,418         52,412           54,405         54,810         64,829         64,863         64,664         64,340           52,464         52,375         52,384         52,408         52,375         52,413         55,764           52,465         53,474         52,375         53,344         53,450         65,749         55,744           53,473         53,356         53,474         53,475         53,371         53,373         53,345           53,473         53,337         53,444         53,0790         55,749         55,749           53,377         53,373         53,444         53,790         55,749         55,749           53,377         53,373         53,475         53,344         53,700         55,749           53,373         53,347         53,474                                                                                                                                                                                                                                 | 1953  | 56,811 | 56,720 | 56,790 | 56,817 | 56,761 | 56,627 | 56,325 | 65,618 | 65,444 | 65,490 | 65,090 | 53,558 |
| 28.995         28,354         27,851         27,351         26,905         26,697           34,302         34,225         34,214         34,167         34,061         33,833           52,902         52,813         52,823         52,890         52,835         52,704         52,412           52,902         52,813         52,823         52,890         52,835         52,704         52,412           52,464         52,375         52,384         52,408         52,352         52,733         51,982           52,464         52,375         52,384         52,408         52,344         53,050         65,749           52,464         52,375         52,344         53,475         52,344         53,050         65,749           53,473         53,377         53,474         65,744         52,719         52,949         37,845           53,473         53,377         53,473         53,475         53,344         53,050           53,474         53,377         53,475         53,344         53,050         55,449           53,475         53,344         53,050         53,344         53,050           53,473         53,473         53,475         53,344         53,050                                                                                                                                                                                                                                  | 1954  | 53,369 | 53,329 | 53,339 | 53,406 | 53,351 | 53,220 | 52,927 | 63,439 | 62,912 | 62,433 | 47,240 | 45,423 |
| 34,302         34,225         34,214         34,167         34,061         33,833           52,902         52,813         52,823         52,835         52,704         52,412           52,902         52,813         52,823         52,890         52,835         52,704         52,412           52,902         52,813         52,823         52,890         52,835         52,704         52,412           52,464         52,375         52,830         52,810         52,813         52,814         53,421           53,443         53,356         63,456         63,474         52,318         53,475         53,344           53,377         53,337         53,421         53,475         53,344         53,050           53,456         63,474         62,973         62,973         62,973         65,749           53,377         53,346         53,475         53,344         53,050         64,644           33,135         31,398         53,421         53,443         53,050         65,749           53,377         53,342         53,423         53,422         53,044         53,050           33,135         31,398         53,428         53,428         53,044         54,04                                                                                                                                                                                                                                   | 1955  | 28,995 | 28,354 | 27,851 | 27,616 | 27,351 | 26,905 | 26,697 | 40,478 | 45,605 | 45,228 | 39,937 | 34,433 |
| 52,902         52,813         52,823         52,890         52,835         52,704         52,412           52,464         52,375         52,384         52,408         52,352         52,273         51,982           52,403         52,8130         52,897         52,841         52,711         65,749           52,443         53,354         53,421         53,448         53,444         53,050         64,664         64,340           53,443         53,354         53,421         53,448         53,475         53,344         53,050           53,443         53,356         63,474         62,973         62,373         52,242         52,949           53,475         53,337         53,448         53,474         52,385         57,106         65,749           53,475         53,377         53,387         53,443         53,475         53,344         53,050           53,475         53,377         53,443         53,474         52,793         65,749         57,449           53,413         53,413         53,443         38,271         89,391         37,845         56,714           38,273         38,244         53,443         38,271         86,671         65,749         57,445 </th <th>1956</th> <th>34,302</th> <th>34,225</th> <th>34,214</th> <th>34,218</th> <th>34,167</th> <th>34,061</th> <th>33,833</th> <th>65,675</th> <th>65,443</th> <th>64,950</th> <th>59,236</th> <th>53,090</th> | 1956  | 34,302 | 34,225 | 34,214 | 34,218 | 34,167 | 34,061 | 33,833 | 65,675 | 65,443 | 64,950 | 59,236 | 53,090 |
| 64,905         64,810         64,829         64,805         64,664         64,340           52,464         52,375         52,384         52,408         52,352         52,273         51,982           52,403         52,820         52,830         52,837         53,441         53,050         65,749           53,443         53,354         53,421         53,488         53,475         53,344         53,050           53,377         53,337         53,404         53,428         53,733         53,242         52,949           53,377         53,337         53,404         53,428         53,770         53,373         53,445           53,377         53,377         53,373         30,311         29,790         26,701         26,494           53,470         38,279         38,271         53,444         53,626         65,749           38,279         38,271         53,444         53,626         65,749         65,749           53,313         53,433         38,251         38,199         38,088         37,845           65,769         65,671         65,671         65,740         55,793           51,974         53,770         53,714         55,273         51,443                                                                                                                                                                                                                                  | 1957  | 52,902 | 52,813 | 52,823 | 52,890 | 52,835 | 52,704 | 52,412 | 65,625 | 65,444 | 65,490 | 65,583 | 65,244 |
| 52,464         52,334         52,408         52,352         52,273         51,982           53,443         53,354         53,421         53,488         53,475         53,344         53,050           53,443         53,354         53,421         53,488         53,475         53,344         53,050           63,550         63,456         63,474         62,973         62,385         57,006         65,749           53,377         53,337         53,428         53,373         53,242         52,949           53,377         53,337         53,428         53,373         53,242         52,949           53,377         53,373         53,428         53,373         53,242         52,949           53,31         53,413         53,428         53,373         53,242         52,949           33,135         31,398         30,311         29,790         26,701         26,494           33,135         53,474         65,728         65,719         55,793         51,413           33,135         31,398         30,311         29,790         26,701         26,494           33,470         39,243         65,773         51,423         51,413         51,614                                                                                                                                                                                                                                                  | 1958  | 64,905 | 64,810 | 64,829 | 64,863 | 64,805 | 64,664 | 64,340 | 65,601 | 65,444 | 64,951 | 59,236 | 52,650 |
| 52,909         52,820         52,830         52,837         52,344         53,475         53,344         53,050           53,443         53,354         53,421         53,475         53,344         53,050           53,475         53,475         53,475         53,344         53,050           53,377         53,373         53,474         62,973         62,385         57,006         65,749           53,377         53,377         53,373         53,474         53,475         53,373         53,242         52,949           53,377         53,373         53,474         62,973         62,373         53,242         52,949           53,371         53,373         33,429         30,873         30,311         29,790         26,701         26,494           33,135         31,354         65,674         65,674         65,674         65,671         65,528         65,203           38,270         39,470         39,434         39,444         39,434         39,339         40,705           51,974         51,974         51,917         51,862         51,917         51,862         51,614           53,824         53,735         51,944         55,739         51,713         51,614 <th>1959</th> <th>52,464</th> <th>52,375</th> <th>52,384</th> <th>52,408</th> <th>52,352</th> <th>52,273</th> <th>51,982</th> <th>65,626</th> <th>65,444</th> <th>65,490</th> <th>61,628</th> <th>53,221</th>       | 1959  | 52,464 | 52,375 | 52,384 | 52,408 | 52,352 | 52,273 | 51,982 | 65,626 | 65,444 | 65,490 | 61,628 | 53,221 |
| 53,443         53,354         53,421         53,488         53,475         53,344         53,050           63,550         63,456         63,474         62,973         62,385         57,006         65,749           53,377         53,377         53,404         53,428         53,373         53,242         52,949           53,377         53,377         53,404         53,428         53,373         53,242         52,949           53,377         53,373         53,423         53,423         53,242         52,949           33,135         31,354         53,404         53,428         53,373         53,242         52,949           33,135         31,347         38,251         38,199         30,873         30,311         29,790         26,701         26,494           38,279         38,243         39,434         53,031         39,278         40,705         51,917         51,894         51,917         51,894         51,917         51,894         51,414         55,633         61,514           53,042         53,025         53,710         53,714         53,633         61,514         55,608           53,042         53,726         53,770         53,714         53,633         61,5                                                                                                                                                                                                          | 1960  | 52,909 | 52,820 | 52,830 | 52,897 | 52,841 | 52,711 | 65,754 | 65,585 | 65,444 | 65,490 | 59,752 | 53,632 |
| 63,550         63,476         62,973         62,385         57,006         65,749           53,377         53,337         53,428         53,373         53,242         52,949           53,377         53,337         53,428         53,373         53,242         52,949           33,135         31,398         30,873         30,311         29,790         26,701         26,494           38,279         38,249         38,243         38,251         38,199         38,088         37,845           65,769         65,674         65,694         65,728         65,671         65,528         65,203           39,470         39,433         39,444         39,391         39,278         40,705           51,974         51,885         51,894         51,917         51,876         65,746           53,824         53,745         53,770         53,714         53,633         61,514           53,824         53,735         53,745         53,770         53,714         53,633         61,514           53,824         55,373         51,842         51,917         59,298         55,391         52,608           53,824         55,386         53,770         53,714         53,673                                                                                                                                                                                                                                  | 1961  | 53,443 | 53,354 | 53,421 | 53,488 | 53,475 | 53,344 | 53,050 | 65,624 | 65,444 | 64,951 | 53,683 | 54,305 |
| 53,377         53,404         53,428         53,373         53,404         53,428         53,373         53,242         52,949           33,135         31,398         30,873         30,311         29,790         26,701         26,494           33,135         31,398         30,873         30,311         29,790         26,701         26,494           38,279         38,249         38,243         39,433         30,311         29,790         26,701         26,494           38,276         65,674         65,694         65,728         65,671         65,528         65,203           39,470         39,439         39,434         39,391         39,278         40,705           51,974         51,885         51,894         51,917         51,862         51,733         51,443           53,824         53,745         53,770         53,714         53,633         61,514           53,824         53,775         53,714         53,633         61,514           53,042         52,963         53,714         53,633         61,514           53,025         54,366         53,770         53,714         53,691         55,568           53,026         54,421         64,421                                                                                                                                                                                                                                  | 1962  | 63,550 | 63,456 | 63,474 | 62,973 | 62,385 | 57,006 | 65,749 | 65,598 | 65,444 | 65,490 | 65,090 | 56,228 |
| 33,135         31,398         30,873         30,311         29,790         26,701         26,494           38,279         38,249         38,243         38,251         38,199         38,088         37,845           65,769         65,674         65,694         65,728         65,671         65,528         65,203           39,470         39,439         39,434         39,391         39,278         40,705           51,974         51,894         51,917         51,862         51,733         51,443           53,824         53,745         53,770         53,714         53,633         61,514           53,042         52,963         52,986         52,931         52,801         52,508           53,042         53,745         53,770         53,714         53,633         61,514           53,042         53,745         53,770         53,714         53,633         61,514           53,042         53,745         53,714         53,633         61,514           53,026         53,714         53,693         61,514           53,026         54,421         64,421         64,421         64,222           64,414         64,318         54,223         52,553                                                                                                                                                                                                                                               | 1963  | 53,377 | 53,337 | 53,404 | 53,428 | 53,373 | 53,242 | 52,949 | 65,624 | 65,444 | 59,597 | 51,053 | 48,233 |
| 38,279         38,249         38,243         38,251         38,199         38,088         37,845           65,769         65,674         65,694         65,728         65,671         65,528         65,203           39,470         39,439         39,434         39,391         39,278         40,705           51,974         51,885         51,894         51,917         51,862         51,733         51,443           53,824         53,745         53,770         53,714         53,633         61,514           53,824         53,745         53,770         53,714         53,633         61,514           53,042         52,963         52,986         52,931         52,601         52,508           59,254         59,177         59,206         59,149         59,013         65,746           64,414         64,369         64,421         64,6363         54,222         63,979           55,245         55,144         55,265         56,110         52,608         55,746           55,436         55,345         55,316         55,739         55,739         55,746           55,436         55,318         52,771         52,773         52,659         56,110                                                                                                                                                                                                                                                | 1964  | 33,135 | 31,398 | 30,873 | 30,311 | 29,790 | 26,701 | 26,494 | 43,339 | 50,859 | 50,445 | 45,286 | 38,423 |
| 65,769         65,674         65,694         65,728         65,671         65,528         65,203           39,470         39,439         39,434         39,391         39,278         40,705           51,974         51,885         51,917         51,862         51,733         51,443           53,824         53,745         53,770         53,714         53,633         61,514           53,824         53,735         53,745         53,770         53,714         53,633         61,514           53,824         53,735         53,745         53,770         53,714         53,633         61,514           53,824         53,735         53,745         53,770         53,714         53,633         61,514           53,804         52,963         52,986         52,931         52,801         52,508           59,266         59,177         59,206         59,149         53,079         55,379           59,265         54,421         64,421         64,363         64,222         63,979           55,436         55,345         55,346         55,318         55,739         55,565         56,110           55,436         53,216         53,2739         55,255         54,953                                                                                                                                                                                                                                 | 1965  | 38,279 | 38,249 | 38,243 | 38,251 | 38,199 | 38,088 | 37,845 | 65,664 | 65,443 | 65,490 | 65,174 | 64,837 |
| 39,470         39,439         39,434         39,444         39,391         39,278         40,705           51,974         51,885         51,917         51,862         51,733         51,443           53,824         53,745         53,770         53,714         53,633         61,514           53,824         53,745         53,770         53,714         53,633         61,514           53,824         53,735         53,745         53,770         53,714         53,633         61,514           53,042         52,953         52,963         52,986         52,931         52,801         52,508           59,254         59,162         59,177         59,206         59,149         59,013         65,746           64,414         64,369         64,421         64,363         64,222         63,979           55,436         55,345         55,346         55,346         55,379         55,379           55,436         55,345         55,346         55,379         55,252         54,953           55,436         55,318         53,279         53,265         54,953         56,110           52,830         52,329         53,218         53,265         53,051         52,659                                                                                                                                                                                                                                  | 1966  | 65,769 | 65,674 | 65,694 | 65,728 | 65,671 | 65,528 | 65,203 | 65,599 | 65,444 | 64,951 | 45,850 | 39,742 |
| 51,974       51,885       51,917       51,862       51,733       51,443         53,824       53,735       53,745       53,770       53,714       53,633       61,514         53,824       53,735       53,745       53,770       53,714       53,633       61,514         53,042       52,953       52,963       52,986       52,931       52,801       52,508         59,254       59,162       59,177       59,206       59,149       59,013       65,746         64,414       64,369       64,421       64,423       64,222       63,979         55,436       55,345       55,348       55,384       55,252       54,953         55,436       55,345       55,348       55,739       52,659       56,110         55,436       55,348       53,273       52,659       56,110         52,850       52,771       52,773       52,739       52,659       56,110         53,318       53,229       53,278       53,265       53,051       52,970         53,450       53,210       53,265       53,061       52,970         53,450       53,210       53,266       53,051       52,970         53,450       53,210 </th <th>1967</th> <th>39,470</th> <th>39,439</th> <th>39,434</th> <th>39,444</th> <th>39,391</th> <th>39,278</th> <th>40,705</th> <th>61,512</th> <th>65,456</th> <th>65,490</th> <th>61,625</th> <th>53,803</th>                                                                                                | 1967  | 39,470 | 39,439 | 39,434 | 39,444 | 39,391 | 39,278 | 40,705 | 61,512 | 65,456 | 65,490 | 61,625 | 53,803 |
| 53,824         53,735         53,745         53,770         53,714         53,633         61,514           53,042         52,953         52,963         52,986         52,931         52,801         52,508           53,042         52,9162         59,177         59,206         59,149         59,013         65,746           53,042         52,9162         59,177         59,206         59,149         59,013         65,746           59,254         59,162         59,177         59,206         59,149         59,013         65,746           64,414         64,369         64,388         64,421         64,363         64,222         63,979           55,436         55,345         55,345         55,345         55,346         55,379         52,659         56,110           55,436         52,711         52,753         52,739         52,659         56,110         52,970           53,318         53,229         53,216         53,273         52,256         53,051         52,970           53,450         53,318         53,229         53,210         52,306         53,051         52,070           53,030         53,318         53,210         53,219         53,265         53,051<                                                                                                                                                                                                                  | 1968  | 51,974 | 51,885 | 51,894 | 51,917 | 51,862 | 51,733 | 51,443 | 64,464 | 65,447 | 65,490 | 65,583 | 59,112 |
| 53,042         52,953         52,963         52,986         52,931         52,801         52,508           59,254         59,162         59,177         59,206         59,149         59,013         65,746           64,414         64,369         64,388         64,421         64,363         64,222         63,979           55,436         55,345         55,414         55,398         55,384         55,252         54,953           55,436         55,345         55,414         55,398         55,384         55,252         54,953           55,436         55,345         55,345         55,345         55,3739         52,659         56,110           53,318         53,229         53,273         52,739         52,659         56,110           53,318         53,229         53,276         53,396         53,366         53,071           53,318         53,229         53,410         53,396         53,051         52,659         56,110           53,450         53,218         53,273         52,3266         53,051         52,051           53,014         53,306         53,306         53,061         52,051         52,051           53,021         53,014         53,061                                                                                                                                                                                                                                | 1969  | 53,824 | 53,735 | 53,745 | 53,770 | 53,714 | 53,633 | 61,514 | 65,607 | 65,444 | 65,490 | 62,196 | 53,230 |
| 59,254         59,162         59,177         59,206         59,149         59,013         65,746           64,414         64,369         64,388         64,421         64,363         64,222         63,979           55,436         55,345         55,414         55,398         55,384         55,252         54,953           55,436         55,345         55,414         55,398         55,384         55,252         54,953           52,850         52,771         52,753         52,739         52,659         56,110           53,318         53,229         53,296         53,184         52,970           53,318         53,229         53,278         53,265         53,051           53,318         53,229         53,274         53,061         52,051           53,410         53,396         53,266         53,051         52,688           53,030         52,941         53,008         53,074         52,061         52,688           20,914         20,821         20,812         20,763         22,136           52,269         52,189         52,719         52,070         51,858           52,269         52,189         52,199         52,070         51,858 <th>1970</th> <th>53,042</th> <th>52,953</th> <th>52,963</th> <th>52,986</th> <th>52,931</th> <th>52,801</th> <th>52,508</th> <th>65,625</th> <th>65,444</th> <th>65,490</th> <th>59,773</th> <th>59,456</th>                                 | 1970  | 53,042 | 52,953 | 52,963 | 52,986 | 52,931 | 52,801 | 52,508 | 65,625 | 65,444 | 65,490 | 59,773 | 59,456 |
| 64,414         64,369         64,388         64,421         64,363         64,222         63,979           55,436         55,345         55,414         55,398         55,384         55,252         54,953           55,436         55,345         55,414         55,398         55,384         55,252         54,953           52,850         52,761         52,771         52,753         52,739         52,659         56,110           53,318         53,229         53,296         53,278         53,265         53,184         52,970           53,450         53,229         53,2796         53,278         53,266         53,051         53,051           53,450         53,206         53,274         53,2061         52,981         52,688           53,030         52,941         53,074         53,061         52,981         52,688           20,914         20,821         20,812         20,812         20,763         22,136           52,269         52,189         52,129         52,139         52,070         51,858                                                                                                                                                                                                                                                                                                                                                                                          | 1971  | 59,254 | 59,162 | 59,177 | 59,206 | 59,149 | 59,013 | 65,746 | 65,598 | 65,444 | 65,490 | 65,090 | 64,752 |
| 55,436         55,345         55,414         55,398         55,384         55,252         54,953           52,850         52,761         52,771         52,753         52,739         52,659         56,110           53,318         53,229         53,296         53,278         53,265         53,184         52,970           53,318         53,229         53,296         53,278         53,265         53,184         52,970           53,450         53,360         53,296         53,278         53,396         53,266         53,051           53,450         53,360         53,428         53,410         53,396         53,266         53,051           53,450         53,308         53,074         53,061         52,981         52,688           20,914         20,821         20,812         20,763         20,673         22,136           52,269         52,180         52,189         52,070         51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1972  | 64,414 | 64,369 | 64,388 | 64,421 | 64,363 | 64,222 | 63,979 | 65,602 | 65,444 | 65,490 | 57,826 | 55,629 |
| 52,850         52,761         52,771         52,753         52,739         52,659         56,110           53,318         53,229         53,296         53,278         53,265         53,184         52,970           53,318         53,229         53,296         53,278         53,265         53,184         52,970           53,450         53,360         53,428         53,410         53,396         53,051         52,981         52,051           53,030         52,941         53,008         53,074         53,061         52,981         52,688           20,914         20,821         20,812         20,763         22,136         52,136           52,269         52,180         52,189         52,212         52,199         52,070         51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1973  | 55,436 | 55,345 | 55,414 | 55,398 | 55,384 | 55,252 | 54,953 | 65,620 | 65,444 | 65,490 | 65,135 | 59,099 |
| 53,318         53,229         53,296         53,278         53,265         53,184         52,970           53,450         53,360         53,428         53,410         53,396         53,051         53,051           53,450         53,360         53,428         53,410         53,396         53,051         53,051           53,030         52,941         53,008         53,074         53,061         52,981         52,688           20,914         20,821         20,812         20,763         22,136           52,269         52,180         52,129         52,199         52,070         51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1974  | 52,850 | 52,761 | 52,771 | 52,753 | 52,739 | 52,659 | 56,110 | 65,618 | 65,444 | 65,490 | 59,773 | 53,630 |
| 53,450         53,360         53,428         53,410         53,396         53,266         53,051           53,030         52,941         53,008         53,074         53,061         52,981         52,688           20,914         20,821         20,812         20,763         20,673         22,136           52,269         52,180         52,189         52,212         52,199         52,070         51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1975  | 53,318 | 53,229 | 53,296 | 53,278 | 53,265 | 53,184 | 52,970 | 65,624 | 65,444 | 65,490 | 65,090 | 53,638 |
| 53.030         52,941         53,008         53,074         53,061         52,981         52,688           20,914         20,844         20,821         20,812         20,763         22,136           52,269         52,180         52,189         52,212         52,199         52,070         51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1976  | 53,450 | 53,360 | 53,428 | 53,410 | 53,396 | 53,266 | 53,051 | 65,624 | 65,444 | 65,490 | 59,773 | 53,218 |
| 20,914     20,844     20,821     20,812     20,763     20,673     22,136       52,269     52,180     52,189     52,212     52,199     52,070     51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1977  | 53,030 | 52,941 | 53,008 | 53,074 | 53,061 | 52,981 | 52,688 | 52,355 | 51,890 | 46,123 | 40,170 | 39,864 |
| 52,269 52,180 52,189 52,212 52,199 52,070 51,858 52,070 51,858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1978  | 20,914 | 20,844 | 20,821 | 20,812 | 20,763 | 20,673 | 22,136 | 51,363 | 65,485 | 65,490 | 59,770 | 52,455 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1979  | 52,269 | 52,180 | 52,189 | 52,212 | 52,199 | 52,070 | 51,858 | 65,626 | 65,444 | 65,490 | 65,090 | 53,226 |

Wolford Mountain Reservoir Simulated End-Of-Month Contents No Action Alternative

| WATER<br>YEAR | OCT    | NOV    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | ากเ    | AUG    | SEP     |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 1980          | 53,038 | 52,998 | 53,008 | 53,032 | 52,976 | 52,846 | 52,633 | 65,625 | 65,444 | 65,490 | 59,773 | 53.217. |
| 1981          | 53,030 | 52,941 | 53,007 | 53,074 | 53,061 | 52,931 | 52,638 | 65,625 | 65,444 | 62,972 | 48,380 | 46.444  |
| 1982          | 31,415 | 31,340 | 31,327 | 31,327 | 31,276 | 31,174 | 30,957 | 59,605 | 65,462 | 65,490 | 65,090 | 64,752  |
| 1983          | 64,538 | 64,443 | 64,462 | 64,496 | 64,438 | 64,297 | 63,975 | 65,602 | 65,444 | 65,490 | 65,583 | 62,952  |
| 1984          | 62,618 | 62,574 | 62,591 | 62,623 | 62,566 | 62,476 | 62,238 | 65,606 | 65,444 | 65,490 | 65,583 | 65,244  |
| 1985          | 65,769 | 65,939 | 65,985 | 65,985 | 65,970 | 65,877 | 65,737 | 65,598 | 65,444 | 65,490 | 65,090 | 64,752  |
| 1986          | 65,429 | 65,939 | 65,959 | 65,985 | 65,970 | 65,892 | 65,737 | 65,598 | 65,444 | 65,490 | 65,090 | 64,752  |
| 1987          | 65,755 | 65,939 | 65,959 | 65,985 | 65,928 | 65,785 | 65,737 | 65,598 | 65,444 | 65,202 | 64,803 | 53,433  |
| 1988          | 53,245 | 53,156 | 53,166 | 53,190 | 53,134 | 53,004 | 54,638 | 65,621 | 65,444 | 65,490 | 59,773 | 53,630  |
| 1989          | 53,441 | 53,352 | 53,419 | 53,487 | 53,431 | 53,300 | 64,120 | 65,594 | 65,444 | 64,951 | 54,177 | 53,098  |
| 1990          | 52,911 | 52,822 | 52,831 | 52,898 | 52,843 | 52,713 | 52,421 | 64,714 | 65,446 | 64,953 | 53,373 | 51,747  |
| 1991          | 51,439 | 51,351 | 51,416 | 51,481 | 51,468 | 51,340 | 51,052 | 65,629 | 65,444 | 65,490 | 59,773 | 53,629  |
| 1992          | 53,441 | 53,351 | 53,362 | 53,386 | 53,330 | 53,200 | 52,985 | 65,624 | 65,444 | 64,951 | 50,849 | 46,666  |
| 1993          | 45,405 | 45,320 | 45,322 | 45,338 | 45,284 | 45,164 | 44,977 | 65,646 | 65,444 | 65,490 | 65,090 | 64,340  |
| 1994          | 64,003 | 63,909 | 63,927 | 63,960 | 63,903 | 63,762 | 63,520 | 65,603 | 65,444 | 59,647 | 49,162 | 48,886  |
| 1995          | 48,615 | 48,531 | 48,582 | 48,597 | 48,550 | 48,425 | 48,211 | 65,637 | 65,444 | 65,490 | 65,090 | 64,752  |
| 1996          | 64,442 | 64,356 | 64,376 | 64,405 | 64,354 | 64,213 | 65,739 | 65,598 | 65,444 | 65,490 | 59,773 | 59,456  |
| 1997          | 59,158 | 59,075 | 59,090 | 59,115 | 59,065 | 58,958 | 64,813 | 65,600 | 65,444 | 65,490 | 65,090 | 64,752  |
| 1998          | 64,999 | 65,330 | 65,364 | 65,409 | 65,352 | 65,209 | 65,738 | 65,598 | 65,444 | 65,490 | 65,090 | 59,466  |
| 1999          | 59,169 | 59,086 | 59,158 | 59,182 | 59,133 | 58,997 | 58,704 | 65,613 | 65,444 | 65,490 | 65,090 | 64,280  |
| 2000          | 54,952 | 54,871 | 54,939 | 54,961 | 54,912 | 54,780 | 55,693 | 65,619 | 65,444 | 64,951 | 53,171 | 52,024  |
| 2001          | 51,839 | 51,759 | 51,768 | 51,787 | 51,739 | 51,610 | 51,378 | 65,628 | 65,444 | 64,951 | 54,183 | 47,212  |
| 2002          | 46,947 | 46,871 | 46,874 | 46,887 | 46,837 | 46,715 | 46,523 | 46,224 | 45,807 | 39,507 | 29,043 | 27,665  |
| · 2003        | 19,790 | 19,724 | 19,699 | 19,684 | 19,639 | 19,551 | 19,386 | 48,920 | 65,495 | 65,002 | 59,044 | 52,632  |
| 2004          | 52,445 | 52,365 | 52,375 | 52,394 | 52,346 | 52,245 | 51,969 | 59,728 | 63,639 | 63,156 | 47,168 | 46,430  |
| 2005          | 29,760 | 29,694 | 29,680 | 29,675 | 29,632 | 29,531 | 29,374 | 57,516 | 65,467 | 65,490 | 65,090 | 58,353  |
| AVERAGE:      | 52,204 | 52,113 | 52,118 | 52,121 | 52,055 | 51,783 | 52,909 | 63,127 | 64,162 | 63,598 | 58,573 | 54,526  |
| MINIMUM       | 19,790 | 19,724 | 19,699 | 19,684 | 19,639 | 19,551 | 19,386 | 40,478 | 45,605 | 39,507 | 29,043 | 27,665  |
| MAXIMUM:      | 65,769 | 65,939 | 65,985 | 65,985 | 65,970 | 65,892 | 65,754 | 65,675 | 65,495 | 65,490 | 65,583 | 65,646  |

Williams Fork Reservoir Simulated End-Of-Month Contents No Action Alternative

| 1950       66,230       61,473         1951       61,460       58,237         1953       72,660       68,402         1955       71,991       67,956         1955       31,759       28,592         1955       31,759       28,592         1955       31,759       28,592         1955       31,759       28,592         1955       24,874       20,956         1956       24,874       20,956         1957       27,720       24,605         1958       72,530       68,315         1959       68,867       65,875         1950       56,450       51,262         1961       75,280       70,148         1961       75,280       70,148         1963       76,701       71,095         1964       29,389       26,709         1965       19,686       16,423         1965       19,686       16,423         1966       19,686       16,423         1967       33,293       30,854         1968       36,292       32,885         1969       36,292       32,885         1969       36, |        | NHO    |        |        |        |        |        | 201    | 504    | SEP    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 61,460<br>62,937<br>71,991<br>71,991<br>24,874<br>24,874<br>24,874<br>72,530<br>68,867<br>56,450<br>75,720<br>75,720<br>19,686<br>62,782<br>19,686<br>62,782<br>33,293<br>33,293<br>748<br>748<br>748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59,007 | 58,061 | 56,473 | 54,174 | 59,260 | 68,579 | 86,429 | 90,030 | 73,597 | 66,382 |
| 62,937<br>72,660<br>31,759<br>24,874<br>27,720<br>68,867<br>68,867<br>56,450<br>72,530<br>63,014<br>76,701<br>29,389<br>19,686<br>33,293<br>33,293<br>36,292<br>36,292<br>29,389<br>76,701<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56,028 | 54,784 | 53,948 | 51,500 | 50,874 | 66,035 | 96,052 | 96,303 | 89,843 | 72,487 |
| 72,660<br>71,991<br>31,759<br>24,874<br>22,720<br>68,867<br>56,450<br>75,280<br>63,014<br>75,280<br>76,701<br>76,701<br>29,389<br>19,686<br>33,293<br>33,293<br>33,293<br>748<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55,994 | 53,371 | 51,689 | 49,386 | 57,503 | 82,436 | 96,289 | 96,302 | 89,842 | 79,610 |
| 71,991<br>31,759<br>24,874<br>27,720<br>68,867<br>56,450<br>75,280<br>75,280<br>75,280<br>19,686<br>82,782<br>33,293<br>33,293<br>33,293<br>34,748<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64,261 | 60,058 | 58,428 | 56,518 | 55,835 | 65,976 | 87,680 | 91,515 | 83,922 | 77,315 |
| 31,759<br>24,874<br>24,874<br>72,530<br>68,867<br>56,450<br>75,280<br>75,280<br>19,686<br>19,686<br>33,293<br>33,293<br>33,293<br>33,293<br>34,748<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64,038 | 60,058 | 59,434 | 57,595 | 56,718 | 60,661 | 63,080 | 59,818 | 53,045 | 47,623 |
| 24,874<br>27,720<br>68,867<br>56,450<br>75,280<br>75,280<br>75,701<br>29,389<br>19,686<br>82,782<br>33,293<br>33,293<br>33,292<br>33,292<br>34,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26,430 | 24,588 | 23,516 | 22,038 | 27,090 | 34,373 | 43,012 | 45,767 | 40,682 | 30,764 |
| 27,720<br>72,530<br>68,867<br>56,450<br>75,280<br>63,014<br>63,014<br>19,686<br>29,389<br>19,686<br>33,293<br>33,293<br>33,293<br>36,292<br>36,292<br>36,292<br>36,292<br>36,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18,580 | 16,797 | 15,016 | 12,650 | 18,516 | 33,887 | 43,618 | 45,617 | 37,495 | 32,617 |
| 72,530<br>68,867<br>56,450<br>75,280<br>63,014<br>76,701<br>29,389<br>19,686<br>83,293<br>36,292<br>36,292<br>36,292<br>36,292<br>36,292<br>36,292<br>36,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23,270 | 21,693 | 20,219 | 18,915 | 18,664 | 30,274 | 70,295 | 96,360 | 89,890 | 83,586 |
| 68,867<br>56,450<br>75,280<br>63,014<br>76,701<br>29,389<br>19,686<br>62,782<br>33,293<br>36,292<br>36,292<br>36,292<br>36,292<br>36,292<br>36,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64,218 | 60,058 | 57,917 | 55,640 | 55,210 | 82,436 | 96,069 | 96,303 | 80,310 | 73,830 |
| 56,450<br>75,280<br>63,014<br>29,389<br>19,686<br>82,782<br>33,293<br>33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62,996 | 60,057 | 58,529 | 56,341 | 55,694 | 63,247 | 72,184 | 73,314 | 66,954 | 60,012 |
| 75,280<br>63,014<br>76,701<br>29,389<br>19,686<br>33,293<br>33,293<br>36,292<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46,402 | 43,953 | 41,843 | 39,863 | 49,419 | 63,666 | 91,097 | 95,961 | 86,484 | 80,628 |
| 63,014<br>76,701<br>19,686<br>62,782<br>33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65,135 | 60,058 | 59,048 | 57,985 | 54,879 | 63,197 | 80,052 | 77,057 | 65,626 | 64,238 |
| 76,701<br>29,389<br>62,782<br>62,782<br>33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56,942 | 54,709 | 53,188 | 51,415 | 66,434 | 92,205 | 96'099 | 96,303 | 88,551 | 82,519 |
| 29,389<br>19,686<br>62,782<br>33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65,609 | 60,058 | 58,571 | 56,236 | 55,926 | 56,258 | 57,961 | 54,409 | 53,358 | 43,400 |
| 19,686<br>62,782<br>33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25,182 | 23,721 | 22,211 | 19,930 | 16,057 | 26,229 | 32,254 | 32,168 | 28,783 | 23,165 |
| 62,782<br>33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13,747 | 11,356 | 9,228  | 7,021  | 11,309 | 20,056 | 50,163 | 66,660 | 65,236 | 63,928 |
| 33,293<br>36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56,941 | 54,849 | 53,607 | 51,253 | 50,735 | 55,217 | 58,677 | 59,878 | 42,551 | 37,579 |
| 36,292<br>21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29,483 | 28,310 | 27,062 | 24,951 | 29,155 | 34,394 | 51,615 | 57,891 | 48,543 | 41,459 |
| 21,555<br>49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31,049 | 29,500 | 27,688 | 25,588 | 21,489 | 26,139 | 38,706 | 43,038 | 45,531 | 29,598 |
| 49,748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15,039 | 12,342 | 10,337 | 7,748  | 14,130 | 27,849 | 55,299 | 64,177 | 57,831 | 48,157 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46,084 | 43,241 | 40,942 | 38,310 | 37,972 | 62,658 | 96,182 | 96,303 | 89,842 | 83,548 |
| 77,466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65,863 | 60,058 | 57,133 | 53,599 | 62,280 | 76,916 | 96,049 | 96,303 | 88,852 | 79,758 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63,615 | 60,057 | 57,766 | 53,966 | 58,120 | 62,602 | 71,934 | 72,080 | 55,015 | 50,257 |
| 48,491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42,496 | 40,441 | 38,901 | 37,286 | 36,826 | 52,726 | 86,198 | 96,326 | 89,267 | 80,738 |
| 75,363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 65,162 | 60,058 | 58,418 | 56,201 | 61,638 | 82,209 | 96,016 | 96,303 | 83,411 | 76,044 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61,995 | 60,057 | 58,207 | 55,872 | 55,200 | 59,191 | 69,310 | 83,859 | 76,012 | 66,031 |
| 60,679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54,572 | 52,412 | 50,413 | 47,704 | 51,416 | 57,569 | 65,612 | 68,964 | 62,236 | 55,050 |
| 47,016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41,322 | 40,196 | 38,940 | 37,092 | 36,522 | 37,790 | 42,149 | 33,067 | 15,849 | 11,186 |
| 3,042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,145  | 1,043  | 941    | 831    | 5,929  | 13,760 | 31,247 | 35,092 | 30,574 | 23,356 |
| <b>1979</b>   19,976 17,144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14,700 | 11,833 | 9,494  | 6,309  | 10,439 | 22,377 | 49,540 | 60,199 | 54,529 | 48,680 |

Williams Fork Reservoir Simulated End-Of-Month Contents No Action Alternative

| WATER    |        |        |        |        |        |        |        |        |        |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR     | 100    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | МАҮ    | NUS    | JUL    | AUG    | SEP    |
| 1980     | 43,654 | 40,421 | 37,588 | 34,085 | 31,068 | 29,388 | 29,750 | 43,117 | 64.424 | 67.635 | 61.115 | 51 982 |
| 1981     | 46,010 | 42,978 | 40,855 | 39,521 | 38,289 | 36,600 | 31,028 | 35,587 | 43,181 | 41,611 | 24.277 | 13,414 |
| 1982     | 8,552  | 5,914  | 4,017  | 2,091  | 761    | 651    | 642    | 7,977  | 31,192 | 43,271 | 40,479 | 40.557 |
| 1983     | 40,239 | 36,407 | 32,125 | 29,510 | 26,154 | 24,852 | 19,647 | 31,556 | 95,107 | 96,305 | 89,844 | 80,869 |
| 1984     | 73,252 | 68,796 | 63,824 | 59,887 | 57,760 | 53,651 | 52,950 | 90,996 | 96,267 | 96,302 | 89.842 | 83.548 |
| 1985     | 77,466 | 71,604 | 65,863 | 60,058 | 58,166 | 55,099 | 65,494 | 88,839 | 96,273 | 96,302 | 89,412 | 81,975 |
| 1986     | 76,289 | 70,820 | 65,471 | 60,058 | 59,466 | 63,499 | 70,808 | 87,296 | 96,210 | 96,302 | 89,842 | 83.548 |
| 1987     | 77,466 | 71,604 | 65,863 | 60,058 | 57,260 | 54,631 | 59,608 | 70,530 | 84,110 | 86,390 | 77,305 | 71,431 |
| 1988     | 66,479 | 63,026 | 59,771 | 55,928 | 52,872 | 51,171 | 57,682 | 71,697 | 96,089 | 96,303 | 76,271 | 69,720 |
| 1989     | 65,001 | 61,721 | 59,349 | 57,566 | 55,711 | 52,958 | 58,874 | 66,970 | 72,130 | 68,901 | 66,823 | 59,199 |
| 1990     | 54,694 | 51,129 | 47,881 | 45,542 | 43,376 | 40,201 | 39,593 | 45,797 | 52,460 | 53,807 | 35,776 | 26,562 |
| 1991     | 17,941 | 13,502 | 10.684 | 8,441  | 6,864  | 4,294  | 3,779  | 20,255 | 43,875 | 46,193 | 43,169 | 39.774 |
| 1992     | 34,434 | 29,602 | 26,430 | 23,885 | 21,115 | 16,765 | 21,665 | 36,591 | 48,980 | 53,931 | 28,741 | 18.573 |
| 1993     | 6,856  | 2,245  | 1,265  | 1,163  | 1,061  | 950    | 938    | 28,058 | 64,108 | 78,288 | 74,891 | 64,502 |
| 1994     | 56,070 | 52,068 | 48,681 | 45,555 | 43,076 | 39,836 | 43,734 | 58,240 | 69,754 | 66,721 | 55,560 | 45,804 |
| 1995     | 40,427 | 37,127 | 34,613 | 32,464 | 29,736 | 26,075 | 19,526 | 28,177 | 69,051 | 96,363 | 89,892 | 74.980 |
| 1996     | 67,435 | 63,137 | 58,650 | 53,607 | 49,558 | 45,392 | 53,128 | 84,229 | 96,091 | 96,303 | 89.108 | 79.043 |
| 1997     | 70,586 | 64,512 | 59,331 | 54,847 | 50,182 | 46,059 | 51,503 | 78,448 | 96,148 | 96,303 | 89,842 | 83,548 |
| 1998     | 77,466 | 71,604 | 65,863 | 60,058 | 56,272 | 52,283 | 55,973 | 65,502 | 74,095 | 83,622 | 79,319 | 63.558 |
| 1999     | 55,003 | 49,916 | 46,885 | 43,289 | 40,232 | 35,407 | 34,760 | 43,602 | 61,972 | 69,439 | 67,544 | 51.351 |
| 2000     | 42,884 | 38,934 | 35,146 | 31,202 | 27,657 | 23,439 | 29,112 | 52,083 | 67,151 | 70,807 | 51,279 | 38,472 |
| 2001     | 31,224 | 27,556 | 23,539 | 20,340 | 17,563 | 13,797 | 13,379 | 27,336 | 37,825 | 43,441 | 19,238 | 7,747  |
| 2002     | 1,422  | 1,321  | 1,225  | 1,124  | 1,022  | 911    | 668    | 4,561  | 5,499  | 912    | 892    | 742    |
| 2003     | 734    | 634    | 536    | 433    | 331    | 224    | 220    | 33,075 | 70,763 | 76,719 | 67,872 | 54,659 |
| 2004     | 47,995 | 44,111 | 41,104 | 38,305 | 35,546 | 31,498 | 30,918 | 40,891 | 46,375 | 49,333 | 26,825 | 17,922 |
| 2005     | 10,018 | 6,403  | 4,288  | 1,690  | 1,059  | 948    | 8,323  | 29,940 | 51,315 | 59,668 | 54,090 | 47,737 |
| AVERAGE: | 49,056 | 45,291 | 42,110 | 39,259 | 37,344 | 35,080 | 37,414 | 50,933 | 67,881 | 71,581 | 62,731 | 54,728 |
|          | 734    | 634    | 536    | 433    | 331    | 224    | 220    | 4,561  | 5,499  | 912    | 892    | 742    |
| MAXIMUM: | 77,466 | 71,604 | 65,863 | 60,058 | 59,466 | 63,499 | 70,808 | 92,205 | 96,289 | 96,363 | 89,892 | 83,586 |

Dilton Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| WATER | OCT     | NON     | DEC     | JAN     | EB      | MAR     | APR     | MAV     | NI      |         |         |         |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| TEAH  |         |         |         |         |         |         |         |         |         | 100     | 504     |         |
| 1950  | 224,767 | 221,933 | 215,493 | 211,963 | 208,859 | 201,987 | 193,145 | 207,430 | 255,969 | 255,968 | 229.238 | 209.214 |
| 1951  | 191,575 | 185,278 | 178,652 | 173,050 | 166,179 | 161,068 | 160,907 | 190,082 | 256,006 | 255,968 | 255,546 | 241.566 |
| 1952  | 233,784 | 228,119 | 221,002 | 216,059 | 211,400 | 206,901 | 212,208 | 256,257 | 255,871 | 255,969 | 256.162 | 236,564 |
| 1953  | 221,102 | 213,985 | 208,513 | 206,004 | 202,410 | 194,486 | 186,797 | 200,889 | 255,983 | 255,968 | 255,624 | 229.777 |
| 1954  | 208,947 | 201,080 | 193,604 | 188,931 | 181,917 | 175,666 | 151,882 | 152,589 | 146,591 | 126,052 | 112,858 | 102,028 |
| 1955  | 96,663  | 91,937  | 88,255  | 82,605  | 78,542  | 73,113  | 73,481  | 90,754  | 118,424 | 114,114 | 112.951 | 112,350 |
| 1956  | 106,429 | 102,675 | 98,523  | 89,594  | 83,748  | 76,914  | 77,925  | 120,303 | 171,495 | 168.051 | 141.849 | 115,776 |
| 1957  | 103,232 | 95,029  | 87,523  | 77,484  | 71,291  | 64,175  | 63,535  | 94,470  | 192,616 | 256,087 | 255,698 | 255,827 |
| 1958  | 255,929 | 255,473 | 253,474 | 249,843 | 247,162 | 246,420 | 246,027 | 256,208 | 255,871 | 255,969 | 236,525 | 216,087 |
| 1959  | 201,314 | 196,177 | 191,130 | 188,132 | 184,990 | 181,598 | 183,383 | 205,164 | 255,974 | 255,968 | 235,793 | 217.463 |
| 1960  | 216,941 | 214,780 | 209,907 | 204,381 | 199,282 | 197,805 | 201,526 | 228,282 | 255,928 | 255,969 | 228,347 | 202.909 |
| 1961  | 191,288 | 187,837 | 183,058 | 177,916 | 172,864 | 167,722 | 160,278 | 179,388 | 219,151 | 224,544 | 218,041 | 230,075 |
| 1962  | 242,135 | 240,249 | 239,921 | 239,969 | 239,892 | 238,681 | 251,687 | 256,200 | 255,871 | 255,969 | 238,477 | 213,451 |
| 1963  | 197,757 | 191,984 | 186,064 | 179,811 | 175,304 | 170,864 | 156,668 | 151,039 | 148,555 | 121,678 | 107,508 | 98.021  |
| 1964  | 89,787  | 87,478  | 83,271  | 80,575  | 77,336  | 73,569  | 71,101  | 92,718  | 120,297 | 118,116 | 101,300 | 90,561  |
| 1965  | 83,669  | 79,568  | 76,145  | 69,665  | 65,741  | 60,385  | 61,745  | 93,825  | 193,244 | 256,085 | 255,610 | 255,739 |
| 1966  | 255,996 | 255,541 | 254,343 | 253,941 | 251,308 | 250,712 | 246,078 | 252,702 | 255,878 | 233,546 | 213,935 | 196,865 |
| 1967  | 186,807 | 180,816 | 172,885 | 166,575 | 160,565 | 152,352 | 143,301 | 165,445 | 214,182 | 231,183 | 220,282 | 219,581 |
| 1968  | 213,140 | 207,752 | 199,367 | 192,318 | 186,202 | 180,802 | 181,445 | 193,810 | 251,014 | 255,978 | 255,950 | 243.589 |
| 1969  | 235,574 | 229,494 | 223,679 | 220,495 | 214,493 | 209,089 | 203,083 | 241,877 | 255,900 | 255,969 | 243,989 | 238,550 |
| 0/61  | 238,876 | 238,426 | 238,198 | 237,482 | 234,772 | 233,820 | 235,862 | 256,223 | 255,871 | 255,969 | 255,468 | 246,407 |
| 1261  | 246,878 | 246,426 | 243,264 | 241,482 | 240,196 | 239,301 | 245,664 | 256,209 | 255,871 | 255,969 | 245,465 | 242,245 |
| 19/2  | 238,548 | 235,272 | 230,999 | 228,823 | 225,372 | 223,223 | 220,929 | 245,172 | 255,894 | 255,969 | 237,119 | 221,944 |
| 19/3  | 207,589 | 202,065 | 196,140 | 189,405 | 181,714 | 174,268 | 174,494 | 202,119 | 255,981 | 255,968 | 254,277 | 241,352 |
| 19/4  | 237,240 | 233,861 | 230,625 | 229,404 | 228,654 | 228,440 | 231,773 | 256,229 | 255,871 | 255,969 | 237,983 | 218,619 |
| 1975  | 211,138 | 204,077 | 196,490 | 191,614 | 188,366 | 185,118 | 185,507 | 202,765 | 255,979 | 255,968 | 250,282 | 230,827 |
| 19/6  | 215,522 | 212,332 | 208,338 | 205,561 | 202,662 | 201,146 | 193,236 | 214,392 | 239,443 | 241,477 | 229,771 | 221,155 |
| 1971  | 219,931 | 215,611 | 208,045 | 200,824 | 194,140 | 189,714 | 196,192 | 204,115 | 211,003 | 184,847 | 166,489 | 146,726 |
| 1978  | 137,872 | 134,006 | 128,644 | 121,697 | 118,315 | 113,587 | 112,108 | 135,754 | 224,425 | 244,137 | 219,232 | 190,675 |
| 1979  | 174,158 | 167,500 | 160,015 | 151,453 | 147,432 | 145,820 | 149,464 | 181,026 | 256,026 | 255,968 | 255,652 | 235,037 |
|       |         |         |         |         |         |         |         |         |         |         |         |         |

Dillon Reservoir Simulated End-Of-Month Contents No Action Alternative

234,808 227,017 219,856 234,517 249,229 240,983 235,569 115,733 213,124 216,180 251,706 237,743 245,137 113,703 174,746 127,082 210,230 256,244 142,785 250,949 256,244 256,116 220,458 233,610 245,073 235,667 243,857 230,031 90,561 SEP 251,898 131,006 187,146 248,732 248,994 143,427 226,177 249,728 249,346 244,316 254,173 245,723 222,829 101,300 231,348 155,891 248,591 256,118 255,989 238,440 239,017 254,182 256,162 245,795 256,162 256,162 248,027 128,444 256,162 AUG 255,969 255,969 255,969 255,969 255,969 255,969 255,969 171,747 141,497 233,049 255,969 252,955 255,969 255,969 255,969 255,969 253,804 205,009 161,154 114,114 255,969 167,840 255,969 255,969 255,969 255,980 238,772 256,087 235,097 JUL 253,875 255,954 255,875 255,896 193,713 157,508 118,424 255,922 255,871 255,871 255,901 178,232 255,877 255,893 255,871 189,471 150,738 231,840 256,026 202,413 255,871 255,871 255,871 255,871 255,953 249,834 255,930 255,894 255,871 NN 152,988 35,890 256,194 256,235 256,232 198,097 205,648 69,457 256,215 231,156 197,711 226,945 228,912 253,580 245,536 215,270 254,263 244,088 241,475 118,491 09,056 256,257 256,170 256,196 256,193 256,217 90,754 244,776 215,501 MAY 112,363 229,769 255,876 193,674 143,895 256,486 177,861 200,522 217,463 218,201 71,946 241,276 206,940 198,969 240,214 229,656 227,199 208,492 185,058 256,486 213,471 169,514 247,598 254,495 186,176 96,768 211,171 81,832 61,745 APR 115,275 173,430 208,069 223,322 211,235 197,126 253,960 234,039 189,768 220,449 195,997 246,372 233,212 231,194 148,891 71,532 85,468 60,385 253,960 176,245 244,650 249,782 223,502 201,567 201,508 204,003 219,798 81,785 210,771 MAR (AF) 178,836 189,955 179,401 213,096 150,444 254,192 201,762 244,875 205,279 225,454 202,856 77,805 188,839 254,192 210,973 120,406 239,228 223,713 208,697 212,888 222,868 247,150 232,950 65,741 250,011 198,220 233,430 221,332 88,063 Ë 235,346 224,455 256,565 224,373 228,088 216,005 207,797 153,365 208,194 200,544 24,275 253,404 241,338 202,030 193,991 184,154 214,939 226,079 248,159 233,824 83,080 93,339 92,468 256,565 184,253 245,123 216,991 211,420 69,665 JAN 212,890 189,428 242,399 238,056 227,319 196,302 226,537 211,664 126,819 190,129 221,359 235,127 230,609 218,818 88,579 256,508 211,476 254,508 256,508 202,820 198,794 228,940 204,179 156,602 245,821 221,761 248,896 97,314 76,145 DEC 130,949 230,878 206,843 250,675 241,770 232,390 198,107 216,154 207,971 215,757 194,231 248,410 243,577 233,190 236,220 234,929 219,516 95,649 61,282 03,410 200,952 256,726 255,204 256,726 204,638 226,867 79,568 228,751 222,461 NOV 251,129 234,349 235,318 238,990 65,376 107,744 204,805 83,669 255,659 212,258 205,678 232,679 219,314 228,746 237,195 236,668 102,089 256,372 220,524 198,052 34,664 250,597 256,372 243,772 209,492 211,067 226,787 225,981 243,977 50 MAXIMUM: AVERAGE: MINIMUM: WATER YEAR 1990 1992 1993 1994 1995 1996 1998 1999 2000 2002 2003 2004 1980 1981 982 1983 984 1985 1986 1987 1988 1989 1991 1997 2001 2005

Upper Blue Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| YEAR<br>1950 0<br>1951 0<br>1953 0<br>1955 0<br>1956 0<br>1958 0<br>1950 0<br>1960 0<br>1961 0                                                              | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000 |    |    | 0  | 592 | 2,066 | 2,046 | 1,221 | 188   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------|----|----|----|-----|-------|-------|-------|-------|
|                                                                                                                                                             |                                         | 000000000000000000000000000000000000000 | 0000 | 00 | 00 | 0  | 592 | 2,066 | 2,046 | 1,221 | 188   |
|                                                                                                                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 000000000000000000000000000000000000000 | 000  | С  | C  |    |     |       |       |       |       |
| 1952<br>1953<br>1954<br>1955<br>1956<br>1958<br>1960<br>1961<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 000000000000000000000000000000000000000 | 00   | •  | >  | 0  | 592 | 2,066 | 2,046 | 2,059 | 1,008 |
| 1953<br>1954<br>1955<br>1956<br>1958<br>1958<br>1960<br>1961<br>0<br>0                                                                                      |                                         | 00000000000                             | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 1,056 |
| 1954 0<br>1955 0<br>1956 0<br>1958 0<br>1960 0<br>1961 0<br>0 0                                                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00000000000                             | ,    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 1,930 |
| 1955<br>1956 0<br>1957 0<br>1958 0<br>1960 0<br>1961 0                                                                                                      |                                         | 0000000000                              | 0    | 0  | 0  | 0  | 592 | 2,053 | 1,269 | 0     | 0     |
| 1956 0<br>1957 0<br>1958 0<br>1960 0<br>1961 0                                                                                                              |                                         | 00000000                                | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 913   |
| 1957 0<br>1958 0<br>1960 0<br>1961 0                                                                                                                        | 0000000                                 | 000000                                  | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 1,762 | 1.723 |
| 1958 0<br>1959 0<br>1960 0<br>1961 0                                                                                                                        | 000000                                  | 00000                                   | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 2,067 |
| <b>1959</b> 0<br><b>1960</b> 0<br><b>1961</b> 0                                                                                                             | 00000                                   | 0000                                    | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 1,993 | 1,949 |
| <b>1960</b> 0<br>1961 0                                                                                                                                     | 0000                                    | 0000                                    | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 2,014 |
| 1961 0                                                                                                                                                      | 000                                     | 000                                     | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 1,935 | 1,893 |
|                                                                                                                                                             | 00                                      | 0 0                                     | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 0     | 2,090 |
| 1962 0                                                                                                                                                      | 0                                       | <                                       | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 2,000 |
| <b>1963</b> 0                                                                                                                                               |                                         | D                                       | 0    | 0  | 0  | 0  | 592 | 1,290 | 2,059 | 0     | 0     |
| 1964 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 319   | 312   |
| <b>1965</b> 0                                                                                                                                               | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 2,059 | 2,067 |
| 1966 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 592 | 2,066 | 2,046 | 0     | 0     |
|                                                                                                                                                             | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 170 | 1,308 | 2,058 | 1,125 | 322   |
| 1968 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 1,752 | 2,051 | 2,059 | 1,084 |
|                                                                                                                                                             | 0                                       | 0                                       | 0    | 0  | 0  | 76 | 765 | 1,811 | 2,050 | 1,722 | 230   |
| 1970 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 409 | 2,019 | 2,047 | 2,059 | 2,067 |
| 1971 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 1,470 | 2,056 | 2,059 | 493   |
| 1972 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 1,593 | 2,054 | 649   | 0     |
| - 1973 0                                                                                                                                                    | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 1,350 | 2,058 | 2,059 | 188   |
| 1974 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 1,897 | 2,049 | 2,059 | 179   |
| 1975 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 774   | 2,067 | 2,059 | 642   |
| 1976 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 0   | 894   | 2,065 | 2,059 | 745   |
| 1977 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | Ö  | 243 | 1,020 | 832   | 0     | 0     |
| <b>1978</b> 0                                                                                                                                               | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 160 | 1,805 | 2,050 | 2,059 | 212   |
| 1979 0                                                                                                                                                      | 0                                       | 0                                       | 0    | 0  | 0  | 0  | 328 | 1,629 | 2,053 | 2,059 | 251   |

Upper Blue Reservoir Simulated End-Of-Month Contents No Action Alternative

(AF)

SEP AUG 2,059 2,058 2,058 2,058 2,046 2,046 2,046 2,052 2,046 2,056 2,046 2,056 2,046 2,056 2,046 2,056 2,046 2,046 2,046 2,048 3,050 2,046 2,058 2,046 2,058 2,058 2,058 2,058 2,058 2,046 2,058 2,046 2,058 2,046 2,058 2,046 2,058 2,046 2,058 2,046 2,058 2,046 2,046 2,058 2,046 2,058 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,058 2,046 2,058 2,046 2,058 2,046 2,058 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,046 2,056 2,056 2,046 2,056 2,046 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 2,056 ,665 847 JUL 560 560 1,720 1,954 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 1,955 2,074 2,074 2,074 2,075 2,074 2,075 2,074 2,075 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 2,077 NN MAY APR MAR FEB JAN DEC Nov oct **MAXIMUM:** AVERAGE: **MINIMUM:** WATER YEAR 1988 1989 1990 1992 1994 1995 1996 1997 1998 2000 2001 2003 

Green Mountain Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| WATER |         |         |         |        |        |        |        |         |         |         |         |         |
|-------|---------|---------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| YEAR  | 001     | NON     | DEC     | JAN    | FEB    | MAR    | APR    | МАҮ     | NUL     | JUL     | AUG     | SEP     |
| 1950  | 103,699 | 93,313  | 87,557  | 81,774 | 75,873 | 69,926 | 78,823 | 111,439 | 153,974 | 153.965 | 130.399 | 119.934 |
| 1951  | 94,171  | 87,293  | 80,538  | 73,756 | 66,866 | 59,933 | 56,099 | 93,613  | 154,012 | 153,965 | 154,093 | 140.197 |
| 1952  | 114.777 | 103,771 | 92,906  | 82,008 | 70,991 | 59,932 | 68,927 | 104,551 | 153,988 | 153,965 | 154,093 | 140.911 |
| 1953  | 115,403 | 105,271 | 95,282  | 85,260 | 75,116 | 64,928 | 60,713 | 85,104  | 154,030 | 153,965 | 152,807 | 140.524 |
| 1954  | 115,050 | 105,989 | 97,071  | 88,121 | 79,046 | 69,925 | 66,043 | 89,460  | 93,965  | 77,201  | 76,866  | 75.603  |
| 1955  | 74,492  | 73,556  | 72,729  | 71,880 | 70,927 | 69,928 | 75,878 | 100,003 | 123,247 | 120,612 | 119,703 | 111.501 |
| 1956  | 86,108  | 81,845  | 77,699  | 73,529 | 69,252 | 64,930 | 70,550 | 131,540 | 153,938 | 140,766 | 126.978 | 117.008 |
| 1957  | 91,561  | 85,206  | 78,972  | 72,711 | 66,343 | 59,933 | 57,587 | 66,456  | 131,262 | 153,999 | 154,093 | 140,911 |
| 1958  | 127,987 | 115,335 | 102,835 | 90,299 | 77,635 | 64,927 | 61,545 | 154,244 | 153,902 | 151,743 | 121,678 | 113,190 |
| 1959  | 87,361  | 82,847  | 78,452  | 74,031 | 69,503 | 64,930 | 58,615 | 80,383  | 142,228 | 153,983 | 138,066 | 127,204 |
| 1960  | 103,534 | 95,780  | 88,158  | 80,508 | 72,740 | 64,929 | 75,123 | 94,618  | 154,009 | 153,965 | 136,849 | 126,877 |
| 1961  | 101,490 | 95,146  | 88,933  | 82,691 | 76,332 | 69,926 | 63,234 | 87,022  | 116,111 | 100,820 | 100,000 | 93,947  |
| 1962  | 88,084  | 82,425  | 76,885  | 71,319 | 65,647 | 59,934 | 78,475 | 150,073 | 153,908 | 153,965 | 149,755 | 122.003 |
| 1963  | 96,615  | 91,247  | 86,007  | 80,739 | 75,356 | 69,926 | 72,996 | 88,105  | 106,641 | 80,969  | 80,214  | 78.464  |
| 1964  | 76,872  | 75,459  | 74,157  | 72,833 | 71,404 | 69,928 | 64,574 | 85,782  | 107,138 | 120,951 | 112,092 | 104.281 |
| 1965  | 82,245  | 77,756  | 73,380  | 68,980 | 64,478 | 59,934 | 64,474 | 86,563  | 137,742 | 153,990 | 154,093 | 141.624 |
| 1966  | 129,413 | 117,475 | 105,692 | 93,873 | 81,922 | 69,924 | 75,031 | 95,141  | 116,317 | 102,887 | 90,014  | 86,126  |
| 1967  | 78,329  | 75,624  | 73,030  | 70,414 | 67,695 | 64,931 | 69,260 | 86,907  | 124,080 | 144,369 | 120,945 | 107.961 |
| 1968  | 84,841  | 80,832  | 76,939  | 73,022 | 68,998 | 64,931 | 56,027 | 67,332  | 111,791 | 129,697 | 145,304 | 133,394 |
| 1969  | 107,962 | 99,321  | 90,816  | 82,281 | 73,627 | 64,929 | 71,125 | 88,304  | 151,149 | 153,969 | 138,773 | 127,095 |
| 1970  | 115,658 | 104,475 | 93,434  | 82,360 | 71,167 | 59,932 | 63,448 | 134,799 | 153,933 | 153,965 | 138,843 | 127,155 |
| 1971  | 115,708 | 104,515 | 93,464  | 82,380 | 71,177 | 59,932 | 71,130 | 108,445 | 153,980 | 153,965 | 147,168 | 121,567 |
| 1972  | 97,956  | 91,319  | 84,811  | 78,274 | 71,624 | 64,929 | 72,022 | 90,115  | 154,019 | 153,965 | 134,122 | 123,831 |
| 1973  | 113,775 | 103,969 | 94,305  | 84,608 | 74,791 | 64,928 | 56,238 | 80,212  | 140,425 | 153,985 | 154,093 | 123,850 |
| 1974  | 97,843  | 90,229  | 82,742  | 75,226 | 67,601 | 59,933 | 66,701 | 128,520 | 153,943 | 153,965 | 143,386 | 131,754 |
| 1975  | 106,319 | 98,007  | 89,830  | 81,623 | 73,298 | 64,929 | 67,563 | 82,741  | 125,504 | 154,008 | 154,093 | 133,866 |
| 1976  | 108,366 | 100,644 | 93,059  | 85,445 | 77,708 | 69,925 | 75,260 | 92,668  | 125,704 | 146,565 | 135,844 | 126,017 |
| 1977  | 100,631 | 94,458  | 88,417  | 82,347 | 76,160 | 69,926 | 56,147 | 61,866  | 77,307  | 70,061  | 69,750  | 68,096  |
| 1978  | 66,584  | 65,232  | 63,980  | 62,709 | 61,343 | 59,935 | 65,247 | 78,081  | 133,183 | 153,996 | 143,684 | 131.295 |
| 1979  | 105,573 | 96,410  | 87,381  | 78,322 | 69,148 | 59,932 | 65,340 | 90,813  | 146,782 | 153,976 | 150,469 | 137,811 |
|       |         |         |         |        |        |        |        |         |         |         |         |         |

Green Mountain Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| WATER    | 100     | NON     |         |        |        |        |        |         |         |         |         |          |
|----------|---------|---------|---------|--------|--------|--------|--------|---------|---------|---------|---------|----------|
| YEAR     | 222     |         | הנל     |        |        | UMM    |        | MAT     | NOC     | JUL     | AUG     | SEP      |
| 1980     | 112,319 | 102,805 | 93,431  | 84,026 | 74,499 | 64,928 | 68,704 | 89,851  | 154,020 | 153,965 | 135,676 | 125,874. |
| 1981     | 100,436 | 94,302  | 88,300  | 82,269 | 76,121 | 69,926 | 57,467 | 68,109  | 91,801  | 86,067  | 85,701  | 82,440   |
| 1982     | 76,519  | 74,177  | 71,944  | 69,690 | 67,333 | 64,931 | 58,030 | 78,320  | 120,346 | 154,016 | 154,093 | 140,197  |
| 1983     | 126,560 | 113,194 | 99,978  | 86,726 | 73,349 | 59,931 | 51,767 | 81,884  | 154,037 | 153,965 | 154,093 | 116,303  |
| 1984     | 90,885  | 84,665  | 78,566  | 72,440 | 66,208 | 59,934 | 63,304 | 154,241 | 153,902 | 153,965 | 154,093 | 140,197  |
| 1985     | 126,560 | 113,194 | 99,978  | 86,726 | 73,349 | 59,931 | 80,978 | 154,212 | 153,902 | 153,965 | 151,401 | 137,894  |
| 1986     | 124,644 | 111,662 | 98,828  | 85,959 | 72,966 | 59,931 | 70,986 | 115,888 | 153,964 | 153,965 | 154,093 | 141,624  |
| 1987     | 129,413 | 117,475 | 105,692 | 93,873 | 81,922 | 69,924 | 76,751 | 112,939 | 153,970 | 153,965 | 145,895 | 101,853  |
| 1988     | 86,224  | 81,937  | 77,769  | 73,576 | 69,275 | 64,930 | 72,138 | 96,510  | 154,005 | 153,965 | 126,748 | 118,239  |
| 1989     | 92,237  | 87,746  | 83,379  | 78,986 | 74,480 | 69,926 | 79,918 | 96,981  | 125,793 | 133,293 | 124,669 | 116,460  |
| 1990     | 90,996  | 86,753  | 82,634  | 78,489 | 74,231 | 69,927 | 59,153 | 71,171  | 104,542 | 117,623 | 103,981 | 98,063   |
| 1991     | 79,587  | 76,630  | 73,786  | 70,918 | 67,947 | 64,931 | 59,533 | 84,097  | 154,032 | 153,965 | 129,544 | 120,629  |
| 1992     | 95,200  | 90,115  | 85,157  | 80,173 | 75,073 | 69,926 | 75,607 | 98,970  | 115,243 | 108,557 | 108,113 | 100,881  |
| 1993     | 82,726  | 78,140  | 73,669  | 69,173 | 64,574 | 59,934 | 56,661 | 91,336  | 154,016 | 153,965 | 145,325 | 134,126  |
| 1994     | 123,174 | 112,485 | 101,947 | 91,374 | 80,673 | 69,924 | 75,470 | 101,148 | 138,825 | 116,904 | 94,295  | 89,071   |
| 1995     | 81,566  | 77,213  | 72,973  | 68,708 | 64,342 | 59,934 | 50,164 | 64,851  | 154,075 | 153,965 | 154,093 | 140,197  |
| 1996     | 126,560 | 113,194 | 99,978  | 86,726 | 73,349 | 59,931 | 69,456 | 154,231 | 153,902 | 153,965 | 110,987 | 103,337  |
| 1997     | 95,894  | 88,671  | 81,572  | 74,446 | 67,211 | 59,933 | 67,957 | 135,846 | 153,931 | 153,965 | 154,093 | 140,911  |
| 1998     | 127,987 | 115,335 | 102,835 | 90,299 | 77,635 | 64,927 | 70,901 | 94,207  | 151,936 | 153,968 | 147,389 | 115,148  |
| 1999     | 89,754  | 84,760  | 79,888  | 74,990 | 69,982 | 64,930 | 68,409 | 83,482  | 154,033 | 153,965 | 154,093 | 140,911  |
| 2000     | 115,583 | 105,415 | 95,390  | 85,332 | 75,152 | 64,928 | 71,907 | 133,674 | 153,935 | 148,883 | 128,925 | 118,673  |
| 2001     | 93,176  | 86,497  | 79,941  | 73,358 | 66,666 | 59,933 | 57,536 | 86,255  | 125,264 | 113,150 | 109,864 | 103,804  |
| 2002     | 79,631  | 77,665  | 75,813  | 73,938 | 71,956 | 69,927 | 58,507 | 67,163  | 56,896  | 54,937  | 75,348  | 73,593   |
| . 2003   | 65,071  | 64,490  | 64,021  | 63,523 | 63,007 | 63,115 | 70,506 | 108,895 | 151.435 | 143,170 | 116,455 | 109,438  |
| 2004     | 83,191  | 80,512  | 77,950  | 75,364 | 72,669 | 69,927 | 70,485 | 88,396  | 104,876 | 89,882  | 89,459  | 85,652   |
| 2005     | 80,089  | 77,032  | 74,087  | 71,119 | 68,047 | 64,931 | 72,765 | 98,476  | 133,397 | 152,975 | 141,360 | 130,021  |
| AVERAGE: | 99,364  | 92,336  | 85,517  | 78,670 | 71,710 | 64,718 | 66,772 | 98,322  | 136,327 | 138,092 | 129,965 | 117,849  |
|          | 65,071  | 64,490  | 63,980  | 62,709 | 61.343 | 59,931 | 50,164 | 61,866  | 56,896  | 54,937  | 69,750  | 68,096   |
| MAXIMUM: | 129,413 | 117,475 | 105,692 | 93,873 | 81,922 | 69,928 | 80,978 | 154,244 | 154,075 | 154,016 | 154,093 | 141,624  |

Montgomery Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| YEAR | ocT   | NON   | DEC   | JAN   | FEB   | MAR   | АРН   | MAY   | NNr   | JUL   | AUG   | SEP   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1950 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4.545 | 4.444 | 4.369 |
| 1951 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 1952 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4.444 | 4.369 |
| 1953 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 1954 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 2,859 | 2,784 |
| 1955 | 2,601 | 2,254 | 1,714 | 1,175 | 662   | 662   | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 1956 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 1957 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 1958 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 1959 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 1960 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 1961 | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,138 | 4.064 |
| 1962 | 3,881 | 3,534 | 2,994 | 2,455 | 1,876 | 1,124 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 1963 | 3,182 | 2,630 | 2,060 | 1,573 | 1,142 | 665   | 243   | 1,085 | 2,968 | 3,066 | 2,548 | 2,190 |
| 1964 | 1,144 | 590   | 206   | 206   | 206   | 206   | 206   | 1,673 | 3,791 | 4,388 | 4,604 | 4,421 |
| 1965 | 4,230 | 4,044 | 3,853 | 3,658 | 2,793 | 1,547 | 352   | 82    | 3,284 | 4,574 | 4,227 | 4,641 |
| 1966 | 3,230 | 2,491 | 1,954 | 3,848 | 3,494 | 2,743 | 2,223 | 3,032 | 3,330 | 4,355 | 3,318 | 2,272 |
| 1967 | 1,996 | 1,737 | 1,488 | 1,241 | 1,032 | 942   | 161   | 435   | 2,366 | 4,628 | 4,206 | 3,637 |
| 1968 | 3,189 | 2,590 | 2,100 | 1,679 | 1,229 | 672   | 307   | 155   | 4,145 | 4,901 | 4,852 | 4.353 |
| 1969 | 4,756 | 3,795 | 3,342 | 2,994 | 2,585 | 1,476 | 334   | 3,799 | 4,851 | 4,826 | 4,031 | 4.718 |
| 1970 | 4,927 | 4,754 | 3,859 | 2,333 | 1,315 | 961   | 629   | 2,072 | 4,739 | 4,742 | 4,739 | 4,584 |
| 1971 | 4,807 | 3,743 | 2,828 | 2,027 | 1,538 | 1,058 | 515   | 1,190 | 4,555 | 4,640 | 4,644 | 4,690 |
| 1972 | 4,466 | 3,926 | 3,350 | 2,427 | 1,776 | 866   | 164   | 1,421 | 4,264 | 4,423 | 4,263 | 4,379 |
| 1973 | 3,815 | 3,595 | 3,047 | 2,427 | 1,843 | 1,218 | 665   | 1,845 | 4,842 | 4,713 | 4,286 | 4,446 |
| 1974 | 3,706 | 3,274 | 2,754 | 2,174 | 1,881 | 1,344 | 944   | 1,967 | 4,906 | 4,653 | 4,198 | 4,213 |
| 1975 | 3,024 | 2,571 | 2,128 | 1,675 | 1,232 | 550   | 233   | 395   | 3,870 | 4,524 | 4,368 | 4.392 |
| 1976 | 4,072 | 3,565 | 3,058 | 2,581 | 2,143 | 1,691 | 920   | 1,683 | 4,374 | 4,534 | 4,668 | 4,306 |
| 1977 | 3,516 | 2,685 | 2,210 | 1,862 | 1,566 | 1,249 | 961   | 1,553 | 3,777 | 4,190 | 3,568 | 3.586 |
| 1978 | 3,153 | 2,690 | 2,210 | 1,731 | 1,124 | 725   | 725   | 1,016 | 4,815 | 4,948 | 4,542 | 4.737 |
| 1979 | 3,797 | 3,175 | 2,288 | 1,913 | 1,548 | 1,045 | 556   | 1,049 | 4,803 | 4,730 | 4,826 | 4,758 |

Montgomery Reservoir Simulated End-Of-Month Contents No Action Alternative (AF)

| WATER<br>YEAR | ост   | NOV   | DEC   | JAN   | FEB   | MAR   | APH   | МАҮ   | NNC   | JUL   | AUG   | SEP   |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1980          | 4,430 | 3,810 | 3,196 | 2,523 | 1,817 | 1,286 | 626   | 1,087 | 4,643 | 4,423 | 3,299 | 3.407 |
| 1981          | 3,147 | 3,007 | 2,758 | 2,514 | 1,957 | 1,370 | 1,320 | 1,962 | 4,354 | 4,227 | 2,637 | 2,269 |
| 1982          | 2,074 | 1,508 | 757   | 443   | 443   | 443   | 443   | 309   | 2,986 | 4,731 | 4,322 | 4,230 |
| 1983          | 4,112 | 3,526 | 2,596 | 2,293 | 2,033 | 1,737 | 751   | 959   | 4,780 | 4,854 | 4,956 | 3,828 |
| 1984          | 3,969 | 3,051 | 2,080 | 1,537 | 1,101 | 829   | 611   | 2,140 | 4,499 | 4,805 | 4,856 | 4,584 |
| 1985          | 4,682 | 4,477 | 3,722 | 2,932 | 2,654 | 2,019 | 667   | 1,478 | 4,822 | 4,865 | 4,155 | 4,237 |
| 1986          | 2,914 | 2,361 | 1,858 | 1,678 | 1,479 | 1,248 | 666   | 366   | 4,222 | 4,947 | 4,811 | 4,742 |
| 1987          | 4,788 | 4,031 | 3,590 | 3,041 | 2,557 | 1,838 | 953   | 3,238 | 4,824 | 4,901 | 4,655 | 4,815 |
| 1988          | 4,416 | 4,178 | 3,347 | 2,585 | 2,104 | 1,505 | 208   | 1,031 | 4,694 | 4,592 | 4,840 | 4,907 |
| 1989          | 4,777 | 4,531 | 3,765 | 2,687 | 1,742 | 1,132 | 516   | 1,035 | 2,281 | 4,407 | 4,945 | 4,879 |
| 1990          | 4,805 | 4,631 | 3,618 | 2,952 | 2,420 | 1,869 | 1,347 | 783   | 3,258 | 4,398 | 4,805 | 4,513 |
| 1881          | 4,354 | 4,213 | 3,258 | 2,569 | 2,288 | 1,980 | 546   | 736   | 3,397 | 4,741 | 4,814 | 4,861 |
| 1992          | 4,787 | 4,685 | 3,839 | 2,959 | 2,177 | 1,353 | 449   | 1,397 | 4,695 | 4,540 | 4,936 | 4,980 |
| 1993          | 4,899 | 4,770 | 4,286 | 3,796 | 3,346 | 2,051 | 307   | 1,289 | 4,914 | 4,671 | 4,617 | 4,954 |
| 1994          | 5,030 | 4,825 | 4,295 | 3,747 | 2,877 | 1,699 | 573   | 1,276 | 4,414 | 4,159 | 3,715 | 4,405 |
| 1995          | 4,871 | 4,802 | 4,504 | 4,213 | 3,632 | 1,800 | 408   | 202   | 4,870 | 5,069 | 4,851 | 3,847 |
| 1996          | 4,041 | 4,949 | 4,783 | 4,610 | 4,449 | 2,847 | 815   | 502   | 4,907 | 4,976 | 4,196 | 4,993 |
| 1997          | 4,898 | 3,978 | 2,978 | 2,821 | 2,041 | 1,209 | 744   | 752   | 4,965 | 4,910 | 4,888 | 4,465 |
| 1998          | 4,819 | 4,772 | 4,673 | 3,801 | 2,861 | 1,815 | 829   | 1,582 | 2,458 | 4,889 | 4,386 | 4,463 |
| 1999          | 4,612 | 4,520 | 3,835 | 2,925 | 2,046 | 1,082 | 389   | 788   | 4,733 | 4,893 | 4,903 | 4,778 |
| 2000          | 4,991 | 4,991 | 4,929 | 4,086 | 3,183 | 2,133 | 1,327 | 2,600 | 4,827 | 4,733 | 4,884 | 4,884 |
| 2001          | 4,882 | 4,882 | 4,863 | 4,123 | 2,711 | 814   | 387   | 1,532 | 2,481 | 2,794 | 2,998 | 3,961 |
| 2002          | 4,918 | 4,909 | 4,827 | 3,890 | 2,800 | 1,585 | 644   | 1,321 | 2,971 | 2,966 | 1,050 | 1,050 |
| 2003          | 1,045 | 1,045 | 965   | 965   | 965   | 965   | 965   | 2,732 | 4,801 | 4,727 | 4,726 | 4,697 |
| 2004          | 4,873 | 4,949 | 4,363 | 2,923 | 1,236 | 562   | 529   | 1,978 | 4,447 | 4,714 | 3,817 | 3,835 |
| 2005          | 3,832 | 3,813 | 3,713 | 3,253 | 2,895 | 1,119 | 699   | 1,882 | 4,737 | 4,686 | 4,092 | 2,935 |
| AVERAGE:      | 4,009 | 3,662 | 3,127 | 2,611 | 2,050 | 1,335 | 662   | 1,382 | 4,155 | 4,545 | 4,266 | 4,192 |
| MINIMUM:      | 1,045 | 590   | 206   | 206   | 206   | 206   | 161   | 82    | 2,281 | 2,794 | 1,050 | 1,050 |
| MAXIMUM:      | 5,030 | 4,991 | 4,929 | 4,610 | 4,449 | 2,847 | 2,223 | 3,799 | 4,965 | 5,069 | 4,956 | 4,993 |

Elevenmile Canyon Reservoir Simulated End-Of-Month Contents No Action Alternative

|      | 0CT    |        |        | IAN    |        | d V M  | DOV    |        | TIN     |        |        |        |
|------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|
| YEAR |        |        | 2      |        |        |        |        |        | 100     | JUL    | POR    | 207    |
| 1950 | 96,676 | 96,674 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,656 | 96,661  | 96,699 | 96,702 | 96,682 |
| 1951 | 96,664 | 96,559 | 96,579 | 96,492 | 96,666 | 96,673 | 96,673 | 96,631 | 96,249  | 96,689 | 96'93  | 96,624 |
| 1952 | 96,673 | 96,670 | 96,674 | 96,626 | 96,673 | 96,673 | 96,678 | 96,680 | 97, 193 | 97,156 | 96,710 | 96,679 |
| 1953 | 96,666 | 96,685 | 96,874 | 96,644 | 96,673 | 96,673 | 96,677 | 96,612 | 96,663  | 96,716 | 96,705 | 96,628 |
| 1954 | 96,673 | 96,673 | 96,675 | 96,647 | 96,673 | 96,673 | 96,666 | 96,639 | 96,621  | 96,626 | 96,356 | 94,422 |
| 1955 | 92,192 | 90,217 | 87,030 | 80,783 | 75,210 | 70,279 | 66,691 | 64,262 | 63,941  | 61,373 | 57,776 | 56,192 |
| 1956 | 53,976 | 51,725 | 49,308 | 43,660 | 40,945 | 37,425 | 35,700 | 34,596 | 34,444  | 34,276 | 34,148 | 33,677 |
| 1957 | 32,724 | 31,757 | 30,446 | 29,500 | 29,109 | 29,020 | 29,016 | 29,013 | 35,121  | 72,539 | 97,710 | 97,619 |
| 1958 | 96,534 | 96,715 | 96,668 | 96,522 | 96,668 | 96,679 | 96,679 | 96'669 | 97,128  | 97,056 | 96,701 | 96,651 |
| 1959 | 96,579 | 96,646 | 96,663 | 96,527 | 96,656 | 96,672 | 96,676 | 96,626 | 96,636  | 96,702 | 96,704 | 96,668 |
| 1960 | 96,687 | 96,672 | 96,669 | 96,627 | 96,668 | 96,672 | 96,459 | 96,632 | 96,920  | 96,638 | 96,663 | 96,626 |
| 1961 | 96,670 | 96,658 | 96,665 | 96,596 | 96,669 | 96,674 | 96,674 | 96,618 | 96,590  | 96,720 | 96,732 | 96,697 |
| 1962 | 96,673 | 96,672 | 96,677 | 96,643 | 96,675 | 96,679 | 96,679 | 96,655 | 96,714  | 96,756 | 96,693 | 96,659 |
| 1963 | 96,670 | 96,678 | 96,680 | 96,665 | 96,669 | 96,672 | 96,671 | 96,641 | 96,642  | 96,624 | 96,591 | 96,641 |
| 1964 | 96,577 | 96,192 | 95,642 | 94,565 | 93,049 | 91,446 | 90,532 | 89.774 | 89,544  | 91,144 | 91,294 | 87,802 |
| 1965 | 82,919 | 76,848 | 75,797 | 70,514 | 66,484 | 63,105 | 61,737 | 61,541 | 63,213  | 86,657 | 96,834 | 96,691 |
| 1966 | 96,668 | 96,674 | 96,680 | 96,679 | 96,679 | 96,677 | 96,672 | 96,640 | 96,641  | 96,556 | 96,655 | 96,457 |
| 1967 | 95,679 | 95,428 | 95,467 | 95,068 | 95,491 | 96,229 | 96,651 | 96,633 | 96,609  | 96,702 | 96,707 | 96,685 |
| 1968 | 96,681 | 96,664 | 96,669 | 96,609 | 96,868 | 96,668 | 96,677 | 96,640 | 96,631  | 96,694 | 96,712 | 96,690 |
| 1969 | 96,674 | 96,666 | 96,669 | 96,591 | 96,668 | 96,668 | 96,672 | 96,650 | 97,237  | 97,709 | 96,668 | 96,680 |
| 1970 | 96,683 | 96,667 | 96,679 | 96,679 | 96,679 | 96,679 | 96,679 | 96,682 | 97 413  | 97,039 | 96,725 | 96,690 |
| 1971 | 96,673 | 96,676 | 96,675 | 96,679 | 96,679 | 96,679 | 96,676 | 96,608 | 96,809  | 96,725 | 96,708 | 96,613 |
| 1972 | 96,679 | 96,675 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,654 | 96,679  | 96,696 | 96,704 | 96,692 |
| 1973 | 96,675 | 96,669 | 96,680 | 96,679 | 96,679 | 96,679 | 96,677 | 96,700 | 97,364  | 97,307 | 96,991 | 96,683 |
| 1974 | 96,873 | 96,672 | 96,680 | 96,679 | 96,679 | 96,679 | 96,662 | 96,464 | 96,585  | 96,715 | 96,700 | 96,682 |
| 1975 | 96,675 | 96,672 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,655 | 96,782  | 96,733 | 96,711 | 96,685 |
| 1976 | 96,675 | 96,678 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,661 | 96,669  | 96,710 | 96,713 | 96,709 |
| 1977 | 96,684 | 96,674 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,648 | 96,639  | 96,674 | 96,659 | 96,515 |
| 1978 | 96,192 | 96,555 | 96,676 | 96,666 | 96,666 | 96,666 | 96,364 | 95,834 | 96,356  | 96,682 | 96,692 | 96,601 |
| 1979 | 96,518 | 96,636 | 96,649 | 94,033 | 93,009 | 92,682 | 94,172 | 96,327 | 96,919  | 97,439 | 96,711 | 96,684 |
| 1980 | 96,674 | 96,672 | 96,673 | 96,650 | 96,670 | 96,671 | 96,673 | 96,689 | 97,394  | 97,362 | 96,710 | 96,672 |
| 1981 | 96,626 | 96,674 | 96,676 | 96,634 | 96,670 | 96,677 | 96'679 | 96,650 | 96,654  | 96,655 | 96,659 | 96,646 |
| 1982 | 96,613 | 96,649 | 96,666 | 96,480 | 96,668 | 96,667 | 96,663 | 96,659 | 96,666  | 96,694 | 96,706 | 96,698 |

| Elevenmile Canyon Reservoir Simulated End-Of-Month Contents<br>No Action Alternative |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

(AF)

| YEAR     | ост    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NUL    | JUL    | AUG    | SEP    |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1983     | 96,674 | 96,673 | 96,674 | 96,634 | 96,669 | 96,675 | 96,661 | 96,605 | 96.817 | 97.630 | 97.201 | 96.652 |
| 1984     | 96,650 | 96,674 | 96,679 | 96,679 | 96,679 | 96,679 | 96,679 | 96,649 | 97,067 | 97.517 | 96.875 | 96.689 |
| 1985     | 96,696 | 96,666 | 96,596 | 96,658 | 96,679 | 96,679 | 96,679 | 96,679 | 97.215 | 97,050 | 96,695 | 96,692 |
| 1986     | 96,670 | 96,683 | 96,680 | 96,679 | 96,679 | 96,679 | 96,625 | 96,581 | 96,663 | 96,933 | 96.723 | 96.687 |
| 1987     | 96,679 | 96,688 | 96,680 | 96,679 | 96,679 | 96,679 | 96,675 | 96,680 | 97,276 | 97.366 | 96.716 | 96.681 |
| 1988     | 96,663 | 96,676 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,654 | 96,665 | 96.785 | 96.715 | 96,686 |
| 1989     | 96,667 | 96,675 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,652 | 96,687 | 96.710 | 96.709 | 96,687 |
| 1990     | 96,665 | 96,672 | 96,680 | 96,679 | 96,679 | 96,679 | 96,676 | 96,653 | 96,659 | 96.719 | 96.715 | 96.690 |
| 1991     | 96,673 | 96,674 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,666 | 96,687 | 96,728 | 96.735 | 96.689 |
| 1992     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1993     | 93,651 | 93,432 | 93,186 | 92.633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94.201 | 93.957 |
| 1994     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94.201 | 93.957 |
| 1995     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93.957 |
| 1996     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93.957 |
| 1997     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93.957 |
| 1998     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93.957 |
| 1999     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94.201 | 93.957 |
| 2000     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93.957 |
| 2001     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93.957 |
| 2002     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2003     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94.201 | 93.957 |
| 2004     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94.201 | 93.957 |
| 2005     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| AVERAGE: | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| MINIMUM  | 32,724 | 31,757 | 30,446 | 29,500 | 29,109 | 29,020 | 29,016 | 29,013 | 34,444 | 34,276 | 34,148 | 33.677 |
| MAXIMUM: | 96,696 | 96,715 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,700 | 97.413 | 97.709 | 97,710 | 97 619 |

Source: Elevenmile Reservoir end-of-month contents from Denver Water's PACSM model for the Existing System Existing Demand simulation (Base285). Data from PACSM from 1950 through 1991. EOM contents from 1992 through 2005 were assumed to be the average of 1950 through 1991.

## NO ACTION ALTERNATIVE

Diversions

Simulated Homestake Tunnel Deliveries No Action Alternative (AF)

| WATER | 7.7.7 |     |   |     |       |       |        |       |       |       |       |       |        |
|-------|-------|-----|---|-----|-------|-------|--------|-------|-------|-------|-------|-------|--------|
| YEAR  | 5     |     |   | NHO | 160   | MAH   | АРН    | MAY   |       | JUL   | AUG   | SEP   | TOTAL  |
| 1950  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1.187 | 49    | 25.789 |
| 1951  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1952  | 2,335 | 0   | 0 | 0   | 1,806 | 8,765 | 12,642 | 3,667 | 2,862 | 2,471 | 850   | 468   | 35,866 |
| 1953  | 2,578 | 747 | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 26,779 |
| 1954  | 2,335 | 0   | 0 | 0   | 0     | 4,942 | 7,339  | 1,710 | 1,506 | 156   | 1,146 | 1,715 | 20,849 |
| 1955  | 61    | 170 | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 23,685 |
| 1956  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1957  | 2,335 | 0   | 0 | 0   | 1,806 | 8,765 | 3,782  | 3,667 | 2,862 | 2,471 | 850   | 468   | 27,006 |
| 1958  | 2,578 | 747 | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 26,779 |
| 1959  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1960  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1961  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1962  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 6,162  | 781   | 3,110 | 3,786 | 1,187 | 49    | 23,071 |
| 1963  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,547  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,456 |
| 1964  | 2,335 | 0   | 0 | 0   | 0     | 2,308 | 0      | 781   | 3,110 | 3,786 | 1,187 | 49    | 13,556 |
| 1965  | 2,335 | 0   | 0 | 0   | 0     | 4,299 | 0      | 781   | 3,110 | 3,786 | 1,187 | 49    | 15,547 |
| 1966  | 2,335 | 0   | 0 | 0   | 0     | 4,942 | 7,339  | 1.710 | 1,506 | 156   | 1,146 | 1,715 | 20,849 |
| 1967  | 61    | 170 | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 23,685 |
| 1968  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1969  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1970  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,343  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,252 |
| 1971  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1972  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1973  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1974  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1975  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1976  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1977  | 2,335 | 0   | 0 | 0   | 0     | 4,942 | 7,339  | 1,710 | 1,506 | 156   | 1,146 | 1,715 | 20,849 |
| 1978  | 61    | 170 | 0 | 0   | 0     | 5,661 | 8,697  | 781   | 3,110 | 3,786 | 1,187 | 49    | 23,502 |
| 1979  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1980  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1981  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
| 1982  | 2,335 | 0   | 0 | 0   | 0     | 5,661 | 8,880  | 781   | 3,110 | 3,786 | 1,187 | 49    | 25,789 |
|       |       |     |   |     |       |       |        |       |       |       |       |       |        |

Simulated Homestake Tunnel Deliveries No Action Alternative

Ē

TOTAL 9,843 38,577 0 5,596 SEP 468 468 49 AUG 850 850 850 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 1,187 JUL 2,862 2,862 3,110 3,110 3,110 3,110 3,110 3,110 3,110 3,110 4,146 6,702 6,702 6,702 9,843 9,843 9,843 9,843 9,843 NUL MAY 12,642 8,880 8,880 8,880 8,880 8,880 8,880 8,880 8,880 8,880 10,462 10,462 11,712 7,616 11,712 7,510 14,712 7,508 9,488 8,706 0 5,088 8,706 0 0 APR MAR FEB 808, 806 AN 000 DEC 0 0 0 0 0000 14,010 0 C J AVERAGE: MINIMUM: MAXIMUM: WATER YEAR 1987 1988 1988 1989 1999 1994 1994 1995 1996 1998 1998 1998 1998 1998 1998 2002 2002 2002 2003 2005 2005 2005 1983 1984 **985** 986

Simulated Hoosier Tunnel Deliveries No Action Alternative

(AF)

12,876 5,892 5,442 7,558 10,213 8,834 8,834 8,484 10,445 10,224 8,088 13,179 7,921 9,262 8,364 8,715 10,224 8,088 13,179 7,921 7,921 7,921 9,262 8,715 10,584 10,584 10,584 10,584 9,446 5,729 11,094 9,646 10,084 6,664 10,084 TOTAL 8,656 8,580 SEP AUG 1,046 1,046 646 646 646 1,870 492 0 0 315 315 315 0 1,224 1,224 1,598 809 809 809 1,598 809 1,598 809 1,598 1,222 1,222 1,598 809 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1,598 1, 1,691 1,691 1,691 1,691 1,691 1,691 1,496 1,843 2,080 2,471 2,471 2,471 98 3,087 98 3,457 1,396 1,536 1,536 1,536 1,595 1,993 2,074 2,074 1,993 1,595 1,595 1,595 3,370 3,370 JUL NUC MAY 1,231 1,234 1,334 688 688 688 374 489 901 1,1060 1,524 1,524 1,524 1,524 644 651 1,524 651 1,720 780 1,529 651 1,727 780 1,529 651 1,013 1,529 651 1,524 644 644 651 1,522 1,529 651 1,524 644 1,013 1,529 651 1,522 651 1,522 651 1,522 651 1,522 651 1,522 1,522 651 1,522 651 1,522 1,522 1,522 651 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 1,522 APR MAR 0000 FEB 00 0000000000 JAN 00 0000 DEC 0000000000000 0000 NOV 00000 0000 oct WATER YEAR 1950 952 1956 1957 1958 1959 
 1963

 1965

 1965

 1965

 1966

 1966

 1966

 1966

 1966

 1966

 1966

 1967

 1973

 1973

 1973

 1973

 1973

 1973

 1973

 1973

 1973

 1973

 1973

 1975

 1975

 1976

 1977

 1978

 1977

 1978

 1978

 1978
 **951** 954 955 960 961 962 953

Simulated Hoosier Tunnel Deliveries No Action Alternative

(AF)

TOTAL 13,124 9,825 10,353 11,029 11,951 11,951 11,951 11,959 9,230 9,230 9,407 5,533 5,533 5,533 5,533 5,533 8,903 2,920 13,274 7,405 7,651 8,549 9,945 ,898 SEP 739 970 1,809 1,450 761 1,450 761 1,204 1,768 1,768 1,768 1,768 1,768 1,768 1,768 1,965 1,965 1,965 1,965 1,965 1,965 1,965 1,803 1,803 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,809 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,900 1,90 AUG 2,068 1,745 1,451 147 147 0 79 0 0 958 741 741 720 720 720 1,691 1,691 1,422 791 1,422 791 1,422 791 1,422 791 1,422 791 1,422 791 1,422 791 1,727 1,791 1,686 1,727 791 1,686 1,727 1,727 1,727 1,727 1,686 1,727 1,727 1,686 1,727 1,727 1,686 1,727 1,727 1,686 1,727 1,727 1,686 1,727 1,727 1,686 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,72 3,973 JUL NUL 968 965 965 996 11,212 1,299 996 1,299 631 631 631 631 631 631 631 631 1,522 531 831 852 631 1,552 1,556 631 1,556 631 1,556 631 0 0 3,042 2,232 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,122 2,123 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1,156 1 MAY APR MAR FEB JAN DEC NOV 2,067 2,067 342 342 342 342 0 0 1,799 587 587 587 587 345 869 345 587 586 629 629 345 0 1,189 0 0 2,090 **MAXIMUM:** AVERAGE: **MINIMUM:** WATER YEAR 1988 1989 1990 1991 1996 

## NO ACTION ALTERNATIVE

Substitution Summary

Simulated Springs Utilities Total Substitution Bill Repayment No Action Alternative

(AF)

Simulated Springs Utilities Total Substitution Bill Repayment No Action Alternative (AF)

TOTAL SEP 000 AUG JUL 000 NUL MAY 000 APR MAR FEB JAN 000 DEC 0 Nov 00 001  $\circ \circ \circ$ 000 **MAXIMUM:** AVERAGE: MINIMUM: WATER YEAR  $\begin{array}{c} 1\,985\\ 1\,986\\ 1\,986\\ 1\,988\\ 1\,986\\ 1\,990\\ 1\,992\\ 1\,995\\ 1\,995\\ 1\,996\\ 1\,997\\ 1\,996\\ 1\,997\\ 1\,996\\ 1\,997\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,000\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\ 2\,00\\$ 1982 1983 1984

## NO ACTION ALTERNATIVE

Streamflows

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000

No Action Alternative (AF)

| 1,242         833         738         615         444         430         703         2,375         5,588         1           336         308         228         240         205         215         5,588         1         2         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                              | WATER<br>YEAR | OCT   | NOV   | DEC | JAN | FEB | MAR   | APR   | МАҮ   | NNr    | JUL   | AUG          | SEP   | TOTAL  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-----|-----|-----|-------|-------|-------|--------|-------|--------------|-------|--------|
| 353         300         332         236         277         750         237         748         743         743         743         750         523           306         230         237         230         236         273         237         7597         742         754         500           314         215         240         276         233         577         127         743         754         500           210         217         246         247         740         754         507         127         556         754         500         7546         1277         137         753         754         500         7546         7420         754         500         7547         1272         1416         736         757         1272         7115         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275         1153         275                                                                                                                                                                                                                                             | 1950          | 1,242 | 833   | 738 | 615 | 44  | 430   | 703   | 2.375 | 5.588  | 1.432 | 719          | 624   | 15 743 |
| 676         389         237         230         215         238         233         247         242         127         1301           242         251         211         210         237         211         275         242         275         336         240         255           241         251         211         275         211         275         242         275         336         240         255           241         277         211         276         216         200         217         242         275         390           241         277         211         276         276         276         127         275         390           241         277         216         306         279         276         476         127         275         390           2203         716         130         271         222         141         151         441           2303         271         222         442         275         450         1266         1266         1267         1476         1517         441           2303         241         272         251         1300         2741                                                                                                                                                                                                                                                                                                 | 1951          | 353   | 308   | 325 | 228 | 194 | 277   | 750   | 2,927 | 6.575  | 4,428 | 1.380        | 523   | 18.278 |
| 386         246         226         221         239         754         242         715         332           10112         527         413         230         237         711         739         746         556         715         332           2101         517         415         415         200         245         759         746         556         716         550         716         550         716         550         716         550         716         550         716         550         716         550         716         550         716         550         716         753         560         716         727         416         757         550         710         751         740         751         740         756         750         740         756         750         740         756         750         741         751         741         751         741         756         741         756         750         741         756         750         741         756         750         741         756         751         741         751         741         751         751         751         751         751         751                                                                                                                                                                                                                                             | 1952          | 676   | 369   | 338 | 277 | 230 | 215   | 218   | 2,112 | 7,965  | 2,632 | 1.476        | 1.321 | 17,829 |
| 242         286         234         230         194         207         1903         3183         7.997         2.402         7.44         600           314         415         413         326         413         326         473         2408         255           531         537         211         273         2355         129         6.77         11272         1153           533         221         438         200         406         400         405         473         144           2233         239         1517         435         435         2408         255           337         308         205         164         172         168         477         1272         144           233         355         340         253         680         230         254         157         415           304         360         256         1022         243         329         244         1577         145         466           307         2545         360         1232         445         1772         145         466         1576         1476         566         1576         146         146 <t< th=""><th>1953</th><th>398</th><th>249</th><th>228</th><th>240</th><th>205</th><th>231</th><th>658</th><th>2,029</th><th>7,546</th><th>2,432</th><th>1,215</th><th>392</th><th>15,823</th></t<>                                                                                           | 1953          | 398   | 249   | 228 | 240 | 205 | 231   | 658   | 2,029 | 7,546  | 2,432 | 1,215        | 392   | 15,823 |
| 1012         521         213         216         215         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216         216 <th>1954</th> <th>242</th> <th>286</th> <th>234</th> <th>230</th> <th>194</th> <th>207</th> <th>1,903</th> <th>3,183</th> <th>7,997</th> <th>2,402</th> <th>754</th> <th>069</th> <th>18,322</th>                         | 1954          | 242   | 286   | 234 | 230 | 194 | 207   | 1,903 | 3,183 | 7,997  | 2,402 | 754          | 069   | 18,322 |
| 314         415         916         300         405         403         346         300         405         403         346         300         405         111         222         1181         275         1181         275           541         517         517         516         307         203         271         273         1131         223         236         743         1517         485         149         275         1135           223         326         184         171         218         482         1722         5133         1491         1217         5134         485         1247         2533         489         1517         485         984         985         746         1237         446         983         244         1207         1476         584         495         560         1267         1476         584         1307         1476         584         1307         1476         584         507         1476         584         507         1476         584         507         1476         584         507         1476         584         507         1476         584         507         1476         526         1436         50                                                                                                                                                                                                                                | 1955          | 1,012 | 521   | 413 | 292 | 215 | 262   | 1,209 | 1,816 | 3,326  | 4,739 | 2,408        | 556   | 16,769 |
| 230         237         211         216         205         778         1511         7.423         6.757         1.272         1.152           223         224         187         241         550         706         1.032         444           223         230         271         233         271         235         4,355         1.551         1,456         983           223         230         168         100         191         244         1,132         2,566         706         1,032         444           403         233         587         480         1,132         2,566         706         1,032         444           403         233         587         489         1,332         2,567         1,456         589           461         560         1,766         5,702         1,537         2,591         1,307           1,476         753         261         2,702         2,456         5,60         1,366         1,307           1,476         753         263         2,303         3,737         3,948         1,702         1,476         1,557           1,476         755         720         2,901                                                                                                                                                                                                                                                                                | 1956          | 314   | 415   | 408 | 346 | 300 | 405   | 402   | 4,092 | 4,537  | 2,242 | 1,181        | 275   | 14.917 |
| 231         517         436         367         309         321         555         1,356         706         1,032         414           223         238         716         776         703         705         706         1,032         449           224         1,517         438         204         103         447         2,186         3,056         2,301         1,476         983           227         308         160         171         228         433         451         746         1032         446           224         361         2333         469         536         2631         1,476         984           364         361         233         282         236         284         1,732         2469         1,377           364         377         244         1,322         1,456         1,266         1,377           364         773         247         2,471         1,266         1,377         1,476         1,226           3744         461         1,032         2,443         3,091         1,776         1,466         1,661         1,476         1,226         1,476         1,226         1,476 <t< th=""><th>1957</th><th>230</th><th>237</th><th>211</th><th>216</th><th>205</th><th>278</th><th>738</th><th>1,511</th><th>7,423</th><th>6,757</th><th>1,272</th><th>1,153</th><th>20,231</th></t<>                                                                       | 1957          | 230   | 237   | 211 | 216 | 205 | 278   | 738   | 1,511 | 7,423  | 6,757 | 1,272        | 1,153 | 20,231 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1958          | 541   | 517   | 436 | 367 | 309 | 321   | 627   | 3,551 | 4,356  | 706   | 1,032        | 414   | 13,177 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1959          | 223   | 224   | 187 | 204 | 168 | 199   | 642   | 1,884 | 5,506  | 1,036 | 1,253        | 480   | 12,006 |
| 327         308         205         194         171         218         487         2.186         3,056         2,301         1,456         983           461         381         233         1867         483         180         2,102         2,309         5,100         2,547         7,41           461         381         233         286         602         2,493         2,301         1,456         583           461         381         233         286         602         2,493         3,299         5,100         2,547         7,41           552         247         212         235         233         288         1,307         1,476         569         1,307         1,478         566         1,307         1,476         567         1,307         1,476         567         1,307         1,476         567         1,307         1,476         1,401         1,501         1,401         1,501         1,506         1,506         1,506         1,556         1,507         1,567         1,506         1,566         1,566         1,567         1,567         1,561         1,402         1,567         1,566         1,566         1,566         1,566         1,566                                                                                                                                                                                                                         | 1960          | 1,306 | 716   | 330 | 271 | 232 | 423   | 482   | 1,722 | 5,153  | 1,434 | 1,517        | 485   | 14.071 |
| 828         1,153         857         493         456         533         680         2,309         4,778         2,697         1,476         584           461         381         233         385         346         533         285         2561         2,309         4,778         2,697         1,476         5,674         1,307           384         360         356         340         266         284         1,032         2,661         2,309         1,476         5,674         1,428         660           384         366         236         283         422         313         368         477         2,661         3,256         5,677         1,476         1,295         5,677         1,476         1,365         5,677         1,476         1,365         5,677         1,476         1,365         5,677         1,461         1,681         1,307         2,566         1,561         1,307         2,555         5,677         1,365         5,677         3,555         5,677         3,555         5,677         1,365         5,677         1,476         1,265         5,677         1,405         1,555         1,405         1,555         1,405         5,561         1,565         5                                                                                                                                                                                                   | 1961          | 327   | 308   | 205 | 184 | 171 | 218   | 487   | 2,186 | 3,056  | 2,301 | 1,456        | 983   | 11,862 |
| 403         239         168         190         191         344         1,132         2,531         2,702         2,426         2,591         1,307           304         360         366         394         1,132         2,631         2,702         2,426         2,591         1,307           304         360         366         286         286         286         286         287         7,122         2,537         2,201         3,256         567           552         247         212         235         508         255         3,091         4,560         1,520         1,906         1,355           557         559         427         212         235         521         313         1,666         1,766         1,355         1,468         1,681         1,681         1,681         1,468         1,681         1,468         1,681         1,468         1,681         1,468         1,681         1,468         1,681         1,468         1,681         1,468         1,681         1,468         1,681         1,468         1,468         1,468         1,468         1,468         1,468         1,468         1,468         1,468         1,468         1,468         1,468                                                                                                                                                                                                                | 1962          | 829   | 1,153 | 857 | 493 | 458 | 533   | 680   | 2,309 | 4,778  | 2,697 | 1,476        | 584   | 16,847 |
| 461         381         233         282         236         256         602         2,429         3,299         5,100         2,547         741           738         467         360         356         340         266         2202         6,010         5,071         1,229         5,67         741           552         247         212         255         340         256         5,010         1,476         6,01         5,60         1,365         5,67           738         467         298         256         1,022         2,202         6,010         5,701         1,226         1,926         1,355         5,67         3,69         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681         1,681 <td< th=""><th>1963</th><th>403</th><th>238</th><th>168</th><th>180</th><th>191</th><th>344</th><th>1,132</th><th>2,631</th><th>2,702</th><th>2,426</th><th>2,591</th><th>1,307</th><th>14,314</th></td<> | 1963          | 403   | 238   | 168 | 180 | 191 | 344   | 1,132 | 2,631 | 2,702  | 2,426 | 2,591        | 1,307 | 14,314 |
| 394         360         356         340         266         284         1,032         2,202         6,010         5,074         1,428         6,00           578         547         213         223         223         233         3,091         4,560         1,306         1,406         1,355         5,57         3,091         4,560         1,306         1,408         1,355           578         559         422         313         368         741         4,611         6,696         1,876         1,402         835           967         559         422         313         368         741         4,611         6,696         1,876         1,402         835           967         559         422         313         368         741         4,611         6,696         1,876         1,402         835           987         727         1298         1,313         368         748         1,296         1,402         835           1,456         824         521         1,396         3,667         1,522         1,296         1,428           1,456         824         233         160         3,462         5,198         1,412         6                                                                                                                                                                                                                                                     | 1964          | 461   | 381   | 233 | 282 | 236 | 256   | 602   | 2,429 | 3,299  | 5,100 | 2,547        | 741   | 16,567 |
| 1476         649         489         363         222         1,129         2,072         1,537         2,201         3,256         567           552         247         212         235         508         255         3,091         4,560         1,520         1,906         1,355           738         767         559         422         313         368         741         4,611         6,606         1,376         1,468         1,681           967         559         422         380         313         368         741         4,611         6,606         1,376         1,468         1,681           1,476         983         720         412         396         536         911         1,909         6,776         1,276         1,292         922           593         725         176         328         366         731         1,646         4,256         1,476         1,296         1,476         1,296         1,428           533         188         124         19         366         2,091         1,225         4,888         5,247         592         687           533         188         124         19         366                                                                                                                                                                                                                                                               | 1965          | 394   | 360   | 356 | 340 | 266 | 284   | 1,032 | 2,202 | 6,010  | 5,074 | 1,428        | 600   | 18.346 |
| 552         247         212         235         223         508         255         3,091         4,560         1,520         1,906         1,355           738         467         298         271         240         329         490         658         5,960         1,366         1,468         1,661           1,176         755         573         501         392         444         390         3,787         3,848         1,702         1,468         1,681           1,476         983         720         412         367         521         313         3,68         731         1,646         4,296         1,376         1,475         1,272         1,475         1,272         1,292         1,292         1,292         1,295         1,475         1,476         1,476         1,476         1,272         1,476         1,272         1,476         1,296         1,476         1,296         1,476         1,428         1,475         1,476         1,428         1,476         1,428         1,476         1,426         1,426         1,426         1,426         1,426         1,426         1,426         1,428         1,428         1,428         1,428         1,428         1,428 <td< th=""><th>1966</th><th>1,476</th><th>649</th><th>489</th><th>363</th><th>283</th><th>422</th><th>1,129</th><th>2,072</th><th>1,537</th><th>2,201</th><th>3,256</th><th>567</th><th>14,444</th></td<> | 1966          | 1,476 | 649   | 489 | 363 | 283 | 422   | 1,129 | 2,072 | 1,537  | 2,201 | 3,256        | 567   | 14,444 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1967          | 552   | 247   | 212 | 235 | 223 | 508   | 255   | 3,091 | 4,560  | 1,520 | 1,906        | 1,355 | 14.864 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1968          | 738   | 467   | 298 | 271 | 240 | 329   | 490   | 658   | 5,960  | 1,366 | 1,468        | 1,681 | 13,966 |
| 967         559         422         380         313         368         741         4,611         6,696         1,876         1,476         1,292         922           599         405         720         412         367         521         313         1,646         4,296         1,528         1,292         922           1,476         983         720         412         367         521         313         1,646         4,296         1,522         1,292         922           1,459         824         655         275         176         3,966         1,676         1,476         729         983           233         188         124         19         362         160         1,776         5,981         1,412         98         1,428         622         983         1,412         983         5,247         5,92         687         5,189         1,546         1,4176         749           838         50         2177         633         2,460         8,416         4,203         2,829         697         5,43         592         687           838         50         2177         233         1,939         1,417         2,923                                                                                                                                                                                                                                                       | 1969          | 1,176 | 765   | 730 | 501 | 392 | 444   | 390   | 3,787 | 3,848  | 1,792 | 1,402        | 835   | 16,062 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1970          | 967   | 559   | 422 | 380 | 313 | 368   | 741   | 4,611 | 6,698  | 1,876 | 1,476        | 1,296 | 19,705 |
| 599         405         472         389         536         536         911         1,989         6,776         1,522         1,259         1,428           1,458         824         655         206         20         309         718         2,001         6,360         3,954         813         652           235         275         176         328         496         233         160         3,462         5,189         1,546         1,412         98           235         275         176         328         496         233         160         3,462         5,189         1,546         1,412         98           602         201         6,193         166         3,462         5,189         1,546         1,412         98           602         217         232         193         680         881         2,171         5,891         1,612         1,476         749           814         547         232         373         1,33         2,460         8,416         4,129         6,67         891         1,175           303         410         491         233         1,356         1,33         2,546         8,11 <td< th=""><th>1971</th><th>1,476</th><th>983</th><th>720</th><th>412</th><th>367</th><th>521</th><th>313</th><th>1,646</th><th>4,296</th><th>1,528</th><th>1,292</th><th>922</th><th>14,476</th></td<>                                                              | 1971          | 1,476 | 983   | 720 | 412 | 367 | 521   | 313   | 1,646 | 4,296  | 1,528 | 1,292        | 922   | 14,476 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1972          | 599   | 405   | 472 | 389 | 369 | 536   | 911   | 1,989 | 6,776  | 1,522 | 1,259        | 1,428 | 16,655 |
| 235275176328496233160 $3,462$ $5,189$ $1,546$ $1,412$ 98333188124193621581776332,9864,0981,6121,4767496023,441461031091776332,9864,0981,6121,476749814502172321936808812,1715,8911,5428815688145484,332952493293132,4608,4164,2032,8296928145484,332952493293132,4608,4164,2032,829692303410491286162,331,3561,3723,814667836303410491286162931,3561,9243,8651,1755804505523132,124233681,9243,8651,1757486154732,8655,7023,8146678361,1757486154732,8266,1333,6551,1753431,1947736341,8266,1333,6551,1758361,1947736381,9243,8651,9243,8651,1751,1258166133,132,2667,133,6321,7558991,1258166,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1973          | 1,458 | 824   | 655 | 206 | 20  | 309   | 718   | 2,001 | 6,360  | 3,954 | 813          | 652   | 17,970 |
| 333188124193621589081,2254,8885,2475926876023441461031091776332,9864,0981,6121,476749814502172321936808812,1715,8911,5428815688145484332952493293132,4608,4164,2032,8296928145484332952493293132,4608,4164,2032,829692303410491286162931,3561,9243,814667836303410491286162931,3581,9243,8651,175303410491286162931,3561,9243,8651,1753034104702934681,8365,1682,1031,77558045057023,8146678,8652,6119941,17574861547332631,9243,8651,9243,8651,7757486154732283072934681,8266,1333,6321,7757486157735381,9243,8651,9243,8651,7758941,17571,1258166775384,1296,8654,8742,9081,7754,129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1974          | 235   | 275   | 176 | 328 | 496 | 233   | 160   | 3,462 | 5,189  | 1,546 | 1,412        | 98    | 13,610 |
| 602 $344$ $146$ $103$ $109$ $177$ $633$ $2,986$ $4,098$ $1,612$ $1,476$ $749$ $838$ $50$ $217$ $232$ $193$ $680$ $881$ $2,171$ $5,891$ $1,542$ $881$ $568$ $814$ $548$ $4.33$ $2955$ $249$ $329$ $313$ $2,460$ $8,416$ $4,203$ $2,829$ $692$ $814$ $548$ $4.33$ $295$ $249$ $329$ $313$ $2,460$ $8,416$ $4,203$ $2,829$ $692$ $303$ $410$ $491$ $286$ $16$ $2256$ $5,702$ $3,814$ $667$ $836$ $303$ $410$ $491$ $286$ $16$ $2293$ $1,358$ $1,924$ $3,865$ $2,611$ $994$ $1,175$ $580$ $450$ $5702$ $3,814$ $667$ $836$ $1,726$ $836$ $1,726$ $836$ $748$ $615$ $4,73$ $2293$ $307$ $293$ $468$ $1,836$ $2,611$ $994$ $1,175$ $748$ $615$ $4,73$ $228$ $307$ $293$ $468$ $1,826$ $6,133$ $3,632$ $1,726$ $1,194$ $773$ $6345$ $1,222$ $895$ $6,786$ $6,133$ $3,632$ $1,776$ $1,125$ $816$ $6,733$ $3,635$ $1,276$ $8,768$ $1,775$ $899$ $1,126$ $816$ $6,786$ $4,768$ $1,768$ $1,727$ $899$ $1,101$ $704$ $406$ $5,716$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1975          | 333   | 188   | 124 | 19  | 362 | 158   | 908   | 1,225 | 4,888  | 5,247 | 592          | 687   | 14,731 |
| B38         50         217         232         193         680         881         2,171         5,891         1,542         881         568           814         548         433         295         249         329         313         2,460         8,416         4,203         2,829         692           814         548         433         295         249         329         313         2,460         8,416         4,203         2,829         692           303         410         491         286         16         329         313         2,460         8,416         4,203         2,829         692           303         410         491         286         16         329         313         2,450         8,416         4,203         2,829         692           580         456         56         5702         3,814         667         836         1,755         836         1,755           748         615         473         2865         1,853         6,880         2,561         1,775           743         773         6393         1,224         895         6,786         2,611         994         1,775 <t< th=""><th>1976</th><th>602</th><th>A46</th><th>146</th><th>103</th><th>109</th><th>171</th><th>633</th><th>2,986</th><th>4,098</th><th>1,612</th><th>1,476</th><th>749</th><th>13,035</th></t<>                                                                       | 1976          | 602   | A46   | 146 | 103 | 109 | 171   | 633   | 2,986 | 4,098  | 1,612 | 1,476        | 749   | 13,035 |
| 814         548         433         295         249         329         313         2,460         8,416         4,203         2,829         692           428         232         375         359         1,039         1,47         2,956         5,702         3,814         667         836           303         410         491         286         16         293         1,358         1,924         3,814         667         836           303         410         491         286         16         293         1,358         1,924         3,814         667         836           580         450         552         313         212         423         368         1,924         3,865         1,175           748         615         473         2,865         5,611         994         1,175           748         615         473         3,632         1,269         1,759           1,194         773         6346         1,836         5,168         2,103         1,728           1,125         816         67         835         6,895         4,874         2,908         1,775           1,125         816                                                                                                                                                                                                                                                                                       | 1977          | 838   | 50    | 217 | 232 | 193 | 680   | 881   | 2,171 | 5,891  | 1,542 | 881          | 568   | 14,144 |
| 428         232         375         359         381         1,039         147         2,956         5,702         3,814         667         836           303         410         491         286         16         293         1,358         1,953         6,880         2,256         1,310         775           580         450         552         313         212         423         368         1,924         3,865         2,611         994         1,175           748         615         473         212         423         368         1,924         3,855         1,729         1,729           1,194         773         634         620         274         320         122         895         6,133         3,632         1,729           1,194         773         634         620         274         320         122         895         6,133         3,632         1,759           1,125         816         677         538         4,88         605         786         4,129         6,865         4,874         2,908         1,768           1,101         704         441         405         574         2,519         12,750                                                                                                                                                                                                                                                                 | BYBL          | 814   | 548   | 433 | 285 | 249 | 329   | 313   | 2,460 | 8,416  | 4,203 | 2,829        | 692   | 21,581 |
| 303         410         491         286         16         293         1,358         1,953         6,880         2,256         1,310         775           580         450         552         313         212         423         368         1,924         3,865         2,611         994         1,175           748         615         473         229         307         293         468         1,836         6,133         3,632         1,259         1,726           1,194         773         634         620         274         320         122         895         6,133         3,632         1,259         1,726           1,125         816         677         538         488         605         786         4,129         6,865         4,874         2,908         1,080           1,101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           4,160         911         826         544         2,519         12,750         8,651         1,427         4,427           1,405         808         765         544         2,519         12,750 </th <th>8/81</th> <th>42B</th> <th>232</th> <th>375</th> <th>359</th> <th>381</th> <th>1.039</th> <th>147</th> <th>2,956</th> <th>5,702</th> <th>3,814</th> <th>667</th> <th>836</th> <th>16,936</th>                                                | 8/81          | 42B   | 232   | 375 | 359 | 381 | 1.039 | 147   | 2,956 | 5,702  | 3,814 | 667          | 836   | 16,936 |
| 580         450         552         313         212         423         368         1,924         3,865         2,611         994         1,175           748         615         473         229         307         293         468         1,636         6,133         3,632         1,259         1,726           1,194         773         634         620         274         320         122         895         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,874         2,908         1,080           1,101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           4,16         911         826         640         567         715         544         2,519         12,750         8,651         1,427           1,405         808         767         544         2,519         12,750         8,651         1,427         473           1,405         544         4,60         3,611         3,562         1,000         1,21                                                                                                                                                                                                                                                     | 1980          | 303   | 410   | 491 | 286 | 16  | 293   | 1,358 | 1,953 | 6,880  | 2,256 | 1,310        | 775   | 16,331 |
| 748         615         473         229         307         293         468         1,636         6,133         3,632         1,259         1,728           1,194         773         634         620         274         320         122         895         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,874         2,908         1,080           1,101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           4,16         911         826         640         567         715         544         2,519         12,750         8,651         1,427           1,405         808         767         544         2,519         12,750         8,651         1,427         472           1,405         808         767         544         4,60         3,611         3,562         1,000         1,217         473                                                                                                                                                                                                                                                                                                                                                                          | 1981          | 580   | 450   | 552 | 313 | 212 | 423   | 368   | 1,924 | 3,865  | 2,611 | <u> 9</u> 94 | 1,175 | 13,467 |
| 1,194         773         634         620         274         320         122         895         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,874         2,908         1,080           1,101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           416         911         826         640         567         715         544         2,519         12,750         8,651         1,427           1,405         808         767         544         2,519         12,750         8,651         1,427         1,427           1,405         808         767         544         4,60         3,611         3,562         1,000         1,217         473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1982          | 748   | 615   | 473 | 229 | 307 | 293   | 468   | 1,636 | 6,133  | 3,632 | 1,259        | 1,728 | 17,521 |
| 1,125         816         677         538         488         605         786         4,129         6,865         4,874         2,908         1,080           1,101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           1,101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           416         911         826         640         567         715         544         2,519         12,750         8,651         14         1,427           1,405         808         767         544         460         3,611         3,552         1,000         1,217         473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1983          | 1,194 | 773   | 634 | 620 | 274 | 320   | 122   | 895   | 6,786  | 5,168 | 2,103        | 1,343 | 20,232 |
| 1.101         704         441         405         376         613         318         4,561         9,268         4,768         1,155         899           416         911         826         640         567         715         544         2,519         12,750         8,651         14         1,427           1,405         808         767         544         460         3,611         3,562         1,000         1,217         473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1984          | 1.125 | 816   | 677 | 538 | 488 | 605   | 786   | 4,129 | 6,865  | 4,874 | 2,908        | 1,080 | 24,691 |
| 416         911         826         640         567         715         544         2,519         12,750         8,651         14         1,427           1,405         808         767         544         406         544         460         3,611         3,562         1,000         1,217         473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1985          | 1,101 | 704   | 441 | 405 | 376 | 613   | 318   | 4,561 | 9,268  | 4,768 | 1,155        | 899   | 24,609 |
| 11,405 808 767 544 406 544 460 3,611 3,562 1,000 1,217 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1986          | 416   | 911   | 826 | 640 | 567 | 715   | 544   | 2,519 | 12,750 | 8,651 | 14           | 1,427 | 29,980 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1987          | 1,405 | 808   | 767 | 544 | 406 | 544   | 460   | 3,611 | 3,562  | 1,000 | 1,217        | 473   | 14,797 |

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000 No Action Alternative (AF)

| YEAR         VCI         NOV         UEC         JAN         FEB         MAR         APH         MAY         JUN         JUL         AUG         SEP         TOTAL           1980         586         287         48         553         1476         1,025         357         97         11,650           1990         58         287         48         245         151         300         1,355         5,455         1,766         1,635         17,65         377         97         11,650           1991         503         912         280         235         3,511         1,756         1,756         1,635         1,164         12,220           1992         500         416         377         349         437         7,033         4,055         6,455         1,766         1,637         16,473           1993         1090         156         241         465         377         349         437         16,873         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455         16,455                                                                                                                                                                                   | WATER    |       |       | 010 |     |     |       |       |        |        |        |       |       |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|-----|-----|-----|-------|-------|--------|--------|--------|-------|-------|--------|
| 218         242         434         659         140         325         331         1,872         5,404         863         924         1,461           58         265         199         155         151         546         3,166         3,253         1,476         1,025         300           503         912         280         243         229         318         497         3,306         5,455         1,766         1,635         1,130           503         9112         280         243         513         703         4,056         6,499         3,902         1,476         1,473           500         418         513         703         4,056         6,499         3,902         1,476         1,476           642         465         545         1,766         6,493         3,902         1,476         1,476           1,302         866         671         631         5,30         3,511         2,905         1,476         1,476           1,302         658         671         631         7,03         3,511         7,03         4,051           880         761         642         2406         6,493         3,501                                                                                                                                                                                                               | YEAR     | 001   | NON   | DEC | NAL | FEB | MAR   | АРЯ   | МΑΥ    | NUL    | JUL    | AUG   | SEP   | TOTAL  |
| B69287482242457815463,1663,2531,4761,025300582651991551513081,1362,1105,3381,4763,57975039122802432293184973,3065,4551,5901,1645039122801952063,3155,5311,5901,1645039122802137034,0566,4993,9021,7661,6351,0328455985137034,0566,4993,9021,4761,0811,0328455985137034,5077,5182,4661,4761,0818807614652401922214056111,1818,30010,4242,3021,42887264246554453228834,5077,5182,4661,4761,08182854524019222719130717792,9965,13010,4242,3021,4281,33065867163512,2071,4651,4761,0811,9611,9611,3306586723442,3061,7661,4761,0811,9611,33065828656111,1872,9068,945,6661,4261,3325482172684,5177,5182,4661,4261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1988     | 218   | 242   | 434 | 629 | 140 | 325   | 331   | 1,872  | 5,404  | 863    | 924   | 1.461 | 12.873 |
| 5.8         2.65         199         155         151         308         1,136         2,110         5,338         1,476         357         97           5.00         418         309         155         151         308         1,136         2,110         5,338         1,476         357         97           5.00         418         309         195         206         321         1,845         3,906         3,355         5,531         1,590         1,164           1.092         845         599         573         498         513         703         4,056         6,499         3,902         1,476         1,476         1,478           8100         761         455         5,130         3,405         5,433         1,476         1,476         1,478           1,300         656         671         631         5,44         532         288         2,400         1,476         1,478         1,476         1,681           1,300         656         647         631         5,44         532         2899         10,796         3,511         2,277         1,463           1,300         658         544         528         4,517 <t< th=""><th>1989</th><th>869</th><th>287</th><th>48</th><th>224</th><th>245</th><th>781</th><th>546</th><th>3,166</th><th>3,253</th><th>1,476</th><th>1.025</th><th>300</th><th>12.220</th></t<>      | 1989     | 869   | 287   | 48  | 224 | 245 | 781   | 546   | 3,166  | 3,253  | 1,476  | 1.025 | 300   | 12.220 |
| 503         912         280         243         229         318         497         3.306         5,455         1,766         1,635         1,130           500         418         309         195         206         321         1,845         3,906         3,355         5,531         1,590         1,164           500         418         309         195         206         321         1,845         3,906         3,355         5,531         1,590         1,164           1092         845         599         525         498         513         703         4,056         6,499         3,902         1,476         1,476         1,476           642         465         240         132         221         405         611         1,181         8,300         10,434         2,305         1,476         1,476         1,463           1,332         642         544         522         543         252         1,466         1,476         1,463           1,332         642         341         4,517         2,518         2,466         1,476         1,463           1,332         642         331         175         2,217         1,458                                                                                                                                                                                                       | 1990     | 88    | 265   | 199 | 155 | 151 | 308   | 1,136 | 2,110  | 5,338  | 1,476  | 357   | 97    | 11.650 |
| 500         418         309         195         206         321         1,845         3,906         3,355         5,531         1,590         1,164           1,032         845         599         525         498         513         703         4,056         6,499         3,902         1,476         1,473           880         761         465         377         349         435         1,088         3,811         4,288         2,207         942         852           642         465         240         192         221         405         611         1,181         8,300         10,434         2,305         1,428           1,300         656         6,499         3,511         2,426         1,476         1,463           1,332         645         405         611         1,181         8,300         10,434         2,305         1,463           1,332         645         345         230         10,796         3,511         2,759         1,081           1,332         645         3,71         3,560         1,765         1,463           1,332         545         3,34         2,528         1,689         1,707         769                                                                                                                                                                                                        | 1991     | 503   | 912   | 280 | 243 | 229 | 318   | 497   | 3,306  | 5,455  | 1,766  | 1,635 | 1,130 | 16.274 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1992     | 500   | 418   | 309 | 195 | 206 | 321   | 1,845 | 3,906  | 3,355  | 5,531  | 1,590 | 1,164 | 19,340 |
| 880         761         465         377         349         435         1,088         3,811         4,288         2,207         942         852           642         465         240         192         221         405         611         1,181         8,300         10,434         2,305         1,428           1,300         656         671         631         544         532         283         4,507         7,518         2,466         1,476         1,081           828         545         420         377         52         543         252         3,899         10,796         3,511         2,277         1,463           1,332         642         337         52         543         2,596         5,130         3,560         1,776         7,69           828         502         314         145         266         461         890         2,768         1,707         769           929         485         286         211         263         1,193         4,516         4,165         3,369         1,707         769           929         485         211         215         266         1,896         3,217         1,068                                                                                                                                                                                                            | 1993     | 1,092 | 845   | 599 | 525 | 498 | 513   | 703   | 4,056  | 6,499  | 3,902  | 1,476 | 1.473 | 22,181 |
| 642         465         240         192         221         405         611         1,181         8,300         10,434         2,305         1,428           1,300         658         671         631         544         532         283         4,507         7,518         2,466         1,476         1,081           828         545         420         377         52         543         252         3,899         10,796         3,511         2,277         1,463           1,332         642         347         52         543         252         3,899         10,796         3,511         2,277         1,463           1,332         642         347         52         543         252         3,899         10,796         3,511         2,727         1,463           1,332         642         346         1,793         2,130         3,560         1,707         769         804           698         502         314         145         2,689         6,354         2,528         1,695         1,428           714         415         2,394         1,476         1,276         1,437         706         1,437           714 <td< th=""><th>1994</th><th>880</th><th>761</th><th>465</th><th>377</th><th>349</th><th>435</th><th>1,088</th><th>3,811</th><th>4,288</th><th>2,207</th><th>942</th><th>852</th><th>16.455</th></td<>            | 1994     | 880   | 761   | 465 | 377 | 349 | 435   | 1,088 | 3,811  | 4,288  | 2,207  | 942   | 852   | 16.455 |
| 1,300         658         671         631         544         532         283         4,507         7,518         2,466         1,476         1,081           828         545         420         377         52         543         252         3,899         10,796         3,511         2,277         1,463           828         545         420         377         52         543         252         3,899         10,796         3,511         2,277         1,463           1.332         642         344         237         191         307         179         2,996         5,130         3,560         1,789         804           698         502         314         145         268         461         890         2,689         6,354         2,528         1,428           929         485         286         211         263         1,193         4,518         4,165         3,389         1,707         769           929         485         231         1,508         10,452         6,051         884         508         867           714         415         289         3,304         1,355         5,263         1,476         1,276 <th>1995</th> <th>642</th> <th>465</th> <th>240</th> <th>192</th> <th>221</th> <th>405</th> <th>611</th> <th>1,181</th> <th>8,300</th> <th>10,434</th> <th>2.305</th> <th>1.428</th> <th>26.424</th> | 1995     | 642   | 465   | 240 | 192 | 221 | 405   | 611   | 1,181  | 8,300  | 10,434 | 2.305 | 1.428 | 26.424 |
| 828         545         420         377         52         543         252         3,899         10,796         3,511         2.277         1,453           1.332         642         344         237         191         307         179         2,996         5,130         3,560         1,789         804           698         502         314         145         268         461         890         2,689         6,354         2,528         1,428           929         485         286         247         270         310         487         5,906         8,886         3,217         1,068         1,091           714         415         285         265         211         263         1,193         4,518         4,165         3,389         1,707         769           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           455         334         34         190         189         320         4,355         5,263         1,476         1,276         1,437           458         549         508         10,452         6,051                                                                                                                                                                                                               | 1996     | 1,300 | 658   | 671 | 631 | 544 | 532   | 283   | 4,507  | 7,518  | 2,466  | 1,476 | 1.081 | 21,667 |
| 1.332         642         344         237         191         307         179         2.996         5,130         3.560         1,789         804           698         502         314         145         268         461         890         2,689         6,354         2.528         1,695         1,428           929         485         286         247         270         310         487         5,906         8,886         3,217         1,068         1,091           714         415         285         265         211         263         1,193         4,518         4,165         3,389         1,707         769           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           455         334         34         190         189         321         1,508         10,452         6,051         864         508         867           457         295         3,327         3,198         3,809         908         676         676         676         676         676         676         676         676         676         743         371                                                                                                                                                                                                   | 1997     | 828   | 545   | 420 | 377 | 52  | 543   | 252   | 3,899  | 10,796 | 3,511  | 2,277 | 1.463 | 24,963 |
| 698         502         314         145         268         461         890         2,689         6,354         2,528         1,695         1,428           929         485         286         247         270         310         487         5,906         8,886         3,217         1,068         1,091           929         485         286         247         270         310         487         5,906         8,886         3,217         1,068         1,091           714         415         295         265         211         263         1,193         4,518         4,165         3,389         1,707         769           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           455         334         34         190         189         321         1,330         4,355         5,263         1,476         1,276         1,437           4,28         508         805         5,327         3,198         3,809         908         676           437         295         3,327         3,198         3,809         908         676                                                                                                                                                                                                             | 1998     | 1,332 | 642   | 344 | 237 | 191 | 307   | 179   | 2,996  | 5,130  | 3,560  | 1,789 | 804   | 17,511 |
| 929         485         286         247         270         310         487         5,906         8,886         3,217         1,068         1,091           714         415         295         265         211         263         1,193         4,518         4,165         3,389         1,707         769           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           437         295         304         251         208         4,355         5,263         1,476         1,276         1,437           437         295         304         251         208         433         1,936         3,327         3,198         3,809         908         676           684         549         288         3441         4,709         1,726         1,437         3,011         1,429         898           731         510         390         319         274         393         706         1,                                                                                                                                                                                                           | 1999     | 698   | 502   | 314 | 145 | 268 | 461   | 890   | 2,689  | 6,354  | 2,528  | 1,695 | 1,428 | 17,972 |
| 714         415         295         265         211         263         1,193         4,518         4,165         3,389         1,707         769           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           1,289         805         297         185         166         281         1,330         4,355         5,263         1,476         1,276         1,437           437         295         304         251         208         433         1,936         3,327         3,198         3,809         908         676           437         295         304         251         208         4,02         409         3,441         4,708         1,726         1,437           684         540         393         713         2,943         5,716         3,011         1,429         898           731         510         390         316         122         658         1,537                                                                                                                                                                                                                    | 2000     | 929   | 485   | 286 | 247 | 270 | 310   | 487   | 5,906  | 8,886  | 3,217  | 1,068 | 1.091 | 23,182 |
| 455         334         34         190         189         321         1,508         10,452         6,051         884         508         867           1,289         805         297         185         166         281         1,330         4,355         5,263         1,476         1,276         1,437           437         295         304         251         208         433         1,936         3,327         3,198         3,809         908         676           437         295         304         251         208         433         1,936         3,327         3,198         3,809         908         676           684         549         288         344         546         402         409         3,441         4,708         1,726         1,689         397           731         510         390         319         274         383         713         2,943         5,716         3,011         1,429         898           58         50         347         1,22         658         1,537         706         14         97           1,476         1,153         857         659         567         1,039         1,936<                                                                                                                                                                                                           | 2001     | 714   | 415   | 295 | 265 | 211 | 263   | 1,193 | 4,518  | 4,165  | 3,389  | 1,707 | 769   | 17,904 |
| 1,289         805         297         185         166         281         1,330         4,355         5,263         1,476         1,276         1,437           437         295         304         251         208         433         1,936         3,327         3,198         3,809         908         676           437         295         304         251         208         433         1,936         3,327         3,198         3,809         908         676           684         549         288         344         5,716         1,785         1,689         397           731         510         390         319         274         383         713         2,943         5,716         3,011         1,429         898           58         50         34         19         16         158         1,22         658         1,537         706         14         97           1,476         1,153         857         659         567         1,039         1,936         10,452         12,750         10,434         3,256         1,728                                                                                                                                                                                                                                                                                                            | 2002     | 455   | 334   | 8   | 190 | 189 | 321   | 1,508 | 10,452 | 6,051  | 884    | 508   | 867   | 21,793 |
| 4.37         2.95         304         251         208         4.33         1,936         3,327         3,198         3,809         908         676           684         549         288         344         546         402         409         3,441         4,708         1,785         1,689         397           731         510         390         319         274         393         713         2,943         5,716         3,011         1,429         898           731         510         390         319         274         393         713         2,943         5,716         3,011         1,429         898           58         50         34         19         16         158         122         658         1,537         706         14         97           1,476         1,153         857         659         567         1,039         1,936         10,452         12,750         10,434         3.256         1,728                                                                                                                                                                                                                                                                                                                                                                                                                        | 2003     | 1,289 | 805   | 297 | 185 | 166 | 281   | 1,330 | 4,355  | 5,263  | 1,476  | 1,276 | 1,437 | 18,160 |
| 684         549         288         344         546         402         409         3,441         4,708         1,785         1,689         397           731         510         390         319         274         393         713         2,943         5,716         3,011         1,429         898           731         510         390         319         274         393         713         2,943         5,716         3,011         1,429         898           58         50         34         19         16         158         122         658         1,537         706         14         97           1.476         1,153         857         659         567         1,039         1,936         10,452         12,750         10,434         3.256         1,728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2004     | 437   | 295   | 304 | 251 | 208 | 433   | 1,936 | 3,327  | 3,198  | 3,809  | 908   | 676   | 15,782 |
| 731         510         390         319         274         393         713         2,943         5,716         3,011         1,429         898           58         50         34         19         16         158         122         658         1,537         706         14         97           1476         1,153         857         659         567         1,039         1,936         10,452         12,750         10,434         3,256         1,728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2005     | 684   | 549   | 288 | 344 | 546 | 402   | 409   | 3,441  | 4,708  | 1,785  | 1,689 | 397   | 15,242 |
| 58 50 34 19 16 158 122 658 1,537 706 14 97 1.476 1,153 857 659 567 1,039 1,936 10,452 12,750 10,434 3,256 1,728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AVERAGE: | 731   | 510   | 390 | 319 | 274 | 393   | 713   | 2,943  | 5,716  | 3,011  | 1,429 | 898   | 17,327 |
| 1.476 1,153 857 659 567 1,039 1,936 10,452 12,750 10,434 3.256 1,728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINIMUM: | 58    | 50    | 33  | 19  | 16  | 158   | 122   | 658    | 1,537  | 706    | 14    | 97    | 11.650 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAXIMUM: | 1,476 | 1,153 | 857 | 659 | 567 | 1,039 | 1,936 | 10,452 | 12,750 | 10.434 | 3.256 | 1.728 | 29.980 |

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000 No Action Alternative (CFS)

| 1950         150         154         150         154         150         154         150         154         150         154         150         154         150         154         150         154         150         154         150         154         150         150         151         150         151         150         151         152         150         151         152         151         152         151         152         151         152         151         152         151         152         151         152         151         152         151         152         151         152         151         152         151         152         152         151         152         151         152         152         151         152         152         151         152         152         151         152         152         151         152         152         151         151         152         152         151         152         152         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151         151 <th>WATER<br/>YEAR</th> <th>ост</th> <th>NON</th> <th>DEC</th> <th>NAL</th> <th>FEB</th> <th>MAR</th> <th>APR</th> <th>MAY</th> <th>NUL</th> <th>JUL</th> <th>AUG</th> <th>SEP</th> <th>ANNUAL</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WATER<br>YEAR | ост      | NON | DEC    | NAL    | FEB    | MAR    | APR | MAY | NUL | JUL        | AUG | SEP    | ANNUAL |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----|--------|--------|--------|--------|-----|-----|-----|------------|-----|--------|--------|
| $ \begin{bmatrix} 5 & 5 & 5 & 5 & 4 & 3 & 5 \\ 5 & 5 & 5 & 5 & 4 & 3 & 5 & 5 & 4 \\ 5 & 5 & 5 & 4 & 5 & 5 & 4 & 3 & 5 & 5 & 4 & 5 & 5 & 4 & 5 & 5 & 4 & 5 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1950          | 20       | 14  | 12     | 10     | 8      | 2      | 12  | 6E  | 94  | ឍ          | 12  | 10     | 22     |
| $ \begin{bmatrix} 1 & 6 & 5 & 7 & 7 & 7 & 6 & 5 & 7 & 7 & 7 & 6 & 5 & 7 & 7 & 7 & 6 & 5 & 7 & 7 & 7 & 5 & 5 & 7 & 7 & 7 & 5 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1951          | 9        | ഹ   | ß      | 4      | ი      | 2      | 13  | 48  | 110 | 72         | 55  | -<br>0 | 25     |
| 6       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1952          | :        | 9   | с<br>С | 5      | 4      | e      | 4   | 성   | 134 | 43         | 24  | 22     | 25     |
| $ \begin{bmatrix} 4 & 5 & 7 & 4 & 7 & 7 & 7 & 5 & 4 & 4 & 3 & 3 & 5 & 5 & 7 & 4 & 7 & 7 & 7 & 7 & 5 & 7 & 4 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1953          | 9        | 4   | 4      | 4      | 4      | 4      | 11  | g   | 127 | 40         | 20  | 7      | 22     |
| 16       9       7       7       8       7       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1954          | 4        | 5   | 4      | 4      | ო      | ო      | 32  | 52  | 134 | 39         | 12  | 12     | 25     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1955          | 16       | 6   | 7      | 5      | 4      | 4      | 20  | 30  | 56  | 4          | 39  | 6      | R      |
| 4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1956          | S        | 7   | 7      | 9      | 5      | 7      | 7   | 67  | 76  | 36         | 19  | 5      | 21     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1957          | 4        | 4   | ო      | 4      | 4      | 5      | 5   | 25  | 125 | 110        | 21  | 18     | 28     |
| 4       4         5       7       7       4       7       7       4       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1958          | 6        | 6   | 7      | 9      | 9      | 5      | :   | 58  | 73  | 11         | 17  | 7      | 18     |
| 21       12       1       12       1       12       1       12       1       12       1       12       1       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15       15 <th>1959</th> <th>4</th> <th>ব</th> <th>ო</th> <th>ო</th> <th>Ю</th> <th>ო</th> <th>:</th> <th>31</th> <th>63</th> <th>17</th> <th>20</th> <th>80</th> <th>17</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1959          | 4        | ব   | ო      | ო      | Ю      | ო      | :   | 31  | 63  | 17         | 20  | 80     | 17     |
| $ \begin{bmatrix} 5 & 5 & 5 & 5 & 3 & 3 & 3 & 4 & 8 & 8 & 5 & 5 & 1 & 3 & 7 & 4 & 5 & 5 & 3 & 3 & 3 & 4 & 8 & 8 & 5 & 5 & 1 & 3 & 5 & 5 & 1 & 3 & 5 & 5 & 1 & 3 & 5 & 5 & 1 & 3 & 5 & 5 & 1 & 1 & 1 & 2 & 5 & 1 & 1 & 1 & 2 & 5 & 1 & 1 & 1 & 2 & 5 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1960          | 54       | 42  | ى<br>ك | 4      | 4      | 7      | 8   | 28  | 87  | 23         | 25  | 8      | 19     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1961          | Ŋ        | Ŋ   | ო      | ო      | n      | 4      | 60  | 36  | 51  | 37         | 24  | 17     | 16     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1962          | 13       | 19  | 14     | œ      | 8      | 6      | 11  | 38  | 80  | 44         | 24  | 10     | 23     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1963          | 7        | 4   | ო      | n      | ო      | 9      | 19  | 43  | 45  | <u> 68</u> | 42  | ក្ត    | 20     |
| $ \begin{bmatrix} 6 & 6 & 6 & 6 & 5 & 5 & 17 \\ 2 & 4 & 11 & 8 & 6 & 5 & 5 & 17 \\ 1 & 2 & 4 & 1 & 8 & 6 & 5 & 5 & 17 \\ 1 & 2 & 4 & 1 & 8 & 6 & 5 & 7 & 7 & 19 \\ 1 & 3 & 5 & 5 & 4 & 4 & 8 & 8 & 11 & 100 & 22 & 24 & 28 \\ 2 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1964          | 7        | 9   | 4      | 5      | 4      | 4      | 10  | 40  | 55  | 83         | 41  | 12     | 23     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1965          | g        | 9   | 6      | 9      | ى<br>ك | 5      | 17  | 36  | 101 | 83         | 23  | 10     | 25     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1966          | 24       | 11  | 8      | 9      | ى<br>ک | 7      | 19  | ¥   | 26  | 36         | 53  | 10     | 20     |
| $ \begin{bmatrix} 12 \\ 13 \\ 16 \\ 13 \\ 13 \\ 12 \\ 12 \\ 12 \\ 13 \\ 12 \\ 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1967          | <b>6</b> | 4   | ო      | 4      | 4      | 8      | 4   | 50  | 77  | 25         | 31  | 53     | 20     |
| $ \begin{bmatrix} 19 \\ 16 \\ 16 \\ 16 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1968          | 12       | ø   | ى<br>ک | 4      | 4      | 5      | æ   | 11  | 100 | 22         | 24  | 28     | 19     |
| 16       9       7       6       6       6       7       13       31       24       14       31       24       14       28       13       31       24       14       31       31       24       14       31       31       31       31       31       32       32       113       31       31       25       23       114       25       23       114       25       25       23       114       25       23       114       25       23       114       25       25       23       114       25       25       23       114       25       25       23       114       25       25       23       114       25       25       23       114       25       25       23       114       25       25       23       114       25       25       23       114       25       26       24       15       33       31       15       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1969          | 19       | 13  | 12     | 8      | 7      | 7      | 7   | 62  | 65  | 29         | 23  | 14     | ស      |
| 24       17       12       7       7       8       5       27       72       25       21       15       5       21       15       23       114       25       21       15       25       21       15       23       114       25       23       114       25       23       114       25       23       114       25       25       21       15       33       15       33       114       25       23       114       25       23       114       25       25       23       114       25       25       23       114       25       26       87       25       26       87       25       26       87       25       26       27       25       23       114       25       26       26       27       13       11       15       114       25       26       27       12       26       27       12       26       27       12       26       27       13       11       11       15       114       10       114       10       114       10       114       10       11       11       11       11       11       11       11       11       11 <th>1970</th> <th>16</th> <th>თ</th> <th>7</th> <th>9</th> <th>9</th> <th>9</th> <th>12</th> <th>75</th> <th>113</th> <th>31</th> <th>24</th> <th>22</th> <th>27</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1970          | 16       | თ   | 7      | 9      | 9      | 9      | 12  | 75  | 113 | 31         | 24  | 22     | 27     |
| $ \begin{bmatrix} 10 & 7 & 8 & 6 & 7 & 24 & 14 & 11 & 3 & 0 & 7 & 64 & 13 & 11 & 25 & 23 & 107 & 64 & 13 & 11 & 25 & 23 & 107 & 64 & 13 & 11 & 25 & 23 & 107 & 64 & 13 & 11 & 25 & 23 & 107 & 64 & 13 & 11 & 25 & 23 & 21 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1971          | 24       | 17  | 12     | 7      | 7      | 8      | 5   | 27  | 72  | 25         | 21  | 15     | 20     |
| 24       14       11       3       0       5       13       107       64       13       1         5       5       3       5       5       3       5       5       11       3       1         5       5       3       5       5       11       3       1       5       5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1972          | 10       | 7   | 80     | 9      | 7      | ¢,     | 15  | 32  | 114 | 25         | 20  | 24     | 23     |
| 4       5       5       5       6       87       25       23       2         5       5       5       3       5       8       5       5       23       2       2       2       2       2       2       2       2       2       2       2       3       2       10       12       11       14       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td< th=""><th>1973</th><th>24</th><th>14</th><th>1</th><th>ო</th><th>0</th><th>ى<br/>ك</th><th>12</th><th>g</th><th>107</th><th>5</th><th>13</th><th>11</th><th>25</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1973          | 24       | 14  | 1      | ო      | 0      | ى<br>ك | 12  | g   | 107 | 5          | 13  | 11     | 25     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1974          | 4        | S   | ო      | 5      | 6      | 4      | ო   | 56  | 87  | 25         | 23  | N      | 19     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975          | 5        | ო   | N      | 0      | 7      | ന      | 15  | 20  | 82  | 85         | 10  | 12     | 20     |
| $\begin{bmatrix} 14 & 1 & 4 & 4 & 3 \\ 7 & 1 & 4 & 6 & 6 & 7 & 11 \\ 5 & 7 & 4 & 6 & 6 & 7 & 17 & 2 & 48 & 96 & 62 & 11 \\ 9 & 8 & 9 & 5 & 7 & 7 & 8 & 5 & 40 & 141 & 68 & 46 & 12 \\ 9 & 8 & 9 & 5 & 7 & 7 & 7 & 23 & 32 & 116 & 37 & 21 & 134 \\ 19 & 13 & 10 & 10 & 5 & 5 & 23 & 32 & 116 & 37 & 21 & 134 \\ 11 & 9 & 9 & 5 & 6 & 7 & 103 & 59 & 20 & 29 \\ 12 & 11 & 9 & 9 & 10 & 13 & 67 & 116 & 37 & 21 & 13 \\ 13 & 12 & 7 & 7 & 7 & 7 & 103 & 59 & 20 & 29 \\ 13 & 12 & 11 & 9 & 9 & 10 & 13 & 67 & 116 & 37 & 21 & 13 \\ 23 & 14 & 12 & 9 & 7 & 7 & 7 & 7 \\ 15 & 13 & 10 & 10 & 12 & 9 & 41 & 214 & 14 & 12 \\ 7 & 15 & 13 & 10 & 10 & 5 & 74 & 156 & 78 & 19 & 15 \\ 23 & 14 & 12 & 9 & 7 & 7 & 7 & 7 & 7 \\ 23 & 14 & 12 & 9 & 41 & 214 & 14 & 0 & 29 \\ 24 & 13 & 10 & 16 & 16 & 15 & 16 & 15 \\ 20 & 16 & 16 & 16 & 13 & 16 & 16 & 17 \\ 10 & 10 & 10 & 10 & 5 & 74 & 156 & 78 & 34 & 23 \\ 20 & 10 & 10 & 12 & 9 & 41 & 214 & 14 & 0 \\ 21 & 14 & 12 & 9 & 19 & 15 & 18 \\ 20 & 16 & 14 & 0 & 0 & 24 & 34 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 14 & 0 & 0 & 24 & 34 \\ 21 & 214 & 214 & 214 & 214 & 214 \\ 21 & 214 & 214 & 214 & 214 & 214 & 214 \\ 21 & 214 & 214 & 214 & 214 & 214 & 214 \\ 21 & 214 & 214 & 214 & 214 & 214 & 214 & 214 \\ 21 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 214 & 21$ | 1976          | 10       | Q   | 0      | 2      | 0      | ო      | 11  | 49  | 69  | 26         | 24  | 13     | 18     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1977          | 14       | ~   | 4      | 4      | ო      | 1      | 15  | 35  | 66  | 25         | 14  | 10     | 20     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1978          | 13       | o ' | 7      | ß      | 4      | S      | ъ   | 40  | 141 | 68         | 46  | 12     | 30     |
| $ \begin{bmatrix} 5 & 7 & 8 & 5 & 0 & 5 & 23 & 32 & 116 & 37 & 21 & 13 \\ 9 & 8 & 9 & 5 & 4 & 7 & 6 & 31 & 65 & 42 & 16 & 20 \\ 19 & 13 & 10 & 10 & 5 & 5 & 8 & 27 & 103 & 59 & 20 & 29 \\ 18 & 14 & 11 & 9 & 9 & 10 & 13 & 67 & 114 & 84 & 34 & 23 \\ 7 & 15 & 13 & 10 & 10 & 12 & 9 & 41 & 214 & 141 & 0 & 24 \\ 23 & 14 & 12 & 9 & 7 & 9 & 8 & 59 & 60 & 16 & 20 & 29 \\ 23 & 14 & 12 & 9 & 7 & 9 & 8 & 59 & 60 & 16 & 20 & 8 \\ 23 & 14 & 12 & 9 & 7 & 9 & 8 & 59 & 60 & 16 & 20 & 8 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6261          | 7        | 4   | 9      | 9      | 7      | 17     | N   | 48  | 96  | 62         | 11  | 14     | 23     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1960          | 5        | 7   | 8      | 2<br>2 | 0      | ŝ      | 23  | 32  | 116 | 37         | 21  | 13     | 23     |
| 12     10     8     4     6     5     8     27     103     59     20     29       19     13     10     10     5     5     2     15     114     84     34     23       18     14     11     9     9     10     13     67     115     76     47     18       7     15     13     10     12     9     41     214     14     0     24       23     14     12     9     7     9     8     59     60     16     20     24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1981          | Ø        | 8   | თ      | 5      | 4      | 7      | 9   | 31  | 65  | 42         | 16  | 20     | 19     |
| 19     13     10     10     5     5     2     15     114     84     34     23       18     14     11     9     9     10     13     67     115     76     47     18       7     15     13     10     10     5     7     115     76     47     18       7     15     13     10     10     12     9     41     214     141     0     24       23     14     12     9     7     9     8     59     60     16     20     8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1982          | 12       | 10  | 8      | 4      | 9      | 5      | 80  | 27  | 103 | 59         | 20  | 29     | 24     |
| 18         14         11         9         9         10         13         67         115         76         47         18           18         12         7         7         7         10         13         67         115         76         47         18           18         12         7         7         7         10         5         74         156         78         19         15           7         15         13         10         10         12         9         41         214         141         0         24           23         14         12         9         8         59         60         16         20         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1983          | 19       | 13  | 10     | 0      | 5      | S      | N   | 15  | 114 | 84         | 8   | 23     | 28     |
| 18         12         7         7         7         10         5         74         156         78         19         15           7         15         13         10         10         12         9         41         214         141         0         24           23         14         12         9         7         9         8         59         60         16         20         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1984          | 18       | 14  | 11     | 6      | თ      | 10     | 13  | 67  | 115 | 76         | 47  | 18     | 8      |
| 7         15         13         10         10         12         9         41         214         141         0         24           23         14         12         9         8         59         60         16         20         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1985          | 18       | 12  | 7      | 7      | 7      | 10     | ъ   | 74  | 156 | 78         | 19  | 15     | 34     |
| 23 14 12 9 7 9 B 59 60 16 20 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1966          | 7        | 15  | 13     | 10     | 10     | 12     | თ   | 41  | 214 | 141        | 0   | 24     | 41     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1987          | 23       | 14  | 12     | თ      | 7      | თ      | 68  | 59  | 60  | 16         | 20  | 8      | 20     |

| Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000<br>No Action Alternative | (CFS) |
|-----------------------------------------------------------------------------------------------------------|-------|
|-----------------------------------------------------------------------------------------------------------|-------|

| YEAR            | OCT | NON | DEC | JAN      | FEB      | MAR | APR      | MAY  | NUL | JUL | AUG | SEP |    |
|-----------------|-----|-----|-----|----------|----------|-----|----------|------|-----|-----|-----|-----|----|
| 1988            | 4   | 4   | 7   | :        |          | 5   | 9        | 30   | 91  | 14  | 15  | 25  | 18 |
| 1969            | 14  | ŋ   | ٣   | 4        | 4        | 13  | 6        | 51   | 55  | 24  | 17  | с   | 17 |
| 1990            |     | 4   | ო   | e        | e        | ഹ   | 19       | 34   | 06  | 24  | 9   | Q   | 16 |
| 1991            | 80  | 15  | £   | 4        | 4        | ъ   | 8        | 54   | 92  | 29  | 27  | 19  | 8  |
| 1992            | 80  | 7   | 5   | ო        | 4        | ۍ   | 31       | 2    | 56  | 06  | 26  | 20  | 27 |
| 1993            | 18  | 14  | 10  | <b>6</b> | ŋ        | 8   | 12       | 66   | 109 | 63  | 24  | 25  | 31 |
| 1994            | 14  | 13  | 8   | 9        | 9        | 7   | 18       | 62   | 72  | 36  | 15  | 14  | ន  |
| 1995            | 10  | 8   | 4   | ი        | 4        | 7   | 10       | 19   | 139 | 170 | 37  | 24  | 36 |
| 1996            | 21  | 11  | 11  | 10       | 10       | 6   | с        | 73   | 126 | 40  | 24  | 18  | 8  |
| 1997            | 13  | 8   | 7   | 8        | -        | 6   | 4        | ß    | 181 | 57  | 37  | 25  | \$ |
| 1998            | প্ন | 11  | 9   | 4        | ო        | υ,  | ო        | 49   | 86  | 58  | 29  | 14  | 24 |
| 1999            | 11  | 8   | ъ   | N        | 5        | 7   | 15       | 44   | 107 | 41  | 28  | 24  | 25 |
| 2000            | 15  | ø   | S   | 4        | ъ        | Ω   | æ        | 96   | 149 | 52  | 17  | 18  | 32 |
| 2001            | 12  | 7   | £   | 4        | 4        | 4   | 20       | 73   | 70  | 55  | 28  | 13  | 25 |
| 2002            | 7   | 9   | -   | ო        | ო        | с   | 25       | 170  | 102 | 14  | 8   | 15  | 8  |
| 2003            | 21  | 14  | 5   | ო        | ო        | ъ   | 23       | 71   | 88  | 24  | 21  | 24  | 25 |
| 2004            | 7   | ъ   | υ,  | 4        | 4        | 7   | ее<br>ЭЭ | 54   | 54  | 62  | 15  | ÷   | 22 |
| 2005            | 11  | 6   | 5   | 9        | <b>6</b> | 7   | 7        | 56   | 79  | 29  | 27  | 7   | 21 |
| AVERAGE:        | 12  | 6   | 9   | 5        | 5        | 9   | 12       | 48   | 96  | 49  | 23  | 15  | 24 |
| <b>MUMINIA:</b> | -   | -   | -   | 0        | 0        | ო   | N        | 11   | 26  | 11  | 0   | N   | 16 |
| <b>TAXIMUM:</b> | 24  | 19  | 14  | ÷        | ¢,       | 77  | 60       | 02.4 |     | 170 | 5   | 0   |    |

| Simulated Flows at Blue River below Green Mountain Reservoir<br>No Action Alternative | (640) |
|---------------------------------------------------------------------------------------|-------|
|---------------------------------------------------------------------------------------|-------|

| 1950 |     |     |     |     |     | 5   | АРН | MAT            |       | JUL   | AUG   | SEP   | AVG |
|------|-----|-----|-----|-----|-----|-----|-----|----------------|-------|-------|-------|-------|-----|
|      | 554 | 278 | 171 | 163 | 205 | 211 | 92  | 61             | 509   | 567   | 595   | 310   | 311 |
| 1951 | 515 | 229 | 198 | 196 | 208 | 196 | 226 | 113            | 525   | 1.762 | 598   | 397   | 433 |
| 952  | 552 | 315 | 301 | 292 | 311 | 286 | 06  | 134            | 2,311 | 982   | 411   | 384   | 530 |
| 953  | 522 | 276 | 261 | 272 | 284 | 296 | 241 | 67             | 347   | 767   | 324   | 337   | 334 |
| 954  | 523 | 264 | 256 | 427 | 172 | 257 | 254 | 70             | 240   | 669   | 185   | 178   | 295 |
| 955  | 152 | 132 | 110 | 66  | 101 | 115 | 92  | 61             | 173   | 411   | 500   | 292   | 187 |
| 956  | 505 | 192 | 183 | 175 | 183 | 187 | 06  | 120            | 568   | 539   | 610   | 312   | 306 |
| 957  | 513 | 219 | 221 | 213 | 209 | 208 | 202 | 76             | 64    | 1,179 | 337   | 498   | 381 |
| 958  | 378 | 360 | 325 | 298 | 330 | 323 | 210 | 166            | 2,055 | 524   | 683   | 292   | 494 |
| 959  | 507 | 171 | 166 | 177 | 175 | 173 | 279 | 67             | 142   | 366   | 689   | 361   | 274 |
| 960  | 635 | 272 | 216 | 216 | 244 | 263 | 06  | 91             | 583   | 663   | 631   | 303   | 352 |
| 961  | 516 | 222 | 206 | 192 | 211 | 218 | 269 | 65             | 169   | 634   | 545   | 402   | 305 |
| 962  | 327 | 340 | 205 | 221 | 242 | 260 | 06  | 151            | 1,936 | 1,082 | 341   | 588   | 481 |
| 963  | 584 | 194 | 272 | 190 | 202 | 210 | 63  | 64             | 171   | 833   | 493   | 229   | 297 |
| 964  | 138 | 137 | 123 | 124 | 126 | 139 | 242 | 88             | 152   | 178   | 613   | 246   | 183 |
| 965  | 440 | 191 | 182 | 181 | 181 | 179 | 93  | 85             | 138   | 840   | 677   | 605   | 343 |
| 966  | 456 | 357 | 307 | 306 | 337 | 338 | 100 | 61             | 164   | 672   | 511   | 207   | 319 |
| 967  | 242 | 165 | 147 | 141 | 144 | 173 | 8   | 61             | 124   | 178   | 748   | 396   | 218 |
| 968  | 474 | 184 | 165 | 159 | 160 | 154 | 259 | 62             | 144   | 178   | 156   | 353   | 204 |
| 696  | 516 | 242 | 241 | 242 | 251 | 237 | 06  | 225            | 157   | 847   | 620   | 351   | 337 |
|      | 358 | 362 | 329 | 284 | 297 | 283 | 102 | 150            | 2,150 | 1,283 | 552   | 412   | 546 |
|      | 364 | 360 | 302 | 286 | 308 | 319 | 06  | 94             | 1,586 | 1,067 | 350   | 586   | 475 |
| 26   | 504 | 244 | 240 | 226 | 245 | 265 | 94  | <del>6</del> 6 | 822   | 511   | 570   | 377   | 350 |
| 576  | 318 | 297 | 275 | 270 | 285 | 276 | 293 | 87             | 176   | 1,130 | 243   | 629   | 357 |
| 576  | 531 | 255 | 225 | 233 | 240 | 257 | 06  | 63             | 1,312 | 629   | 393   | 337   | 383 |
| 976  | 534 | 259 | 238 | 248 | 258 | 250 | 120 | 61             | 98    | 1,240 | 299   | 462   | 341 |
| 976  | 485 | 246 | 223 | 216 | 245 | 234 | 94  | 151            | 107   | 176   | 447   | 371   | 250 |
| 116  | 562 | 190 | 187 | 184 | 197 | 203 | 412 | 133            | 166   | 499   | 216   | 146   | 259 |
| 879  | 199 | 169 | 168 | 154 | 155 | 178 | 16  | 140            | 169   | 362   | 550   | 405   | 229 |
| 616  | 511 | 230 | 237 | 235 | 249 | 244 | 92  | 119            | 118   | 1,215 | 438   | 374   | 341 |
| 080  | 515 | 264 | 254 | 257 | 283 | 293 | 92  | 61             | 1,351 | 1,020 | 634   | 319   | 446 |
| 981  | 481 | 212 | 200 | 189 | 203 | 208 | 400 | 123            | 162   | 414   | 156   | 209   | 247 |
| 982  | 190 | 150 | 139 | 143 | 142 | 183 | 276 | 86             | 130   | 182   | 370   | 498   | 207 |
| 983  | 393 | 329 | 294 | 301 | 325 | 366 | 266 | 62             | 1,828 | 2,330 | 1,029 | 1,039 | 715 |
| 984  | 585 | 286 | 239 | 208 | 229 | 219 | 104 | 581            | 3,306 | 2,391 | 1,393 | 845   | 868 |
| 985  | 632 | 490 | 453 | 398 | 398 | 403 | 6   | 204            | 2,339 | 1,139 | 358   | 444   | 611 |

Simulated Flows at Blue River below Green Mountain Reservoir No Action Alternative (CFS)

| WATER    |     |     |     |     |     |     |     |     |       |       |       | ſ     |        |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|--------|
| YEAR     | ост | NON | DEC | JAN | FEB | MAR | APR | MAY | NNC   | JUL   | AUG   | SEP   | ANNUAL |
| 1986     | 443 | 396 | 337 | 331 | 372 | 414 | 90  | 103 | 1.695 | 1.279 | 274   | 427   | 513    |
| 1987     | 385 | 371 | 299 | 282 | 308 | 317 | 06  | 61  | 547   | 339   | 504   | 874   | 364    |
| 1988     | 374 | 177 | 157 | 155 | 163 | 195 | 06  | 61  | 547   | 606   | 628   | 248   | 285    |
| 1989     | 522 | 204 | 173 | 179 | 188 | 211 | 06  | 150 | 142   | 341   | 629   | 301   | 262    |
| 1990     | 548 | 186 | 161 | 153 | 162 | 171 | 344 | 63  | 165   | 342   | 424   | 246   | 0.1.4  |
| 1991     | 443 | 209 | 179 | 178 | 169 | 152 | 247 | 151 | 191   | 667   | 826   | 443   | 323    |
| 1992     | 508 | 201 | 172 | 170 | 177 | 181 | 95  | 121 | 168   | 420   | 158   | 255   | 220    |
| 1993     | 377 | 185 | 202 | 200 | 222 | 248 | 214 | 128 | 1,283 | 1.273 | 408   | 355   | 425    |
| 1994     | 305 | 296 | 271 | 271 | 291 | 292 | 100 | 61  | 181   | 696   | 521   | 222   | 293    |
| 1995     | 235 | 191 | 165 | 161 | 179 | 202 | 317 | 84  | 907   | 2.655 | 701   | 418   | 521    |
| 1996     | 393 | 361 | 330 | 328 | 359 | 338 | 06  | 728 | 2,929 | 1,132 | 666   | 324   | 693    |
| 1997     | 292 | 277 | 240 | 233 | 247 | 267 | 91  | 141 | 2,995 | 1,227 | 554   | 473   | 585    |
| 1998     | 381 | 353 | 310 | 326 | 344 | 345 | 06  | 61  | 173   | 760   | 358   | 668   | 348    |
| 1999     | 553 | 211 | 173 | 175 | 187 | 213 | 95  | 137 | 873   | 1,176 | 351   | 360   | 377    |
| 2000     | 533 | 292 | 265 | 265 | 287 | 279 | 90  | 61  | 1,137 | 532   | 494   | 317   | 379    |
| 2001     | 499 | 233 | 216 | 216 | 229 | 238 | 225 | 61  | 213   | 652   | 279   | 276   | 620    |
| 2002     | 520 | 203 | 175 | 169 | 164 | 195 | 357 | 97  | 508   | 293   | 191   | 199   | 256    |
| 2003     | 308 | 181 | 149 | 141 | 140 | 177 | 101 | 75  | 173   | 495   | 841   | 298   | 258    |
| 2004     | 537 | 185 | 166 | 162 | 169 | 192 | 175 | 61  | 190   | 681   | 162   | 214   | 242    |
| 2005     | 253 | 186 | 159 | 159 | 184 | 192 | 06  | 87  | 136   | 172   | 602   | 343   | 214    |
| AVERAGE: | 440 | 250 | 224 | 221 | 230 | 240 | 160 | 119 | 744   | 808   | 519   | 389   | 363    |
| MINIMUM: | 138 | 132 | 110 | 66  | 101 | 115 | 06  | 61  | 64    | 172   | 156   | 146   | 187    |
| MAXIMUM: | 635 | 490 | 453 | 427 | 398 | 414 | 412 | 728 | 3.306 | 2.655 | 1 393 | 1 039 | 868    |
|          |     |     |     |     |     |     |     |     |       |       |       | 2221  | 200    |

Simulated Flows at Blue River below Green Mountain Reservoir No Action Alternative

£

254,756 220,916 348,267 214,801 139,403 248,513 231,037 158,034 147,729 243,991 395,650 344,125 253,156 246,717 180,987 313,458 517,646 TOTAL 224,911 383,627 213,830 221,868 275,820 357,704 198,458 258,656 277,167 187,325 165,858 246,772 322,974 150,124 628,403 442,694 241,510 135,732 178,657 12,466 29,662 61,843 50,277 26,441 SEP 20,945 30,329 60,066 31,687 45,993 9,563 33,102 33,917 21,492 23,497 13,278 33,811 33,811 36,580 36,800 25,251 19,900 11,374 30,749 37,515 57,606 41,978 42,364 38,769 33,528 26,954 39,002 9,599 22,761 63,274 85,666 22,004 AUG 34,838 108,339 60,383 47,192 42,950 66,540 51,194 51,194 41,316 10,938 51,646 51,646 51,033 52,062 65,632 65,632 65,632 65,632 65,632 74,019 866 56,632 10,803 30,654 10,803 30,655 42,719 62,748 62,748 62,748 72,719 62,748 72,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,719 77,71 43,243 47,048 70,022 25,268 33,114 72,518 32,208 32,208 22,488 40,773 38,981 JUL 196,697 139,186 NN 3,761 6,937 6,937 6,937 7,405 7,405 7,405 7,405 7,405 9,309 9,309 3,709 8,574 7,557 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,717 5,7175 MAΥ 5,489 13,425 14,3342 15,111 15,111 15,382 12,002 12,028 15,382 5,382 5,582 15,489 15,418 15,418 15,460 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,581 5,582 5,581 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 5,582 АРН 12,984 12,039 15,580 15,789 15,789 11,490 11,490 11,490 12,787 15,997 15,997 15,997 15,997 15,997 16,283 16,114 11,014 15,995 16,632 16,632 16,632 16,632 17,419 17,419 17,419 17,419 16,616 16,283 16,632 16,632 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17,419 17 13,481 24,787 MAR 11,397 15,773 15,597 15,595 15,636 10,162 10,162 11,519 11,519 11,713 11,713 11,217 11,217 11,217 11,217 11,217 11,217 11,217 11,217 11,217 11,217 11,210 11,2,83 11,2,83 11,5,812 11,3,636 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,631 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,3,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,5551 11,55551 11,55551 11,55551 11,55551 11, 13,856 15,718 11,265 11,265 11,265 18,049 18,049 18,049 12,695 22,094 FEB 10,045 12,047 16,772 6,110 10,736 10,736 10,736 13,090 13,090 13,574 11,784 11,784 11,784 11,784 11,784 11,784 11,784 11,789 11,899 11,899 11,899 11,806 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,606 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11,706 11, 15,258 13,255 11,331 9,477 4,450 5,806 1,605 8,518 12,761 24,448 8,784 JAN 6,770 11,248 13,567 13,567 12,5915 12,5915 12,545 12,545 12,545 12,545 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,797 14,690 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,664 11,4,66411,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,664 11,1,66411,1,664 11,1,664 11,1,66411,1,664 11,1,664 11,1,66411,1,664 11,1,664 11,1,66411,1,664 11,1,664 11,1,66411,1,664 11,1,66411,1,664 11,1,66411,1,664 11,1,66411,1,664 11,1,66411,1,664 11,1,66411,1,664 11,1,66411,1,664 14,716 27,830 14,582 15,631 12,319 0,497 2,177 8,514 6,023 6,023 8,080 8,520 DEC 15,737 12,636 8,911 17, 152 29, 145 9,566 Nov 34,047 31,645 33,645 32,096 32,096 32,032 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,044 31,04431,044 31,044 31,044 31,044 31,04431,044 31,044 31,044 31,044 31,04431,044 31,044 31,04431,044 31,044 31,04431,044 31,044 31,04431,044 31,04431,044 31,044 31,04431,044 31,04431,044 31,04431,044 31,04431,044 31,04431,044 31,04431,044 31 29,172 31,732 22,017 22,354 30,990 19,551 32,668 32,832 29,818 34,535 12,222 31,429 31,658 29,551 11,707 24,170 35,982 38,839 oct WATER YEAR 1950 1952 1956 1957 1958 1959 1960 1961 1963 1964 1965 1968 1970 1973 1973 1974 1974 1975 1976 1978 1978 1980 1980 1983 1951 1953 1955 1962 1966 1967 1969 989

Simulated Flows at Blue River below Green Mountain Reservoir No Action Alternative (AF)

| WATER    |        |        |        |        |        |        |        |        |         |         |        | ſ      |         |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|---------|
| YEAR     | ост    | NOV    | DEC    | JAN    | FEB    | MAR    | АРВ    | MAY    | NUL     | JUL     | AUG    | SEP    | TOTAL   |
| 1986     | 27,232 | 23,562 | 20,723 | 20,365 | 20,673 | 25,452 | 5,382  | 6.352  | 100.840 | 78.648  | 16.842 | 25,395 | 371 466 |
| 1987     | 23,650 | 22,087 | 18,384 | 17,366 | 17.122 | 19,504 | 5,382  | 3,760  | 32.546  | 20.868  | 31.019 | 52.023 | 263,713 |
| 1988     | 22,983 | 10,562 | 9,644  | 9,532  | 9,044  | 11,963 | 5,382  | 3,760  | 32,557  | 37,266  | 38,636 | 14.773 | 206.102 |
| 1989     | 32,099 | 12,126 | 10,630 | 10,988 | 10,458 | 12,991 | 5,382  | 9,241  | 8,459   | 20,938  | 38,684 | 17,915 | 189.911 |
| 1990     | 33,716 | 11,065 | 9,899  | 9,412  | 6,977  | 10,534 | 20,497 | 5,698  | 9,844   | 21,002  | 26,087 | 14,643 | 181.374 |
| 1991     | 27,215 | 12,447 | 11,004 | 10,839 | 9,369  | 9,352  | 14,709 | 9,261  | 11,382  | 40,997  | 50,762 | 26.353 | 233,690 |
| 1992     | 31,253 | 11,932 | 10,579 | 10,434 | 9,819  | 11,100 | 5,680  | 7,455  | 9'696   | 25,845  | 9.739  | 15,194 | 159,026 |
| 1993     | 23,209 | 11,012 | 12,442 | 12,310 | 12,354 | 15,224 | 12,726 | 7,855  | 76,368  | 78,265  | 25,072 | 21,154 | 307,991 |
| 1994     | 18,756 | 17,614 | 16,636 | 16,693 | 16,150 | 17,978 | 5,964  | 3,760  | 10,742  | 42,799  | 32,038 | 13,233 | 212,363 |
| 1995     | 14,479 | 11,375 | 10,134 | 9,874  | 9,932  | 12,421 | 18,877 | 5,153  | 53,988  | 163,267 | 43,093 | 24,872 | 377,465 |
| 1996     | 24,154 | 21,494 | 20,320 | 20,170 | 19,928 | 20,799 | 5,382  | 44,736 | 174,295 | 69,633  | 61,422 | 19,282 | 501,615 |
| 1997     | 17,981 | 16,511 | 14,740 | 14,305 | 13,732 | 16,399 | 5,401  | 8,657  | 178,188 | 75,467  | 34,082 | 28.141 | 423,804 |
| 1998     | 23,440 | 21,026 | 19,050 | 20,027 | 19,122 | 21,191 | 5,382  | 3,760  | 10,268  | 46,708  | 22,034 | 39,746 | 251.754 |
| 1999     | 34,002 | 12,553 | 10,623 | 10,760 | 10,370 | 13,071 | 5,638  | 8,421  | 51,965  | 72,332  | 21,582 | 21.418 | 272.735 |
| 2000     | 32,790 | 17,347 | 16,300 | 16,303 | 15,937 | 17,145 | 5,382  | 3,760  | 67,661  | 32,717  | 30,389 | 18.835 | 274.566 |
| 2001     | 30,689 | 13,857 | 13,303 | 13,257 | 12,730 | 14,611 | 13,372 | 3,761  | 12,678  | 40,085  | 17,138 | 16,399 | 201,880 |
| 2002     | 31,949 | 12,096 | 10,749 | 10,385 | 9,123  | 11,981 | 21,245 | 5,992  | 30,249  | 18,029  | 11,720 | 11.843 | 185.361 |
| 2003     | 18,910 | 10,788 | 9,140  | 8,644  | 7,803  | 10,864 | 6,008  | 4,592  | 10,272  | 30,452  | 51,719 | 17.707 | 186,899 |
| 2004     | 33,047 | 11,020 | 10,235 | 9,991  | 9,410  | 11,790 | 10,438 | 3,760  | 11,306  | 41,845  | 9,981  | 12,734 | 175,557 |
| 2005     | 15,574 | 11,093 | 9,795  | 9,798  | 10,194 | 11,810 | 5,382  | 5,376  | 8,094   | 10,560  | 36,987 | 20,438 | 155,101 |
| AVERAGE: | 27,032 | 14,858 | 13,789 | 13,581 | 12,772 | 14,738 | 9,550  | 7,300  | 44,250  | 49,657  | 31,917 | 23,119 | 262,562 |
| WINIMUM: | 8,456  | 7,657  | 6,770  | 6,110  | 5,636  | 7,100  | 5,382  | 3,760  | 3,786   | 10,560  | 9,563  | 8.705  | 135.732 |
| MAXIMUM: | 39,074 | 29,145 | 27,830 | 26,277 | 22,094 | 25,452 | 24,537 | 44,736 | 196,697 | 163,267 | 85,666 | 61.843 | 628,403 |
|          |        |        |        |        |        |        |        |        |         |         |        |        |         |

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 No Action Alternative

(CFS)

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 No Action Alternative (cFS)

| WATER    |     |     |     |     |     |     |     |       |       |       |     |      | ANDITAL                                                                                     |
|----------|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-----|------|---------------------------------------------------------------------------------------------|
| YEAR     | 100 | ADN | DEC | JAN | FEB | MAR | APR | MAY   | NUL   | JUL   | AUG | SEP  | ANNUAL                                                                                      |
| 1985     | 228 | 117 | 101 | 82  | 50  | 61  | 167 | 755   | 1.283 | 516   | 50  | 50   | 280                                                                                         |
| 1986     | 4   | 62  | 50  | 50  | 50  | 74  | 50  | 374   | 1.430 | 678   | 50  |      | 200                                                                                         |
| 1987     | 67  | 61  | 50  | 50  | 50  | 60  | 50  | 258   | 823   | 162   | 220 |      | 170                                                                                         |
| 1988     | 50  | 50  | 50  | 50  | 50  | 53  | 50  | 50    | 697   | 304   | 50  | 205  | 197                                                                                         |
| 1989     | 50  | 50  | 50  | 50  | 50  | 56  | 50  | 50    | 131   | 114   | 245 | 20   | 54                                                                                          |
| 1990     | 50  | 50  | 50  | 52  | 50  | 50  | 50  | 50    | 50    | 220   | 50  | 20   | 65                                                                                          |
| 1991     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 597   | 301   | 245 | 155  | 141                                                                                         |
| 1992     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 50    | 50    | 50  | 20   | 50                                                                                          |
| 1993     | 50  | 50  | 82  | 80  | 94  | 123 | 50  | 50    | 1.385 | 616   | 50  | 50   | 203                                                                                         |
| 1994     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 336   | 186   | 20  | 20   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| 1995     | 50  | 50  | 50  | 50  | 50  | 62  | 50  | 50    | 1,349 | 1,615 | 326 | 20   | 314                                                                                         |
| 1996     | 62  | 57  | 50  | 50  | 50  | 50  | 50  | 1,357 | 1,824 | 598   | 160 | 20   | 364                                                                                         |
| 1997     | 50  | 58  | 50  | 50  | 50  | 54  | 50  | 582   | 2,111 | 651   | 219 | 20   | 331                                                                                         |
| 1998     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 654   | 351   | 50  | 202  | 125                                                                                         |
| 1999     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 1.372 | 705   | 124 |      | 221                                                                                         |
| 2000     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 485   | 851   | 189   | 50  | 20   | 165                                                                                         |
| 2001     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 347   | 165   | 50  | 50   | 84                                                                                          |
| 2002     | 68  | 107 | 92  | 68  | 82  | 101 | 50  | 50    | 50    | 136   | 455 | 8    | 116                                                                                         |
| 2003     | 104 | 95  | 79  | 75  | 75  | 100 | 50  | 50    | 50    | 50    | 248 |      | 2 00                                                                                        |
| 2004     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 50    | 159   | 20  | 50   | 50                                                                                          |
| 2005     | 50  | 20  | 50  | 50  | 71  | 81  | 50  | 50    | 50    | 50    | 224 | 20   | 69                                                                                          |
| AVERAGE: | 63  | 59  | 54  | \$  | 54  | 60  | 52  | 183   | 612   | 364   | 170 | 67   | 149                                                                                         |
| MINIMUM: | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 50    | 50    | 50  | . 04 | 205                                                                                         |
| MAXIMUM: | 228 | 142 | 101 | 68  | 94  | 123 | 167 | 1,357 | 2.111 | 1.615 | 840 | ECE  | 405                                                                                         |
|          |     |     |     |     |     |     |     |       |       |       |     |      |                                                                                             |

Simulated Flows at Blue River below Dilłon Reservoir at USGS Gage 09050700 No Action Alternative (AF)

| WATEH<br>YEAR | ост   | NOV   | DEC   | JAN   | FEB   | MAR   | APR   | МАҮ    | NUL     | JUL    | AUG    | SEP    | TOTAL   |
|---------------|-------|-------|-------|-------|-------|-------|-------|--------|---------|--------|--------|--------|---------|
| 1950          | 3,074 | 2,975 | 3,074 | 4,190 | 2,777 | 3,074 | 2,975 | 3,074  | 18,481  | 9.534  | 3.074  | 2.975  | 59.277  |
| 1951          | 3,074 | 2,975 | 3,074 | 3,645 | 3,935 | 3,074 | 2,975 | 3,074  | 33,538  | 56,844 | 17,764 | 2,975  | 136.947 |
| 1952          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 7,734  | 115,426 | 28,726 | 6,763  | 2,975  | 182,647 |
| 1953          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3.074 | 2,975 | 3,074  | 29,530  | 21,237 | 4,833  | 2,975  | 82,672  |
| 1954          | 3,074 | 2,975 | 3,074 | 3,074 | 3,787 | 3,074 | 2,975 | 3,074  | 2,975   | 15,131 | 3,074  | 2,975  | 49,262  |
| 1955          | 3,074 | 2,975 | 3,074 | 3,192 | 3,036 | 3,824 | 2,975 | 3,074  | 2,975   | 3,074  | 15,341 | 2,975  | 49,589  |
| 1956          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,825 | 2,975 | 3,074  | 2,975   | 3,074  | 13,408 | 2,975  | 47,280  |
| 1957          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 24,027 | 36,522 | 9,261  | 96,882  |
| 1958          | 4,916 | 4,992 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 42,703 | 73,096  | 14,962 | 3,074  | 2,975  | 161,692 |
| 1959          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 16,276  | 13,639 | 13,161 | 2,975  | 70,148  |
| 1960          | 7,504 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 43,733  | 20,870 | 11,981 | 2,975  | 108,086 |
| 1961          | 3,074 | 2,975 | 3,074 | 3,074 | 2.777 | 3,074 | 2,975 | 3,074  | 2,975   | 9,553  | 17,711 | 2,975  | 57,311  |
| 1962          | 3,074 | 8,459 | 3,074 | 3,738 | 3,640 | 4,924 | 2,975 | 44,850 | 68,118  | 27,403 | 3,074  | 2,975  | 176,304 |
| 1963          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 12,562 | 14,990 | 2,975  | 57,599  |
| 1964          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,824 | 2,975 | 3,074  | 2,975   | 3,074  | 17,642 | 2,975  | 51,513  |
| 1965          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,824 | 2,975 | 3,074  | 2,975   | 8.241  | 34,390 | 13,897 | 84,350  |
| 1966          | 8,578 | 4,556 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 9,484   | 11,434 | 9,441  | 2,975  | 64,516  |
| 1967          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,825 | 2,975 | 3,074  | 2,975   | 3,074  | 12,116 | 3,889  | 46,902  |
| 1968          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 5,718  | 10,748 | 2,975  | 46,513  |
| 1969          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 39,071  | 28,030 | 14,334 | 2,975  | 108,507 |
| 1970          | 4,964 | 5,262 | 5,314 | 3,074 | 2.777 | 3,074 | 2,975 | 41,894 | 89,102  | 44,112 | 4,216  | 2,975  | 209,739 |
| 1971          | 4,829 | 4,879 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 23,214 | 81,681  | 31,796 | 3,074  | 2,975  | 167,422 |
| 1972          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 56,691  | 8,924  | 3,074  | 2,975  | 95,761  |
| 1973          | 3,074 | 2,975 | 3,074 | 3,074 | 2.777 | 3,074 | 2,975 | 3,074  | 23,441  | 43,370 | 3,074  | 2,975  | 96,957  |
| 1974          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,785 | 2,975 | 25,572 | 51,779  | 12,476 | 3,074  | 2,975  | 117,610 |
| 1975          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 10,634  | 56,103 | 3,074  | 2,975  | 96,883  |
| 1976          | 3,074 | 2,975 | 3,074 | 3,074 | 2.777 | 3,074 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 2,975  | 36, 195 |
| 1977          | 3,542 | 2,975 | 3,074 | 3,153 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 12,287 | 3,074  | 2,975  | 45,955  |
| 1978          | 6,962 | 4,494 | 4,913 | 4,495 | 3,866 | 5,558 | 2,975 | 3,074  | 2,975   | 3,074  | 7,036  | 2,975  | 52,397  |
| 1979          | 3,074 | 3,135 | 3,074 | 3,074 | 2,913 | 3,074 | 2,975 | 3,074  | 7,207   | 40,417 | 7,749  | 2,975  | 82,741  |
| 1980          | 3,074 | 2,975 | 3,074 | 3,074 | 2,777 | 4,356 | 2,975 | 3,074  | 89,905  | 33,910 | 10,698 | 2,975  | 162,867 |
| 1981          | 3,074 | 2,975 | 3,074 | 3,074 | 2.777 | 3,074 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 2,975  | 36,195  |
| 1982          | 3,074 | 2,975 | 3,074 | 3,074 | 2,939 | 5,154 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 6,700  | 42,162  |
| 1983          | 5,688 | 2,975 | 3,074 | 3,897 | 3,749 | 7,258 | 2,975 | 13,870 | 101,820 | 74,359 | 28,254 | 10,980 | 258,899 |
| 1984          | 5,108 | 5,198 | 3,074 | 3,074 | 2,777 | 3,274 | 2,975 | 65,247 | 114,759 | 82,259 | 51,626 | 19,216 | 358,587 |
|               |       |       |       |       |       |       |       |        |         |        |        |        |         |

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 No Action Alternative (AF)

| WATER    |        |       |       |       |       |       |       |        |         |        |        | ſ      |         |
|----------|--------|-------|-------|-------|-------|-------|-------|--------|---------|--------|--------|--------|---------|
| YEAR     | 001    | NON   | DEC   | JAN   | FEB   | MAR   | APR   | МАҮ    | NUL     | JUL    | AUG    | SEP    | TOTAL   |
| 1985     | 14,024 | 6,983 | 6,241 | 5,066 | 2,777 | 3,723 | 9,962 | 46,404 | 76.342  | 31.733 | 3.074  | 2.975  | 209 304 |
| 1986     | 4,710  | 3,698 | 3,074 | 3,074 | 2,777 | 4,575 | 2,975 | 23,008 | 85,071  | 41,681 | 3.074  | 2.975  | 180.692 |
| 1987     | 4,136  | 3,629 | 3,074 | 3,074 | 2,777 | 3,679 | 2,975 | 15,881 | 48,946  | 9,949  | 13,547 | 2,975  | 114,642 |
| 1988     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 4,504 | 2,975 | 3,074  | 41,469  | 18,678 | 3.074  | 2,975  | 91.723  |
| 1989     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,420 | 2,975 | 3,074  | 7,789   | 6,995  | 15,043 | 2.975  | 57.245  |
| 1990     | 3,074  | 2,975 | 3,074 | 3,210 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 13,508 | 3,074  | 2,975  | 46,765  |
| 1991     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 35,527  | 18,499 | 15,038 | 9,196  | 102,357 |
| 1992     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 2,975  | 36,195  |
| 1993     | 3,074  | 2,975 | 5,057 | 4,934 | 5,243 | 7,551 | 2,975 | 3,074  | 82,411  | 37,896 | 3,074  | 2,975  | 161,239 |
| 1994     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 19,993  | 11,425 | 3,074  | 2,975  | 61,564  |
| 1995     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,825 | 2,975 | 3,074  | 80,278  | 99,295 | 20,025 | 2,975  | 227.421 |
| 1996     | 3,806  | 3,409 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 83,456 | 108,538 | 36,773 | 9,854  | 2,975  | 263.785 |
| 1997     | 3,074  | 3,426 | 3,074 | 3,074 | 2,777 | 3,307 | 2,975 | 35,764 | 125,597 | 40,018 | 13,471 | 2,975  | 239,532 |
| 1998     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 38,934  | 21,577 | 3,074  | 2,975  | 90.657  |
| 1999     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 81,621  | 43,373 | 7,610  | 2.975  | 159.676 |
| 2000     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 29,849 | 50,662  | 11,641 | 3,074  | 2.875  | 119.224 |
| 2001     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 20,652  | 10,151 | 3,074  | 2,975  | 60.949  |
| 2002     | 4,176  | 6,394 | 5,684 | 5,457 | 4,539 | 6,228 | 2,975 | 3,074  | 2,975   | 8,350  | 27,958 | 5,899  | 83,709  |
| 2003     | 6,376  | 5,638 | 4,855 | 4,589 | 4,146 | 6,157 | 2,975 | 3,074  | 2,975   | 3.074  | 15.251 | 2.975  | 62,095  |
| 2004     | 3,074  | 2,975 | 3,074 | 3,074 | 2.777 | 3,074 | 2,975 | 3,074  | 2,975   | 9,755  | 3.074  | 2.975  | 42,876  |
| 2005     | 3,074  | 2,975 | 3,074 | 3,074 | 3,930 | 4,963 | 2,975 | 3,074  | 2,975   | 3,074  | 13,787 | 2,975  | 49,950  |
| AVERAGE: | 3,846  | 3,502 | 3,317 | 3,301 | 2,998 | 3,693 | 3,100 | 11,224 | 36,430  | 22,376 | 10,466 | 3.961  | 108.214 |
| MINIMUM: | 3,074  | 2,975 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 2.975  | 36.195  |
| MAXIMUM: | 14,024 | 8,459 | 6,241 | 5,457 | 5,243 | 7,551 | 9,962 | 83,456 | 125.597 | 99,295 | 51.626 | 19.216 | 358 587 |
|          |        |       |       |       |       |       |       |        |         |        |        | 2.262. | 2001000 |

| WATER<br>YEAR | ост     | NON         | DEC        | NAL     | FEB | MAR      | APR        | МАҮ            | NUL            | JUL            | AUG            | SEP  |     |
|---------------|---------|-------------|------------|---------|-----|----------|------------|----------------|----------------|----------------|----------------|------|-----|
| 1950          | 35      | 52          | 16         | 11      | 12  | 13       | 26         | 74             | 171            | 82             | 40             | R    | 45  |
| 1951          | 24      | 16          | 13         | 11      | 12  | 13       | 19         | 117            | 239            | 203            | 1              | 4    | 99  |
| 1952          | 29      | 20          | 14         | 11      | 12  | 10       | 38         | 125            | 216            | 67             | 37             | 5 62 | 205 |
| 1953          | 26      | 17          | 15         | 13      | 12  | 12       | 16         | 83             | 250            | 97             | 47             | 24   | 51  |
| 1854          | 18      | 14          | 13         | 12      | 12  | 1        | 2          | <b>9</b> 8     | 28             | 47             | 45             | 26   | 24  |
| 1955          | 27      | 17          | 15         | 12      | 11  | :        | 28         | 58             | 99             | 4              | 54             | 47   | 8   |
| 1956          | 24      | 20          | 16         | 15      | 13  | £1       | 20         | 150            | 128            | 44             | 80<br>80       | 27   | \$  |
| 1957          | 17      | 17          | 16         | 15      | 15  | 11       | 18         | 67             | 219            | 237            | 125            | 50   | 8   |
| 1956          | 8       | 23          | 17         | 15      | 12  | 12       | 15         | 137            | 184            | 51             | 45             | 33   | 48  |
| 1959          | 21      | 16          | 4          | 15      | 15  | 12       | 15         | 67             | 135            | 56             | 44             | 35   | 37  |
| 1960          | 27      | 6           | 16         | 13      | 12  | 12       | ଚ          | 48             | 103            | 59             | R              | 26   | 8   |
| 1961          | 21      | 18          | <b>.</b>   | 12      | 10  | 9        | 13         | 37             | 56             | 61             | 94             | 20   | 30  |
| 1962          | 42      | 25          | 17         | 15      | 15  | 13       | <b>6</b> E | 105            | 92             | 72             | 17             | ÷    | 39  |
| 1963          | 15      | 15          | 41         | 12      | 11  | 12       | 19         | <b>5</b>       | 6              | 31             | 67             | 38   | 21  |
| 1964          | 18      | 16          | 13         | 12      | 11  | 10       | 12         | <del>6</del> 4 | <del>4</del> 6 | 37             | 8              | 14   | 25  |
| 1965          | 13      | 15          | 1.0<br>1.0 | 13      | 11  | 10       | 15         | <b>84</b>      | 234            | 244            | 117            | 27   | 67  |
| 1996          | ж       | 20          | 18         | 15      | 14  | 12       | 19         | 33             | 29             | 19             | <u>8</u>       | 21   | 55  |
| 1967          | 15      | 15          | 12         | 11      | 10  | 11       | 17         | 30             | 2              | 25             | 50             | 28   | 24  |
| 1968          | 17      | 17          | 15         | 13      | 12  | <b>0</b> | 13         | 36             | 102            | 56             | 81             | R    | 8   |
| 1969          | 31      | 19          | 16         | 13      | 12  | 11       | 20         | 58             | 127            | 86             | 49             | 51   | 41  |
| 1970          | ន       | 21          | 17         | 14      | 13  | 13       | 15         | 153            | 248            | 164            | 45             | 19   | 62  |
| 1971          | R       | 23          | 19         | 16      | 14  | 13       | 30         | 2              | 157            | 103            | 29             | 8    | 46  |
| 1972          | 32      | 16          | 17         | 14      | 13  | 14       | ສ          | 62             | 150            | 50             | 36             | 31   | 88  |
| 1973          | 16      | 17          | 16         | 13      | 12  | 12       | 13         | 82             | 180            | 124            | 88             | 22   | 45  |
| 1974          | 18      | 11          | 15         | 14      | 13  | 13       | 16         | 112            | 97             | 53             | 29             | 25   | 37  |
| 1975          | 23      | 18          | 4          | 11      | 12  | 12       | 14         | 61             | 115            | 129            | 51             | 31   | 41  |
| B/81          | 24      | <u>80</u> i | 16         | 4       | 13  | 12       | 19         | 65             | 75             | 51             | 8              | 32   | 31  |
| 1361          | 0e<br>E | 17          | 4          |         | 11  | 11       | 21         | 56             | 49             | 37             | <del>6</del> 3 | 21   | 27  |
| 1978          | 16      | 12          | 11         | 10      | ŋ   | 10       | 20         | 75             | 203            | 135            | 32             | 25   | 47  |
| 8/81          | 21      | 17          | 15         | 12      | 12  | 12       | 18         | 66             | 172            | 132            | 50             | 31   | 47  |
| 1980          | 52      | R           | 18         | 4       | 12  | 12       | 15         | <del>8</del> 8 | 252            | 117            | 42             | \$   | 55  |
| 1981          | 25      | 2           | 18         | 14      | 12  | 13       | 19         | 27             | 47             | <del>6</del> E | 51             | 38   | 27  |
| 1962          | 25      | 20          | 18         | 17      | 16  | 15       | 19         | 70             | 137            | 86             | 68             | ຮ    | 4   |
| 1983          | 8       | 27          | 21         | 18      | 19  | 17       | 16         | 61             | 299            | 238            | 109            | 70   | 78  |
| 1984          | 46      | 90          | 28         | 21      | 18  | 16       | 19         | 167            | 276            | 192            | 121            | 4    | 8   |
| 1885          | 51      | 88          | 26         | 19      | 16  | 15       | 41         | 166            | 186            | 109            | 45             | 41   | 8   |
| 1996          | 8       | 26          | 18         | †5<br>5 | 14  | 15       | 27         | 78             | 101            | 88             | 24             | 7    | ÿ   |
| 1987          | 28      | 21          | 16         | 14      | F   | 13       | 24         | 78             | 120            | 59             | 44             | 25   | 38  |
|               |         |             |            |         |     |          |            |                |                |                |                |      | _   |

Simulated Flows at Blue River below Continental-Hoosier Project No Action Alternative (CFS)

| WATER    |            |     |     |     |     |     |     |     |     |          |           |     | ANNUAL           |
|----------|------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|-----------|-----|------------------|
| YEAR     | 50         | NON | DEC | JAN | FEB | MAR | APR | MAY | NDD | JUL<br>J | AUG       | SEP |                  |
| 1968     | 19         | 17  | 14  | 15  | 16  | 14  | 25  | 65  | 104 | 72       | 48        | 31  | 37               |
| 1969     | 26         | ສ   | 18  | 15  | 15  | 13  | R   | 8   | 101 | 36       | 67        | 5.6 | 58               |
| 1990     | 26         | 20  | 14  | 12  | 12  | 1   | 24  | 52  | 8   | 8        | 42        | 5 8 | 3 8              |
| 1991     | <b>4</b> 3 | 25  | 20  | 17  | 16  | 17  | 23  | 00  | 122 | 96       | 50        | 36  | 42               |
| 1992     | 26         | 16  | 13  | 10  | 6   | 10  | 55  | 4   | 89  | 35       | 65        | 8   | 18               |
| 1993     | 8          | 16  | 12  | 6   | 10  | 11  | 16  | 105 | 162 | 06       | 22        | 8 8 | 3 \$             |
| 1994     | 18         | 18  | 17  | 13  | :   | 11  | 31  | 67  | 20  | 27       | 14        | 3 5 | 5                |
| 1995     | ស          | 17  | 12  | 6   | 10  | თ   | 16  | 89  | 314 | 331      | 116       | 5 6 | 4 8              |
| 1996     | 36         | 20  | 21  | 18  | 17  | 13  | 32  | 233 | 203 | 115      | 36        | 35  | 4<br>7<br>7<br>7 |
| 1997     | 33         | 25  | 20  | 17  | 14  | 15  | 30  | 147 | 290 | 145      | 98        | 8 8 | 38               |
| 1998     | 31         | ស្ត | 16  | 13  | 12  | 13  | 16  | 8   | 82  | 47       | 84        | 3 2 | 1 6              |
| 1999     | 29         | ស   | 20  | 15  | 4   | 12  | 18  | 80  | 199 | 121      | 42        | 5 8 | ۍ (              |
| 2000     | 25         | 17  | 15  | 13  | 12  | 16  | 27  | 118 | 87  | 43       | 34        | 8 8 | 37               |
| 2001     | 53         | 16  | 15  | 12  | 1   | 11  | 23  | 102 | 141 | 102      | 55        | 8 8 | 4                |
| 2002     | 24         | 18  | 14  | 12  | 11  | 10  | 18  | ŝ   | 17  | 25       | 35        | 17  | <u></u>          |
| 2003     | 18         | 13  | 13  | 11  | 10  | 10  | 20  | 118 | 183 | 92       | 20        | 8   | 48               |
| 2004     | 22         | 15  | 15  | 12  | 12  | 13  | 18  | 25  | 20  | 59       | <b>29</b> | 8   | 2                |
| 2005     | 21         | 18  | 16  | 12  | 10  | 11  | 17  | 50  | 74  | æ        | 46        | 18  | RC<br>RC         |
| AVERAGE: | 26         | 19  | 16  | 13  | 13  | 12  | 21  | 81  | 137 | 68       | 54        | 6   | 49               |
| MINIMUM  | 13         | 12  | ÷   | 6   | 6   | 6   | 12  | o,  | σ   | 19       | 17        |     | ₽₽               |
| MAXIMUM: | 51         | 98  | 28  | 21  | 19  | 17  | 41  | 233 | 314 | 331      | 125       | - F | - a              |
|          |            |     |     |     |     |     |     |     |     |          |           | 2   | 20               |

(AF)

TOTAL 36,543 32,320 36,996 (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,445) (17,4 SEP 5867 2.5467 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.737 1.758 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1.597 1. 2,439 2,439 2,591 2,291 2,291 2,291 2,291 2,292 2,292 2,292 2,292 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,7772 2,77722 2,7772 2,7772 2,7772 2,7772 2,77722 2,7772 2,7772 2,7772 2,7 AUG 5,046 5,046 5,988 2,888 2,888 2,888 3,117 5,988 3,125 3,465 3,465 3,465 3,465 3,465 3,465 3,465 3,465 3,465 3,465 3,465 3,465 3,465 1,993 4,457 1,993 4,457 1,993 4,457 1,993 4,457 1,993 3,722 3,749 5,289 8,089 8,089 5,289 8,089 8,089 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 8,080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,0080 1,00800 1,0080 1,0080 1,0080 1,0080 1,00800 1,00800 1,00 Ę 10,156 14,224 14,224 14,285 3,952 3,952 3,952 3,952 13,056 6,154 6,154 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,455 5,565 6,154 11,785 5,996 6,157 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,996 5,906 5,906 5,906 5,906 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,905 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 5,005 NUL MAY APR MAR Ē AN 
 983
 983

 896
 896

 896
 896

 896
 896

 997
 968

 968
 968

 968
 967

 968
 823

 1,045
 891

 968
 968

 977
 994

 997
 992

 997
 994

 997
 994

 1,102
 912

 912
 912

 912
 912

 912
 912

 913
 1,123

 1,121
 1,121

 1,161
 1,161

 1,161
 1,161

 1,161
 1,161
 DEC Nov 2,129 1,465 1,465 1,465 1,465 1,465 1,469 1,469 1,469 1,469 1,469 1,469 1,469 1,469 1,469 1,469 1,1,299 1,1,299 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,2,200 1,1,290 1,2,200 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,290 1,2 oci WATER YEAR 1950 1951 1952 1953 1953 1955 1956 1957 1957 1959 1959 1959 1960 

Simulated Flows at Blue River below Continental-Hoosier Project No Action Alternative (AF)

| YEAR     | ост   | NON   | DEC   | JAN   | FE8   | MAR        | APR        | МАҮ    | NUL    | JUL              | AUG    | SEP   | TOTAL  |
|----------|-------|-------|-------|-------|-------|------------|------------|--------|--------|------------------|--------|-------|--------|
| 1963     | 1,192 | 1,030 | 869   | 947   | 880   | 883        | 1,472      | 3,971  | 6.199  | 4.449            | 2.971  | 1.832 | 26.695 |
| 1969     | 1,608 | 1,346 | 1,108 | 950   | 844   | 780        | 1.980      | 5.780  | 5.999  | 2.21B            | 3 024  | 1 874 | 27 F11 |
| 1990     | 1,599 | 1,176 | 850   | 765   | 639   | 673        | 1,440      | 3,204  | 5,509  | 2352             | 0 573  | 2.045 | 30,050 |
| 1991     | 2,649 | 1.478 | 1.227 | 1.044 | 877   | 1.038      | 1.346      | 6 164  | 7 957  | 2 416            | 2006   | 0.115 | 202.06 |
| 1992     | 1,615 | 954   | 818   | 620   | 525   | 598        | 1 322      | 547 A  |        | 0 + 00<br>0 + 00 |        |       | 20,00  |
| 1983     | 1.361 | 959   | 208   | 554   | 545   | 506<br>606 | 900        |        |        | 21/20            |        | 10112 | 200,02 |
| 1994     | 1 006 | 1 040 | 1 025 | 000   |       | 100        |            |        |        | 200'0            | CBO, 1 | 162'1 | 166'02 |
| 1004     |       |       |       |       | 3     |            | 170'1      | 4,115  | 4,1/4  | 3,315            | 2,490  | 1,864 | 23,081 |
| 1000     | 1001  | 120,1 | 124   | 553   | 545   | 560        | 931        | 4,151  | 18,684 | 20,340           | 7,123  | 3,050 | 59,039 |
| 1996     | 2,216 | 1,203 | 1,300 | 1,090 | 963   | 830        | 1,885      | 14,350 | 12,060 | 7,051            | 2.212  | 2,086 | 47.246 |
| 1997     | 1,942 | 1,487 | 1,213 | 1,022 | 171   | 953        | 1,813      | 9,011  | 17,245 | 8,910            | 5,931  | 2.054 | 52,352 |
| 1998     | 1,936 | 1,356 | 997   | 612   | 693   | 804        | 939        | 3,708  | 4,860  | 2.874            | 2.964  | 2.027 | 23,970 |
| 1999     | 1,799 | 1,305 | 1,201 | 920   | 800   | 736        | 1,084      | 4,945  | 11,870 | 7.437            | 2.590  | 2 261 | 36.948 |
| 2000     | 1,543 | 1,013 | 894   | 780   | 689   | 962        | 1,626      | 7,231  | 5.187  | 2.673            | 2.071  | 2 095 | 26 764 |
| 2001     | 1,325 | 943   | 932   | 757   | 604   | 646        | 1,351      | 6,302  | 8.391  | 6.291            | 3,378  | 2.245 | 33 185 |
| 2002     | 1,457 | 1,059 | 882   | 725   | 629   | 623        | 1,099      | 1,391  | 1,034  | 1.529            | 2.166  | 1.007 | 13.601 |
| 2003     | 1,078 | 792   | 824   | 663   | 541   | 594        | 1,190      | 7,232  | 10,887 | 5,661            | 3.063  | 1.923 | 34,448 |
| 2004     | 1,371 | 912   | 895   | 748   | 665   | 782        | 1,073      | 1,538  | 1,203  | 1,784            | 3.635  | 1.289 | 15.8R5 |
| 2005     | 1,276 | 1,096 | 955   | 767   | 563   | 674        | <u>995</u> | 3,059  | 4,422  | 2,101            | 2.804  | 1.387 | 20,099 |
| AVERAGE: | 1,600 | 1,157 | 986   | 829   | 703   | 756        | 1,262      | 4,988  | 8,176  | 5,482            | 3.319  | 1.876 | 31,134 |
| WINIMOW: | 808   | 740   | 702   | 553   | 525   | 560        | 719        | 527    | 564    | 1,160            | 1.074  | 413   | 13.601 |
| MAXIMUM: | 3,160 | 2,314 | 1,741 | 1,301 | 1,051 | 1,055      | 2,437      | 14,350 | 18,684 | 20,340           | 7,666  | 4,149 | 59 569 |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir No Action Alternative (CFS)

| 91         10         11         20         91         10         7         9         10         7         9         7           923         73         11         20         14         8         14         17         20         164         20         17         20         73           933         73         21         23         23         24         15         24         25         24         26         27         30         25         24         15         25         25         25         25         25         25         25         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         27         30         46         75         36         27         30         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26         13         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WATER<br>YEAR | ост      | NON | DEC      | JAN | FEB | MAR | APR | МАҮ | NUL | JUL  | AUG | SEP |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----|----------|-----|-----|-----|-----|-----|-----|------|-----|-----|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1950          | 91       | 10  | 10       | 7   | 6   | 15  | 130 | 147 | 320 | 56   | 104 | 33  | PAN<br>L |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1951          | 96       | 12  | 14       | ø   | 12  | 18  | 77  | 245 | 396 | 122  | 25  | 3 F | . 0      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1952          | 79       | 16  | 14       | 8   | 14  | 17  | 09  | 614 | 606 | 87   | 26  | 119 | 130      |
| $ \begin{bmatrix} 11 & 20 & 11 & 20 & 11 & 20 & 17 & 20 & 17 & 20 & 17 & 20 & 17 & 20 & 17 & 20 & 27 & 30 & 22 & 23 & 20 & 20 & 20 & 20 & 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1953          | 171      | 35  | 28       | 27  | 15  | 29  | 77  | 132 | 388 | 5 89 | 3 5 | 10R | 8        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1954          | 11       | 20  | 11       | 12  | 6   | 17  | 06  | 57  | 139 | 64   | 256 | 33  | 65       |
| $ \begin{bmatrix} 13 & 19 & 16 & 12 & 9 & 24 & 150 & 88 & 237 & 60 & 108 & 107 \\ 11 & 25 & 20 & 15 & 14 & 12 & 19 & 16 & 16 & 26 & 78 & 603 & 304 & 58 & 235 & 53 & 74 & 145 \\ 13 & 28 & 28 & 21 & 14 & 73 & 102 & 355 & 53 & 74 & 145 \\ 13 & 28 & 28 & 21 & 14 & 73 & 102 & 355 & 53 & 74 & 145 \\ 13 & 28 & 28 & 21 & 14 & 73 & 102 & 355 & 53 & 74 & 145 \\ 28 & 28 & 28 & 21 & 14 & 23 & 102 & 355 & 53 & 74 & 145 \\ 28 & 28 & 28 & 21 & 14 & 23 & 102 & 355 & 53 & 74 & 145 \\ 28 & 28 & 28 & 21 & 14 & 23 & 102 & 355 & 53 & 74 & 145 \\ 29 & 21 & 20 & 18 & 12 & 15 & 116 & 17 & 217 & 218 & 233 & 162 & 355 & 53 & 74 & 145 \\ 29 & 21 & 20 & 21 & 14 & 23 & 56 & 112 & 236 & 51 & 2037 & 66 & 108 & 165 \\ 29 & 21 & 21 & 20 & 21 & 14 & 23 & 56 & 118 & 25 & 210 & 157 \\ 29 & 22 & 21 & 7 & 7 & 16 & 9 & 337 & 156 & 93 & 373 & 155 & 116 \\ 11 & 18 & 28 & 22 & 17 & 16 & 9 & 337 & 156 & 93 & 357 & 166 & 93 & 327 & 166 \\ 20 & 21 & 21 & 21 & 21 & 21 & 216 & 113 & 24 & 353 & 316 & 123 & 115 \\ 11 & 20 & 22 & 21 & 7 & 7 & 13 & 55 & 124 & 533 & 344 & 353 & 341 & 111 & 28 & 171 \\ 11 & 19 & 22 & 22 & 17 & 13 & 26 & 88 & 527 & 246 & 307 & 100 & 100 \\ 11 & 19 & 23 & 21 & 12 & 21 & 13 & 354 & 343 & 316 & 134 & 313 & 134 \\ 11 & 19 & 23 & 21 & 12 & 21 & 23 & 316 & 133 & 341 & 313 & 332 & 115 \\ 11 & 10 & 23 & 24 & 333 & 344 & 353 & 361 & 113 & 338 & 115 \\ 11 & 10 & 23 & 24 & 333 & 344 & 353 & 361 & 110 & 107 & 107 \\ 11 & 10 & 23 & 24 & 23 & 216 & 248 & 300 & 113 & 144 \\ 11 & 10 & 23 & 24 & 338 & 44 & 352 & 124 & 333 & 116 \\ 11 & 10 & 23 & 24 & 23 & 318 & 211 & 328 & 116 & 100 & 100 & 100 \\ 11 & 10 & 23 & 24 & 23 & 318 & 211 & 328 & 100 & 326 & 100 & 308 & 116 \\ 11 & 10 & 23 & 24 & 338 & 44 & 326 & 100 & 308 & 116 & 100 & 100 & 100 \\ 11 & 10 & 23 & 24 & 23 & 318 & 211 & 338 & 318 & 211 & 338 & 116 \\ 11 & 12 & 22 & 10 & 23 & 24 & 338 & 300 & 300 & 300 & 300 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 &$ | 1955          | 275      | 26  | 22       | 16  | 13  | 20  | 122 | 57  | 82  | 73   | 100 | 96  | 20<br>76 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1956          | 13       | 19  | 16       | 12  | 6   | 24  | 150 | 68  | 297 | 60   | 108 | 104 | 75       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1957          |          | 20  | 15       | 14  | 12  | 19  | 77  | 195 | 682 | 225  | 35  | 21  | 110      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1958          | 23       | 90  | 20       | 16  | 16  | 26  | 78  | 603 | 304 | 58   | 109 | 128 | 118      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1959          | 11       | 25  | 20       | 15  | :   | 14  | 73  | 102 | 355 | 63   | 74  | 145 | 75       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1960          | 20       | ଷ : | 13       | 15  | 14  | 72  | 69  | 469 | 307 | 67   | 105 | 105 | 107      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1961          | 13       | 23  | 17       | 18  | 6   | 19  | 56  | 152 | 208 | 66   | 198 | 24  | 67       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1962          | £1       | 57  | 39       | 40  | 37  | 130 | 461 | 747 | 378 | 125  | 31  | 157 | 185      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1963          | 59       | 26  | 21       | 17  | 14  | 29  | 68  | 74  | 211 | 145  | 156 | 55  | 75       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1964          | 252      | 2   | 24       | 22  | 15  | 60  | 53  | 56  | 81  | 82   | 103 | 121 | 77       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1965          | თ (      | 21  | 20       | 18  | 12  | 15  | 116 | 67  | 559 | 145  | 31  | 19  | 85       |
| 9         13         17         16         9         34         80         57         166         93         85         141           33         27         20         16         12         14         58         57         398         79         33         155         141           33         27         20         16         12         14         58         57         398         79         33         115           16         15         25         13         26         88         434         363         86         113           16         17         17         17         56         88         434         33         33         14           16         17         13         26         12         14         53         136         43           16         17         13         16         17         27         70         153         361         16         17           11         19         23         16         93         343         134         33         100         73         116           11         11         26         16         73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1966          | 25       | 37  | 26       | ম   | 11  | 37  | 06  | 333 | 182 | 59   | 320 | 104 | 105      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1961          | <b>Б</b> | 13  | 17       | 16  | თ   | 34  | 80  | 57  | 166 | 93   | 85  | 141 | 60       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1968          | 39       | 27  | 20       | 16  | 12  | 14  | 58  | 57  | 398 | 79   | ŝ   | 115 | 72       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1969          | 94       | 24  | ส        | 20  | 12  | 19  | 13  | 954 | 245 | 100  | 79  | 158 | 147      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1970          | 18       | 39  | 90<br>OE | 25  | 13  | 26  | 88  | 434 | 363 | 68   | 113 | 14  | 105      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1971          | 20       | 29  | 21       | 17  | 17  | 50  | 121 | 469 | 474 | 111  | 28  | 17  | 115      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1972          | 15       | 25  | ଷ        | 17  | 23  | 55  | 124 | 637 | 361 | 53   | 136 | 49  | 127      |
| 115       27       20       17       16       46       76       812       294       82       107       105         15       24       16       16       17       26       19       19       19       18       527       276       66       100       103       10         16       17       26       19       19       19       18       35       88       527       276       66       100       103       10         316       15       10       11       99       300       88       527       276       66       102       116       10         316       15       10       11       99       300       88       527       276       66       102       116       103       10       103       10       103       10       103       10       103       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1973          | 18       | 26  | 21       | 18  | 15  | 25  | 65  | 499 | 343 | 134  | 33  | 109 | 109      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1974          | 115      | 27  | 20       | 17  | 16  | 46  | 76  | 812 | 294 | 82   | 107 | 105 | 141      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | G/8L          | 15       | 24  | 16       | 16  | 17  | 27  | 70  | 153 | 386 | 126  | 30  | 200 | 06       |
| $ \begin{bmatrix} 16 & 17 & 13 & 12 & 10 & 11 & 99 & 300 & 88 & 140 & 103 & 10 \\ 316 & 15 & 10 & 12 & 9 & 24 & 133 & 44 & 320 & 111 & 107 & 129 \\ 11 & 19 & 23 & 19 & 15 & 20 & 25 & 92 & 287 & 499 & 73 & 111 & 115 \\ 13 & 21 & 12 & 12 & 7 & 13 & 78 & 318 & 211 & 96 & 249 & 35 \\ 252 & 255 & 17 & 13 & 10 & 23 & 60 & 37 & 446 & 109 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 266 & 767 & 261 & 44 & 54 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 660 & 180 & 36 & 35 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 660 & 180 & 36 & 22 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 660 & 180 & 36 & 22 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 660 & 180 & 36 & 22 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 660 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 23 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 \\ 17 & 20 & 24 & 27 & 82 & 856 & 650 & 180 & 36 & 25 & 23 & 24 \\ 17 & 20 & 24 & 27 & 20 & 261 & 261 & 261 & 261 & 261 & 261 & 261 & 261 \\ 20 & 20 & 20 & 20 & 20 & 20 & 20 & 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1976          | 17       | 26  | 19       | 19  | 18  | 35  | 88  | 527 | 276 | 66   | 102 | 116 | 110      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1197          | 16       | 17  | 10<br>0  | 12  | 10  | 11  | 66  | 300 | 88  | 140  | 103 | 10  | 69       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1978          | 316      | 15  | 10       | 12  | 6   | 24  | 133 | 4   | 320 | 111  | 107 | 129 | 103      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1979          | 11       | 19  | 23       | 16  | 6   | 23  | 107 | 391 | 495 | 95   | 24  | 206 | 118      |
| 13         21         12         12         7         13         78         318         211         96         249         35           252         25         17         13         10         23         60         37         446         109         25         23           21         21         21         18         15         16         23         60         37         446         109         25         23           21         21         21         18         15         16         24         66         767         281         44         54           17         20         24         23         24         27         82         856         660         180         36         22         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1980          | 10       | 23  | 19       | 15  | 20  | 25  | 92  | 287 | 499 | 73   | 111 | 115 | 107      |
| 252         25         17         13         10         23         60         37         446         109         25         23           21         21         21         18         15         16         24         64         366         767         281         44         54           17         20         24         23         82         856         660         180         36         25         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1981          | 13       | 21  | 12       | 12  | 7   | 13  | 78  | 318 | 211 | 96   | 249 | 35  | 06       |
| 21     21     18     15     16     24     64     366     767     281     44     54       17     20     24     23     24     27     82     856     660     180     36     22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1982          | 252      | 25  | 17       | 13  | 10  | 23  | 60  | 37  | 446 | 109  | 25  | 23  | 87       |
| 1 17 20 24 23 24 27 82 856 660 180 36 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2981          | 12       | 5   | 18       | 15  | 16  | 24  | 64  | 366 | 767 | 261  | 4   | 42  | 139      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1984          | 17       | 20  | 24       | 23  | 24  | 27  | 82  | 856 | 660 | 180  | 36  | ধ   | 165      |

Simulated Flows at Muddy Creek below Wolford Mountain Reservolr No Action Alternative (CFS)

| $\mathbf{v}_{1}$ $\mathbf{v}_{2}$ $\mathbf{v}_{2}$ $\mathbf{v}_{2}$ $\mathbf{v}_{2}$ $\mathbf{v}_{2}$ $\mathbf{v}_{1}$ $\mathbf{v}_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WATER       | TUC        | NON        |          |          |            | 1   |                |     |     |           |         |            | ANNIAT   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|------------|----------|----------|------------|-----|----------------|-----|-----|-----------|---------|------------|----------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | YEAR        | 3          |            | 2        | JAN      | LED        | MAH | APR            | MAY | NUL | JUL       | AUG     | SEP        |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1985        | 25         | 24         | 25       | 24       | 25         | 47  | 241            | 785 | 302 | 76        | 47      | •          | 001      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1986        | 13         | 23         | 31       | 25       | 41         | 88  | 302            | 730 | 388 | 110       | : 6     | ų ç        | 10.1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1987        | 15         | 21         | 17       | 16       | 2          | 30  | 201            |     |     |           | 3 ;     | 2          |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1089        | α          | ; ;        | : ;      | 2 ;      | - 1        | 000 |                | 500 | 2/1 | \$        | 11      | 199        | 60       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1 2 0 0   | o ;        | 2 2        | 2 !      | 5        | с<br>Г     | 32  | 183            | 356 | 334 | <u>65</u> | 101     | 107        | 103      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6961        | 5          | 3          | 17       | 16       | 16         | 82  | <del>1</del> 3 | 307 | 198 | 72        | 193     | 29         | 82       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0661        | 11         | 14         | თ        | æ        | Ξ          | 25  | 130            | g   | 173 | 109       | 234     | 25         | 67       |
| $ \begin{bmatrix} 8 & 13 & 9 & 8 & 11 & 25 & 100 & 66 & 139 & 63 \\ 27 & 13 & 9 & 11 & 114 & 28 & 74 & 185 & 426 & 90 \\ 24 & 16 & 13 & 10 & 13 & 27 & 121 & 338 & 163 & 136 \\ 11 & 11 & 8 & 11 & 14 & 20 & 54 & 41 & 607 & 119 \\ 25 & 18 & 13 & 18 & 27 & 37 & 178 & 699 & 448 & 83 \\ 22 & 21 & 17 & 17 & 20 & 68 & 46 & 780 & 622 & 90 \\ 23 & 21 & 13 & 18 & 21 & 24 & 65 & 86 & 332 & 218 & 89 \\ 19 & 18 & 11 & 14 & 19 & 26 & 148 & 395 & 190 & 68 \\ 16 & 18 & 11 & 14 & 19 & 26 & 148 & 395 & 190 & 68 \\ 137 & 11 & 6 & 7 & 8 & 20 & 129 & 50 & 133 & 79 \\ 137 & 11 & 6 & 7 & 8 & 20 & 129 & 50 & 133 & 79 \\ 137 & 11 & 6 & 7 & 8 & 20 & 129 & 56 & 133 & 79 \\ 137 & 11 & 6 & 7 & 8 & 20 & 129 & 56 & 133 & 79 \\ 280 & 15 & 8 & 18 & 12 & 18 & 138 & 316 & 314 & 323 & 96 \\ 12 & 13 & 106 & 57 & 33 & 40 & 41 & 130 & 461 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 461 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 461 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 461 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 461 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 461 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 39 & 40 & 41 & 130 & 451 & 954 & 767 \\ 281 & 57 & 59 & 50 & 514 & 767 & 767 \\ 281 & 57 & 59 & 50 & 514 & 767 & 767 \\ 281 & 57 & 59 & 50 & 514 & 767 & 767 \\ 281 & 57 & 59 & 50 & 514 & 767 & 767 \\ 281 & 57 & 59 & 50 & 514 & 767 & 767 \\ 281 & 58 & 514 & 516 & 516 & 516 & 516 & 516 & 516 \\ 281 & 58 & 58 & 58 & 58 & 58 & 58 & 58 & $ | 1881        | 12         | 17         | æ        | 9        | 80         | 32  | 86             | 187 | 393 | 82        | 104     | 108        | 78       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1992        | ω          | 13         | ი        | ø        | 11         | 25  | 100            | 99  | 139 | 8         | 239     | 20.        | 5 6      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1993        | 27         | 13         | <b>6</b> | 11       | 14         | 28  | 74             | 185 | 426 | 06        | 21      | 5 5        | 3 F      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1894        | 24         | 16         | 13       | 10       | 13         | 27  | 121            | 338 | 163 | 136       | 176     |            |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1995        | =          | 11         | 80       | 11       | 14         | 20  | 54             | 41  | 607 | 119       | 2 6     |            | 000      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1996        | 25         | 18         | 13       | 18       | 27         | 37  | 178            | 699 | 448 | ) c a     | 201     | y ç        | 0,1      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1997        | ম          | 21         | 17       | 17       | 20         | 68  | 46             | 780 | 622 | 89        | <u></u> | <u>°</u> c | ₹        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1998        | 21         | 13         | 18       | 21       | 24         | 65  | a<br>A<br>A    | 332 | 100 |           | 38      | n (        | <u>6</u> |
| 163       18       11       14       19       24       67       243       445       86         9       17       15       11       14       19       26       148       395       190       68         9       17       15       10       14       25       81       88       174       69         12       15       11       10       10       14       25       81       88       174       69         137       11       6       7       8       20       129       64       151         137       11       6       7       8       20       129       50       133       79         9       22       9       11       12       18       129       56       133       79         280       15       8       18       12       18       128       38       155       76         280       15       8       18       12       18       138       38       155       76         18       10       6       6       4       9       96       84       96       96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1999        | 91         | 18         | 10       |          | i Ŧ        | 3 5 | 86             | ŝ   | 517 | 00        | 22      | <b>F</b> 6 | <b>5</b> |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000        | 54         | 2 9        | 4 7      | <u> </u> | <u> </u>   | - 1 | 2              | 293 | 45  | 86        | 25      | 21         | 6        |
| 9       17       15       10       14       25       81       88       174       69         12       15       11       10       10       18       69       129       64       151         137       11       6       7       8       20       129       50       133       79         9       22       9       11       12       49       99       68       49       68         280       15       8       11       12       18       133       79         280       15       8       11       12       18       136       50       133       79         280       15       8       11       12       18       129       56       168       151         1       54       22       17       16       15       33       106       314       323       96         1       8       10       6       7       11       13       37       49       49       49         1       316       57       33       106       314       323       96       761       954       767       761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | <u>3</u> ( | <u>ו</u> מ | = {      | 4        | 19         | 26  | 148            | 395 | 190 | 68        | 203     | 27         | 108      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2002        | , ת        | 21         | 15       | 10       | 14         | 25  | 81             | 88  | 174 | 69        | 188     | 124        | 68       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 21         | 15         | 11       | 10       | 10         | 18  | 69             | 129 | 2   | 151       | 174     | 28         | 58       |
| 9         22         9         11         12         49         99         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         49         68         76         76         76         76         76         76         76         76         76         76         76         76         76         49         49         49         49         49         40         41         130         461         954         767         261         261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2003        | 137        | 1          | 9        | 7        | ø          | 20  | 129            | 50  | 133 | 79        | 115     | 100        |          |
| 280         15         8         18         12         18         138         38         155         76           54         22         17         16         15         33         106         314         323         96           6         6         7         11         13         37         49         49           316         57         39         40         41         130         461         954         767         261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2004        | 6          | 23         | თ        | 1        | 12         | 49  | 66             | 68  | 49  | 89        | 020     | 200        | 8 8      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2005        | 280        | 15         | 8        | 18       | 12         | 18  | 138            | 38  | 175 | 20        |         |            |          |
| 8         10         6         6         7         11         13         37         36         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         49         40         41         130         461         954         767         261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVERAGE:    | 54         | 22         | 17       | 16       | ر<br>بر    | 33  | 108            | 214 | 200 |           | N       |            | 0        |
| 316     57     39     40     41     130     461     954     767     261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MINIMIM     | α          | 9          | ; u      | ; a      | <u>}</u> r | 3 7 | 29             | 10  | 523 | 99        | 66      | 78         | 98       |
| 461 954 767 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AA VIANINA. |            | 2 [        | 5 8      | o :      | - :        | =   | 13             | 37  | 49  | 49        | 17      | 7          | 58       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 310        | /0         | 33       | ₽        | 41         | 130 | 461            | 954 | 767 | 261       | 320     | 206        | 185      |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir No Action Alternative (AF)

| WATER<br>YEAR | ocr                        | NON    | DEC   | JAN   | FEB   | MAR   | APR    | МАҮ    | NUL    | JUL    | AUG    | SEP    | TOTAL    |
|---------------|----------------------------|--------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|----------|
| 1950          | 5,614                      | 573    | 596   | 407   | 474   | 913   | 7,706  | 9.038  | 19.059 | 3.421  | 6.370  | 1 934  | 56 105   |
| 1951          | 5,873                      | 731    | 838   | 484   | 652   | 1,087 | 4,578  | 15,066 | 23,571 | 7.532  | 1.520  | 4.595  | 66.527 · |
| 1952          | 4,831                      | 925    | 856   | 500   | 767   | 1,048 | 3,593  | 37,724 | 36,048 | 5,319  | 1.600  | 7.094  | 100.305  |
| 1953          | 10,491                     | 2,086  | 1,728 | 1,655 | 806   | 1,605 | 4,602  | 8,109  | 23,116 | 4,151  | 1.267  | 11.775 | 71.591   |
| 1954          | 664                        | 1,179  | 704   | 748   | 494   | 1,032 | 5,343  | 3,505  | 8,262  | 3,033  | 15.753 | 1.969  | 42.686   |
| 1955          | 16,931                     | 1,554  | 1,370 | 968   | 715   | 1,213 | 7,286  | 3,505  | 4,886  | 4,486  | 6,144  | 5.726  | 54.764   |
| 1956          | 111                        | 1,101  | 954   | 751   | 485   | 1,460 | 8,914  | 5,493  | 17,683 | 3,701  | 6,618  | 6.190  | 54,127   |
| 1957          | 649                        | 1,206  | 915   | 875   | 650   | 1,185 | 4,591  | 11,984 | 40,607 | 13,816 | 2,136  | 1 223  | 79,837   |
| 1958          | 1,397                      | 1,799  | 1,207 | 998   | 896   | 1,586 | 4,647  | 37,062 | 18,074 | 3,552  | 6,685  | 7,631  | 85,534   |
| 1959          | 667                        | 1,501  | 1,213 | 006   | 606   | 840   | 4,356  | 6,249  | 21,139 | 3,887  | 4,563  | 8,629  | 54.550   |
| 1960          | 1,223                      | 1,312  | 787   | 951   | 751   | 4,426 | 4,100  | 28,828 | 18,249 | 4,143  | 6,441  | 6,250  | 77,461   |
| 1961          | CB/                        | 1,397  | 1,031 | 1,128 | 515   | 1,155 | 3,314  | 9,364  | 12,378 | 4,068  | 12,166 | 1,427  | 48,728   |
| 1962          | 66/                        | 3,419  | 2,426 | 2,436 | 2,046 | 8,009 | 27,433 | 45,926 | 22,521 | 7,670  | 1,877  | 9,358  | 133,920  |
| 2001          | 3,626                      | 1,529  | 1,265 | 1,054 | 768   | 1,762 | 5,291  | 4,521  | 12,529 | 8,905  | 9,615  | 3,297  | 54,162   |
| 1904          | 15,472                     | 3,243  | 1,470 | 1,360 | 847   | 3,686 | 3,182  | 3,431  | 4,835  | 5,019  | 6,349  | 7,180  | 56.074   |
| 1965          | 555                        | 1,251  | 1,217 | 1,130 | 646   | 914   | 6,909  | 4,089  | 33,269 | 8,895  | 1,861  | 1,131  | 61.887   |
| 1966          | 1,518                      | 2,181  | 1,615 | 1,376 | 634   | 2,296 | 5,347  | 20,495 | 10,822 | 3,640  | 19,656 | 6,185  | 76,765   |
| 1967          | 533                        | 772    | 1,063 | 998   | 490   | 2,062 | 4,782  | 3,505  | 9,860  | 5,734  | 5,198  | 8,419  | 43 416   |
| 308           | 2,396                      | 1,624  | 1,258 | 686   | 664   | 849   | 3,466  | 3,505  | 23,706 | 4,882  | 2,051  | 6,835  | 52.25    |
| 1909          | 687,6                      | 1,422  | 1,355 | 1,241 | 661   | 1,180 | 774    | 58,681 | 14,606 | 6,145  | 4,828  | 9,399  | 106.077  |
| 19/0          | 1,084                      | 2,350  | 1,830 | 1,536 | 698   | 1,584 | 5,217  | 26,673 | 21,603 | 5,480  | 6,958  | 816    | 75.829   |
| 1970          | 1,216                      | 1,738  | 1,305 | 1,024 | 955   | 3,082 | 7,182  | 28,849 | 28,190 | 6,819  | 1,737  | 1,000  | 83,097   |
| 19/2          | 934                        | 1,516  | 1,377 | 1,046 | 1,269 | 3,377 | 7,407  | 39,145 | 21,470 | 3,260  | 8,347  | 2,938  | 92.086   |
| 5261          | 1,078                      | 1,532  | 1,293 | 1,106 | 831   | 1,536 | 3,842  | 30,713 | 20,383 | 8,229  | 2,002  | 6,507  | 79.052   |
| 18/4          | 090'/                      | 1,628  | 1,221 | 1,032 | 606   | 2,848 | 4,532  | 49,915 | 17,506 | 5,052  | 6,595  | 6,263  | 104,651  |
| C/81          | 6<br>5<br>5<br>7<br>7<br>7 | 1,439  | 983   | 116   | 953   | 1,646 | 4,150  | 9,438  | 22,950 | 7,755  | 1,872  | 11,892 | 65.000   |
| 8/6I          | 10,1                       | 1,569  | 1,152 | 1,144 | 973   | 2,134 | 5,237  | 32,432 | 16,440 | 4,050  | 6,290  | 6,912  | 79,350   |
| 1.22          | c/6                        | 1,00,1 | 821   | 755   | 565   | 703   | 5,905  | 18,436 | 5,226  | 8,595  | 6,359  | 584    | 49.931   |
| 8/61          | 19,441                     | 668    | 614   | 731   | 489   | 1,501 | 7,939  | 2,717  | 19.013 | 6,821  | 6,589  | 7,698  | 74.452   |
| 6/81          | 666                        | 1,157  | 1,393 | 987   | 500   | 1,408 | 6,366  | 24,032 | 29,447 | 5,833  | 1,474  | 12.247 | 85.510   |
| 1980          | 636                        | 1,386  | 1,150 | 933   | 1,113 | 1,565 | 5,445  | 17,634 | 29,708 | 4,467  | 6,813  | 6.818  | 77,668   |
| 1981          | 1                          | 1,222  | 726   | 768   | 413   | 828   | 4,615  | 19,579 | 12,582 | 5,923  | 15.295 | 2.079  | 64,801   |
| 1982          | 15,502                     | 1,517  | 1,052 | 812   | 528   | 1,442 | 3,543  | 2,253  | 26,549 | 6,705  | 1,528  | 1,343  | 62.774   |
| 1983          | 1,318                      | 1,247  | 1,067 | 953   | 910   | 1,461 | 3,829  | 22,515 | 45,612 | 16,037 | 2,680  | 3.218  | 100.867  |
| 1984          | 1,055                      | 1,163  | 1,486 | 1,438 | 1,322 | 1,633 | 4,881  | 52,618 | 39,295 | 11,056 | 2,186  | 1,303  | 119.436  |
|               |                            |        |       |       |       |       |        |        |        |        |        |        |          |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir No Action Alternative (AF)

| WATER    |            |         |       |             |       |       |        |        |        |        |         |        |         |
|----------|------------|---------|-------|-------------|-------|-------|--------|--------|--------|--------|---------|--------|---------|
| YEAR     | OCT        | NON     | DEC   | JAN         | FEB   | MAR   | APR    | MAY    | JUN    | JUL    | AUG     | SEP    | TOTAL   |
| 1985     | 1,552      | 1,418   | 1,522 | 1,463       | 1,367 | 2,874 | 14.319 | 47,008 | 17 967 | 4 694  | 1 007   | 500    | 00.000  |
| 1986     | 662        | 1,361   | 1.893 | 1.521       | 2,303 | 5 419 | 17 041 | AE 427 | 00 00  |        | 1000    | 250    | 20,303  |
| 19.87    | 915<br>215 | 1 270   | 1 020 | 040         |       |       |        |        | 000'02 | 7171   | 1,360   | 118    | 109,525 |
| 1000     | 0.0        |         | 6001  | 3/0         | 101,1 | 1,835 | 11,951 | 20,870 | 10,247 | 3,923  | 1,026   | 11,819 | 67,031  |
| 900      |            | 2       | 218   | 111         | 808   | 1,945 | 10,864 | 21,877 | 19,889 | 4,015  | 6,235   | 6.390  | 74,722  |
| ADA I    | 218        | 1,286   | 1,044 | 971         | 873   | 5,029 | 774    | 18,884 | 11,811 | 4,427  | 11,839  | 1,732  | 59 487  |
| 1990     | 969        | B40     | 579   | 494         | 619   | 1,556 | 7,754  | 2,383  | 10,300 | 6,685  | 14,383  | 2002   | 48 211  |
| 1991     | 722        | 1,022   | 472   | 374         | 465   | 1,968 | 5,129  | 11,489 | 23,414 | 5.018  | 6.423   | 6 441  | 82 927  |
| 1992     | 466        | 786     | 562   | 495         | 600   | 1,512 | 6,937  | 4,046  | 8.300  | 3.881  | 14 675  | 4 379  | 45 820  |
| 1993     | 1,836      | 773     | 536   | 681         | 789   | 1,739 | 4,397  | 11.403 | 25.337 | 5 556  | 1 3 1 1 |        |         |
| 1994     | 1,472      | 949     | 777   | 618         | 708   | 1.681 | 7 206  | 20 779 | 0 685  | 00000  |         |        | 660,00  |
| 1995     | 689        | 671     | 513   | 678         | 770   | 1.200 | 3 188  | 2 E01  | 26126  | 000    | 10,040  | 410    | 03,4/3  |
| 1996     | 1.558      | 1 078   | 800   | 1070        |       |       |        | 12012  |        | 1,330  | 1,431   | 1,306  | 56,441  |
| 10.07    |            |         | 770   |             |       | 2,264 | 10,592 | 43,007 | 26,677 | 5,075  | 6,449   | 1,049  | 101,177 |
| 10001    | 0101       | R07'I   | 1,0/4 | 9/0/        | 1,115 | 4,196 | 2,754  | 47,973 | 37,010 | 5,509  | 1,329   | 529    | 105,163 |
| 9661     | 0/2'1      | 774     | 1,122 | 1,276       | 1,332 | 3,984 | 5,115  | 20,413 | 12,949 | 5,501  | 1.348   | 5,885  | 60 969  |
| 6681     | 1,150      | 1,089   | 743   | 851         | 986   | 2,875 | 5,198  | 18,002 | 26,478 | 5.307  | 1.543   | 1 236  | 65 460  |
| 2000     | 10,039     | 1,097   | 695   | 838         | 1,033 | 1,619 | 8,806  | 24.263 | 11.312 | 4 201  | 12 478  | 1 581  |         |
| 2001     | 582        | 984     | 927   | 596         | 763   | 1,553 | 4.837  | 5.398  | 10.339 | 4 267  | 11 500  | 1000   | 205,77  |
| 2002     | 734        | 903     | 671   | 59 <b>9</b> | 580   | 1,118 | 4.084  | 7 916  | 2 810  | 0.005  | 10201   | 760'   | 49,228  |
| 2003     | 8,436      | 649     | 379   | 439         | 433   | 1001  | 7 ROF  | 101 0  |        | 2021   | 12/101  | /00'1  | 42,0/8  |
| 2004     | 559        | 1 2 R R | A A A | REG         |       |       |        |        | Ene' / | 4,001  | 9GU, 1  | 7,295  | 49,474  |
| 2006     |            |         |       | 000         | 700   | 2,989 | 5,866  | 4,157  | 2,915  | 4,163  | 16,625  | 1,191  | 41,629  |
| AVEDAOC. | 24211      | 120,    | 770   | 1,089       | 647   | 1,130 | 8,220  | 2,320  | 9,222  | 4,646  | 1,257   | 7.012  | 54,198  |
|          | 145.5      | 1,309   | 1,045 | 959         | 830   | 2,053 | 6,302  | 19,290 | 19,214 | 5,929  | 6.079   | 4.647  | 71 006  |
|          | 466        | 573     | 379   | 374         | 413   | 703   | 774    | 2,253  | 2.915  | 3.033  | 1.026   | a15    | 41,820  |
| MAXIMUM: | 19,441     | 3,419   | 2,426 | 2,436       | 2,303 | 8,009 | 27,433 | 58,681 | 45,612 | 16.037 | 19.656  | 12 247 | 122 020 |
|          |            |         |       |             |       |       |        |        |        |        |         |        | 240,000 |

Simulated Flows at Williams Fork River below Williams Fork Reservoir No Action Alternative (CFS)

| YEAR | ост | NON          | DEC | JAN            | FEB | MAR            | APR            | MAY            | NUL      | JUL | AUG | SEP | ANNUAL |
|------|-----|--------------|-----|----------------|-----|----------------|----------------|----------------|----------|-----|-----|-----|--------|
| 1950 | 204 | 136          | 78  | ß              | 11  | 97             | 15             | 29             | 247      | 55  | 321 | 159 | 124    |
| 1951 | 133 | 116          | 92  | 76             | 59  | 86             | 102            | 48             | 186      | 422 | 232 | 356 | 160    |
| 1952 | 208 | 127          | 102 | 96             | 84  | 88             | 15             | 54             | 799      | 273 | 256 | 256 | 196    |
| 1953 | 176 | 140          | 108 | 132            | 75  | 79             | 76             | 26             | 180      | 62  | 235 | 154 | 120    |
| 1954 | 128 | 134          | 112 | 102            | 52  | 73             | 90             | 8              | 37       | 106 | 142 | 110 | 8      |
| 1955 | 908 | 107          | 76  | 76             | 60  | 2              | 15             | 32             | 8<br>8   | 4   | 182 | 201 | 105    |
| 1956 | 119 | 125          | 68  | 71             | 79  | 85             | 15             | 78             | 237      | 46  | 186 | 104 | 103    |
| 1957 | 110 | 104          | 65  | 71             | 68  | 68             | 76             | 21             | 162      | 273 | 275 | 184 | 124    |
| 1958 | 250 | 138          | 123 | 115            | 86  | 89             | 79             | 59             | 398      | 70  | 287 | 142 | 155    |
| 1959 | 128 | 103          | 97  | <del>0</del> 6 | 63  | 73             | 79             | 35             | 203      | 65  | 145 | 149 | 102    |
| 1960 | 140 | 157          | 127 | 85             | 85  | 66             | 27             | 38             | 164<br>1 | 63  | 183 | 125 | 108    |
| 1961 | 128 | 135          | 118 | 114            | 57  | ß              | 121            | 24             | 107      | 116 | 252 | 158 | 116    |
| 1962 | 186 | 121          | 137 | 87             | 71  | 81             | 21             | <del>6</del> 6 | 657      | 336 | 203 | 131 | 178    |
| 1963 | 4   | <del>1</del> | 132 | 126            | 69  | 93             | <del>3</del> 8 | 40             | 51       | 103 | 58  | 179 | 103    |
| 1964 | 264 | 34           | 23  | 59             | 63  | 72             | 132            | 28             | 127      | 55  | 104 | 118 | 86     |
| 1965 | 88  | 111          | 96  | 88             | 79  | 74             | 15             | 26             | 166      | 118 | 186 | 97  | 8      |
| 1968 | 63  | 86           | 119 | 1              | 52  | <del>3</del> 8 | 103            | 49             | 68       | 8   | 316 | 109 | 101    |
| 1967 | 124 | 83           | 69  | 60             | 61  | 91             | 15             | g              | 102      | 70  | 197 | 157 | 06     |
| 1968 | 145 | 117          | 82  | 70             | 77  | 80             | 136            | 15             | 264      | S   | 19  | 301 | 113    |
| 1969 | 172 | 114          | 92  | 93             | 76  | 75             | 15             | 61             | 40       | 61  | 149 | 210 | 97     |
| 0/61 | 41  | 81           | 57  | <b>8</b>       | 83  | 82             | 83<br>83       | 73             | 134      | 222 | 162 | 161 | 106    |
| 1971 | 171 | 177          | 154 | 149            | 66  | 128            | 15             | 39             | 499      | 343 | 203 | 226 | 184    |
| 2/61 | 199 | 132          | 117 | 107            | 63  | 129            | 27             | 45             | 257      | 59  | 317 | 130 | 135    |
| 1973 | 88  | 109          | 100 | 78             | 72  | 71             | 84             | 28             | 100      | 205 | 196 | 183 | 110    |
| 1974 | 134 | 150          | 131 | 129            | 71  | 94             | 15             | 69             | 441      | 183 | 267 | 163 | 154    |
| 9/6L | 165 | 117          | 106 | 7              | 76  | ß              | 96             | ង              | 180      | 125 | 192 | 204 | 120    |
| 1976 | 145 | 100          | 86  | 76             | 4   | 8              | 8              | 37             | 140      | 69  | 159 | 175 | 86     |
| 1181 |     | 121          | 81  | 82             | 63  | 70             | 86             | 28             | 50       | 206 | 319 | 95  | 114    |
| 1978 | 190 | 80           | 49  | 4              | 43  | 54             | 15             | 46             | 214      | 101 | 112 | 146 | 91     |
| 6/61 | 16  | 98           | 87  | 88             | 78  | 91             | 15             | 43             | 143      | 73  | 164 | 122 | 92     |
| 0861 | 114 | 115          | 101 | 105            | 95  | 67             | 8              | 27             | 130      | 73  | 145 | 179 | 103    |
| 1981 | 140 | 105          | 87  | 59             | 58  | 69             | 159            | 21             | 155      | 117 | 311 | 207 | 124    |
| 1982 | 131 | 86           | 60  | 80             | 2   | 48             | 60             | 18             | 121      | 120 | 132 | 65  | 83     |
| 1983 | 8   | 120          | 126 | 89             | 108 | 72             | 162            | 15             | 26       | 841 | 326 | 211 | 181    |
| 1984 | 186 | 22           | 147 | <b>T T T</b>   | č   | 1              |                | ſ              |          |     |     |     |        |

Simulated Flows at Williams Fork River below Williams Fork Reservoir No Action Alternative

(CFS)

Simulated Flows at Williams Fork River below Williams Fork Reservoir No Action Alternative (AF)

•

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WATER<br>YEAR | OCT            | NOV    | DEC   | NAL   | FEB   | MAR   | APR   | MAY   | NN     | JUL    | AUG    | SEP    | TOTAL   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|--------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|---------|---|
| 8,187         6,824         5,862         4,666         5,324         6,524         5,861         5,375         5,366         5,365         5,365         5,376         5,376         5,376         5,376         5,376         5,376         5,376         5,376         5,376         5,376         5,376         5,376         5,376         2,375         1,473         3,798         1,473         3,798         1,473         5,474         4,375         4,471         1,473         3,798         1,473         5,474         4,773         5,577         2,724         1,173         3,798         1,447         1,475         4,714         4,716         4,717         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,718         4,719         7,224         1,173         3,714         1,173         3,714         1,173         3,716         1,173         3,716         1,173         3,716         1,173         3,716         1,173         3,716         1,173         3,716         1,113         3,716         1,113         3,716         1,113         3,716         1,113         3,716         1,113         3,716 <th< th=""><th>1950</th><th>12,555</th><th>8,093</th><th>4,797</th><th>3,844</th><th>4.293</th><th>5.970</th><th>893</th><th>1 778</th><th>14 705</th><th>3 350</th><th>10 718</th><th>0 460</th><th>00 160</th><th></th></th<> | 1950          | 12,555         | 8,093  | 4,797 | 3,844 | 4.293 | 5.970 | 893   | 1 778 | 14 705 | 3 350  | 10 718 | 0 460  | 00 160  |   |
| 12.766         7.544         6.247         5,911         4,640         5,384         893         3,335         4,756         6,600         5,749           7,894         8,327         5,497         5,016         2,036         4,535         16,99         1,731         3,798         14,47           7,339         7,415         5,497         4,501         3,308         3,493         4,555         2,543         11,73         3,798         14,45           7,339         7,416         4,661         3,308         3,496         4,752         2,649         4,752         2,649         14,745           7,538         8,196         7,614         4,755         5,444         4,772         4,887         2,3706         4,302         16,948           7,538         8,196         7,614         3,555         4,480         4,772         4,887         2,3706         4,302         17,648           7,634         8,607         3,150         3,150         3,150         3,169         1,170         2,124         1,170           8,607         9,164         4,755         5,444         4,772         4,887         2,706         4,145         6,160         6,100         7,644                                                                                                                                                                                                                                                                                                   | 1951          | 8,187          | 6,924  | 5,682 | 4,686 | 3,270 | 5,305 | 6.055 | 2.928 | 11.079 | 25 965 | 14 279 | 21 203 | 115 563 | - |
| 10,044         8,324         6,621         8,127         4,148         4,535         1,569         10,731         3,796         1,421           18,942         5,537         5,904         5,577         5,557         5,557         5,557         6,173           18,942         5,548         4,014         4,366         5,224         893         4,997         14,104         2,822         11,445           7,538         6,119         5,934         5,544         3,523         5,4169         4,752         2,139         1,764         2,823         11,445           7,852         6,119         5,934         5,544         3,523         5,446         4,772         2,139         1,764         1,773           7,852         6,110         5,934         5,544         3,523         4,461         4,776         2,139         1,764         1,233           7,845         8,645         5,844         5,712         5,806         2,443         7,866         3,864         1,233           7,844         7,175         8,411         5,359         3,975         5,445         5,577         5,447         5,564         5,564         5,564         5,564         5,564         5,564 <t< th=""><th>1952</th><th>12,766</th><th>7,544</th><th>6,247</th><th>5,911</th><th>4,640</th><th>5,384</th><th>893</th><th>3,335</th><th>47.536</th><th>16.800</th><th>15.749</th><th>15.256</th><th>142 061</th><th></th></t<>                                                                | 1952          | 12,766         | 7,544  | 6,247 | 5,911 | 4,640 | 5,384 | 893   | 3,335 | 47.536 | 16.800 | 15.749 | 15.256 | 142 061 |   |
| 7,843         7,843         5,97         6,901         6,290         2,895         4,473         5,376         2,064         2,212         6,516         8,745           7,8392         6,196         4,014         4,565         7,243         7,557         2,723         1,441           15,536         6,196         4,014         4,566         3,775         4,169         4,557         2,724         1,145           15,536         6,119         5,741         4,773         5,494         4,772         5,498         2,054         1,445           7,552         6,116         7,816         5,244         4,772         5,498         7,744         1,475         6,396         7,145           7,685         8,116         7,284         5,493         3,497         4,433         7,661         1,123           7,846         5,916         5,494         4,775         5,805         3,150         3,935         7,174         1,475         6,365         3,151           7,846         5,916         5,740         5,740         5,740         5,740         5,740         2,796         3,155         3,155           7,551         7,526         4,817         4,817         4,813<                                                                                                                                                                                                                                                                                                  | 1953          | 10,844         | 8,324  | 6,621 | 8,127 | 4,148 | 4,838 | 4,535 | 1,589 | 10,731 | 3.798  | 14.421 | 9.155  | 87.131  |   |
| 18,992         6,353         4,645         3,308         3,948         803         1,957         5,557         2,724         11,173           7,339         7,413         5,497         4,308         7,597         5,557         2,724         11,173           15,338         8,186         7,588         7,141         5,344         4,552         4,887         23,706         4,302         17,674           15,338         8,186         7,588         7,119         5,712         4,753         5,444         4,752         4,887         23,706         4,302         17,674           16,538         8,186         7,244         7,535         3,813         7,174         1,475         6,365         7,124         15,698         8,911         23,53           7,848         8,049         7,244         7,035         3,893         7,174         1,475         6,395         7,124         15,593           7,848         8,049         7,244         7,535         3,813         7,756         3,833         7,124         1,455           7,758         8,556         5,880         5,444         4,473         7,666         3,866         1,465           6,231         5,541 <t< th=""><th>1954</th><th>7,843</th><th>7,957</th><th>6,901</th><th>6,290</th><th>2,895</th><th>4,473</th><th>5,376</th><th>2,064</th><th>2,212</th><th>6,516</th><th>8.745</th><th>6.559</th><th>67,831</th><th></th></t<>                                                                            | 1954          | 7,843          | 7,957  | 6,901 | 6,290 | 2,895 | 4,473 | 5,376 | 2,064 | 2,212  | 6,516  | 8.745  | 6.559  | 67,831  |   |
| 7.339         6.197         4.349         4.366         5.224         883         4.797         14.104         2.823         11.445           7.539         6.196         6.101         5.544         5.446         4.552         1.285         3.988         8.910           7.582         6.119         5.934         5.544         3.523         4.480         4.708         2.139         12.055         3.988         8.910           7.582         6.119         5.934         5.544         3.523         4.480         4.708         2.139         12.055         3.988         8.910           7.586         6.114         5.544         5.544         3.573         5.446         4.708         2.133         9.764         11.435           7.586         8.166         7.174         6.102         5.002         2.315         3.893         7.174         1.452         3.564         14.452           5.740         5.105         7.335         5.416         4.473         7.861         1.776         5.764         12.495           5.740         5.105         7.335         3.417         4.415         5.336         5.712         5.606         2.465         3.724         2.865 <td< th=""><th>1955</th><th>18,992</th><th>6,353</th><th>4,648</th><th>4,651</th><th>3,308</th><th>3,948</th><th>893</th><th>1,957</th><th>5,557</th><th>2,724</th><th>11,173</th><th>11.955</th><th>76.159</th><th></th></td<>                                                                  | 1955          | 18,992         | 6,353  | 4,648 | 4,651 | 3,308 | 3,948 | 893   | 1,957 | 5,557  | 2,724  | 11,173 | 11.955 | 76.159  |   |
| 6,789         6,196         4,014         4,366         3,775         4,169         4,552         1,285         9,191         16,754           7,852         6,119         5,584         5,743         5,755         5,444         4,772         4,867         3,056         4,11,233           7,852         6,119         5,584         5,443         4,772         4,868         7,174         1,475         6,365         7,124         15,503           7,1648         8,1049         7,715         8,116         7,735         3,813         5,712         5,139         12,055         3,936         1,1233           7,144         7,155         8,155         5,513         3,813         5,712         5,139         12,055         3,378         6,412         3,022         2,644         1,523           5,742         5,593         3,813         5,712         5,193         3,022         2,644         1,233           6,616         7,174         1,477         7,817         1,475         6,365         7,124         1,523           5,742         5,593         3,693         3,417         4,433         7,861         1,770         7,417         7,397         1,4165         6,412                                                                                                                                                                                                                                                                                            | 1956          | 666,7          | 7,413  | 5,497 | 4,349 | 4,366 | 5,224 | 893   | 4,797 | 14,104 | 2,823  | 11.445 | 6.211  | 74,461  |   |
| 15.358         8,1166         7,588         7,041         4,753         5,494         4,722         4,887         23,706         4,302         17,574           7,862         6,119         5,994         5,554         3,553         3,983         7,174         1,475         6,365         7,124         15,034           7,848         8,049         7,244         7,036         3,150         3,893         7,174         1,475         6,365         7,124         15,034           8,601         5,700         5,105         7,724         7,756         3,571         5,402         2,395         12,497           8,655         5,880         5,414         4,415         4,575         893         1,624         9,896         7,278         1,412           5,540         5,510         3,893         5,712         5,569         3,895         1,170           5,542         5,558         3,411         5,533         2,414         4,415         4,575         893         1,640         4,412           5,740         5,105         7,124         4,575         893         1,610         2,706         1,412           5,540         5,414         4,715         4,575         893 <th>1957</th> <th>6,769</th> <th>6,196</th> <th>4,014</th> <th>4,366</th> <th>3,775</th> <th>4,169</th> <th>4,552</th> <th>1,285</th> <th>9,653</th> <th>16,817</th> <th>16.924</th> <th>10.975</th> <th>89.495</th> <th></th>                                                                       | 1957          | 6,769          | 6,196  | 4,014 | 4,366 | 3,775 | 4,169 | 4,552 | 1,285 | 9,653  | 16,817 | 16.924 | 10.975 | 89.495  |   |
| 7,882         6,119         5,834         5,544         3,523         4,460         4,708         2,139         12,055         3,988         11,233           7,848         8,047         7,417         6,775         8,411         5,359         3,950         4,972         1,475         6,102         3,082         7,124         15,554           8,855         8,126         7,755         3,813         5,712         5,806         2,462         3,0322         6,542         12,497           8,855         8,805         5,806         2,413         7,861         1,750         7,576         3,378         6,412           5,740         5,105         7,335         4,733         7,861         1,750         7,576         3,378         6,412           5,525         4,237         4,533         7,861         1,710         9,226         1,212           5,740         5,105         7,335         4,724         4,533         3,618         1,170           5,525         4,237         4,415         5,034         4,917         7,926         1,8415           5,526         5,525         4,237         7,848         893         2,144         4,155         1,170 <t< th=""><th>1958</th><th>15,358</th><th>8,186</th><th>7,588</th><th>7,041</th><th>4,753</th><th>5,494</th><th>4,722</th><th>4,887</th><th>23,706</th><th>4,302</th><th>17,674</th><th>8,422</th><th>112,133</th><th></th></t<>                                                                              | 1958          | 15,358         | 8,186  | 7,588 | 7,041 | 4,753 | 5,494 | 4,722 | 4,887 | 23,706 | 4,302  | 17,674 | 8,422  | 112,133 |   |
| 8,601         9,316         7,810         5,712         4,751         6,006         1,630         2,313         9,766         3,854         11,233           7,848         7,036         3,150         3,893         7,174         1,750         7,576         3,847         4,475           8,855         8,126         7,755         3,813         5,712         5,806         2,462         3,022         6,326         3,558           5,540         5,591         3,907         3,598         3,477         4,575         893         1,620         7,276         1,452           5,740         5,556         3,817         4,575         893         1,624         2,497         1,452           7,557         5,586         5,487         4,575         893         2,166         1,452           7,556         4,337         4,513         4,575         8,983         1,170         9,996         1,452           7,556         5,694         4,317         4,575         8,993         2,186         1,452         1,452           7,556         5,694         5,497         7,848         8,93         2,186         1,170           8,925         6,584         5,497                                                                                                                                                                                                                                                                                                                       | 1959          | 7,852          | 6,119  | 5,934 | 5,544 | 3,523 | 4,480 | 4,708 | 2,139 | 12,055 | 3,988  | 8,910  | 8,847  | 74 099  |   |
| 7,848         8,049         7,244         7,036         3,150         3,893         7,174         1,475         6,365         7,124         15,504           11,448         7,175         8,411         5,359         3,813         5,712         5,806         3,425         3,902         20,654         12,497           8,855         5,591         3,907         3,593         3,415         4,575         803         1,622         3,002         2,0564         12,497           5,742         5,595         5,800         5,414         4,415         4,575         803         1,622         3,002         2,0564         12,497           5,740         5,105         7,335         4,715         4,575         803         1,610         2,066         19,415           7,557         5,525         5,644         4,511         5,034         4,611         5,034         4,611         2,066         19,415           7,556         5,164         4,511         4,613         803         3,744         2,381         3,177           8,922         6,648         4,611         5,034         4,947         7,977         13,670         9,913           10,531         10,506         5,4                                                                                                                                                                                                                                                                                                  | 1960          | 8,601          | 9,316  | 7,810 | 5,212 | 4,731 | 6,068 | 1,630 | 2,313 | 9,786  | 3,854  | 11,233 | 7,412  | 77,966  |   |
| 11,444         7,175         8,411         5,359         3,950         4,972         1,254         6,102         39,082         20,654         12,497           16,231         5,563         5,806         5,414         4,415         5,806         5,412         3,558         3,578         1,442           5,740         5,105         7,335         5,712         5,569         3,907         5,566         3,661         3,412         5,569         3,072         6,326         1,472           5,740         5,105         7,335         4,728         3,619         5,414         4,415         4,575         893         1,624         9,986         1,472           5,740         5,105         7,335         5,556         8933         2,118         2,997         4,041         2,056         9,137           8,922         6,981         5,691         4,233         4,611         5,034         4,847         4,477         7,977         13,670         9,951           10,578         6,728         5,640         5,613         4,033         7,244         16,102         3,744         2,391         3,725         9,137           2,495         6,718         893         2,118         8                                                                                                                                                                                                                                                                                          | 1961          | 7,848          | 8,049  | 7,244 | 7,036 | 3,150 | 3,893 | 7,174 | 1,475 | 6,365  | 7,124  | 15,504 | 9,389  | 84,251  |   |
| 8.855         8.126         7.765         3,813         5,712         5,806         2,462         3,526         6,326         3,558           5,742         5,555         4,235         5,714         5,414         4,415         5,712         5,806         7,576         3,376         6,412           5,742         5,555         4,235         5,726         4,337         6,031         6,037         4,041         2,078         11,452           5,740         5,105         7,335         4,728         3,609         6,031         6,103         2,2997         4,041         2,056         13,415           7,597         5,525         4,231         4,261         5,034         4,911         922         15,696         3,885         1,170           10,551         10,506         5,497         7,844         893         2,181         3,755         9,137           2,281         6,504         6,113         7,344         1,617         2,371         13,670         9,137           2,5381         6,504         6,129         4,611         7,793         2,440         1,770           2,5381         6,504         5,497         7,844         1,617         2,771         1,4                                                                                                                                                                                                                                                                                                  | 7061          | 11,448         | 7,175  | 8,411 | 5,359 | 3,950 | 4,972 | 1,254 | 6,102 | 39,092 | 20,654 | 12,497 | 7,778  | 128,692 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1963          | 8,855          | 8,563  | 8,126 | 7,765 | 3,813 | 5,712 | 5,806 | 2,462 | 3,022  | 6,326  | 3,558  | 10,668 | 74,676  |   |
| 5,424         6,595         5,880         5,414         4,415         4,575         893         1,624         9,896         7,278         11,452           5,5740         5,515         4,728         5,699         6,031         6,108         2,997         4,041         2,066         19,415           7,597         5,525         4,728         3,412         5,569         8,031         6,108         2,996         1,170           7,597         5,526         4,317         3,412         5,569         8,031         3,743         2,385         1,170           10,578         6,783         5,640         5,691         4,513         893         3,744         2,331         3,755         9,137           2,495         4,810         3,535         5,758         4,611         5,034         4,947         4,477         7,977         13,670         9,137           2,496         9,169         5,497         7,848         893         2,338         2,363         12,125           2,2381         6,504         6,194         7,397         13,670         9,144           1,0,535         8,949         7,744         1,617         2,776         1,316         1,205 <t< th=""><th>1904</th><th>16,231</th><th>5,591</th><th>3,907</th><th>3,598</th><th>3,487</th><th>4,433</th><th>7,861</th><th>1,750</th><th>7,576</th><th>3,378</th><th>6,412</th><th>6,994</th><th>71,218</th><th></th></t<>                                                                                 | 1904          | 16,231         | 5,591  | 3,907 | 3,598 | 3,487 | 4,433 | 7,861 | 1,750 | 7,576  | 3,378  | 6,412  | 6,994  | 71,218  |   |
| 5,740         5,740         5,700         5,700         5,700         5,700         5,700         5,701         2,066         19,415           7,597         5,525         4,235         5,569         893         2,1185         6,048         4,295         1,170           7,597         5,525         4,317         4,613         5,569         893         2,1185         6,048         4,295         1,170           10,578         6,783         5,640         5,591         4,611         5,034         4,947         7,977         13,670         9,951           10,551         10,561         10,563         5,191         7,944         1,617         2,776         15,696         3,851         1,770           2,486         5,191         7,944         1,617         2,776         15,313         3,623         12,480           10,551         10,506         9,491         1,617         2,776         15,313         3,623         16,407           10,531         10,506         5,191         7,944         1,617         2,776         13,670         9,616           10,533         10,506         5,191         7,944         1,617         2,776         1,2,716         1,2,169                                                                                                                                                                                                                                                                                               | 1965          | 5,424          | 6,595  | 5,880 | 5,414 | 4,415 | 4,575 | 893   | 1,624 | 9,896  | 7,278  | 11,452 | 5.755  | 69.201  |   |
| 7,597         5,525         4,238         3,610         3,412         5,569         893         2,185         6,048         4,295         1,170           10,578         6,783         5,640         5,691         3,412         5,569         893         2,144         2,381         3,755         9,137           10,578         6,783         5,640         5,691         3,412         5,563         4,901         8,111         922         15,696         3,885         1,170           2,056         6,783         5,640         5,691         5,933         3,744         2,381         6,709         9,951           2,056         8,481         7,784         893         4,978         1,776         2,940         1,770           10,531         10,506         9,169         5,799         893         4,271         7,814         2,3623         19,407           12,247         7,884         7,794         3,983         4,378         1,776         2,440         2,986         1,770           5,381         6,504         6,129         4,784         3,983         4,271         7,814         2,346         2,460         1,770           8,255         8,948         8,778                                                                                                                                                                                                                                                                                                       | 1966          | 5,740          | 5,105  | 7,335 | 4,728 | 2,909 | 6,031 | 6,108 | 2,997 | 4,041  | 2,066  | 19,415 | 6,491  | 72,966  |   |
| 8.922         6,981         5,054         4,317         4,263         4,901         8,111         922         15,696         3,885         1,170           10,578         6,783         5,640         5,691         4,234         4,613         893         3,744         2,381         3,755         9,137           2,495         4,810         3,535         5,758         4,611         5,034         4,947         7,977         13,670         9,951           10,531         10,506         9,499         9,169         5,497         7,848         893         2,398         29,706         21,099         12,460           12,247         7,884         7,164         6,590         5,191         7,944         1,617         2,776         15,313         3,623         19,484           12,612         6,129         4,773         7,977         13,670         9,951         1,272         12,612         12,026           8,2381         6,504         5,191         7,944         1,617         2,776         15,313         3,623         16,407           10,1305         6,952         6,547         4,705         7,944         1,617         2,776         12,612         12,612         12,026                                                                                                                                                                                                                                                                                      | 1967          | 7,597          | 5,525  | 4,238 | 3,698 | 3,412 | 5,569 | 893   | 2,185 | 6,048  | 4,295  | 12,125 | 9,332  | 64,917  |   |
| 10,578         6,783         5,640         5,691         4,234         4,613         893         3,744         2,381         3,755         9,137           2,495         4,810         3,535         5,758         4,611         5,034         4,947         7,977         13,670         9,951           10,531         10,506         9,169         5,497         7,848         893         2,398         29,706         21,099         12,460           12,531         10,506         9,169         5,497         7,848         893         2,338         29,706         21,099         12,460           12,525         6,129         4,774         3,920         5,191         7,944         1,617         2,776         15,313         3,623         16,407           8,255         6,931         6,504         6,129         4,784         5,125         5,705         1,373         10,701         7,690         11,792           8,255         6,931         5,725         3,803         5,125         5,705         1,373         10,701         7,290         10,792           8,886         5,931         5,725         3,803         2,178         1,936         5,333         12,640         19,610                                                                                                                                                                                                                                                                                        | 1968          | 8,922          | 6,981  | 5,054 | 4,317 | 4,263 | 4,901 | 8,111 | 922   | 15,696 | 3,885  | 1,170  | 17,907 | 62,129  |   |
| 2,495         4,810         3,535         5,758         4,611         5,034         4,947         4,477         7,977         13,670         9,951           10,531         10,506         9,499         9,169         5,497         7,848         893         2,398         29,706         21,099         12,460           12,247         7,884         7,164         6,590         5,191         7,944         1,617         2,776         15,313         3,623         19,484           5,381         6,504         6,129         4,784         3,988         4,378         1,739         5,933         12,612         12,026           8,255         8,948         8,072         7,950         3,920         5,705         1,373         10,701         7,690         11,792           8,253         5,931         5,292         4,684         4,268         5,705         1,373         10,701         7,690         11,792           8,296         5,931         5,292         4,684         4,243         5,125         5,705         1,373         10,701         7,690         11,792           11,674         4,726         5,931         2,268         5,178         5,1333         10,701         7,690 <th>1969</th> <th>10,578</th> <th>6,783</th> <th>5,640</th> <th>5,691</th> <th>4,234</th> <th>4,613</th> <th>883</th> <th>3,744</th> <th>2,381</th> <th>3,755</th> <th>9,137</th> <th>12,503</th> <th>69,952</th> <th></th>                                                         | 1969          | 10,578         | 6,783  | 5,640 | 5,691 | 4,234 | 4,613 | 883   | 3,744 | 2,381  | 3,755  | 9,137  | 12,503 | 69,952  |   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/61          | 2,495          | 4,810  | 3,535 | 5,758 | 4,611 | 5,034 | 4,947 | 4,477 | 7,977  | 13,670 | 9,951  | 9,584  | 76,849  |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1971          | 10,531         | 10,506 | 9,499 | 9,169 | 5,497 | 7,848 | 893   | 2,398 | 29,706 | 21,099 | 12,460 | 13,446 | 133,052 |   |
| 5,381         6,504         6,129         4,784         3,988         4,338         4,978         1,739         5,933         12,612         12,026           8,255         8,948         8,072         7,950         3,920         5,799         893         4,219         26,261         11,273         16,407           10,138         6,952         6,547         4,705         4,243         5,125         5,705         1,373         10,701         7,690         11,792           8,886         5,931         5,292         4,684         4,268         5,178         1,936         2,6261         11,273         16,407           11,306         7,185         4,962         3,840         3,514         4,324         5,096         1,716         2,988         12,718         4,481         10,056           11,306         7,185         4,962         3,840         3,514         4,322         5,993         2,619         8,610         11,782           13,306         7,185         4,739         2,919         4,324         5,096         1,716         2,983         12,610         11,792           15,74         4,739         2,926         5,178         2,133         2,326         8,465                                                                                                                                                                                                                                                                                      | 2/61          | 12,247         | 7,884  | 7,164 | 6,590 | 5,191 | 7,944 | 1,617 | 2,776 | 15,313 | 3,623  | 19,484 | 7,732  | 97.565  |   |
| B,255         B,948         B,072         7,950         3,920         5,799         B93         4,219         26,261         11,273         16,407           10,1139         6,952         6,547         4,705         4,243         5,125         5,705         1,373         10,701         7,690         11,792           8,886         5,931         5,292         4,684         4,268         5,178         1,936         2,263         8,317         4,236         9,803           11,306         7,185         4,962         3,840         3,514         4,324         5,096         1,716         2,988         12,640         19,610           11,674         4,739         2,989         2,711         2,413         3,313         B93         2,847         12,718         6,184         6,865           5,942         5,826         5,409         4,322         5,595         893         2,6565         8,486         6,926           6,979         6,854         6,228         6,403         3,513         2,655         8,496         1,0,056           6,979         6,854         5,326         5,403         4,322         9,436         1,2712         4,465         6,926 <t< th=""><th>1979</th><th>5,381</th><th>6,504</th><th>6,129</th><th>4,784</th><th>3,988</th><th>4,338</th><th>4,978</th><th>1,739</th><th>5,933</th><th>12,612</th><th>12,026</th><th>10,910</th><th>79,322</th><th></th></t<>                                                                           | 1979          | 5,381          | 6,504  | 6,129 | 4,784 | 3,988 | 4,338 | 4,978 | 1,739 | 5,933  | 12,612 | 12,026 | 10,910 | 79,322  |   |
| 10./138         6.952         6.547         4,705         4,243         5,125         5,705         1,373         10,701         7,690         11,792           8,886         5,931         5,292         4,684         4,268         5,178         1,936         2,263         8,317         4,236         9,803           11,306         7,185         4,962         3,840         3,514         4,324         5,096         1,716         2,988         12,640         19,610           11,574         4,739         2,989         2,711         2,413         3,313         893         2,847         12,718         6,184         6,865           5,942         5,826         5,409         4,322         5,595         893         2,847         12,718         6,184         6,865           5,942         5,826         5,409         4,322         5,595         893         2,665         8,481         10,056           6,979         6,854         6,228         6,463         5,302         4,150         4,392         1,687         7,712         4,465         6,926           8,618         6,228         6,463         3,500         4,232         9,486         1,294         9,216 <td< th=""><th>1974</th><th>8,255</th><th>8,948</th><th>8,072</th><th>7,950</th><th>3,920</th><th>5,799</th><th>893</th><th>4,219</th><th>26,261</th><th>11,273</th><th>16,407</th><th>9,713</th><th>111,710</th><th></th></td<>                                                                 | 1974          | 8,255          | 8,948  | 8,072 | 7,950 | 3,920 | 5,799 | 893   | 4,219 | 26,261 | 11,273 | 16,407 | 9,713  | 111,710 |   |
| B,886         5,931         5,292         4,684         4,268         5,178         1,936         2,263         8,317         4,236         9,803           11,306         7,185         4,962         3,840         3,514         4,324         5,096         1,716         2,988         12,640         19,610           11,306         7,185         4,962         3,840         3,514         4,324         5,096         1,716         2,988         12,640         19,610           11,674         4,739         2,989         2,711         2,413         3,313         893         2,847         12,718         6,184         6,865           5,942         5,826         5,326         5,409         4,322         5,595         893         2,687         10,056           6,979         6,854         6,228         6,463         5,302         4,150         4,992         1,687         7,712         4,465         6,926           8,618         6,223         3,801         3,500         4,232         9,486         1,294         8,265         6,926           8,618         6,223         3,801         3,574         2,294         3,556         1,114           8,063         5,6                                                                                                                                                                                                                                                                                                  | 6/6L          | 10,138         | 6,952  | 6,547 | 4,705 | 4,243 | 5,125 | 5,705 | 1,373 | 10,701 | 7,690  | 11,792 | 12,118 | 87,090  |   |
| 11,306         7,185         4,962         3,840         3,514         4,324         5,096         1,716         2,988         12,640         19,610           11,674         4,739         2,989         2,711         2,413         3,313         893         2,847         12,718         6,184         6,865           5,942         5,826         5,409         4,322         5,595         893         2,847         12,718         6,184         6,865           6,979         6,854         6,228         6,463         5,302         4,150         4,992         1,687         7,712         4,465         6,926           8,618         6,273         5,322         3,801         3,200         4,232         9,486         1,294         8,216         7,201         19,114           8,618         6,273         5,322         3,801         3,574         2,924         3,556         1,118         7,201         19,114           8,063         5,617         3,682         3,574         2,924         3,556         1,118         7,219         7,359         8,117           3,941         7,168         7,718         5,447         5,314         20,053         33,344         20,053                                                                                                                                                                                                                                                                                                | 9/61          | 8,886          | 5,931  | 5,292 | 4,684 | 4,268 | 5,178 | 1,936 | 2,263 | 8,317  | 4,236  | 9,803  | 10,414 | 71,208  |   |
| 11.674         4,739         2,989         2,711         2,413         3,313         893         2,847         12,718         6,184         6,865           5,942         5,826         5,326         5,409         4,322         5,595         893         2,655         8,496         4,481         10,056           6,979         6,854         6,228         6,463         5,302         4,150         4,992         1,687         7,712         4,465         6,926           8,618         6,273         5,322         3,801         3,200         4,232         9,496         1,294         8,216         7,201         19,114           8,618         6,273         5,322         3,801         3,200         4,232         9,496         1,294         8,216         7,201         19,114           8,063         5,617         3,682         3,574         2,924         3,556         1,118         7,219         7,359         8,117           3,941         7,188         5,447         5,988         4,409         9,650         922         1,556         51,726         20,053           11,412         9,168         7,718         5,447         5,988         4,409         9,650         92                                                                                                                                                                                                                                                                                          | 1161          | 11,306         | 7,185  | 4,962 | 3,840 | 3,514 | 4,324 | 5,096 | 1,716 | 2,988  | 12,640 | 19,610 | 5,670  | 82,851  |   |
| 5.942         5,826         5,409         4,322         5,595         893         2,655         8,496         4,481         10,056           6,979         6,854         6,228         6,463         5,302         4,150         4,992         1,687         7,712         4,465         6,926           8,618         6,273         5,322         3,801         3,200         4,232         9,486         1,294         9,216         7,201         19,114           8,618         6,273         5,322         3,801         3,200         4,232         9,486         1,294         9,216         7,201         19,114           8,063         5,617         3,682         4,895         3,574         2,924         3,556         1,118         7,359         8,117           3,941         7,168         7,718         5,447         5,988         4,409         9,650         922         1,556         51,726         20,053           11,412         9,168         9,066         7,033         5,244         7,113         5,374         4,832         60,035         33,344         20,359                                                                                                                                                                                                                                                                                                                                                                                                      | 8/61          | 11,674         | 4,739  | 2,989 | 2,711 | 2,413 | 3,313 | 693   | 2,847 | 12,718 | 6,184  | 6,865  | 8,662  | 66,008  |   |
| 6.979         6,854         6,228         6,463         5,302         4,150         4,992         1,687         7,712         4,465         6,926           8,618         6,273         5,322         3,801         3,200         4,232         9,486         1,294         9,216         7,201         19,114           8,618         6,273         5,322         3,801         3,200         4,232         9,486         1,294         9,216         7,201         19,114           8,063         5,617         3,682         4,895         3,574         2,924         3,556         1,118         7,219         7,359         8,117           3,941         7,163         7,718         5,447         5,928         4,409         9,650         922         1,556         51,726         20,053           11,412         9,168         9,066         7,033         5,244         7,113         5,374         4,832         60,035         33,344         20,359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6/61          | 5,942          | 5,826  | 5,326 | 5,409 | 4,322 | 5,595 | 893   | 2,655 | 8,496  | 4,481  | 10,056 | 7,259  | 66,260  |   |
| B,618         6,273         5,322         3,801         3,200         4,232         9,486         1,294         9,216         7,201         19,114           8,063         5,617         3,682         4,895         3,574         2,924         3,556         1,118         7,219         7,359         8,117           3,941         7,169         7,718         5,447         5,988         4,409         9,650         922         1,556         51,726         20,053           11,412         8,168         9,066         7,033         5,244         7,113         5,374         4,832         60,035         33,344         20,359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1980          | 6,979          | 6,854  | 6,228 | 6,463 | 5,302 | 4,150 | 4,992 | 1,687 | 7,712  | 4,465  | 6,926  | 10,625 | 74.383  |   |
| 8,063         5,617         3,682         4,895         3,574         2,924         3,556         1,118         7,219         7,359         8,117           3,941         7,169         7,718         5,447         5,988         4,409         9,650         922         1,556         51,726         20,053           11,412         8,168         9,066         7,033         5,244         7,113         5,374         4,832         60,035         33,344         20,359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1981          | 5,618<br>5,555 | 6,273  | 5,322 | 3,801 | 3,200 | 4,232 | 9,486 | 1,294 | 9,216  | 7,201  | 19,114 | 12,327 | 89,884  |   |
| 1 3,941 7,189 7,718 5,447 5,988 4,409 9,650 922 1,556 51,726 20,053 11,412 9,168 9,066 7,033 5,244 7,113 5,374 4,832 60,035 33,344 20,359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2861          | 8,063          | 5,617  | 3,682 | 4,895 | 3,574 | 2,924 | 3,556 | 1,118 | 7,219  | 7,359  | 8,117  | 3,879  | 60,203  |   |
| 11,412 8,168 9,066 7,033 5,244 7,113 5,374 4,832 60,035 33,344 20,359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1983          | 1961)          | 7,169  | 7,718 | 5,447 | 5,988 | 4,409 | 9,650 | 922   | 1,556  | 51,726 | 20,053 | 12,582 | 131,161 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1984          | 11,412         | 9,168  | 9'066 | 7,033 | 5,244 | 7,113 | 5,374 | 4,832 | 60,035 | 33,344 | 20,359 | 12,506 | 185,506 |   |

Simulated Flows at Williams Fork River below Williams Fork Reservoir No Action Alternative (AF)

| WATER    |        |        |       |       |        |       |       |       |        |        |        |        |                   |
|----------|--------|--------|-------|-------|--------|-------|-------|-------|--------|--------|--------|--------|-------------------|
| YEAR     | ост    | NOV    | DEC   | JAN   | FEB    | MAR   | APR   | МАҮ   | NN     | JUL    | AUG    | SEP    | TOTAL             |
| 1985     | 14,221 | 10,458 | 9,095 | 9,484 | 4,850  | 6,660 | 893   | 4.239 | 27 125 | 8 452  | 10.037 | 10 264 | 116 770           |
| 1986     | 11,091 | 10,031 | 9,138 | 8,546 | 3.882  | 1,280 | 893   | 3 506 | 33 665 | 15 702 | 0.254  |        |                   |
| 1987     | 10.626 | 9.937  | 8,885 | 8 446 | 5 641  | F 707 |       |       |        |        | 102.01 | 10,77  | 118,03/           |
| 1088     | 7 204  | 000 9  | 0,000 |       |        | 1210  | 090   | 3,400 | 4,024  | 1,994  | 10,502 | 6,844  | 77,607            |
| 0001     |        | 0,000  | 100'0 | 0,993 | 5,820  | 4,816 | 893   | 3,636 | 14,094 | 4,688  | 21,571 | 7,865  | 90,594            |
| ABEL     | 6,094  | 6,728  | 5,853 | 5,152 | 4,741  | 6,404 | 883   | 3,444 | 7,809  | 7,715  | 4,434  | 9.676  | 69.543            |
| 1990     | 606'9  | 6,485  | 5,932 | 4,983 | 4,624  | 6,610 | 4,824 | 1,967 | 13,641 | 2,834  | 19,356 | 11.551 | 89.716            |
| 1991     | 12,034 | 7,666  | 5,446 | 4,611 | 3,972  | 5,527 | 5,620 | 2,959 | 11,849 | 3,836  | 7 438  | 6.083  | 7,041             |
| 1892     | 7.769  | 8,641  | 6,083 | 5,357 | 5,354  | 7,648 | 893   | 4,009 | 5,293  | 2,863  | 27.571 | 13,698 | 95.179            |
| 1993     | 15,128 | 8,398  | 4,392 | 3,029 | 2,659  | 3,422 | 4,164 | 922   | 10,019 | 6.905  | 7.753  | 14.547 | 81 336            |
| 1994     | 12,719 | 7,877  | 6,725 | 6,085 | 5,044  | 6,986 | 1,852 | 3,711 | 5,873  | 7.073  | 12.586 | 10,906 | 87 437            |
| 1995     | 8,101  | 6,346  | 5,202 | 4,595 | 4,757  | 6,554 | 9,792 | 922   | 13,136 | 17.204 | 16.736 | 19 160 | 110 505           |
| 1996     | 12,881 | 8,019  | 7,928 | 8,701 | 6,994  | 7,008 | 921   | 8,417 | 38.235 | 13.990 | 8.630  | 13 186 | 134 010           |
| 1997     | 12,812 | 10,192 | 8,636 | 4,933 | 14,041 | 4,915 | 893   | 3,934 | 39.528 | 17.445 | 13,232 | 9 963  | 140 524           |
| 1998     | 10,435 | 9,613  | 8,910 | 8,934 | 6,411  | 8,374 | 893   | 1,929 | 4.951  | 3.450  | 8 479  | 16 401 | 88 870            |
| 1999     | 12,530 | 8,859  | 6,023 | 6,594 | 5,697  | 8,991 | 5,827 | 1,876 | 6.267  | 2.629  | 7,349  | 19401  | 01510             |
| 2000     | 12,350 | 7,346  | 7,007 | 7,084 | 6,189  | 7,776 | 893   | 4,675 | 6.502  | 1.320  | 21636  | 15.471 | 08 240            |
| 2001     | 10,250 | 7,249  | 7,579 | 6,236 | 5,372  | 7,114 | 5,503 | 3,180 | 5,370  | 1.827  | 27,434 | 13 131 | 100 245           |
| 2002     | 9,157  | 3,736  | 3,200 | 2,764 | 2,353  | 3,246 | 4,462 | 1.029 | 2.523  | 6,606  | 1301   | 1 782  | 40,240            |
| 2003     | 2,849  | 3,495  | 2,986 | 2,676 | 2,201  | 2,907 | 6.463 | 1.117 | 13.296 | 3,603  | 13 183 | 17 407 | 70,000            |
| 2004     | 9,926  | 7,914  | 6,621 | 6,258 | 5,612  | 8,758 | 7.252 | 2.275 | 4 724  | 1 376  | 95 50M | 11 247 |                   |
| 2005     | 13,203 | 8,053  | 5,916 | 5,957 | 3,284  | 3,209 | 893   | 2,829 | 200 6  | 000    | 10.255 | 111    | 100'10            |
| AVERAGE: | 9,727  | 7,335  | 6,271 | 5,680 | 4,502  | 5,381 | 3.583 | 2.729 | 13.342 | 8 679  | 13.055 | 10 676 | 10/020            |
|          | 2,495  | 3,495  | 2,986 | 2,676 | 2,201  | 1.280 | 893   | 666   | 1 556  | 1 220  | 1 170  | 1 700  | 80'800            |
| MAXIMUM: | 18,992 | 10,506 | 9,499 | 9,484 | 14,041 | 8,991 | 9,792 | 8.417 | 60.035 | 51.726 | 27,571 | 21 202 | 42,249<br>185 506 |
|          |        |        |       |       |        |       |       |       |        |        |        | 201    | 000,001           |

Simulated Flows at Colorado River Below the Confluence with the Eagle River No Action Alternative (CFS)

| 100         1,242         800         550         550         551         561         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261         1,261                                                                                                                                                                                         | WATER<br>YEAR | ост              | NON   | DEC        | JAN   | FEB   | MAR   | APR   | МАҮ   | νης    | JUL   | AUG   | SEP   |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-------|------------|-------|-------|-------|-------|-------|--------|-------|-------|-------|--------|
| 1/15         060         015         770         1/15         1/15         2/15         2/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/15         1/                                                                                                                                                                                                                       | 1950          | 1,242            | 860   | 583        | 552   | 655   | 694   | 1 265 | 1 014 | 1044   | t Foo | 1007  | 000   | AVG    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1951          | 1 154            | RED   | 815<br>815 | 700   | ŝĒ    |       | 007'1 | 1.8.4 | 4,241  | 520,1 | 115,1 | 968   | 1,319  |
| 1,202         1,000         961         7,75         863         1,057         2,962         7,765         1,863           1,100         913         944         967         777         967         7,195         1,964         7,77           911         940         7,77         967         7,17         967         7,195         1,964         7,77           912         840         7,77         967         7,17         960         1,195         1,964         1,77           914         747         1,976         1,967         7,73         7,00         1,796         1,967         7,70           914         7,73         7,63         1,145         1,447         1,705         1,967         7,71         9,67         1,919         9,71         7,00           1,470         1,110         7,03         1,441         1,735         2,666         1,717         1,401         7,71         1,967           1,470         1,107         1,066         1,616         1,466         1,216         1,317         1,967           1,526         7,73         7,66         1,617         1,625         2,666         1,616         1,317         1,417                                                                                                                                                                                                                                                                                            | 1065          | 020              |       |            |       |       | 211   | 1,130 | 2'37B | 4,226  | 3,893 | 1,486 | 1,366 | 1,636  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 6/0 <sup>1</sup> | 000   | 71 A       | 2/8   | 5     | 838   | 1,383 | 4,668 | 10,579 | 2,962 | 1,785 | 1,883 | 2.429  |
| 1,100         303         644         503         733         700         119         719         710           951         840         777         677         771         667         1196         1196         1199         651         701           951         840         777         677         777         733         766         1616         1206         1777         1207         1206           1(64         1(87         1.057         687         756         566         5746         1580         1700         1378         1206           1(701         962         755         706         1666         1705         1580         1206         1206         1777         1207         1378         1207           1580         1701         3007         1077         3007         1077         1007         3078         1667         1216         1491         727         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         1207         <                                                                                                                                                                                                                                                                             | 204           | 592              |       | 965        | 974   | 861   | 955   | 1,097 | 1,548 | 4,625  | 2,063 | 1,264 | 1.058 | 1.475  |
| 1/10         741         565         563         562         1441         1/78         2.061         1/77         1/29         1/77         1/29         1/27         1/29         1/27         1/29         1/27         1/29         1/27         1/29         1/27         1/29         1/27         1/29         1/27         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/29         1/                                                                                                                                                                                                                       | 40A           | 200              | 983   | 844        | 898   | 698   | 769   | 1,092 | 1,196 | 1,159  | 1,199 | 951   | 710   | 096    |
| 921         840         777         687         671         690         106         2007         3656         1206         1207         677         691         677         691         677         691         677         691         677         691         677         691         677         691         777         700         1110         5.065         6.746         1200         1213         901         1778         1200         1213         901         1216         1216         1216         1217         1200         1216         1216         1216         1217         1200         1216         1216         1217         1200         1217         1200         1216         1217         1200         1217         1200         1217         1200         1217         1200         1217         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201         1201                                                                                                                                                                                                                                         | 1955          | 1,189            | 741   | 595        | 562   | 563   | 632   | 1,141 | 1,786 | 2,081  | 1.172 | 1.281 | 1.006 | 1 066  |
| 962         183         743         707         749         763         1008         2.745         8.767         6.612         2.386         1.276           963         802         755         756         766         1100         2.086         6.746         1.218         2.085         1.277         1.277         1.278         9.01           1,147         963         753         752         714         5.446         4.385         1.260         1.313         9.01           1,289         7243         755         911         0.70         3.009         5.971         8.810         4.355         1.277         1.227           973         756         556         556         556         556         556         556         556         556         556         556         556         556         1.677         1.469         1.483         1.427         1.427         1.427           1,284         1,070         981         965         1.070         3.009         5.971         8.400         1.220         1.427         1.222           1,140         1,772         1.289         1.070         3.009         5.911         8.705         5.206         3.7                                                                                                                                                                                                                                                                       | 1956          | 351              | 840   | <u>1-1</u> | 687   | 671   | 840   | 1,196 | 3,207 | 3,636  | 1.209 | 1.470 | 824   | 1 362  |
| 1/64         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107         1/107                                                                                                                                                                                            | 1957          | 902              | 836   | 743        | 707   | 749   | 783   | 1,099 | 2.745 | 8.767  | 6.612 | 2 383 | 1 278 |        |
| 863         802         725         709         666         1118         2.066         4.000         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300         1.300                                                                                                                                                                                        | 1958          | 164              | 1 187 | 1,057      | 887   | 956   | 964   | 1,100 | 5,085 | 6.746  | 1218  | 1 395 | 0.51  | 2000,2 |
| 1,479         1,119         850         713         765         1,445         1,446         4,365         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,220         1,007         3001         5171         1,230         1,007         3001         5171         1,230         1,007         3001         1,007         3001         1,007         3001         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007         1,007 <th>1959</th> <th>863</th> <th>802</th> <th>763</th> <th>725</th> <th>708</th> <th>686</th> <th>1,118</th> <th>2.086</th> <th>4 000</th> <th>1300</th> <th>1.378</th> <th>1 067</th> <th></th> | 1959          | 863              | 802   | 763        | 725   | 708   | 686   | 1,118 | 2.086 | 4 000  | 1300  | 1.378 | 1 067 |        |
| 1,047         962         756         733         720         766         1,023         1,560         1,475         1,477         1,479         1,491           973         763         556         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566         566                                                                                                                                                                                                                                                                       | 1960          | 1,479            | 1,119 | 850        | 713   | 765   | 1,145 | 1,445 | 2,446 | 4,383  | 1 520 | 1 313 | 100   | 1 500  |
| 1588         1243         926         844         959         1070         3009         5971         6810         4.335         1277         1283         1277         1283         1277         1283         1277         1283         1070         3009         5971         16810         4.335         1277         1282         1070         3009         5971         1681         1682         1681         1682         1681         1682         1681         1682         1681         1682         1681         1683         1070         1680         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1683         1681         1681         1683         1681         1683         1681         1683         1681         1683         1683         1683         1683         1683         1683         1683         1683         1683         1683 <th< th=""><th>1961</th><th>1,047</th><th>962</th><th>765</th><th>733</th><th>720</th><th>766</th><th>1.023</th><th>1,680</th><th>2.176</th><th>1 215</th><th>1 427</th><th>1 404</th><th>90C'-</th></th<>                    | 1961          | 1,047            | 962   | 765        | 733   | 720   | 766   | 1.023 | 1,680 | 2.176  | 1 215 | 1 427 | 1 404 | 90C'-  |
| 1228         972         752         585         586         584         627         1,667         1,580         1,482         1,371         1,321         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331         1,331                                                                                                                                                                                          | 1962          | 1,589            | 1,243 | 926        | 844   | 959   | 1,070 | 3,009 | 5.971 | 8.810  | 4 335 | 1 277 | 1 020 | 101'1  |
| 973         763         556         556         549         627         1,061         1,982         2,582         1,187         1,420         1,197           911         752         627         610         615         1,167         1,481         1,491         1,197           911         752         627         610         612         914         1,200         1,481         1,491         1,197           911         752         627         610         612         914         1,200         1,481         1,491         1,197           1,041         694         608         861         1,020         1,465         3,367         2,387         1,491         1,197           1,244         982         917         1,090         1,367         3,342         2,561         1,270         1,291           1,195         1,216         1,216         1,266         2,346         5,236         1,371         1,367         1,411         1,197           1,196         1,066         883         810         1,061         1,567         3,242         2,516         1,270         1,211           1,196         1,066         1,040         5,337 <td< th=""><th>1963</th><th>1,228</th><th>972</th><th>795</th><th>752</th><th>811</th><th>902</th><th>1,087</th><th>1.580</th><th>1.492</th><th>1 489</th><th>1 331</th><th>1 007</th><th>4 1 20</th></td<>                                                                                   | 1963          | 1,228            | 972   | 795        | 752   | 811   | 902   | 1,087 | 1.580 | 1.492  | 1 489 | 1 331 | 1 007 | 4 1 20 |
| 872         778         725         692         655         1.167         2.400         5.350         3.367         2.358         1.401           17.041         664         1.068         861         1.072         1.065         1.853         1.765         1.891         1.491         722           17.041         664         1.068         823         668         625         1.105         1.823         3.075         2.368         1.401         1.997           1.041         664         1.068         863         810         803         1.395         2.305         2.341         1.465         1.411         1.997           1.241         1.070         881         803         817         1.081         1.885         3.342         2.365         1.411         1.997           1.241         1.241         1.076         833         817         1.081         1.665         3.342         2.365         1.411         1.997           1.241         1.241         1.241         1.241         1.241         1.241         1.241         1.997           1.241         1.246         1.241         2.256         3.345         2.2906         3.347         2.365         <                                                                                                                                                                                                                                                                  | 1964          | 979              | 763   | 556        | 566   | 549   | 627   | 1.061 | 1.992 | 2.582  | 1 187 | 1 422 | 020   |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1966          | 872              | 778   | 725        | 692   | 656   | 855   | 1,167 | 2.400 | 5.350  | 3.367 | 2 359 | 1 404 | 1 705  |
| 911         752         627         610         612         914         1,20         1,465         3,076         1,493         1,411         1,197           1,041         094         1,068         625         1,105         1,829         4,716         1,326         1,200         1,206           1,041         094         0,68         625         1,105         1,829         4,716         1,326         1,200         1,206           1,264         982         983         972         1,066         5,336         5,210         1,365         1,312         1,312         1,316           1,706         1,128         888         883         972         1,066         5,336         5,210         1,365         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,3                                                                                                                                                                                                                                     | 1966          | 1,264            | 1,099 | 066        | 880   | 861   | 1,072 | 1.050 | 2.015 | 1 469  | 1 241 | 1 491 | 76.0  |        |
| 1,041         064         1,068         625         1,105         1,829         4,716         1,526         1,200         1,001           1,249         10,070         891         883         972         1,040         1,557         1,610         1,556         1,610           1,240         1,216         908         9133         913         913         913         913         914         914         1,557         1,610         1,515         1,420         1,611           1,275         1,138         818         825         887         1,060         1,567         1,305         1,427         1,210           1,206         1,023         818         825         887         1,060         1,065         2,386         5,210         1,427         1,211           1,208         918         815         1,066         1,277         2,386         5,176         1,326         1,427         1,410           1,244         973         913         1,143         1,113         2,250         1,427         1,410         1,190           1,234         855         847         6,016         1,267         2,413         1,757         1,404         1,190                                                                                                                                                                                                                                                                                     | 1967          | 911              | 752   | 627        | 610   | 612   | 914   | 1,220 | 1,465 | 3.076  | 1.493 | 1441  | 1 197 | 1,100  |
| 1,291         1,070         891         803         810         803         1,385         2,906         3,342         2,574         1,365         1,401           1,400         1,216         906         1,040         5,531         7,230         3,390         1,515         1,420           1,400         1,216         908         872         1,061         1,567         3,243         5,553         3,223         1,277         1,418           1,400         1,216         908         1,113         3,267         5,913         4,802         1,316         1,420           1,308         933         972         1,066         2,346         5,270         5,312         1,326         1,316         1,326         1,316         1,327         1,316         1,326         1,316         1,326         1,316         1,327         1,316         1,326         1,316         1,327         1,316         1,326         1,316         1,326         1,316         1,326         1,316         1,326         1,316         1,326         1,316         1,326         1,326         1,316         1,326         1,316         1,326         1,316         1,316         1,316         1,316         1,316         1,316                                                                                                                                                                                                                                   | 1968          | 1,041            | 694   | 1.068      | 628   | 668   | 625   | 1,105 | 1,829 | 4.716  | 1.526 | 1 270 | 000   | 1 265  |
| 1,244         982         969         917         848         906         1,040         5,335         7,230         3,330         1,515         1,420           1,196         1,065         853         863         972         1,065         5,210         1,327         1,416           1,196         1,065         853         863         1,066         1,040         5,335         5,210         1,327         1,418           1,196         1,065         853         863         863         863         1,066         1,427         1,211           1,200         1,065         855         867         1,056         1,165         1,325         1,326         1,327           1,249         970         855         867         1,165         1,165         1,326         1,327         1,211           1,243         744         652         853         1,165         1,165         1,327         1,416         1,165         1,327         1,416         1,127         1,327         1,326         1,327         1,316         1,327         1,326         1,327         1,326         1,327         1,316         1,327         1,316         1,327         1,416         1,419 <t< th=""><th>1963</th><th>1,291</th><th>1,070</th><th>891</th><th>883</th><th>810</th><th>803</th><th>1,385</th><th>2,906</th><th>3,342</th><th>2,574</th><th>1.365</th><th>1.161</th><th>1.545</th></t<>                                                          | 1963          | 1,291            | 1,070 | 891        | 883   | 810   | 803   | 1,385 | 2,906 | 3,342  | 2,574 | 1.365 | 1.161 | 1.545  |
| 1,400         1,216         908         883         972         1,061         1,567         3.249         8,558         3,923         1,327         1,416           1,275         1,086         1,086         883         872         1,060         1,113         2,267         5,310         1,346         1,277         1,211           1,306         1,026         883         855         1,090         1,115         2,386         5,210         1,346         1,427         1,211           1,306         1,026         831         913         803         855         1,056         1,357         1,410         1,190           1,229         1,013         869         857         839         933         1,157         2,410         2,800         1,367         1,366         1,303         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393         1,393 <td< th=""><th>0/61</th><th>1,244</th><th>982</th><th>969</th><th>917</th><th>848</th><th>306</th><th>1,040</th><th>5,385</th><th>7,230</th><th>3,390</th><th>1,515</th><th>1.420</th><th>2 159</th></td<>                                  | 0/61          | 1,244            | 982   | 969        | 917   | 848   | 306   | 1,040 | 5,385 | 7,230  | 3,390 | 1,515 | 1.420 | 2 159  |
| 1/275         1/138         888         825         887         1,090         1,055         5,216         5,210         5,346         5,210         5,346         5,211         1,211           1,196         1,065         858         863         853         809         1,113         3,257         5,913         4,802         1,312         1,326           1,208         1,038         855         847         807         854         1,016         1,855         6,143         2,250         1,427         1,333           1,229         1,013         869         857         5,913         4,802         1,336         1,326           1,229         1,013         869         857         5,303         1,157         2,410         1,190         5,65           1,103         869         857         839         933         1,157         2,410         1,190         5,65           1,034         968         839         933         1,174         1,175         1,369         1,102           1,103         866         744         1,202         2,541         5,765         2,428         1,903         1,027           1,036         933         1,361                                                                                                                                                                                                                                                                                       |               | 1,400            | 1,216 | 908        | 893   | 972   | 1.061 | 1,567 | 3.249 | 8,558  | 3,923 | 1.327 | 1.418 | 2 207  |
| 1,196         1,065         858         863         853         809         1,113         3,257         5,177         6,143         2,256         1,420         939           1,208         1,078         855         847         807         1,556         1,227         5,177         6,143         2,256         1,420         939           1,208         1,078         855         847         807         854         1,015         1,377         1,404         1,190           1,229         1,013         869         857         5,913         4,677         1,303         1,190           1,334         824         676         597         839         862         1,147         1,147         1,119         1,119         1,119         5,125         1,303         1,119         5,625         5,428         1,027         1,190         1,127         1,119         1,110         1,119         5,625         2,428         1,119         5,625         5,625         5,625         1,190         1,102         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027         1,027 <th>2781</th> <th>1,275</th> <th>1,138</th> <th>888</th> <th>825</th> <th>887</th> <th>1,090</th> <th>1,065</th> <th>2,386</th> <th>5,210</th> <th>1.346</th> <th>1.427</th> <th>1.211</th> <th>1561</th>                               | 2781          | 1,275            | 1,138 | 888        | 825   | 887   | 1,090 | 1,065 | 2,386 | 5,210  | 1.346 | 1.427 | 1.211 | 1561   |
| 1,308         1,029         931         918         856         1,056         1,227         5,127         6,143         2,250         1,420         999           1,248         878         855         847         807         854         1,016         1,856         4,982         4,457         1,383         1,329           1,229         1,013         869         857         889         933         1,157         2,410         2,890         1,119         562           1,334         824         657         6597         653         653         666         1,149         1,190         562           1,334         884         915         839         808         774         855         1,301         1,100         562           1,066         984         915         862         1,120         2,2541         5,765         2,428         1,027           1,080         903         774         856         1,120         3,025         1,120         1,307         1,027           1,080         903         774         856         1,120         3,025         1,102         1,027           1,150         1,060         2,196         2,1120                                                                                                                                                                                                                                                                                            | 6/61          | 1,196            | 1,065 | 858        | 863   | 853   | 608   | 1,113 | 3,267 | 5,913  | 4,802 | 1.312 | 1.356 | 1 955  |
| 1,248         978         855         847         907         854         1,016         1,956         4,957         1,333         1,327         1,333         1,327         1,333         1,327         1,333         1,327         1,333         1,327         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,119         562         1,336         1,106         1,119         562         1,336         1,002         1,336         1,106         1,119         562         1,107         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002         1,002                                                                                                                                                                                                 | 1874          | 1,308            | 1,029 | 931        | 918   | 858   | 1,056 | 1,227 | 5,127 | 6,143  | 2,250 | 1.420 | 686   | 1 843  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0/A1          | 1,248            | B/8   | 855        | 847   | 807   | 854   | 1,016 | 1,956 | 4,982  | 4,457 | 1,383 | 1.329 | 1.737  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0/81          | RZZ I            | 1,013 | 869        | 857   | 889   | 933   | 1,157 | 2,410 | 2,899  | 1,357 | 1,404 | 1,190 | 1.352  |
| 1,143         744         652         638         726         2,541         5,765         2,428         1,397         1,027           1,084         968         839         808         774         852         1,202         2,541         5,765         2,428         1,397         1,027           1,086         984         915         958         924         902         1,174         1,318         2,707         1,397         1,027           1,080         903         788         663         670         686         1,174         1,318         2,707         1,321         1,027           1,169         1,107         1,107         1,014         883         930         957         1,115         2,355         10,747         8,949         3,222         1,854           1,178         1,107         1,108         873         930         957         1,115         2,355         10,747         8,949         3,222         1,854           1,470         1,178         1,089         873         930         957         1,115         2,355         10,747         8,949         3,222         1,854           1,479         1,449         1,183         1,086                                                                                                                                                                                                                                                                            | 1970          | 455              | 828   | 6/6        | 597   | 639   | 862   | 1,148 | 1,149 | 1,175  | 1,380 | 1,119 | 562   | 941    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/A           | 1.143            | 794   | 447        | 652   | 638   | 786   | 1,202 | 2,541 | 5,765  | 2,428 | 1,398 | 1,082 | 1.600  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000          | 480,1            | 968   | 839        | 808   | 774   | 852   | 1,230 | 3,781 | 6,047  | 3,610 | 1,397 | 1.027 | 1.872  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0081          | 960              | 984   | 915<br>    | 958   | 924   | 902   | 1,120 | 3,022 | 6,606  | 2,928 | 1,470 | 1,102 | 1,833  |
| 1,131         855         696         704         648         734         1,060         2,198         4,654         2,620         1,321         1,225           1,159         1,107         1,014         883         930         957         1,115         2,355         10,747         8,949         3,222         1,854           1,412         1,178         1,089         873         930         957         1,115         2,355         10,747         8,949         3,222         1,854           2,004         1,505         1,244         1,130         1,074         1,205         1,875         5,532         8,657         3,350         1,218         1,225           1,479         1,449         1,183         1,086         1,177         1,295         2,124         4,752         9,541         4,750         1,225           1,428         1,301         1,041         939         953         1,005         1,380         2,867         3,350         1,216         1,256           1,428         1,301         1,041         939         9531         1,074         1,285         1,366         1,400         8,36           1,420         1,301         1,041         823                                                                                                                                                                                                                                                                   | 196           | 1,080            | 200   | 188        | 663   | 670   | 686   | 1,174 | 1,318 | 2.707  | 1,321 | 1.074 | 879   | 1.105  |
| 1,159         1,107         1,014         883         930         957         1,115         2,355         10,747         8,949         3,222         1,854           1,412         1,178         1,089         873         930         957         1,115         2,355         10,747         8,949         3,222         1,854           1,412         1,178         1,089         873         934         856         1,036         8,598         15,098         8,056         3,699         2,167           2,004         1,505         1,244         1,130         1,074         1,205         1,875         5,532         8,657         3,350         1,218         1,221           1,479         1,449         1,183         1,086         1,177         1,295         2,124         4,752         9,541         4,750         1,285           1,428         1,301         1,041         939         953         1,005         1,380         2,863         2,842         1,440         8,36           1,428         1,301         1,041         825         841         1,175         2,329         4,144         1,440         8,34           934         948         750         7,293                                                                                                                                                                                                                                                                    | 2007          | 181,1            | 355   | 696        | 704   | 648   | 734   | 1,060 | 2,198 | 4,654  | 2,620 | 1,321 | 1.225 | 1.489  |
| 1,412         1,178         1,089         873         934         858         1,036         8,598         15,098         8,056         3,698         2,167           2,004         1,505         1,244         1,130         1,074         1,205         1,875         5,532         8,657         3,350         1,218         1,221           1,479         1,449         1,183         1,086         1,177         1,295         2,124         4,752         9,541         4,750         1,292         1,356           1,429         1,301         1,041         939         953         1,005         1,380         2,863         2,842         1,184         1,438           882         993         829         811         1,175         2,329         4,144         1,440         834           934         948         750         753         7,189         2,393         2,200         1,354         749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200           | 801              | 107   | 1.014      | 883   | 930   | 957   | 1,115 | 2,355 | 10,747 | 8,949 | 3,222 | 1,854 | 2.864  |
| Z.004         1,505         1,244         1,130         1,074         1,205         1,875         5,532         8,657         3,350         1,218         1,221           1,479         1,449         1,183         1,086         1,177         1,295         2,124         4,752         9,541         4,750         1,292         1,356           1,429         1,301         1,041         939         953         1,005         1,380         2,863         2,842         1,194         1,436           882         993         829         811         825         841         1,175         2,329         4,144         1,440         834           934         948         750         753         758         1,065         1,149         2,393         2,200         1,264         749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 404<br>1004   | 1,412            | 8/1,1 | 1,089      | 873   | 934   | 858   | 1,036 | 8,598 | 15,098 | 8,058 | 3,698 | 2.167 | 3.761  |
| 1,4/3         1,449         1,183         1,086         1,177         1,285         2,124         4,752         9,541         4,750         1,282         1,356           1,428         1,301         1,041         939         953         1,005         1,380         2,863         2,842         1,184         1,436           882         993         829         811         825         841         1,175         2,329         4,144         1,440         834           934         948         750         753         758         1,065         1,149         2,333         2,200         1,264         749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1900          | 2,004            | 1,505 | 1,244      | 1,130 | 1,074 | 1,205 | 1,875 | 5,532 | 8,657  | 3,350 | 1,218 | 1.221 | 2.504  |
| 1,428         1,301         1,041         939         953         1,005         1,380         2,863         2,842         1,194         1,438           882         993         829         811         825         841         1,175         2,329         4,144         1,440         834           934         948         750         753         758         1,065         1,149         2,333         2,200         1,264         1,430         834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 6/4/1            | 1,449 | 1 183      | 1,086 | 1.177 | 1,295 | 2,124 | 4,752 | 9,541  | 4.750 | 1.282 | 1.356 | 2 625  |
| 934 948 750 753 758 1,065 1,148 2,329 4,1448 1,440 834 934 934 948 750 753 758 1,065 1,149 2,393 2,200 1,281 1,354 749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1981          | 428              | 1,301 | 1.041      | 839   | 953   | 1,005 | 1,380 | 2,863 | 2,842  | 1,204 | 1,184 | 1.438 | 1.466  |
| 934 948 750 753 758 1,065 1,149 2,393 2,200 1,281 1,354 749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 299              | 566   | 829        | 811   | 825   | 841   | 1,175 | 2,329 | 4,144  | 1,448 | 1.440 | 834   | 1 379  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1989          | 934              | 948   | 750        | 753   | 758   | 1,065 | 1,149 | 2,393 | 2,200  | 1,281 | 1.354 | 749   | 1 197  |

Simulated Flows at Colorado River Below the Confluence with the Eagle River No Action Alternative (CFS)

| 1500         997         803         738         668         652         810         1,240           1981         1,164         887         696         672         690         746         1,078           1982         1,068         1,018         759         691         730         867         1,078           1983         940         887         696         672         690         746         1,078           1983         940         880         735         747         856         1,175           1984         1,176         1,106         858         783         604         1,047         1,175           1996         1,248         1,212         925         913         971         1,027         1,465           1997         1,130         1,121         986         965         1,155         1,165           1996         1,248         1,212         986         971         1,027         1,465           1997         1,130         1,212         986         971         1,027         1,465           1998         1,333         1,212         986         1,223         1,917         1,027 | WATER           | oct       | NON   | DEC   | NAL   | FEB   | MAR   | APR   | MAY    | NNr    | JUL   | AUG   | SEP   | ANNUAL |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|--------|
| 1,164         887         696         672         690         746           1,068         1,018         759         691         730         867           940         880         722         735         747         858           940         880         722         735         747         858           940         880         722         735         747         858           834         828         693         639         711         876           834         828         693         639         711         876           834         1,212         985         971         1,047         876           1,130         1,121         986         985         1,027         871         1,071           1,338         1,275         985         1,024         985         1,027           1,438         1,275         985         1,024         985         1,027           1,438         1,275         985         1,024         985         1,027           1,438         1,024         881         822         945         1,071           1,393         1,027         867         73                     | 1990            | 266       | 803   | 738   | 668   | 652   | 810   | 1.240 | 1,223  | 2.858  | 1,261 | 1.272 | 799   | 1,110  |
| 1,068         1,018         759         691         730         867           940         880         722         735         747         858           940         880         722         735         747         858           834         828         693         639         711         876           1,176         1,106         858         783         604         1,047           834         828         693         639         711         876           1,212         985         971         1,047         876           1,130         1,121         988         886         985         1,155           1,130         1,121         988         886         985         1,027           1,130         1,121         988         886         985         1,027           1,333         1,024         881         822         945         1,071           1,393         1,027         867         791         804         871           1,011         1,027         867         736         845         760           1,011         1,027         867         584         583         760<                     | 1991            | 1,164     | 887   | 696   | 672   | 690   | 746   | 1,078 | 2,377  | 3,780  | 1,857 | 1,569 | 1,137 | 1,390  |
| 940         880         722         735         747         858           1,176         1,106         858         783         604         1,047           834         828         693         639         711         876           1,212         925         913         971         1,027           1,238         1,212         985         604         1,047           1,130         1,121         986         985         1,155           1,130         1,121         986         985         1,155           1,130         1,121         986         985         1,027           1,338         1,275         985         1,024         985         1,155           1,438         1,877         709         810         831         1,071           1,438         1,027         867         791         804         871           1,011         1,027         867         714         601         736           1,070         830         633         617         610         736           1,071         881         822         945         705           1,070         830         617                                | 1992            | 1,068     | 1,018 | 759   | 691   | 730   | 867   | 1,078 | 2,465  | 2,044  | 1,309 | 1,346 | 905   | 1,193  |
| 1,176         1,106         858         783         604         1,047           834         828         693         639         711         876           1,248         1,212         925         913         971         1,027           1,130         1,121         986         985         1,155         913         971         1,027           1,130         1,121         986         886         985         1,155         913         971         1,027           1,130         1,121         986         886         985         1,155         913         971         1,027           1,130         1,275         985         1,024         985         1,232         945           1,438         1,275         985         1,024         981         822         945           1,393         1,027         867         791         804         871         707           1,071         830         631         1,071         804         871         705           859         714         601         584         583         760         705           1,074         881         728         666         655    | 1983            | 940       | 880   | 722   | 735   | 747   | 858   | 1,108 | 3,948  | 6,942  | 3,587 | 1,254 | 1,167 | 1,910  |
| 834         828         693         639         711         876           1,248         1,212         925         913         971         1,027           1,130         1,121         986         985         1,155         913         971         1,027           1,130         1,121         986         985         1,024         985         1,155           1,130         1,121         986         886         985         1,155           1,130         1,275         985         1,024         985         1,232           1,393         1,027         867         709         810         831         1,071           1,393         1,027         867         791         804         871           1,011         1,027         867         791         804         871           1,070         830         631         610         736           859         714         601         584         583         760           1,074         887         728         666         655         705           1,074         991         835         783         890         705           1,179                          | 1994            | 1,176     | 1,106 | 858   | 783   | 604   | 1.047 | 1,175 | 2,394  | 2,093  | 1,372 | 1,271 | 798   | 1,243  |
| 1,248         1,212         925         913         971         1,027           1,130         1,121         986         985         1,155         913         971         1,027           1,130         1,121         986         985         1,024         985         1,155           1,130         1,121         986         886         985         1,155           1,130         1,275         985         1,024         985         1,232           1,393         1,027         867         709         810         831         1,071           1,393         1,027         867         791         804         871         871           1,011         1,027         867         791         804         871         760           859         714         601         584         583         760         736           1,074         887         728         663         663         663         705         705           1,079         991         835         784         583         705         705           1,179         991         835         784         793         890         705                    | 1895            | 834       | 828   | 693   | 639   | 711   | 876   | 1,115 | 1,622  | 7,810  | 7,683 | 2,159 | 1,291 | 2,194  |
| 1,130         1,121         988         886         965         1,155           1,338         1,275         985         1,024         985         1,232           1,438         1,275         985         1,024         985         1,232           1,438         1,087         709         810         831         1,071           1,393         1,027         867         791         822         945           1,011         1,027         867         791         804         871           1,070         830         637         791         804         871           859         714         601         584         583         760           1,070         830         6367         728         663         687         1,047           1,074         981         728         663         655         705           1,179         991         835         764         705         705                                                                                                                                                                                                                               | 1996            | 1,248     | 1,212 | 925   | 913   | 971   | 1.027 | 1,465 | 6,677  | 9,180  | 2,941 | 1,732 | 1,121 | 2,454  |
| 1,338         1,275         985         1,024         985         1,232           1,438         1,087         709         810         831         1,071           1,438         1,087         709         810         831         1,071           1,393         1,027         867         791         822         945           1,011         1,027         867         791         804         871           1,070         830         639         617         610         736           859         714         601         584         583         760           1,074         887         728         663         687         1,047           1,024         887         728         663         655         705           1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                              | 1997            | 1,130     | 1,121 | 988   | 886   | 965   | 1,155 | 1,165 | 6,050  | 12,031 | 3,791 | 2,093 | 1,420 | 2,736  |
| 1,438         1,087         709         810         831         1,071           1,393         1,024         821         881         922         945           1,011         1,027         867         791         804         871           1,010         1,027         867         791         804         871           1,070         830         639         617         610         736           859         714         601         584         583         760           1,024         887         728         663         687         1,047           1,024         891         728         663         655         705           1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                  | 1998            | 1,338     | 1,275 | 985   | 1,024 | 985   | 1,232 | 1,191 | 2,937  | 2,875  | 2,314 | 1,201 | 1,395 | 1,566  |
| 1,393         1,024         821         881         922         945           1,011         1,027         867         791         804         871           1,011         1,027         867         791         804         871           1,070         830         639         617         610         736           859         714         601         583         760           1,024         887         728         663         687         1,047           1,024         891         728         663         653         687         1,047           1,047         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1999            | 1,438     | 1.087 | 209   | 810   | 831   | 1,071 | 1,106 | 2,427  | 4,913  | 2,750 | 1,282 | 1,190 | 1,638  |
| 1,011         1,027         867         791         804         871           1,070         830         639         617         610         736           859         714         601         583         760           1,024         887         728         663         687         1,047           1,024         887         728         663         687         1,047           1,395         924         696         692         655         705           1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000            | 1,393     | 1,024 | 821   | 881   | 922   | 945   | 1,223 | 3,876  | 3,751  | 1,237 | 1,479 | 1,130 | 1,560  |
| 1,070         830         639         617         610         736           859         714         601         584         583         760           1,024         887         728         663         687         1,047           1,024         887         728         663         687         1,047           1,395         924         696         692         655         705           1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2001            | 1,011     | 1,027 | 867   | 791   | 804   | 871   | 1,067 | 2,651  | 2,235  | 1,291 | 1,344 | 1,046 | 1,253  |
| 859         714         601         584         583         760           1,024         887         728         663         697         1,047           1,024         887         728         663         697         1,047           1,395         924         696         692         655         705           1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2002            | 1,070     | 830   | 639   | 617   | 610   | 736   | 1,097 | 1,206  | 1,109  | 749   | 515   | 554   | 812    |
| 1,024         887         728         663         697         1,047           1,395         924         696         692         655         705           1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2003            | 859       | 714   | 601   | 584   | 583   | 760   | 1,124 | 2,933  | 3,985  | 1,251 | 1,655 | 1,239 | 1,359  |
| 1,395         924         696         692         655         705           :         1,179         991         835         784         793         890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2004            | 1,024     | 887   | 728   | 663   | 687   | 1,047 | 1,103 | 1,703  | 1,634  | 1,282 | 1,243 | 956   | 1,082  |
| : 1,179 991 835 784 793 890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2005            | 1,395     | 924   | 696   | 692   | 655   | 705   | 1,098 | 2,572  | 3,593  | 1,448 | 1,235 | 1,010 | 1,337  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AVERAGE:        | 1,179     | 991   | 835   | 784   | 293   | 890   | 1,225 | 2,939  | 4,989  | 2,573 | 1,483 | 1,141 | 1,654  |
| 694 556 552 549 625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>MUMINIM:</b> | 834<br>24 | 694   | 556   | 552   | 549   | 625   | 1,016 | 1,149  | 1,109  | 749   | 515   | 554   | 812    |
| 1,505 1,244 1,130 1,177 1,295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAXIMUM:        | 2,004     | 1,505 | 1,244 | 1,130 | 1,177 | 1,295 | 3,009 | 8,5.98 | 15,098 | 8,949 | 3,698 | 2,167 | 3,761  |

Simulated Flows at Colorado River Below the Confluence with the Eagle River No Action Alternative (AF)

| WATER<br>YEAR     | oct                | NON              | DEC    | NAL    | FEB    | MAR    | APH     | MAY     | NUL     | ٦C      | AUG     | SEP     | TOTAL       |
|-------------------|--------------------|------------------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|-------------|
| 1950              | 78,376             | 51,167           | 36,804 | 33,941 | 36,377 | 42,680 | 75,302  | 117.712 | 252.374 | 93.636  | 80.975  | 57 581  | 054 075     |
| 1951              | 70,951             | 51,163           | 50,098 | 44,298 | 42,829 | 47,485 | 67.618  | 146.212 | 251 497 | 239 400 | 91 349  | 81 250  | 1 1 04 1 60 |
| 1952              | 84,779             | 62,750           | 56,069 | 53,628 | 47,287 | 51,528 | 82,286  | 287.054 | 829.484 | 182.130 | 109 761 | 112 007 | 1 758 701   |
| 1963              | 78,908             | 59,964           | 59,327 | 59,877 | 47,812 | 58,714 | 65.260  | 95.192  | 275,183 | 126 830 | 7706    | R2 062  | 1067 796    |
| 1954              | 61,614             | 58,513           | 51,903 | 55,205 | 38,766 | 47,254 | 64,969  | 73,549  | 68.961  | 73.742  | 58 490  | 42.260  | 605 208     |
| 1955              | 73,738             | 44,101           | 36,579 | 34,565 | 31,250 | 38,886 | 67,882  | 109,810 | 123,838 | 72.063  | 79.387  | 59,864  | 771 963     |
| 1956              | 58,496             | 49,959           | 47,758 | 42,285 | 37,240 | 51,678 | 71,194  | 197,167 | 216,354 | 74,345  | 90.363  | 49.044  | 985,863     |
| 1957              | 55,482             | 49,785           | 45,692 | 43,457 | 41,605 | 48,127 | 65,373  | 188,774 | 521,705 | 406.545 | 146.532 | 76.025  | 1 669 082   |
| 1958              | 71,558             | 70,646           | 64,975 | 54,521 | 53,067 | 59,288 | 65,444  | 312,847 | 401,399 | 74.921  | 85.765  | 55,130  | 1 360 350   |
| 1959              | 59,217             | 47,708           | 46,930 | 44,565 | 39,311 | 42,173 | 66,548  | 128,252 | 238,039 | 79.945  | 84.702  | 63,520  | 940 90B     |
| 1960              | 90,913<br>E1 100   | 66,565           | 52,245 | 43,844 | 42,489 | 70,391 | 85,976  | 150,411 | 260,784 | 93,459  | 80,713  | 53,633  | 1.091.423   |
| 1991              | 54,400             | 57,238           | 47,037 | 45,069 | 40,013 | 47,117 | 60,882  | 103,281 | 129,483 | 74,730  | 87,749  | 83,533  | 840.532     |
| 1962              | 97,726             | 73,946           | 56,983 | 51,883 | 53,272 | 65,765 | 179,022 | 367,129 | 524,247 | 266,522 | 78,536  | 73,293  | 1.888.304   |
|                   | 150,07             | 108,10           | 48,900 | 46,253 | 45,048 | 55,450 | 64,706  | 97,155  | 88,762  | 91,541  | 81,832  | 65,275  | 818,308     |
|                   |                    | 40,3/5           | 40Z 45 | 34,811 | 30,487 | 36,532 | 83,148  | 122,488 | 153,647 | 73,013  | 87,459  | 51,752  | 795,106     |
| 5061<br>1 2 2 2 2 | 2012               | 46,277           | 44,553 | 42,574 | 36,423 | 40,265 | 89.465  | 147,555 | 318,357 | 207,043 | 145,023 | 83,549  | 1,234,716   |
| 1900              | 10/1/              | 65,409           | 60,852 | 54,127 | 47,826 | 65,919 | 62,461  | 123,880 | 87,436  | 76,327  | 91,660  | 44,727  | 858.325     |
| 1041              | 20,034             | 44,769           | 38,564 | 37,514 | 34,006 | 56,184 | 72,573  | 90'098  | 183,022 | 91,774  | 88,581  | 71,254  | 864,373     |
| 1000              |                    | 41,290           | 85,671 | 38,805 | 37,125 | 38,428 | 65,771  | 112,481 | 280,603 | 93,830  | 78,090  | 71,940  | 987,871     |
| ADA I             | 20, 27             | 899'59           | 54,784 | 54,280 | 44,965 | 49,360 | 83,038  | 178,658 | 198,882 | 158,246 | 83,908  | 89,084  | 1,118,241   |
| 1074              | 10,45/             | 20,432           | 795'AS | 56,404 | 47,088 | 55,690 | 61,886  | 331,120 | 430,222 | 208,432 | 93,128  | 84,526  | 1,562,982   |
| 1/81              |                    | 5/5/2/           | 55,837 | 54,882 | 53,964 | 65,233 | 93,217  | 199,794 | 509,229 | 241,210 | 81,598  | 84,367  | 1,597,810   |
| 7/81              | 795,342            | 67,728<br>55,000 | 54,632 | 50,746 | 49,263 | 67,051 | 63,375  | 146,739 | 310,000 | 82,739  | 87,740  | 72,031  | 1,130,426   |
| E/BL              | 73,545             | 63,388           | 52,743 | 53.072 | 47,374 | 49,754 | 66,210  | 200,867 | 351,880 | 295,280 | 80,700  | 80,701  | 1.415.514   |
| 5/AL              | 80,415<br>20 20 20 | 61,242           | 57,220 | 56,426 | 47,546 | 64,933 | 72,990  | 315,237 | 365,539 | 138,352 | 87,318  | 59,433  | 1.406.651   |
| e/AL              | /6,/61             | 58,204           | 52,551 | 52,101 | 50,368 | 52,498 | 60,475  | 120,247 | 296,436 | 274,078 | 85,039  | 79.057  | 1.257.815   |
|                   | /5,546<br>10,246   | 60,285           | 53,407 | 52,677 | 49,349 | 57,378 | 68,646  | 148,198 | 172,501 | 83,430  | 86,330  | 70,814  | 978.761     |
| LIRI              | 82,010             | 49,014           | 41,536 | 36,729 | 35,469 | 40,687 | 68,333  | 70,624  | 69,905  | 84,867  | 68,790  | 33,459  | 681.423     |
| 8/61              | 10,277             | 47,245           | 45,778 | 40,085 | 35,443 | 48,960 | 71,523  | 156,261 | 343,030 | 149,292 | 85,978  | 64,408  | 1,158,278   |
| R/RL              | 059'02             | 57,627           | 51,617 | 49,673 | 42,986 | 52,402 | 73,175  | 232,493 | 359,801 | 221,999 | 85,881  | 61,102  | 1 355 386   |
| 1980              | 64,943             | 58,563           | 56,272 | 58,894 | 51,317 | 55,450 | 66,671  | 185,816 | 393,103 | 180,067 | 90,382  | 65.598  | 1.327.076   |
| 1941              | 50,423             | 53,714           | 48,438 | 40,791 | 37,210 | 42,203 | 69,862  | 81,049  | 161,084 | 81,201  | 66,020  | 52,316  | 800.289     |
| 1982              | 69,558<br>24 024   | 50,849           | 42.779 | 43,283 | 35,979 | 45,116 | 63,066  | 135,165 | 276,961 | 161,111 | 81,223  | 72,923  | 1.078.013   |
| ESH1              | 1/2/1/             | 65,851           | 62,326 | 54,311 | 51.644 | 58,846 | 66,346  | 144,807 | 639,488 | 550,264 | 198.089 | 110.311 | 2 073 554   |
| 1984              | 86,845             | 70,114           | 66,971 | 53,689 | 51,853 | 52,781 | 81,675  | 528,662 | 898,409 | 495,457 | 227.369 | 128.923 | 2.722.747   |
| 1965              | 123,243            | 69,527           | 76,522 | 69,471 | 59,644 | 74,065 | 111,567 | 340,173 | 515,121 | 205,962 | 74.917  | 72.626  | 1 812 838   |
|                   | 80,913             | 86,230           | 72,726 | 66,762 | 65,390 | 79,655 | 126,366 | 292,185 | 567,757 | 292,068 | 79.445  | 80.718  | 1 900 211   |
| 1987              | 87,785             | 77,397           | 63,984 | 57,742 | 52,944 | 61,767 | B2,123  | 176,012 | 169,115 | 74,008  | 72.784  | 85,558  | 1 061 219   |
| 1988              | 273                | 59,105           | 51,002 | 49,856 | 45,811 | 51,734 | 69,931  | 143,184 | 246,587 | 89,050  | B8,522  | 49,622  | 998.633     |
| 5061              | 57,453             | 56,411           | 46,090 | 46,311 | 42,097 | 65,500 | 68,342  | 147.134 | 130,696 | 78,797  | 83,235  | 44,577  | 866,843     |
|                   |                    |                  |        |        |        |        |         |         |         |         |         |         |             |

Simulated Flows at Colorado River Below the Confluence with the Eagle River No Action Alternative (AF)

| YEAR     | ост     | NOV    | DEC    | NAU    | FEB    | MAR    | APR     | MAY     | JUN     | JUL     | AUG     | SEP     | TOTAL     |
|----------|---------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|-----------|
| 1990     | 61,307  | 47,757 | 45,387 | 40,952 | 36,234 | 49,830 | 73,807  | 75,185  | 170,085 | 77,513  | 78,214  | 47,561  | 803,832   |
| 1891     | 71,588  | 52,784 | 42,800 | 41,348 | 38,347 | 45,887 | 64,134  | 146,145 | 224,941 | 114,177 | 96,497  | 67,637  | 1,006,285 |
| 1992     | 65,680  | 60,594 | 46,642 | 42,460 | 40,519 | 53,290 | 64,121  | 151,574 | 121,633 | 80,471  | 82,775  | 53,864  | 663,623   |
| 1983     | 57,798  | 52,356 | 44,373 | 45,202 | 41,490 | 52,781 | 65,961  | 242,754 | 413,057 | 220,547 | 77,086  | 69,457  | 1,382,862 |
| 1994     | 72,327  | 65,615 | 52,811 | 48,132 | 44,666 | 64,360 | 69,931  | 147,226 | 124,566 | 84,389  | 78,150  | 47,512  | 899,685   |
| 1995     | 51,259  | 49,143 | 42,622 | 39,314 | 39,515 | 53,849 | 66,339  | 99,764  | 464,717 | 472,413 | 132,738 | 76,813  | 1,588,486 |
| 1996     | 76,711  | 72,133 | 56,850 | 56,137 | 53,929 | 63,173 | 87,169  | 410,528 | 546,234 | 180,850 | 106,475 | 66,700  | 1,776,889 |
| 1997     | 69,489  | 66,716 | 60,774 | 54,503 | 54,678 | 71,019 | 69,321  | 372,011 | 715,930 | 233,112 | 128,676 | 64,488  | 1,980,717 |
| 1998     | 82,241  | 75,872 | 60,577 | 62,948 | 54,702 | 75,747 | 70,851  | 180,591 | 171,101 | 142,298 | 73,845  | 83,005  | 1,133,778 |
| 1996     | 88,290  | 64,699 | 43,584 | 49,824 | 46,164 | 65,861 | 65,795  | 149,259 | 292,336 | 169,089 | 78,851  | 70,810  | 1,184,562 |
| 2000     | 85,626  | 60,909 | 50,477 | 54,185 | 51,232 | 58,118 | 72,756  | 238,313 | 223,205 | 76,081  | 90,972  | 67,238  | 1,129,112 |
| 2001     | 62,195  | 61.110 | 53,305 | 48,652 | 44,671 | 53,541 | 63,511  | 162,979 | 132,997 | 79,407  | 82,626  | 62,242  | 907,236   |
| 2002     | 65,772  | 48,402 | 39,312 | 37,913 | 33,884 | 45,236 | 65,273  | 74,162  | 65,982  | 46,062  | 31,661  | 32,987  | 587,666   |
| 2003     | 52,804  | 42,505 | 36,976 | 35,920 | 32,355 | 46,748 | 66,894  | 180,347 | 237,143 | 76,904  | 101,734 | 73,742  | 984,072   |
| 2004     | 62,957  | 52,803 | 44,771 | 40,769 | 38,169 | 64,358 | 65,624  | 104,729 | 97,217  | 78,858  | 76,451  | 56,891  | 783,597   |
| 2005     | 85,798  | 54,955 | 42,789 | 42,571 | 36,390 | 43,344 | 65,238  | 158,154 | 213,808 | 89,036  | 75,957  | 60,119  | 968,159   |
| AVERAGE: | 72,523  | 58,946 | 51,353 | 48,215 | 44,051 | 54,715 | 72,886  | 180,696 | 296,894 | 158,195 | 91,175  | 67,890  | 1,197,540 |
| MINIMUM: | 51,259  | 41,290 | 34,204 | 33,941 | 30,487 | 36,428 | 60,475  | 70,624  | 65,982  | 46,062  | 31,681  | 32,987  | 587,666   |
| MAXIMUM: | 123,243 | 89,527 | 76,522 | 69,471 | 65,390 | 79,655 | 179,022 | 528,662 | 898,409 | 650,264 | 227,369 | 128,923 | 2.722.747 |

Simulated Flows at Colorado River Above the Confluence with the Eagle River No Action Alternative (CFS)

|   |            |             |       | 502        | MAH | АРК   | MAY   | NUL    | JUL   | AUG   | SEP             |       |
|---|------------|-------------|-------|------------|-----|-------|-------|--------|-------|-------|-----------------|-------|
|   | 598        | 402         | 383   | 480        | 518 | 873   | 884   | 1,896  | 846   | 1.102 | 719             | 805   |
|   | 626        | 607         | 535   | 595        | 585 | 859   | 1,172 | 1,988  | 2.445 | 978   | 1,105           | 1 097 |
|   | 800        | 702         | 675   | 699        | 659 | 839   | 2,946 | 6,957  | 1,966 | 1.144 | 1,501           | 1 663 |
|   | 766        | 726         | 753   | 675        | 753 | 858   | 773   | 2,040  | 1,253 | 855   | 851             | 276   |
|   | 22         | 548         | 722   | 536        | 619 | 808   | 484   | 469    | 881   | 745   | 493             | 666   |
|   | 519        | 417         | 404   | 417        | 477 | 808   | 837   | 913    | 596   | 929   | 797             | 672   |
|   | 610        | 576         | 513   | 499        | 630 | 820   | 1,302 | 1,738  | 748   | 1,203 | 652             | 842   |
|   | 023        | 565         | 535   | 582        | 608 | 843   | 1,819 | 5,149  | 3,832 | 1,648 | 885             | 1.492 |
|   | BBB        | 807         | 677   | 745        | 768 | 853   | 3,026 | 4,434  | 803   | 1,196 | 209             | 1.317 |
|   | 585        | 589         | 548   | 544        | 532 | 869   | 1,206 | 1,489  | 659   | 1,095 | 844             | 813   |
|   | 22         | 099         | 541   | 593        | 006 | 917   | 1,331 | 2,020  | 863   | 1,062 | 690             | 965   |
|   | 167        | 569         | 565   | 561        | 604 | 832   | 827   | 856    | 832   | 1,137 | 816             | 767   |
|   |            | 689         | 623   | 730        | 851 | 2,189 | 4,164 | 6,133  | 2,983 | 882   | <del>88</del> 8 | 1.856 |
|   | 217        | 602         | 564   | 630        | 727 | 829   | 790   | 673    | 1,136 | 969   | 806             | 785   |
|   | 561<br>202 | 986         | 414   | 400        | 485 | 861   | 957   | 1,095  | 462   | 1,037 | 838             | 679   |
|   | 220        | ន៍          | 525   | 503        | 514 | 864   | 1,347 | 2,527  | 1,535 | 1,584 | 986             | 1.021 |
|   |            | 8/1         | 689   | 687        | 863 | 730   | 895   | 562    | 830   | 1,235 | 544             | 798   |
|   | 222        | 424<br>1    | 452   | 459        | 718 | 658   | 725   | 1,198  | 638   | 1,201 | 839             | 725   |
|   | 640<br>1   | 548<br>248  | 489   | 546        | 548 | 910   | 1,022 | 2,134  | 652   | 629   | 997             | 838   |
|   | 181        | 040<br>100  | 800   | 619        | 625 | 764   | 1,585 | 1,954  | 1,599 | 1,052 | 925             | 1.024 |
|   | 020        | 20/         | 18/   | 117        | 547 | 887   | 3,116 | 5,038  | 2,300 | 1,134 | 813             | 1,490 |
|   | 000<br>671 | 740         | 121   |            | 825 | 936   | 2,279 | 5,674  | 2,748 | 922   | 1,045           | 1,536 |
|   |            | 017         | 040   | 040<br>10  | 006 | 847   | 1,457 | 2,851  | 878   | 1,248 | <u>1-1</u>      | 1,059 |
|   | 36         | 1,0         | 100   | 040<br>000 | 680 | 1,005 | 1,936 | 3,264  | 3,403 | 683   | 1,123           | 1,332 |
|   | 101        | 017         | 60 (C | 000        | 838 | 897   | 2,937 | 3,864  | 1,480 | 1,083 | 762             | 1,317 |
| _ | 7+7        | 908         |       | 742        | 680 | 795   | 1,267 | 2,496  | 2,549 | 982   | 1,082           | 1,142 |
|   | 111        | 5/0         | 2/9   | 692        | 748 | 914   | 1,381 | 1,179  | 532   | 1,012 | 920             | 872   |
|   |            | 5           | 447   | 496        | 513 | 934   | 642   | 339    | 1,156 | 944   | 388             | 674   |
|   |            |             | 264   | 494        | 616 | B33   | 1,487 | 2,551  | 1,009 | 990   | 839             | 952   |
|   |            |             | 519   | 298        | 656 | 912   | 2,433 | 2,738  | 2,029 | 940   | 784             | 1.162 |
|   |            | - <b>PO</b> | 21/2  | 715        | 687 | 835   | 1,992 | 3,981  | 2,042 | 1,177 | 869             | 1,281 |
|   | 2/0        | 292         | 493   | 514        | 550 | 920   | 725   | 1,418  | 847   | 860   | 632             | 757   |
|   | 879        | 205         | 523   | 488        | 568 | 827   | 1,185 | 1,926  | 994   | 812   | 814             | 846   |
|   | 645<br>0-0 | 505         | 696   | 763        | 786 | 838   | 1,557 | 6,890  | 6,411 | 2,319 | 1.523           | 2,033 |
|   | 8/2        | 812         | 627   | 708        | 646 | 762   | 5,989 | 11,067 | 5,609 | 2,585 | 1.533           | 2,699 |
|   | 1,118      | 971         | 905   | 862        | 956 | 1,257 | 3,532 | 5,734  | 2,255 | 808   | 871             | 1 732 |
|   | 1,113      | 932         | 864   | 924        | 997 | 1,555 | 3,342 | 6,699  | 3.324 | 852   | 550             | 1 895 |
|   | 991        | 814         | 742   | ĥ          | 011 | 100   |       |        | -     |       |                 | 3     |

Simulated Flows at Colorado River Above the Confluence with the Eagle River No Action Alternative

(CFS)

ANNUAL AVG 875 730 11,139 822 822 1,1381 1,1381 1,1381 1,1381 1,064 1,064 1,026 1,026 1,0<del>8</del>5 534 2,699 534 832 693 954 787 812 õ 625 647 647 647 647 846 812 1,110 1,110 1,110 1,110 864 861 864 861 865 861 863 857 957 747 747 747 736 SEP 1,230 1,115 1,115 1,115 1,243 1,226 1,026 1,027 386 1,027 386 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,00 AUG 1,016 742 642 642 1,094 1,041 1,948 1,948 1,948 1,948 1,948 1,948 1,948 1,948 1,948 1,948 1,948 1,826 801 556 801 556 801 556 801 1,605 6411 6,411 6,411 6,411 Ę 2,305 904 1,050 1,050 683 683 683 6,181 8,187 6,187 8,187 8,187 8,187 8,187 1,332 768 1,332 768 1,968 768 768 758 4,94 1,067 716 2,776 339 JUN 1,343 549 549 1,150 971 1,150 906 906 1,784 1,103 1,918 1,918 1,296 5,989 5,989 5,989 MAY 2,189 APR 861 713 988 876 898 893 893 893 893 893 893 8915 781 781 783 785 883 815 883 863 863 865 865 865 865 865 MAR FEB JAN DEC Nov 725 787 812 936 936 936 936 936 1,147 1,147 1,147 1,143 952 952 887 887 887 887 887 887 918 918 918 499 S MAXIMUM: AVERAGE **MINIMUM:** WATER YEAR 2005

| Simulated Flows |
|-----------------|
|                 |

No Action Alternative (AF)

| 1950         59.012         35.557         24.707         23.526         26.680         31.826         51.872         54.327           1951         66.736         37.264         37.324         33.333         35.66         51.135         72.045           1955         55.316         45.603         44.407         23.303         35.064         51.136         77.304           1955         55.016         34.801         35.010         44.407         23.911         37.403         50.104         111.873           1955         57.81         35.303         31.527         27.700         36.715         48.161         29.730           1956         57.616         37.483         46.306         37.403         50.164         111.87           1957         47.216         37.403         30.701         33.828         33.723         30.200         37.733         50.164         111.87           1960         70.211         30.704         33.773         30.313         40.368         50.717         74.166           1961         77.211         30.704         30.713         30.704         30.714         45.561         50.714         110.77           1962         54.433         3                                                                                                                                                                                                                                      | WATER<br>YEAR | OCT              | NON     | DEC    | JAN    | FEB    | MAR    | APR     | MAY     | NUL     | JUL     | AUG     | SEP    | TOTAL     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|--------|-----------|
| 56/765         37,334         32,870         37,334         32,870         33,039         55,965         51,135           68,543         47,600         49,135         37,146         40,492         37,146         40,492         34,912           68,543         36,600         49,135         31,577         29,351         48,061         51,068           50,746         45,610         24,818         23,157         29,351         48,061           57,837         30,887         25,610         24,818         23,157         29,351         48,061           57,837         30,887         25,610         24,818         23,157         29,351         48,061           57,837         30,817         35,309         31,527         23,306         37,119         49,024           57,610         24,817         35,308         37,313         49,032         56,193         44,161           70,211         50,170         40,569         33,200         37,113         49,33         56,773           52,875         54,473         33,316         24,379         36,144         26,444         27,106         34,41           70,211         50,176         33,316         24,379         31,136                                                                                                                                                                                                                                          | 1950          | 59,012           | 35,557  | 24,707 | 23,526 | 26,680 | 31,826 | 51,972  | 54,329  | 112,816 | 52.022  | 67.789  | 42.782 | 583.018   |
| 685,543         47,600         43,156         41,513         37,146         40,482         49,912           65,316         45,603         44,407         29,788         36,054         48,161           57,837         30,877         25,810         44,407         29,788         36,054         48,161           57,837         30,877         35,810         31,577         29,351         48,064         48,161           57,837         30,877         35,809         31,577         29,351         48,161         37,403         50,184         48,161           57,837         30,817         35,309         31,577         37,170         38,775         49,493           54,677         37,418         27,100         38,773         31,136         37,119         49,493           52,875         42,477         34,988         33,770         34,133         37,119         49,493           52,875         42,477         34,988         34,777         34,988         37,113         49,433           52,875         54,577         34,988         37,113         37,119         49,493         36,141           50,761         33,322         34,777         34,914         37,113         37,314 </th <th>1951</th> <th>56,795</th> <th>37,267</th> <th>37,334</th> <th>32,870</th> <th>33,039</th> <th>35,985</th> <th>51,135</th> <th>72,045</th> <th>118,173</th> <th>150.324</th> <th>60.166</th> <th>65.743</th> <th>750.876</th> | 1951          | 56,795           | 37,267  | 37,334 | 32,870 | 33,039 | 35,985 | 51,135  | 72,045  | 118,173 | 150.324 | 60.166  | 65.743 | 750.876   |
| 65,316         45,603         44,821         45,290         37,484         48,306         51,068           50,746         43,617         33,830         44,677         23,515         23,515         23,515         23,516         51,068           50,746         43,617         35,309         31,527         27,706         37,403         50,184           54,616         52,831         49,636         31,527         27,010         32,711         48,027           54,616         52,831         49,636         31,527         27,010         32,711         48,161           54,616         52,831         49,636         31,326         32,713         48,161           74,7216         37,403         33,328         32,913         31,336         51,710           54,616         54,247         39,319         32,713         49,314           56,796         54,247         39,319         47,736         51,710           56,766         54,247         39,319         27,719         49,314           56,773         34,817         33,328         32,913         51,610           56,773         34,817         33,328         32,413         30,414           56,766                                                                                                                                                                                                                                                                 | 1952          | 68,543           | 47,600  | 43,136 | 41,513 | 37,146 | 40,492 | 49,912  | 181,134 | 413,954 | 120.880 | 70.332  | 89,322 | 1 203 064 |
| 50,746         43,618         39,830         44,407         29,788         38,064         48,161           57,787         30,887         55,100         24,407         29,515         29,351         48,054           57,837         30,887         55,100         24,407         29,351         28,054         50,170           47,216         57,403         36,271         35,004         33,753         30,171         51,710           54,616         52,831         27,700         38,715         54,577         59,355         54,557           54,616         52,831         37,713         36,711         32,306         37,413         30,314           54,616         52,831         37,713         37,713         37,711         94,493           54,616         52,831         37,701         34,981         74,136         44,133           50,761         37,364         37,701         34,981         74,136           50,761         33,364         24,379         37,119         46,169           50,761         33,364         47,313         49,334         44,141           50,761         33,364         44,169         37,413         37,414           50,761                                                                                                                                                                                                                                                                  | 1953          | 65,316           | 45,603  | 44,621 | 46,290 | 37,484 | 46,306 | 51,068  | 47,506  | 121,404 | 1044    | 52.551  | 50.652 | 685.845   |
| 57,837         30,887         25,610         24,818         23,157         29,351         48,054           54,616         52,831         49,556         32,730         32,717         51,710         51,710           54,616         52,831         49,556         33,730         33,746         50,787         50,787           54,616         52,831         49,556         33,288         32,956         55,335         54,557           56,736         34,817         35,009         31,277         31,136         47,331         49,433           56,736         34,817         35,004         33,288         32,956         55,335         54,557           56,736         52,831         49,556         33,288         30,200         32,141         43,441           50,761         33,368         24,379         34,131         33,142         34,131         33,144           50,761         33,368         47,012         34,731         33,144         34,41         34,41           50,761         33,366         47,616         34,331         35,1216         44,731         44,73         44,731         45,395           50,761         33,616         47,616         36,164         33,616                                                                                                                                                                                                                                          | 1954          | 50,746           | 43,618  | 39,830 | 44,407 | 29,788 | 38,064 | 48,161  | 29,739  | 27,900  | 54,780  | 45,788  | 29.341 | 482.162   |
| 49,037         36,271         35,399         31,527         27,700         38,715         48,822           47,216         37,468         34,77         31,136         37,403         50,184           47,216         37,468         34,77         31,136         37,403         50,184           47,216         37,468         34,77         31,136         37,403         50,184           47,216         51,70         38,715         51,710         38,735         54,557           52,875         54,265         37,403         33,319         47,236         50,184           50,787         37,012         37,012         37,403         37,403         51,710           56,786         54,265         42,347         39,319         40,566         53,304         43,731           56,738         42,347         33,368         27,012         34,737         31,136         37,119         49,314           56,738         42,347         33,319         42,566         53,305         51,305         51,316           56,738         56,738         33,3682         30,306         37,408         54,41         34,41           56,738         56,169         27,918         42,366                                                                                                                                                                                                                                                          | 1955          | 57,837           | 30,887  | 25,610 | 24,818 | 23,157 | 29,351 | 48,054  | 51,440  | 54,351  | 36,621  | 57,125  | 47,455 | 486.706   |
| 47,216         37,488         34,730         32,911         32,306         37,403         50,184           54,616         52,831         40,5506         41,607         41,336         37,119         49,493           54,616         52,831         40,5506         32,913         37,119         49,493           56,796         54,285         42,347         34,981         32,136         37,119         49,493           50,761         53,286         42,347         32,319         40,560         52,297         130,245           50,787         54,863         33,388         32,956         55,004         33,14         43,731         49,314           50,787         54,877         31,136         41,731         49,314         34,41           50,787         54,619         25,444         25,468         34,41         34,41           55,618         55,002         33,704         51,703         34,669         52,810           56,738         47,081         39,355         40,446         34,381         51,57         53,364           56,573         38,682         33,682         31,689         31,689         51,710           56,610         27,911         25,866                                                                                                                                                                                                                                                       | 1956          | 49,037           | 36,271  | 35,399 | 31,527 | 27,700 | 38,715 | 46,822  | 80,051  | 103,423 | 45,966  | 73,951  | 38,807 | 609,669   |
| 54,616         52,831         49,635         41,607         41,380         47,236         50,787         51,710           70,211         50,170         40,569         33,733         31,136         37,119         51,710           70,211         50,170         40,569         33,733         31,136         37,119         51,710           70,211         50,170         40,569         33,733         30,200         32,711         51,710           70,211         50,717         34,913         37,119         47,533         54,557         54,557           50,761         33,369         24,379         39,319         40,560         52,291         130,245           50,761         33,368         37,012         34,701         34,91         47,719         51,216           50,778         50,042         47,819         42,947         39,316         51,395         51,216           54,605         50,042         47,81         27,814         25,443         43,441           43,333         34,617         34,318         43,641         43,441           55,738         53,616         34,361         47,561         53,314           55,738         54,616         33,366                                                                                                                                                                                                                                                      | 1957          | 47,216           | 37,468  | 34,730 | 32,911 | 32,306 | 37,403 | 50,184  | 111,874 | 306,403 | 235,623 | 101,325 | 52,657 | 1.080.100 |
| 49.325         34,817         35,004         33.723         30,200         32,717         51,710           70,211         50,170         40,569         33,739         40,550         52,297         130,245           52,865         54,372         34,908         34,737         31,136         57,119         49,331           50,761         50,761         33,872         37,319         40,560         52,297         130,245           50,761         33,369         24,379         25,444         22,198         31,136         51,216           50,761         33,365         50,042         47,819         42,864         38,157         53,041         43,441           50,761         33,362         37,012         33,701         33,441         27,391         51,216           54,565         50,042         47,804         42,964         38,157         53,041         43,441           42,526         32,368         34,336         24,314         25,395         54,334           56,733         36,629         57,396         31,565         54,336         54,336           56,733         36,629         54,336         24,336         54,336         54,336           56,733                                                                                                                                                                                                                                                   | 1858          | 54,616           | 52,831  | 49,636 | 41,607 | 41,389 | 47,236 | 50,787  | 186,040 | 263,871 | 49,358  | 73,539  | 42,217 | 953,127   |
| 70,211         50,170         40,569         33,288         32,956         55,335         54,557           52,875         40,472         34,981         37,113         37,119         49,314           50,766         54,285         42,347         39,319         40,560         52,297         130,245           50,761         33,368         23,7012         34,707         34,981         44,731         49,314           50,761         33,368         23,702         25,444         22,198         37,119         49,314           50,761         33,368         24,377         32,916         27,918         24,171         30,245           50,042         47,819         42,944         38,157         53,041         43,441           42,526         50,042         47,814         25,482         44,173         44,173           42,526         32,821         27,981         27,914         25,482         44,173           42,573         8,632         33,682         30,0568         30,306         54,411           42,566         53,327         43,946         25,810         35,421         36,431           55,733         53,464         41,917         34,491         25,414                                                                                                                                                                                                                                                   | 1959          | 49,326           | 34,817  | 35,004 | 33,723 | 30,200 | 32,717 | 51,710  | 74,156  | 88,616  | 40,533  | 67,349  | 50.250 | 588.401   |
| 52,875         43,472         34,988         34,737         31,136         37,119         49,493           66,796         54,265         42,347         39,319         40,560         52,297         130,245           59,433         42,345         37,012         34,707         34,981         44,731         49,314           50,761         33,358         24,379         25,444         22,198         21,981         51,216           50,761         33,356         50,042         47,819         42,560         52,297         130,245           54,605         50,042         47,819         22,181         22,181         23,169         31,629         51,305           54,605         50,042         47,819         42,964         38,157         33,174         43,441           42,526         32,811         33,355         40,446         34,337         34,06         45,438           58,032         33,656         53,327         43,168         24,917         39,436         45,438           56,169         52,730         39,355         44,947         39,436         45,638         53,704         54,438           56,169         52,730         39,355         44,947         39,496 </th <th>1960</th> <th>70,211</th> <th>50,170</th> <th>40,569</th> <th>33,288</th> <th>32,956</th> <th>55,335</th> <th>54,557</th> <th>81,827</th> <th>120,174</th> <th>53,094</th> <th>65,299</th> <th>41.075</th> <th>698.555</th>  | 1960          | 70,211           | 50,170  | 40,569 | 33,288 | 32,956 | 55,335 | 54,557  | 81,827  | 120,174 | 53,094  | 65,299  | 41.075 | 698.555   |
| 66.796         54.265         42.347         39.319         40.560         52.297         130,245           59,433         42,345         37,012         34,707         34,981         44,731         49,314           50,761         33,368         24,379         25,444         22,198         51,216         51,395           50,761         33,368         24,379         25,444         22,198         21,395         51,216           55,738         37,012         34,707         34,981         44,41         33,441         43,441           55,738         47,081         33,355         40,446         34,387         33,169         51,57         53,041         45,438           56,169         52,730         45,649         44,947         39,496         45,689         52,703         54,198         54,178         54,178         54,178         54,178         54,178         54,178         54,178         55,361         50,373         36,447         36,447         36,447         36,447         54,438         54,418         55,364         56,56         57,308         54,178         54,418         54,418         56,364         56,57         53,364         56,169         51,557         53,364         56,169                                                                                                                                                                                                      | 1961          | 52,875           | 43,472  | 34,988 | 34,737 | 31,136 | 37,119 | 49,493  | 50,825  | 50,921  | 51,158  | 69,891  | 48,539 | 555,154   |
| 59,433         42,345         37,012         34,707         34,981         44,731         49,314           50,781         33,369         24,379         25,444         22,198         29,813         51,216           50,781         33,369         24,379         25,444         22,198         31,629         51,395           50,781         33,369         24,379         25,444         22,198         31,629         51,395           54,605         50,042         47,819         42,566         32,704         54,178         34,41           42,526         32,821         27,981         27,814         25,482         44,159         30,169           56,073         39,555         40,446         34,387         33,704         54,178           56,169         55,327         43,168         44,947         39,305         56,802           56,169         55,327         44,141         39,395         56,802         55,315         56,178           56,169         55,327         44,1821         47,0315         56,373         56,802         56,410           56,169         55,313         36,313         56,313         56,313         56,313         56,313           56,169                                                                                                                                                                                                                                                    | 1962          | 66,796           | 54,265  | 42,347 | 39,319 | 40,560 | 52,297 | 130,245 | 256,053 | 364,942 | 183,446 | 54,222  | 58,879 | 1.343.391 |
| 50,761         33,359         24,379         25,444         22,198         29,813         51,216           54,605         50,042         47,819         42,964         38,157         53,041         43,441           43,328         34,871         33,872         32,287         27,908         31,629         51,395           56,092         38,632         33,682         30,056         30,306         33,704         43,441           42,526         32,821         27,981         27,814         25,482         44,159         39,169           56,092         38,632         33,682         30,056         30,306         33,704         43,441           48,536         53,327         43,169         44,947         38,406         45,438           56,169         52,310         45,649         44,947         39,3955         36,315         59,364           47,746         47,804         41,441         39,3351         36,369         51,557         53,364           65,172         44,133         43,322         36,988         40,770         50,720         56,410           65,172         44,133         43,322         36,988         40,770         50,373         54,410                                                                                                                                                                                                                                                     | 1963          | 59,433           | 42,345  | 37,012 | 34,707 | 34,981 | 44,731 | 48,314  | 48,581  | 40,042  | 69,838  | 59,577  | 47,970 | 568,531   |
| 43,328         34,871         33,872         32,287         27,908         31,629         51,385           54,605         50,042         47,819         42,526         32,821         27,914         25,482         44,159         39,169           56,042         47,819         42,656         32,821         27,981         27,814         25,482         44,159         39,169           56,169         38,632         30,058         30,306         33,704         54,178         54,41           65,738         47,081         39,355         40,446         34,387         38,408         45,438           65,738         53,327         43,188         44,947         39,496         45,689         52,703           56,169         52,730         45,649         44,698         40,770         50,720         55,703           56,112         44,127         41,141         39,995         35,850         41,821         47,315           65,773         45,653         44,141         39,995         35,865         53,410           65,112         44,127         41,103         41,283         56,880         55,566           65,112         44,127         41,184         41,821         47,315 <th>496</th> <th>50,761</th> <th>33,369</th> <th>24,379</th> <th>25,444</th> <th>22,198</th> <th>29,813</th> <th>51,216</th> <th>58,854</th> <th>65,184</th> <th>28,387</th> <th>63,734</th> <th>37,939</th> <th>491,278</th>           | 496           | 50,761           | 33,369  | 24,379 | 25,444 | 22,198 | 29,813 | 51,216  | 58,854  | 65,184  | 28,387  | 63,734  | 37,939 | 491,278   |
| 54,605         50,042         47,819         42,864         38,157         53,041         43,441           42,526         32,821         27,811         25,482         44,159         39,169           58,092         38,632         33,555         40,446         34,387         38,408         45,438           56,169         52,730         47,081         39,355         40,446         34,387         38,408         45,438           48,536         53,327         43,158         44,947         39,496         45,669         52,810           56,169         52,730         45,649         44,698         40,770         50,720         55,703           56,169         52,770         39,951         44,141         39,935         35,850         41,835         59,802           55,112         44,127         41,103         41,693         43,325         36,989         51,557         53,364           55,1726         52,730         39,955         44,139         43,325         36,989         51,557         53,441           65,172         39,989         51,575         33,447         45,987         54,410           65,076         31,545         27,445         37,469         42,410 </th <th>1962</th> <th>43,328</th> <th>34,871</th> <th>33,872</th> <th>32,287</th> <th>27,908</th> <th>31,629</th> <th>51,395</th> <th>82,844</th> <th>150,388</th> <th>94,373</th> <th>97,406</th> <th>58,669</th> <th>738,970</th>  | 1962          | 43,328           | 34,871  | 33,872 | 32,287 | 27,908 | 31,629 | 51,395  | 82,844  | 150,388 | 94,373  | 97,406  | 58,669 | 738,970   |
| 42.52b         32.821         27,981         27,814         25,482         44,159         39,169           58,092         38,632         33,555         40,446         34,387         38,408         45,438           65,738         47,081         39,355         40,446         34,387         38,408         45,438           65,738         53,327         43,158         44,947         39,496         45,689         52,703           56,169         52,730         45,649         44,698         40,770         50,720         55,703           56,169         52,730         45,649         44,698         40,770         50,720         55,703           65,172         39,951         44,141         39,995         35,850         41,835         59,802           65,172         39,951         44,103         41,041         39,995         35,850         41,821         47,315           65,172         39,955         44,127         41,103         41,293         36,447         45,987         54,410           65,076         37,506         31,545         27,455         37,465         47,315         54,216           59,222         45,683         31,693         35,556         41,821 <th>1966</th> <th>54,605</th> <th>50,042</th> <th>47,819</th> <th>42,964</th> <th>38,157</th> <th>53,041</th> <th>43,441</th> <th>55,031</th> <th>33,444</th> <th>51,021</th> <th>75,951</th> <th>32,359</th> <th>577,875</th>         | 1966          | 54,605           | 50,042  | 47,819 | 42,964 | 38,157 | 53,041 | 43,441  | 55,031  | 33,444  | 51,021  | 75,951  | 32,359 | 577,875   |
| 56,1092         38,632         33,662         30,058         30,306         33,704         54,178           65,738         47,081         39,355         40,446         34,387         38,408         45,438           65,738         47,081         39,355         40,446         34,387         38,408         45,438           55,169         52,730         45,649         44,698         40,770         50,720         55,703           56,169         52,730         45,649         44,698         40,770         50,720         55,703           65,172         39,951         44,141         39,995         35,850         41,835         59,602           65,172         44,127         41,103         41,693         30,447         45,867         53,64           65,172         44,127         41,103         41,184         41,821         47,315           59,262         45,695         31,545         27,445         37,865         54,64           57,934         35,528         31,644         30,237         27,445         37,865         44,6164           51,736         41,729         31,746         37,865         44,6164         54,66           57,934         35,646                                                                                                                                                                                                                                                     | 1961          | 42,526           | 32,821  | 27,981 | 27,814 | 25,482 | 44,159 | 39,169  | 44,549  | 71,300  | 39,259  | 73,837  | 55,884 | 524,781   |
| b5,738         47,081         39,355         40,446         34,387         38,408         45,438           48,536         53,327         43,188         44,947         39,496         45,669         52,810           56,169         52,730         45,649         44,698         40,770         50,720         55,703           56,169         52,730         45,649         44,698         40,770         50,720         55,703           65,570         39,951         44,009         39,351         38,031         55,569         52,703           47,746         47,746         47,804         41,441         39,995         35,850         41,835         59,802           65,172         44,127         41,103         41,069         41,184         41,821         47,315           59,262         44,805         41,374         41,283         38,447         45,987         54,410           55,076         37,506         31,545         27,455         27,445         37,865         49,546           57,934         35,678         31,689         33,169         40,317         54,260           57,934         35,678         31,649         37,445         37,865         49,546                                                                                                                                                                                                                                                       | 1968          | 58,092           | 38,632  | 33,682 | 30,058 | 30,308 | 33,704 | 54,178  | 62,840  | 126,982 | 40,082  | 38,675  | 59,342 | 606,575   |
| 48.536         53.327         43.188         44.947         39.496         45.669         52.810           56,169         52,730         45,649         44,698         40,770         50.720         55,703           65,169         52,730         45,649         44,698         40,770         50.720         55,703           65,5730         45,649         44,698         40,770         50.720         55,703           65,112         44,127         41,103         41,693         30,447         45,885         59,802           65,112         44,127         41,103         41,293         30,447         45,987         54,410           59,262         45,805         31,545         27,455         37,566         55,566           57,934         35,628         34,404         30,237         27,445         37,865         49,546           57,934         35,628         34,404         30,237         27,445         37,865         49,546           53,077         43,661         37,668         37,668         32,766         55,566           53,077         43,683         37,669         33,166         42,232         49,664           53,1736         37,768         37,768                                                                                                                                                                                                                                                   | 80A1          | BE/ '99          | 47,081  | 39,355 | 40,446 | 34,387 | 38,408 | 45,438  | 96,253  | 116,285 | 98,344  | 64,676  | 55,039 | 741,430   |
| 56,169         52,730         45,649         44,698         40,770         50,720         55,703           63,570         39,951         44,009         39,351         36,031         55,361         50,373           47,746         47,804         41,441         39,995         35,850         41,835         59,802           65,242         45,653         44,139         43,325         36,989         51,557         53,364           65,112         44,127         41,103         41,069         41,184         41,821         47,315           59,262         45,805         41,374         41,293         36,447         45,987         54,410           59,262         45,805         41,374         41,293         36,447         45,987         54,410           59,262         41,374         41,283         36,447         45,987         54,410           57,934         35,628         31,404         30,237         27,445         37,865         54,546           53,077         43,681         37,608         37,669         32,766         54,546           53,155         53,470         37,865         32,575         30,302         28,521         33,791         54,768                                                                                                                                                                                                                                                       | 0/RL          | 48,536           | 53,327  | 43,168 | 44,947 | 39,496 | 45,669 | 52,810  | 191,590 | 299,778 | 141,451 | 69,739  | 48,406 | 1,078,917 |
| 65,242         55,361         50,371         55,361         50,373           47,746         47,804         41,441         39,995         35,850         41,835         59,802           65,242         45,653         44,139         43,325         36,989         51,557         53,364           65,112         44,127         41,103         41,069         41,184         41,821         47,315           59,262         45,805         41,374         41,293         36,447         45,987         54,410           59,262         45,805         41,374         41,293         36,447         45,987         54,410           59,262         45,805         41,374         41,293         36,447         45,987         54,410           59,262         45,805         31,545         27,455         27,445         37,865         49,546           53,077         43,661         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,686         42,232         49,664           53,077         43,689         37,469         33,186         40,317         54,260           53,155         39,686                                                                                                                                                                                                                                                     |               | 50,169           | 52,730  | 45,649 | 44,698 | 40,770 | 50,720 | 55,703  | 140,105 | 337,632 | 168,969 | 56,715  | 62,192 | 1,112,052 |
| 47,74b         47,74b         47,804         41,441         39,995         35,850         41,835         59,802           65,242         45,653         44,139         43,325         36,989         51,557         53,364           65,242         45,653         44,139         43,325         36,989         51,557         53,364           65,076         37,506         31,545         27,455         27,569         31,566         55,566           53,077         43,681         37,608         37,669         31,545         27,445         37,865         49,546           53,077         43,681         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,077         43,681         37,689         37,169         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,686         42,232         49,664           53,077         43,689         37,489         37,346         37,701         54,260           53,155         53,156         37,702         27,425         33,701         54,768 <th>Z/RI</th> <th>0/070</th> <th>106,85</th> <th>44,009</th> <th>39,351</th> <th>36,031</th> <th>55,361</th> <th>50,373</th> <th>89,619</th> <th>169,641</th> <th>53,967</th> <th>76,726</th> <th>46,239</th> <th>766,838</th>         | Z/RI          | 0/070            | 106,85  | 44,009 | 39,351 | 36,031 | 55,361 | 50,373  | 89,619  | 169,641 | 53,967  | 76,726  | 46,239 | 766,838   |
| b5,242         45,153         44,139         43,325         36,989         51,557         53,364           62,112         44,127         41,103         41,069         41,184         41,821         47,315           59,262         45,805         41,374         41,293         36,447         45,987         54,410           65,076         37,506         31,545         27,455         27,569         31,566         55,566           53,077         43,661         37,608         37,608         37,669         31,566         55,566           53,077         43,661         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,077         43,661         37,608         37,669         33,186         40,317         54,260           51,736         44,636         35,677         30,202         28,521         33,791         54,768           53,155         39,982         35,172         27,129         34,851         49,216           53,489         51,912         49,475         42,732         42,768         55,832           53,488                                                                                                                                                                                                                                                     | E/AL          | 47,745           | 47,804  | 41,441 | 39,895 | 35,850 | 41,835 | 59,802  | 119,017 | 194,248 | 209,233 | 60,419  | 66,841 | 964,231   |
| 62,112         44,127         41,103         41,069         41,184         41,821         47,315           59,262         45,895         41,374         41,293         38,447         45,987         54,410           65,076         37,506         31,545         27,455         27,569         31,566         55,566           57,934         35,628         34,404         30,237         27,445         37,865         49,546           53,077         43,661         37,608         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,077         43,661         37,608         37,689         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,155         39,992         35,172         27,129         34,951         49,216           53,489         37,345         31,199         32,172         27,129         34,951         49,216           53,489         51,912         49,475         42,732         42,330         55,832         664,55 <th>4/R</th> <th>00,242</th> <th>40,053</th> <th>44,139</th> <th>43,325</th> <th>36,989</th> <th>51,557</th> <th>53,364</th> <th>180,579</th> <th>229,951</th> <th>90,991</th> <th>66,565</th> <th>45,343</th> <th>953,698</th>        | 4/R           | 00,242           | 40,053  | 44,139 | 43,325 | 36,989 | 51,557 | 53,364  | 180,579 | 229,951 | 90,991  | 66,565  | 45,343 | 953,698   |
| 53,702         45,805         41,374         41,293         36,447         45,987         54,410           65,076         37,506         31,545         27,455         27,569         31,566         55,566           53,077         43,661         37,506         31,545         27,445         37,865         49,546           53,077         43,661         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,155         39,992         35,172         27,129         34,851         54,768           53,489         37,345         31,199         32,172         27,129         34,851         49,216           67,488         51,912         49,475         42,732         42,330         55,832           67,488         51,912         49,576         39,346         39,747         45,343           92,159         66,555                                                                                                                                                                                                                                                     | 5/81          | 62,112<br>F0.000 | 44,127  | 41,103 | 41,069 | 41,184 | 41,821 | 47,315  | 77,901  | 148,547 | 156,706 | 60,375  | 64,398 | 826,658   |
| b5,0/7         37,506         31,545         27,455         27,569         31,566         55,566           57,934         35,628         34,404         30,237         27,445         37,865         49,546           53,077         43,661         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,077         43,661         37,608         37,689         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,489         37,345         31,199         32,172         27,129         34,951         49,215           67,488         51,912         49,475         42,782         42,353         48,309         55,832           82,159         66,555         59,688         55,670         47,867         58,747         45,343           82,159         66,555         59,688         55,670         47,867         58,743         46,11 <th>0/R1</th> <th>297'60</th> <th>45,895</th> <th>41,374</th> <th>41,293</th> <th>38,447</th> <th>45,987</th> <th>54,410</th> <th>84,945</th> <th>70,144</th> <th>32,694</th> <th>62,203</th> <th>54,752</th> <th>631,406</th>          | 0/R1          | 297'60           | 45,895  | 41,374 | 41,293 | 38,447 | 45,987 | 54,410  | 84,945  | 70,144  | 32,694  | 62,203  | 54,752 | 631,406   |
| 51,034         35,528         34,404         30,237         27,445         37,865         49,546           53,077         43,681         37,608         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,688         42,232         49,664           53,175         39,992         35,757         30,302         28,521         33,791         54,768           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,489         37,345         31,199         32,172         27,129         34,951         49,215           49,760         50,263         49,475         42,782         42,353         48,309         55,832           67,488         51,912         49,576         39,346         39,747         45,343           92,159         66,555         59,688         55,670         47,867         58,770         74,811           84,911         66,253         57,286         53,113         51,340         51,293         92,545           64,102         58,953         50,077         45,634         42,773         50,284         58,600                                                                                                                                                                                                                                                       | 1/81          | 9/0'cg           | 31,505  | 31,545 | 27,455 | 27,569 | 31,566 | 55,566  | 39,460  | 20,191  | 71,064  | 58,070  | 23,110 | 488,178   |
| 53,07/         43,661         37,669         33,186         40,317         54,260           51,736         44,636         42,847         47,475         39,668         42,232         49,664           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,489         37,345         31,199         32,172         27,129         34,951         49,215           49,760         50,263         49,475         42,782         42,353         48,309         55,832           67,488         51,912         49,576         39,346         39,747         45,343           92,159         66,555         59,688         55,670         47,867         58,770         74,811           84,911         66,253         57,286         53,113         51,340         51,293         92,545           64,102         58,953         50,077         45,634         42,737         50,284         58,600                                                                                                                                                                                                                                                                                                                                                                                 | 9/A1          | 57,944           | 35,628  | 34,404 | 30,237 | 27,445 | 37,865 | 49,546  | 91,405  | 151,807 | 62,031  | 60,898  | 49,951 | 689,151   |
| 51,735         44,636         42,847         47,475         39,668         42,232         49,664           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,489         37,345         31,199         32,172         27,129         34,951         49,215           67,488         51,912         49,475         42,782         42,353         48,309         55,832           67,488         51,912         49,576         39,346         39,747         45,343           92,159         66,555         59,688         55,670         47,867         58,770         74,811           84,911         66,253         57,286         53,113         51,340         61,293         92,545           64,102         58,953         50,077         45,634         42,7737         50,264         58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6JAL          | 1/0,50           | 43,661  | 37,608 | 37,669 | 33,186 | 40,317 | 54,260  | 149,609 | 162,935 | 124,779 | 57,815  | 46,623 | 841,539   |
| 53,155         39,992         35,757         30,302         28,521         33,791         54,768           53,489         37,345         31,199         32,172         27,129         34,951         49,215           653,489         37,345         31,199         32,172         27,129         34,951         49,215           67,486         51,912         49,475         42,782         42,353         48,309         55,832           67,486         51,912         49,959         38,576         39,346         39,747         45,343           92,159         66,555         59,688         55,670         47,867         58,770         74,811           84,911         66,253         57,286         53,113         51,340         61,293         92,545           64,102         58,953         60,077         45,634         42,737         50,284         58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1980          | 51,736           | 44,636  | 42,847 | 47,475 | 39,668 | 42,232 | 49,664  | 122,496 | 236,869 | 125,590 | 72,374  | 51,723 | 927,330   |
| 53,489         37,345         31,199         32,172         27,129         34,851         49,215           49,760         50,263         49,475         42,782         42,353         48,309         55,832           67,486         51,912         49,555         38,576         39,346         39,747         45,343           92,159         66,555         59,688         55,670         47,867         58,770         74,811           84,911         66,253         57,286         53,113         51,340         61,293         92,545           64,102         58,953         50,077         45,634         42,737         50,284         58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lael          | 53, 155<br>10    | 399,982 | 35,757 | 30,302 | 28,521 | 33,791 | 54,768  | 44,572  | 84,359  | 52,055  | 52,907  | 37,596 | 547,775   |
| 49./60         50.263         49.475         42.782         42.353         48.309         55,832           67.486         51.912         49,959         38.576         39.346         39.747         45,343           92.159         66.555         59.688         55,670         47,867         58.770         74,811           84.911         66.253         57,286         53,113         51,340         61,293         92,545           64,911         66,253         57,286         53,113         51,340         61,293         92,545           64,102         58,953         50,077         45,634         42,737         50,284         58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2961          | 53,489           | 37,345  | 31,199 | 32,172 | 27,129 | 34,851 | 49,215  | 72,885  | 114,613 | 61,149  | 49,957  | 48,456 | 612,540   |
| 67,486         51,912         49,959         38,576         39,346         39,747         45,343           92,159         66,555         59,688         55,670         47,867         58,770         74,811           84,911         66,253         57,286         53,113         51,340         61,293         92,545           64,911         66,253         57,286         53,113         51,340         61,293         92,545           64,917         66,253         57,286         53,113         51,340         61,293         92,545           64,102         58,953         50,077         45,634         42,737         50,284         58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29991         | 49,760           | 50,263  | 49,475 | 42,782 | 42,353 | 48,309 | 55,832  | 95,737  | 409,970 | 394,210 | 142,598 | 90,605 | 1.471.894 |
| 92,159         66,555         59,688         55,670         47,867         58,770         74,811           1         64,911         66,253         57,286         53,113         51,340         61,293         92,545           7         64,911         66,253         57,286         53,113         51,340         61,293         92,545           7         64,912         58,953         50,077         45,634         42,737         50,264         58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1984          | 67,486           | 51,912  | 49,959 | 38,576 | 39,346 | 39,747 | 45,343  | 368,234 | 658,537 | 344,872 | 158,964 | 91,203 | 1.954,179 |
| 7 64,911 66,253 57,286 53,113 51,340 61,293 92,545<br>7 64,102 58,953 50,077 45,634 42,737 50,264 58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1985          | 92,159<br>27,255 | 66,555  | 59,688 | 55,670 | 47,867 | 58,770 | 74,811  | 217,163 | 341,209 | 138,639 | 49,703  | 51,846 | 1,254,080 |
| b4,1U2 58,853 50,077 45,634 42,737 50,264 58,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 116,40           | 66,253  | 57,286 | 53,113 | 51,340 | 61,293 | 92,545  | 205,469 | 398,647 | 204,369 | 52,393  | 56,808 | 1,364,427 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104           | D4,102           | 56,953  | P0'01/ | 45,634 | 42,737 | 50,264 | 58,600  | 91,806  | 82,773  | 44,204  | 54,434  | 74,294 | 717,878   |

Simulated Flows at Colorado River Below the Confluence with the Eagle River No Action Alternative (AF)

| WATER           |         |        |        |        |         |        |         |         |         |         |         | ĺ      |            |
|-----------------|---------|--------|--------|--------|---------|--------|---------|---------|---------|---------|---------|--------|------------|
| YEAR            | oct     | NON    | DEC    | JAN    | FEB     | MAR    | APR     | MAY     | NUL     | JUL     | AUG     | SEP    | TOTAL      |
| 1988            | 44,555  | 44,674 | 39,180 | 39,770 | 35,538  | 40.387 | 51.260  | R2.550  | 137.179 | R2 477  | 75, 827 | 37 170 | 000 000    |
| 1989            | 48,368  | 43,504 | 34,820 | 35.559 | 32,789  | 52 668 | 42 430  | 78 027  | 53 803  | AE EAE  |         |        |            |
| 1990            | 49,913  | 36,669 | 35.348 | 32,063 | 28 739  | 40.618 | 58 774  | 33 706  |         |         | 00,010  | 180'00 | 10,075     |
| 1001            | 57 504  | AD 286 |        | 01.001 |         |        |         |         | 204,20  | 13,002  | 000'90  | 020'90 | 529,120    |
|                 | 10001   | C07'04 | 32,240 |        | 458,62  | 36,271 | 52,120  | 70,722  | 89,143  | 67,270  | 76,406  | 50,347 | 633,416    |
| 7.8.8.1         | 012,56  | 46,176 | 36,901 | 33,317 | 33,042  | 43,800 | 41,408  | 59,677  | 40,653  | 39,499  | 63,098  | 37,843 | 528.624    |
| 1863            | 46,467  | 39,375 | 33,547 | 35,096 | 33,094  | 41,729 | 49,404  | 118,484 | 212,172 | 120.504 | 46.268  | 48.345 | R24 485    |
| 1994            | 55,767  | 51,330 | 41,396 | 37,610 | 35,783  | 53,109 | 47,913  | 67,818  | 39.453  | 63.996  | 65,997  | 34 765 | 504 027    |
| 1995            | 37,360  | 36,989 | 32,190 | 30,231 | 30,416  | 41,543 | 53,149  | 55.708  | 249,726 | 294 730 | 82 496  | 55 162 | 000 710    |
| 1996            | 54,512  | 55,670 | 44,715 | 43,376 | 42,404  | 49.078 | 58.811  | 258.358 | 367 623 | 119 701 | BR OOB  |        |            |
| 1997            | 49,841  | 48,417 | 45,722 | 40.915 | 42.716  | 53.403 | 46.617  | 255 182 | 402 028 | 166147  | 200 10  |        |            |
| 1996            | 58.512  | 58,173 | 46,658 | 49.543 | 43 349  | AD 786 | 54 471  | 100 700 | 70,005  |         | 202.07  | 82/100 | 412,285,14 |
| 1000            |         | 000 21 |        |        |         |        |         | 201,801 | CCZ'R/  | 82,430  | 43,597  | 66,052 | 752,512    |
| 0000            | 00000   | A08.14 | 31,2/0 |        | 35,790  | 50,614 | 46,490  | 83,808  | 155,975 | 112,249 | 46,074  | 51,429 | 770.288    |
| 0002            | /0,271  | 47,089 | 38,952 | 42,223 | 40,118  | 46,518 | 49,889  | 117,946 | 117.114 | 46.251  | 74,992  | 51,236 | 742 500    |
| 2001            | 48,366  | 47,297 | 41,000 | 37,414 | 35,189  | 42,728 | 44,559  | 69.177  | 45,679  | 49,240  | 61 605  | 4R 03R | E71 100    |
| 2002            | 53,966  | 38,036 | 28,291 | 27,228 | 25.117  | 35,255 | 44,430  | 72, 327 | 27 080  | 24 217  | 202 000 |        |            |
| 2003            | 40,979  | 32.280 | 28.365 | 27,154 | 25 159  | 37 926 | 47 258  | 70 677  | 00.051  |         |         |        | 000,010    |
| 2004            | 51 80.4 | A1 534 |        |        |         |        |         |         | 107'22  | 140,24  | 64,603  | 36,919 | 602,698    |
| 1007            |         | 41,064 |        | 32,017 | 104 RZ  | 50,035 | 41,771  | 36,270  | 29,406  | 47,184  | 62,301  | 44,450 | 501,414    |
| 2002            | 1,324   | 42,306 | 32,675 | 32,131 | 27,344  | 32,525 | 46,684  | 71,434  | 89,625  | 38,525  | 56.016  | 47.233 | 587,822    |
| AVEHAGE         | 56,457  | 44,449 | 38,772 | 37,053 | 34,300  | 43,203 | 52,886  | 103,290 | 165,198 | 98.675  | 67,366  | 50,809 | 792 558    |
| <b>MINIMUM:</b> | 37,360  | 30,887 | 24,379 | 23,526 | 22, 198 | 29,351 | 39,169  | 27.327  | 20,191  | 28.387  | 161 86  | 01.650 | 206,215    |
| MAXIMUM:        | 92,159  | 66,555 | 59,688 | 55,670 | 51.340  | 61,293 | 130 245 | 368 234 | ALR 537 | 201 210 | 150.051 |        |            |
|                 |         |        |        |        |         | 2      |         | 5       | 100,000 | 012 +00 | 100,000 | ENZ'IR | B/L,908,1  |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 No Action Alternative (CFS)

| WATER<br>YEAR | ост         | NON   | DEC | JAN | FEB | MAR | APR   | МАУ   | NUL   | JUL   | AUG   | SEP   | ANNAL        |
|---------------|-------------|-------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|--------------|
| 1950          | 911         | 494   | 348 | 326 | 410 | 446 | 624   | 517   | 1.405 | 854   | 1 099 | 708   | 870          |
| 1951          | 877         | 530   | 507 | 480 | 483 | 504 | 675   | 577   | 1.098 | 2.250 | 876   | 1 088 | 6.01<br>8.21 |
| 1952          | 1,008       | 683   | 604 | 596 | 583 | 584 | 528   | 1.858 | 5,610 | 1,866 | 1 019 | 1 408 | 1 260        |
| 1953          | 1,021       | 668   | 695 | 620 | 581 | 644 | 677   | 364   | 1.364 | 1,178 | 752   | R56   | 786          |
| 1954          | 768         | 627   | 555 | 551 | 510 | 522 | 618   | 223   | 432   | 923   | 747   | 467   | 580          |
| 1955          | 874         | 425   | 363 | 356 | 355 | 401 | 653   | 419   | 593   | 557   | 855   | 821   | 549          |
| 1958          | 746         | 510   | 475 | 440 | 426 | 539 | 532   | 374   | 1,212 | 718   | 1.146 | 674   | 650          |
| 1957          | 713         | 527   | 494 | 473 | 481 | 517 | 679   | 1,011 | 3,505 | 3,264 | 1.441 | 273   | 1.160        |
| 1958          | 758         | 763   | 705 | 600 | 634 | 663 | 678   | 1,967 | 3,923 | 782   | 1.177 | 203   | 1112         |
| 1959          | 754         | 479   | 484 | 454 | 451 | 454 | 692   | 603   | 980   | 610   | 1,011 | 788   | 647          |
| 1960          | 959         | 574   | 597 | 479 | 514 | 694 | 416   | 733   | 1,421 | 794   | 1,044 | 069   | 753          |
| 1961          | 96/         | 624   | 518 | 539 | 490 | 510 | 681   | 314   | 396   | 775   | 1,071 | 583   | 609          |
| 1962          | 873         | 747   | 598 | 553 | 559 | 679 | 1,334 | 2,802 | 5,227 | 2,676 | 782   | 951   | 1.483        |
| 1962          | 818         | 512   | 477 | 493 | 522 | 909 | 570   | 401   | 512   | 1,174 | 921   | 750   | 648          |
| 1961          | 764         | 431   | 313 | 341 | 335 | 411 | 707   | 462   | 651   | 421   | 1,017 | 616   | 540          |
| 1965          | 638         | 461   | 444 | 440 | 406 | 402 | 654   | 663   | 1,488 | 1,330 | 1,437 | 860   |              |
| 1966          | 721         | 678   | 640 | 599 | 588 | 728 | 516   | 537   | 489   | 839   | 1.205 | 526   | 674          |
| 1967          | 816         | 444   | 389 | 367 | 377 | 593 | 415   | 278   | 708   | 529   | 1,178 | 875   | 565          |
| 1968          | 864         | 547   | 448 | 435 | 460 | 445 | 756   | 447   | 1,202 | 519   | 504   | 946   | 630          |
| 1969          | 116         | 669   | 547 | 557 | 527 | 511 | 410   | 875   | 1,614 | 1,473 | 977   | 843   | 834          |
| 0/81          |             | 745   | 628 | 653 | 578 | 612 | 721   | 1,806 | 4,290 | 2,066 | 1,014 | 687   | 1.204        |
| L/AL          | 23          | 736   | 671 | 811 | 571 | 611 | 597   | 1,483 | 4,717 | 2,474 | 822   | 944   | 1.249        |
| 1972          | 952         | 566   | 575 | 507 | 551 | 735 | 577   | 894   | 2,278 | 802   | 1,181 | 677   | 859          |
| 1973          | 589         | 616   | 514 | 501 | 498 | 506 | 739   | 1,037 | 2,594 | 3,139 | 806   | 1.041 | 1.051        |
| 1974          | 972         | 660   | 565 | 586 | 521 | 667 | 574   | 1,792 | 3,321 | 1,304 | 975   | 693   | 1.054        |
| 19/BL         | 906<br>1    | 590   | 513 | 510 | 558 | 528 | 592   | 631   | 1,435 | 2,146 | 840   | 266   | 856          |
| 9/61          | 847         | 605   | 535 | 544 | 526 | 597 | 542   | 718   | 750   | 474   | 945   | 833   | 660          |
| 1977          | 946         | 510   | 443 | 357 | 396 | 432 | 787   | 478   | 343   | 1,169 | 910   | 369   | 598          |
| 8/61          | 881         | 501   | 458 | 399 | 412 | 525 | 608   | 839   | 1,402 | 819   | 958   | 802   | 718          |
| 6/61          | <b>7</b> 6/ | 591   | 563 | 575 | 521 | 530 | 615   | 1,431 | 1,711 | 1,753 | 880   | 752   | 896          |
| 0961          | 761         | 599   | 555 | 631 | 583 | 572 | 662   | 1,054 | 3,130 | 1,921 | 1,123 | 775   | 1.031        |
| 1961          | 788         | 540   | 467 | 401 | 437 | 472 | 791   | 449   | 579   | 808   | 862   | 589   | 600          |
| 1982          | 111         | 525   | 418 | 460 | 407 | 428 | 591   | 444   | 1,140 | 602   | 693   | 705   | 608          |
| 1983          | 664<br>201  | 688   | 701 | 597 | 657 | 874 | 798   | 912   | 5,486 | 6,020 | 2,113 | 1,404 | 1,731        |
| 5051          | 965<br>1000 | 659   | 653 | 523 | 659 | 496 | 560   | 4,926 | 966'6 | 5,229 | 2,363 | 1,294 | 2,358        |
| 1965          | 1,302       | 1,051 | 881 | 6// | 200 | 785 | 814   | 2,103 | 4,764 | 2,008 | 690   | 774   | 1,388        |
|               |             |       |     |     |     |     |       |       |       |       |       |       |              |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 No Action Alternative

(CFS)

ANNUAL 1,550 890 503 2,358 AVG 614 692 732 7,101 1,101 1,421 1,573 819 819 843 807 . 778 503 706 595 618 715 677 623 g 1,498 SEP AUG 728 845 845 11,169 11,169 727 727 727 727 727 1,003 1,012 866 665 665 1,222 1,023 1,023 1,023 1,023 1,025 1,025 1,025 892 2,363 2,363 3,087 687 687 688 678 678 878 878 1,057 1,054 1,057 1,259 1,606 1,606 1,606 772 8845 8845 8845 8845 805 805 805 805 6,020 6,020 Ŋ 5,705 1,177 1,177 701 811 811 1,066 612 51,066 612 51,066 612 51,066 612 51,066 612 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51,066 51 NDS MAY APR MAR 810 686 686 683 688 883 553 688 682 682 682 553 784 682 553 782 828 828 828 828 828 828 FEB JAN DEC 763 678 678 678 678 659 611 4435 653 8639 6533 8614 611 613 899 8633 3399 8645 3313 3313 881 NOV 900 847 772 838 855 855 855 853 833 833 833 740 1,040 764 764 833 833 833 833 833 833 833 833 833 740 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,040 1,0400 50 MINIMUM: MAXIMUM: AVERAGE WATER YEAR 1999 2000 2000 2000 2000 2000 2000 2000 986 1986 086 1966 1987 1995 1996 1996 866 1997 **366** 66

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 No Action Alternative (AF)

| 1950         56.021         29.373         21.422         20.053         22.74         27.426         37.138         31.751           1951         53.309         31.556         31.153         29.503         26.816         31.000         40.181         35.504           1955         61.971         40.644         31.153         23.534         21.442         22.327         25.738           1955         62.711         36.141         32.279         35.504         40.340         114.260           1955         45.801         45.601         45.701         33.152         31.632         22.333           1955         45.840         31.752         37.138         31.752         37.132         31.641         32.727           1956         45.840         45.407         43.368         29.912         35.206         40.749         19.723           1956         45.840         45.407         43.368         31.327         31.644         32.939         17.201           1966         47.439         36.912         37.132         31.644         32.939         17.201           1966         47.430         36.912         37.326         41.720         73.339         14.63         3                                                                                                                                                                                                                               | WATER<br>YEAR | ост    | NON             | DEC    | JAN    | FEB    | MAR    | APR     | MAY     | NUL     | ากเ     | AUG               | SEP                | TOTAL              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-----------------|--------|--------|--------|--------|---------|---------|---------|---------|-------------------|--------------------|--------------------|
| 53,909         31,526         31,153         29,503         26,816         31,000         40,181           61,971         40,648         37,119         36,641         32,922         35,907         31,440           62,754         33,728         34,127         36,816         31,000         40,181           62,754         33,738         34,132         36,817         33,132         31,659         40,306           62,754         33,326         23,327         36,817         37,132         31,659         40,306           63,711         25,256         30,362         29,061         26,735         31,759         40,370           46,601         46,507         37,152         31,722         31,172         34,444         33,92           53,084         44,439         36,718         37,152         31,723         31,167         33,175           48,950         37,152         31,742         33,118         27,207         31,377         40,499           53,084         44,439         36,753         31,155         35,100         31,167           53,084         34,136         27,207         31,375         4,174         30,392           53,088         36,811                                                                                                                                                                                                                                                | 1950          | 56,021 | 29,373          | 21,422 | 20.053 | 22.754 | 27.426 | 37 138  | 31 7R1  | R2 577  | 50 595  | 07 COD            | 10101              | 011 101            |
| 61,971         40,648         37,119         36,641         32,922         35,907         31,440           62,764         39,750         42,740         36,142         32,279         39,559         40,306           53,711         52,228         56,073         31,753         31,753         31,753         31,659         40,306           53,711         52,728         30,362         29,061         35,236         40,743         40,370           45,865         30,365         29,189         27,043         35,236         40,743         40,370           45,865         31,367         30,362         29,061         35,236         40,743         40,370           46,601         45,407         43,365         30,316         29,010         37,248         33,912           56,617         19,267         20,375         18,618         27,003         31,327         40,370           56,308         34,458         30,315         29,010         37,248         33,912           56,308         37,456         24,741         38,922         36,821         36,921           56,308         37,556         20,373         31,324         31,327         32,466           56,303                                                                                                                                                                                                                                              | 1951          | 53,909 | 31,526          | 31,153 | 29,503 | 26,816 | 31.000 | 40.181  | 35,504  | 65.322  | 128,328 | 000' /0<br>53 785 | 421 124<br>6.4 774 | 431,172<br>601 000 |
| B2,754         39,750         42,740         38,142         32,279         39,599         40,306           47,220         37,288         34,127         33,895         28,337         32,116         38,801           53,711         25,286         22,334         21,867         30,355         31,369         40,370           45,865         31,367         30,365         29,189         27,043         25,574         33,132         41,87           45,865         31,367         33,369         27,043         25,574         27,923         41,187           46,801         45,407         36,827         30,355         29,010         37,728         40,370           56,816         47,738         36,912         35,536         40,743         40,370           56,816         44,778         36,912         35,236         40,743         40,370           56,816         44,478         36,912         35,236         40,743         40,370           56,308         36,748         39,311         27,207         39,393         26,748         39,392           56,308         36,715         20,743         37,566         24,749         36,746         24,749           39,200                                                                                                                                                                                                                                               | 1952          | 61,971 | 40,648          | 37,119 | 36,641 | 32,922 | 35,907 | 31,440  | 114.260 | 333,832 | 114,751 | A2 629            | 80 116             | 001,000            |
| 47,220         37,288         34,127         33,895         28,337         32,115         38,801           53,711         25,286         22,334         21,887         19,711         24,644         32,927           45,865         30,369         29,189         27,043         25,677         33,132         31,759         40,380           45,865         30,368         29,189         27,043         25,677         31,775         40,499           46,601         45,407         43,368         36,912         35,536         40,743         40,499           55,617         30,482         29,116         30,315         27,07         31,377         40,499           55,617         19,277         33,118         27,207         31,377         40,499           55,617         19,267         30,315         27,073         31,377         40,499           55,617         19,277         33,118         27,207         31,377         40,499           55,617         19,267         30,315         26,016         27,939         30,734           55,884         40,370         36,821         30,316         27,207         31,414         30,734           55,884         40,376                                                                                                                                                                                                                                               | 1953          | 62,764 | 39,750          | 42,740 | 38,142 | 32,279 | 39,599 | 40,306  | 22,397  | 81.176  | 72.425  | 46.237            | 50 907             | 568 722            |
| 53,711         25,286         22,334         21,887         19,771         24,644         32,927           45,865         30,369         28,189         27,043         23,677         33,132         31,669           45,865         30,369         28,189         27,043         23,677         33,132         31,669           45,840         44,439         36,573         32,175         40,370         47,743           46,340         28,563         30,315         29,061         26,504         47,74         40,399           53,684         44,439         36,763         31,722         31,772         40,399         50,315         29,010         37,248         33,912           56,308         30,482         29,316         30,315         29,010         37,248         33,912           56,308         30,482         29,316         30,315         29,010         37,248         30,734           56,308         30,482         28,316         27,207         31,472         79,399           50,308         30,482         26,316         37,743         36,456         74,09           30,220         27,458         27,207         31,472         74,741         30,734                                                                                                                                                                                                                                                  | 1954          | 47,220 | 37,288          | 34,127 | 33,895 | 28,337 | 32,115 | 38,801  | 13,727  | 25,733  | 56.784  | 45.960            | 111 12             | 419 764            |
| 45,865         30,369         29,189         27,043         23,577         33,132         31,669           45,801         45,407         43,368         36,912         25,074         27,923         41,187           45,601         45,407         43,368         36,912         25,074         27,923         41,187           45,607         45,407         43,368         36,912         25,074         27,923         41,187           55,804         44,439         36,763         30,315         29,100         37,248         33,912           55,3684         44,439         36,763         30,315         29,010         37,248         33,912           55,3684         44,439         36,763         30,315         29,010         37,248         33,912           55,368         40,743         36,316         30,31,55         29,010         37,248         33,912           55,368         27,607         31,326         21,618         27,008         37,344         30,337           39,207         44,321         30,315         29,010         37,456         44,778         30,337           37,851         26,617         19,266         27,607         31,322         36,466         24,69                                                                                                                                                                                                                              | 1955          | 53,711 | 25,286          | 22,334 | 21,887 | 19,711 | 24,644 | 32,927  | 25,738  | 35,286  | 34,277  | 52,558            | 48,880             | 397,239            |
| 43,852         31,367         30,362         29,061         26,735         31,759         40,380           46,601         45,407         43,368         36,912         35,236         40,743         40,370           46,601         45,407         43,368         36,912         35,236         40,743         40,370           46,601         45,407         43,368         36,912         35,236         41,712         40,377           58,850         37,152         31,742         33,118         27,923         41,774         24,774           58,868         44,472         30,315         29,010         37,269         37,349         39,3912           50,308         30,482         29,316         30,315         29,010         37,269         40,349           51,308         30,482         29,316         30,315         28,514         41,778         30,734           50,308         30,482         29,316         30,315         28,513         36,456         24,697           37,851         26,421         23,393         35,513         36,456         24,697         30,734           37,851         26,421         23,303         37,523         37,328         37,456         34,56 <th>1956</th> <th>45,865</th> <th>30,369</th> <th>29,189</th> <th>27,043</th> <th>23,677</th> <th>33,132</th> <th>31,669</th> <th>22,981</th> <th>72,128</th> <th>44,165</th> <th>70.470</th> <th>40.113</th> <th>470 B01</th>  | 1956          | 45,865 | 30,369          | 29,189 | 27,043 | 23,677 | 33,132 | 31,669  | 22,981  | 72,128  | 44,165  | 70.470            | 40.113             | 470 B01            |
| 46,601         45,407         43,368         36,912         35,236         40,743         40,377           46,601         45,407         43,368         36,912         35,236         40,743         40,377           46,501         45,407         27,368         36,912         35,560         27,676         24,774           55,684         44,393         36,692         29,462         28,560         41,720         79,399           50,308         30,482         25,617         18,618         27,207         31,377         40,399           50,308         30,482         29,316         30,315         29,010         37,244         39,393           50,308         30,482         29,316         30,315         29,010         37,244         39,393           50,308         30,482         27,524         26,755         22,574         24,741         38,932           37,851         26,421         23,930         22,579         20,938         36,456         24,697           37,851         26,421         23,393         36,516         27,375         45,008         37,345           37,851         26,569         27,524         27,375         24,697         37,345                                                                                                                                                                                                                                                | 1957          | 43,852 | 31,367          | 30,362 | 29,061 | 26,735 | 31,759 | 40,380  | 62,138  | 208,562 | 200,689 | 88.583            | 46.015             | 839.503            |
| 46,340         28,507         29,759         27,940         25,074         27,923         41,187           58,950         40,092         36,692         29,462         28,560         42,676         24,774           48,950         37,152         31,742         33,118         27,207         31,377         40,499           55,3684         44,439         36,763         34,030         31,054         41,720         79,399           55,3684         44,439         36,763         30,315         29,010         37,248         33,912           55,0308         30,482         29,316         30,315         29,010         37,248         33,912           46,988         27,456         27,305         27,554         26,574         27,375         46,09           39,220         27,458         39,337         36,851         28,403         36,456         24,409           39,220         27,524         26,757         27,375         24,409         30,734           37,451         26,421         23,303         27,524         27,574         24,741         36,551           39,200         44,327         33,455         37,568         37,456         36,566         47,416                                                                                                                                                                                                                                              | 1958          | 46,601 | 45,407          | 43,368 | 36,912 | 35,236 | 40,743 | 40,370  | 120,963 | 233,458 | 48,105  | 72,383            | 41.810             | 805,356            |
| 56,950         40,092         36,692         29,462         28,560         42,676         24,774           48,950         37,152         31,742         33,118         27,207         31,377         40,499           55,3684         44,439         36,763         34,030         31,054         41,720         79,399           56,171         19,267         20,316         30,315         29,010         37,248         33,912           46,988         25,617         19,267         20,975         18,618         25,298         42,098           39,220         27,443         38,217         20,557         22,557         24,741         38,932           39,220         27,458         27,524         27,524         27,375         44,03           37,455         25,574         27,375         44,03         37,456         24,409           39,207         44,321         38,633         40,166         32,093         36,456         42,903           39,207         36,681         31,576         30,751         27,375         44,697           39,207         36,681         37,586         37,455         36,456         46,903           59,130         32,550         31,153                                                                                                                                                                                                                                               | 1959          | 46,340 | 28,507          | 29,759 | 27,940 | 25,074 | 27,923 | 41,187  | 37,094  | 58,304  | 37,490  | 62,169            | 46,866             | 468,653            |
| 48,950         37,152         31,742         33,118         27,207         31,377         40,499           50,308         30,482         29,316         30,315         29,010         37,248         33,912           50,308         30,482         29,316         30,315         29,010         37,248         33,912           50,308         30,482         29,316         30,315         29,010         37,248         33,912           50,308         30,482         29,316         30,315         29,010         37,248         33,912           39,220         27,468         27,306         27,052         22,574         24,741         38,932           39,220         27,451         28,821         32,684         44,778         30,734           39,220         27,554         26,765         25,574         24,609         37,456           53,130         32,563         37,685         37,456         24,697         36,510           39,220         27,574         26,7657         27,375         44,099         36,510           39,260         33,553         30,514         37,723         37,456         24,409           39,220         36,568         34,277         31,4166                                                                                                                                                                                                                                            | 1960          | 58,950 | 40,092          | 36,692 | 29,462 | 28,560 | 42,676 | 24,774  | 45,086  | 84,562  | 48,804  | 64,199            | 41,042             | 544,899            |
| 53,684         44,439         36,783         34,030         31,054         41,720         79,399           50,308         30,482         29,316         30,315         29,010         37,248         33,912           46,988         25,617         19,267         20,315         30,315         29,010         37,248         33,912           39,220         27,458         27,306         27,052         22,574         24,741         38,932           37,851         26,421         23,930         22,579         20,938         36,456         24,697           37,851         26,421         23,930         22,579         20,938         36,456         24,697           37,851         26,421         23,930         27,524         26,755         25,574         24,471         38,932           37,851         26,633         40,166         32,093         36,456         24,093         37,345           36,0568         38,633         40,166         37,593         31,723         37,562         34,345           36,0568         34,727         31,123         36,563         31,576         34,345         34,345           36,058         34,727         31,153         31,576         37,345<                                                                                                                                                                                                                              | 1961          | 48,950 | 37,152          | 31,742 | 33,118 | 27,207 | 31,377 | 40,499  | 19,334  | 23,488  | 47,645  | 65,826            | 34,675             | 441,013            |
| 50,308         30,482         29,316         30,315         29,010         37,248         33,912           46,988         25,617         19,267         20,975         18,618         25,289         42,098           39,220         27,458         27,306         27,052         22,574         24,741         38,937           39,220         27,458         27,306         27,052         22,579         24,67         30,734           37,851         26,421         23,930         22,579         20,938         36,456         24,6008           53,130         32,553         27,524         26,765         25,574         27,479         30,734           39,207         44,321         33,608         34,276         37,593         31,432         24,409           39,207         44,321         38,633         40,166         32,088         37,582         36,510           39,207         44,321         33,653         30,795         37,582         36,510         37,582           36,645         33,655         33,653         31,153         30,614         45,204         34,345           36,645         37,518         31,572         31,723         37,582         35,510                                                                                                                                                                                                                                                | 1962          | 53,684 | 44,439          | 36,763 | 34,030 | 31,054 | 41,720 | 79,399  | 172,301 | 311,060 | 164,569 | 48,113            | 56,566             | 1.073.698          |
| 46,988         25,617         19,267         20,975         18,618         25,289         42,098           39,220         27,458         27,306         27,052         22,574         24,711         38,932           39,220         27,458         27,306         27,052         22,574         24,711         30,734           37,851         26,421         23,930         22,579         20,938         36,456         24,697           53,130         32,553         27,524         26,765         22,574         27,375         45,008           39,207         44,321         38,633         40,166         32,088         37,432         24,409           39,207         44,321         38,633         40,166         32,088         37,432         24,409           39,207         44,321         38,633         40,166         32,088         37,452         36,510           39,207         34,153         30,514         45,204         34,345         36,510           36,053         36,681         31,576         30,795         27,677         31,104         43,976           56,734         35,733         31,5567         36,761         34,144         36,5276         36,519                                                                                                                                                                                                                                              | 295           | 50,308 | 30,482          | 29,316 | 30,315 | 29,010 | 37,248 | 33,912  | 24,633  | 30,462  | 72,180  | 56,649            | 44,655             | 469.170            |
| 39,220         27,458         27,306         27,052         22,574         24,771         38,932           37,851         26,421         23,930         22,579         20,938         36,456         24,697           53,130         32,553         27,524         26,765         25,574         27,375         45,008           53,130         32,553         27,524         26,765         25,574         27,375         45,008           53,130         32,553         27,524         26,765         25,574         27,375         45,008           39,207         44,321         38,633         40,166         32,088         37,456         24,409           39,207         44,321         38,633         40,166         32,088         37,456         24,409           39,207         44,321         38,633         40,166         32,088         37,456         24,409           39,207         44,321         38,633         40,166         32,088         37,456         24,409           39,207         34,453         30,614         45,204         34,345         34,345           36,749         31,521         31,521         31,521         34,345         34,345           56,74                                                                                                                                                                                                                                               | 1961          | 46,988 | 25,617          | 19,267 | 20,975 | 18,618 | 25,289 | 42,098  | 28,385  | 38,728  | 25,902  | 62,561            | 36,669             | 391.097            |
| 44,326         40,318         39,337         36,821         32,684         44,778         30,734           37,851         26,421         23,930         22,579         20,938         36,456         24,697           53,130         32,553         27,524         26,765         25,574         27,375         45,008           53,130         32,553         27,524         26,765         25,574         27,375         45,008           39,207         44,321         38,633         40,166         32,088         37,856         42,903           39,207         44,321         38,633         40,166         32,088         37,856         42,903           39,207         44,321         38,633         40,166         32,088         37,856         42,903           39,207         44,321         38,633         40,166         32,088         37,582         35,510           39,207         36,681         31,576         30,795         27,677         34,345           36,749         31,521         31,521         31,333         30,514         45,204         34,345           56,734         31,521         31,521         31,521         31,345         34,345           56,74                                                                                                                                                                                                                                               | 1965          | 39,220 | 27,458          | 27,306 | 27,052 | 22,574 | 24,741 | 38,932  | 40,779  | 88,550  | 81,756  | 88,383            | 51.158             | 557,909            |
| 37,851         26,421         23,930         22,579         20,938         36,456         24,697           53,130         32,553         27,524         26,755         25,574         27,375         45,008           53,130         32,553         27,524         26,755         25,574         27,375         45,008           39,207         44,321         38,633         40,166         32,088         37,856         42,903           39,207         44,321         38,633         40,166         32,088         37,582         35,510           39,207         44,321         38,633         40,166         32,088         37,582         35,510           39,207         36,681         31,576         30,795         27,677         31,104         43,976           36,749         39,282         35,330         31,153         30,514         45,204         34,345           36,749         39,576         30,795         27,677         31,104         43,976           56,734         35,125         31,527         32,309         37,144         35,727         32,260           56,181         30,576         32,345         29,211         36,727         32,260         36,191                                                                                                                                                                                                                                                | 1999          | 44,326 | 40,318          | 39,337 | 36,821 | 32,684 | 44,778 | 30,734  | 32,998  | 29,088  | 51,561  | 74,099            | 31,302             | 488.046            |
| 53,130         32,553         27,524         26,765         25,574         27,375         45,008           39,207         44,321         38,633         40,166         32,088         37,582         24,409           39,207         44,321         38,633         40,166         32,088         37,582         35,510           39,207         44,321         38,633         40,166         32,088         37,582         35,510           39,207         44,321         38,633         40,166         32,088         37,582         35,510           56,545         33,655         35,330         31,153         30,614         45,204         34,345           36,207         36,681         31,576         30,795         27,677         31,104         43,976           36,749         39,282         31,521         31,383         30,970         32,463         35,230           56,734         35,125         31,521         31,383         30,970         32,463         35,230           56,734         35,125         31,521         33,445         29,114         36,727         32,260           56,181         30,3220         27,126         21,979         28,649         47,416                                                                                                                                                                                                                                               | 1967          | 37,851 | 26,421          | 23,930 | 22,579 | 20,938 | 36,456 | 24,697  | 17,071  | 42,112  | 32,552  | 72,461            | 52.043             | 409.111            |
| 60,058         39,800         33,608         34,278         29,279         31,432         24,409           39,207         44,321         38,633         40,166         32,088         37,586         42,903           56,545         33,655         35,330         31,153         30,614         45,204         34,345           56,545         33,655         35,330         31,153         30,614         45,204         34,345           36,207         36,681         31,576         30,795         27,677         31,104         43,976           36,749         39,282         34,747         36,053         28,948         41,027         34,144           56,734         35,125         31,521         31,383         30,970         32,463         35,230           58,748         35,125         31,521         31,383         30,970         32,463         35,230           56,734         35,125         31,521         31,383         30,970         32,463         35,230           58,181         30,3220         27,216         21,977         32,309         47,416           54,166         23,333         30,970         32,463         35,191         46,7079           54,166                                                                                                                                                                                                                                            | 1968          | 53,130 | 32,553          | 27,524 | 26,765 | 25,574 | 27,375 | 45,008  | 27,484  | 71,517  | 31,943  | 31,009            | 56,269             | 456,151            |
| 39,207         44,321         38,633         40,166         32,088         37,856         42,903           56,545         33,655         35,330         31,153         30,614         45,204         34,345           56,545         33,655         35,330         31,153         30,614         45,204         34,345           36,207         36,681         31,576         30,795         27,677         31,104         43,976           36,207         36,681         31,576         30,795         27,677         31,104         43,976           58,749         39,282         34,747         36,053         28,948         41,027         34,144           55,734         35,125         31,521         31,383         30,970         32,463         35,230           58,181         30,320         27,216         21,977         23,169         47,416           54,168         29,800         28,143         24,542         23,305         36,191           54,168         26,519         37,216         21,991         28,549         47,416           54,168         36,531         34,644         35,305         36,191         36,578           54,168         35,196         21,991                                                                                                                                                                                                                                              | 1969          | 60,058 | 39,800          | 33,608 | 34,278 | 29,279 | 31,432 | 24,409  | 53,797  | 96,057  | 90,602  | 60,064            | 50.151             | 603.535            |
| 46,299         43,771         41,276         37,593         31,723         37,582         35,510           56,545         33,655         35,330         31,153         30,614         45,204         34,345           36,207         36,681         31,576         30,795         27,677         31,104         43,976           36,207         36,681         31,576         30,795         27,677         31,104         43,976           59,749         39,282         34,747         36,053         28,948         41,027         34,144           55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,734         35,126         37,455         29,211         36,727         32,260           58,181         30,320         27,216         21,977         24,493         35,305         36,191           54,166         29,800         28,143         24,542         22,901         32,305         36,191           54,166         29,800         28,143         36,305         36,191         36,578           54,166         29,800         28,144         35,305         36,191         36,578           48,779         35,169                                                                                                                                                                                                                                              | 0/61          | 39,207 | 44,321          | 38,633 | 40,166 | 32,088 | 37,856 | 42,903  | 111,069 | 255,293 | 127,059 | 62,337            | 40,908             | 871,640            |
| 58,545         33,655         35,330         31,153         30,614         45,204         34,345           36,207         36,681         31,576         30,795         27,677         31,104         43,976           59,749         39,282         34,747         36,053         28,948         41,027         34,144           55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,734         35,126         37,717         31,383         30,970         32,463         35,230           55,734         35,126         31,345         29,211         36,727         32,260           58,181         30,320         27,216         21,979         21,991         28,549         47,416           54,166         29,800         28,143         24,542         22,901         32,305         36,191           48,779         35,166         27,216         21,979         21,991         28,567         36,578           48,779         35,168         37,619         32,301         32,167         36,578           48,779                                                                                                                                                                                                                                              | 1975          | 46,299 | 43,771          | 41,276 | 37,593 | 31,723 | 37,582 | 35,510  | 91,167  | 280,704 | 152,124 | 50,555            | 56,152             | 904 456            |
| 36,207         36,681         31,576         30,795         27,677         31,104         43,976           59,749         39,282         34,747         36,053         28,948         41,027         34,144           55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,734         35,125         31,521         31,383         30,970         32,463         35,230           52,061         35,998         32,907         33,445         29,211         36,727         32,260           58,181         30,320         27,216         21,979         21,991         28,549         47,416           54,168         29,800         28,143         24,542         22,901         32,305         36,191           48,799         35,196         34,644         35,360         28,929         32,567         36,578           48,799         35,196         34,644         35,360         28,191         36,767         36,769           48,779         35,169         37,616         37,202         28,929         35,169         36,578           48,770         37,712         36,786         32,391         35,195         36,759         36,578 <th>1972</th> <th>58,545</th> <th>33,655</th> <th>35,330</th> <th>31,153</th> <th>30,614</th> <th>45,204</th> <th>34,345</th> <th>54,982</th> <th>135,563</th> <th>49,292</th> <th>72,602</th> <th>40,283</th> <th>621.568</th> | 1972          | 58,545 | 33,655          | 35,330 | 31,153 | 30,614 | 45,204 | 34,345  | 54,982  | 135,563 | 49,292  | 72,602            | 40,283             | 621.568            |
| 59,749         39,282         34,747         36,053         28,948         41,027         34,144           55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,734         35,125         31,521         31,383         30,970         32,463         35,230           58,181         30,320         27,216         21,979         21,991         28,649         47,416           54,168         29,800         28,143         24,542         22,901         32,305         36,191           48,799         35,196         34,644         35,360         28,929         32,567         36,578           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           48,7748         31,255         25,690         28,306         28,2429         27,469         37,469<                                                                                                                                                                                                                              | 5/61          | 36,207 | 36,681          | 31,576 | 30,795 | 27,677 | 31,104 | 43,976  | 63,741  | 154,371 | 193,009 | 49,537            | 61,937             | 760,611            |
| 55,734         35,125         31,521         31,383         30,970         32,463         35,230           55,061         35,998         32,907         33,445         29,211         36,727         32,260           58,181         30,320         27,216         21,979         21,991         28,549         47,416           58,181         30,320         27,216         21,979         21,991         28,649         47,416           54,168         29,800         28,143         24,542         22,901         32,305         36,191           48,799         35,196         34,644         35,360         28,929         32,567         36,578           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,728         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,306         28,303         35,159           40,833                                                                                                                                                                                                                                              | 19/4          | 59,749 | 39,282          | 34,747 | 36,053 | 28,948 | 41,027 | 34,144  | 110,185 | 197,590 | 80,203  | 59,950            | 41,234             | 763,112            |
| 52,001         35,998         32,907         33,445         29,211         36,727         32,260           58,181         30,320         27,216         21,979         21,991         28,549         47,416           54,168         29,800         28,143         24,542         22,901         32,305         36,191           48,799         35,196         34,644         35,360         28,929         32,567         36,578           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           48,360         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,306         28,508         41,420         47,469           59,321         39,189         40,141         32,164         31,020         30,481         33,298                                                                                                                                                                                                                                                | 9/61          | 55,734 | 35,125          | 31,521 | 31,383 | 30,970 | 32,463 | 35,230  | 38,825  | 85,366  | 131,968 | 51,671            | 59,348             | 619,604            |
| 58,181         30,320         27,216         21,979         21,991         28,549         47,416           54,168         29,800         28,143         24,542         22,901         32,305         36,191           48,779         35,196         34,644         35,360         28,929         32,567         36,578           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         32,137         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,308         22,629         26,303         35,159           40,833         40,920         43,112         36,687         36,508         41,420         47,469           59,321         39,189         40,141         32,164         31,020         30,481         33,298           80,046         82,519         54,159         47,898         38,860         48,413         32,298 <th>9/6</th> <th>52,061</th> <th>35,998</th> <th>32,907</th> <th>33,445</th> <th>29,211</th> <th>36,727</th> <th>32,260</th> <th>44,131</th> <th>44,623</th> <th>29,130</th> <th>58,084</th> <th>49,567</th> <th>478,144</th>   | 9/6           | 52,061 | 35,998          | 32,907 | 33,445 | 29,211 | 36,727 | 32,260  | 44,131  | 44,623  | 29,130  | 58,084            | 49,567             | 478,144            |
| 54,106         29,600         28,143         24,542         22,901         32,305         36,191           48,799         35,196         34,644         35,360         28,929         32,567         36,578           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           46,792         35,631         34,107         38,788         32,391         35,195         39,368           48,360         32,137         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,306         22,629         26,303         35,159           40,833         40,920         43,112         36,687         36,508         41,420         47,469           59,321         39,189         40,141         32,164         31,020         30,481         33,298           80,046         82,519         54,159         47,898         38,860         48,245         48,413                                                                                                                                                                                                                                                                                                                                            | 1977          | 58,181 | 30,320          | 27,216 | 21,979 | 21,991 | 28,549 | 47,416  | 29,385  | 20,431  | 71,870  | 55,960            | 21,981             | 433,279            |
| 46,799         35,196         34,644         35,360         28,929         32,567         36,578           46,792         35,631         34,107         38,786         32,391         35,195         39,368           46,792         35,631         34,107         38,786         32,391         35,195         39,368           46,792         35,631         34,107         38,786         32,391         35,195         39,368           48,360         32,137         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,306         22,629         26,303         35,159           40,833         40,920         43,112         36,687         36,508         41,420         47,469           59,321         39,189         40,141         32,164         31,020         30,481         33,298           80,046         82,519         54,759         47,898         38,860         48,245         48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19/6          | 54,106 | 29,800          | 28,143 | 24,542 | 22,901 | 32,305 | 36, 191 | 51,592  | 83,442  | 50,356  | 58,936            | 47,718             | 520,092            |
| 46,/92         35,631         34,107         38,786         32,391         35,195         39,368           48,360         32,137         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,306         22,629         26,303         35,159           47,748         31,255         25,690         28,306         22,629         26,303         35,159           40,833         40,920         43,112         36,687         36,508         41,420         47,469           59,321         39,189         40,141         32,164         31,020         30,481         33,298           80,046         82,519         54,159         47,898         38,860         48,245         48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/AL          | 48,799 | 35,196          | 34,644 | 35,360 | 28,929 | 32,567 | 36,578  | 87,968  | 101,820 | 107,789 | 54,095            | 44,773             | 648,518            |
| 46,000         32,137         28,697         24,631         24,297         29,026         47,079           47,748         31,255         25,690         28,306         22,629         26,303         35,159           40,833         40,920         43,112         36,687         36,508         41,420         47,469           1         59,321         39,189         40,141         32,164         31,020         30,481         33,298           1         60,046         62,519         54,159         47,898         38,860         48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1960          | 46,792 | 35,631          | 34,107 | 38,788 | 32,391 | 35,195 | 39,368  | 64,812  | 186,264 | 118,122 | 69,070            | 46,133             | 746,673            |
| 4/./48         31,255         25,690         28,306         22,629         26,303         35,159           40,833         40,920         43,112         36,687         36,508         41,420         47,469           1         59,321         39,189         40,141         32,164         31,020         30,481         33,298           1         59,321         39,189         40,141         32,164         31,020         30,481         33,298           1         80,046         82,519         54,159         47,898         38,860         48,245         48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1961          | 48,360 | 32,137          | 28,697 | 24,631 | 24,297 | 29,026 | 47,079  | 27,615  | 34,447  | 49,725  | 52,981            | 35,052             | 434,047            |
| 40,853         40,820         43,112         36,687         36,508         41,420         47,469           1         59,321         39,189         40,141         32,164         31,020         30,481         33,298           1         59,321         39,189         40,141         32,164         31,020         30,481         33,298           5         80,046         82,519         54,159         47,898         38,860         48,245         48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1962          | 4/,/48 | 31,255          | 25,690 | 28,306 | 22,629 | 26,303 | 35,159  | 27,297  | 67,833  | 43,618  | 42,582            | 41,976             | 440,396            |
| 0.046 82,139 40,141 32,164 31,020 30,481 33,298 8 80,046 82,519 54,159 47,898 38,860 48,245 48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1963          | 40,833 | 40,920          | 43,112 | 36,687 | 36,508 | 41,420 | 47,469  | 56,092  | 326,431 | 370,182 | 129,912           | 83,534             | 1,253,100          |
| 0 1 80,046 82,519 54,159 47,898 38,860 48,245 48,413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1904          | 125,96 | 39,189          | 40,141 | 32,164 | 31,020 | 30,481 | 33,298  | 302,917 | 594,902 | 321,528 | 145,327           | 77,023             | 1,707,311          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 80,045 | 62, <b>5</b> 19 | 54,159 | 47,898 | 38,860 | 48,245 | 48,413  | 129,308 | 283,498 | 123,470 | 42,440            | 46,066             | 1,004,922          |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 No Action Alternative (AF)

| WATER           |        |          |         |        |        |        |        |         |         |         |         |        |           |
|-----------------|--------|----------|---------|--------|--------|--------|--------|---------|---------|---------|---------|--------|-----------|
| YEAR            | OCT    | NON      | DEC     | JAN    | FEB    | MAR    | APR    | МАҮ     | NUL     | JUL     | AUG     | SEP    | TOTAL     |
| 1986            | 55,367 | 55,894   | 46,932  | 42,310 | 40,045 | 49,785 | 64.329 | 144.910 | 339.464 | 189.786 | 44.765  | 48.374 | 1 121 061 |
| 1987            | 52,074 | 48,119   | 41,713  | 39,039 | 36,246 | 42.207 | 37,309 | 50 253  | 70.031  | 42 245  | 51 032  | 70,010 |           |
| 1988            | 39,259 | 34,362   | 31.093  | 29.874 | 27,173 | 32 658 | 38 569 | 53 084  | 114 540 | 50 5A1  | 71 076  | 20000  | 104,407   |
| 1989            | 44,665 | 35.754   | 25,728  | 25.447 | 24 260 | 42 000 | 25,611 | ED 24E  | 002 19  |         |         | 100,00 | 203,303   |
| 1000            | A7 AAE | 30 4 E 3 | 00 100  |        |        |        |        |         | 41,130  | 42,200  | 04,1/4  |        | 456,384   |
| 1000            |        |          | 201/302 | 204'42 | 805,52 | 33,211 | 4/,418 | 19,032  | 48,288  | 41,557  | 68,191  | 36,462 | 446,305   |
|                 | 52,283 | 31,958   | 24,441  | 24,969 | 24,495 | 30,120 | 42,483 | 37,911  | 63,416  | 63,575  | 74,246  | 47,965 | 517,862   |
| 1992            | 49,520 | 37,891   | 28,223  | 25,920 | 25,423 | 36,500 | 30,328 | 32,519  | 36,415  | 41,696  | 62,317  | 37,713 | 444.465   |
| 1993            | 45,494 | 33,314   | 26,987  | 27,022 | 26,080 | 34,428 | 42,234 | 56,844  | 153,163 | 108,283 | 44.710  | 47.413 | 645.972   |
| 1994            | 51,060 | 44,906   | 37,679  | 35,606 | 33,041 | 48,231 | 36,435 | 44,293  | 33,764  | 64,983  | 65.889  | 34.087 | 529.874   |
| 1995            | 32,573 | 30,906   | 25,609  | 25,072 | 25,130 | 34,749 | 42,872 | 25,915  | 174,026 | 258,903 | 72.442  | 49.173 | 797.370   |
| 1996            | 45,614 | 43,939   | 36,280  | 38,121 | 34,911 | 37,918 | 36,029 | 193,302 | 330,403 | 107,968 | 82,509  | 42.052 | 1.029.046 |
| 1997            | 42,042 | 39,133   | 38,936  | 32,993 | 35,227 | 41,959 | 26,705 | 174,373 | 428,933 | 149,196 | 78,690  | 50.688 | 1 138 875 |
| 1998            | 46,986 | 47,215   | 41,351  | 42,764 | 37,054 | 50,900 | 36,094 | 57,561  | 51.912  | 76.780  | 39,654  | 64 679 | 502 050   |
| 1999            | 63,934 | 38,533   | 24,694  | 27,618 | 28,307 | 43,757 | 33,614 | 48.716  | 114,139 | 98,773  | 40 586  | 47 674 | 610 24E   |
| 2000            | 63,813 | 38,785   | 34,138  | 37,681 | 34,226 | 40,092 | 37.737 | 82.334  | 104.334 | 47 485  | 75 153  | 020 08 |           |
| 2001            | 45,487 | 40,756   | 36,673  | 34,528 | 30,798 | 36.717 | 34.615 | 32,956  | 35,306  | 51 961  | 65 835  | 47 060 |           |
| 2002            | 51,613 | 31,237   | 25,597  | 25,619 | 23,709 | 31,545 | 36.477 | 19.862  | 32.147  | 38.184  | 05 DO1  | 20.270 | 1000 P30  |
| 2003            | 39,130 | 27,047   | 24,564  | 24,818 | 22,856 | 34,898 | 40,567 | 44.432  | 67.635  | 45.794  | 85.005  | 54 658 | 511 404   |
| 2004            | 50,008 | 33,823   | 27,831  | 25,904 | 25,586 | 42,898 | 33,292 | 15,624  | 22,296  | 49.502  | 63 527  | 40 708 | 080 124   |
| 2005            | 65,589 | 34,834   | 27,363  | 26,825 | 22,732 | 26,147 | 31,045 | 26,136  | 57.884  | 31.204  | 54.870  | 46.049 | 450.67R   |
| <b>AVERAGE:</b> | 50,495 | 36,575   | 32,525  | 31,143 | 28,401 | 35,749 | 38,214 | 61,606  | 128,311 | 90.629  | 63.054  | 47,390 | 644 092   |
| WINIMCW:        | 32,573 | 25,286   | 19,267  | 20,053 | 18,618 | 24,644 | 24,409 | 13,727  | 20,431  | 25,902  | 25.921  | 21.981 | 364 283   |
| MAXIMUM:        | 80,046 | 62,519   | 54,159  | 47,898 | 40,045 | 50,900 | 79,399 | 302,917 | 594,902 | 370.182 | 145.327 | 89.116 | 1 707 311 |
|                 |        |          |         |        |        |        |        |         |         |         |         |        |           |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River No Action Alternative (CFS)

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |       |       |       |     |     | AVG   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-------|-------|-----|-----|-------|
| 224       228       158         252       190       234         252       190       234         270       157       191         270       264       234         270       267       190         271       157       191         270       267       190         271       157       191         271       267       193         271       267       193         271       267       193         288       273       203         281       211       213         283       176       183         193       211       213         286       198       213         281       188       215         285       265       265         213       212       288         213       212       288         214       198       176         286       198       273         281       282       284         213       212       203         214       213       216         213       216       2                                                                                                                                                         | 148 | 227 | 181   | 389   | 169   | 420 | 282 | 222   |
| 254       246         255       190         256       190         270       267         271       157         270       267         271       157         270       267         271       157         270       267         271       157         271       190         271       267         271       267         271       267         271       267         271       267         273       273         288       273         289       273         281       188         282       199         283       176         284       176         285       265         213       212         284       176         285       233         214       273         286       198         271       273         286       273         287       288         213       212         214       219         214       2                                                                                                                                                                                                                                 | 191 | 361 | 315   | 375   | 557   | 339 | 482 | 302   |
| 252       190       234         225       215       157         270       267       157         271       157       199         271       264       277         264       277       267         211       199       167         264       277       267         211       262       308         213       262       308         219       266       199         281       168       273         282       213       216         283       176       211         284       176       233         285       265       265         213       212       273         286       198       175         288       213       212         213       212       285         213       212       286         214       193       167         235       265       233         213       212       203         214       265       273         213       216       214         213       218       2                                                                                                                                                         | 220 | 182 | 555   | 2,559 | 486   | 408 | 409 | 510   |
| 225       215       215       191         270       267       157       199         271       157       199       167         211       199       267       267       167         211       199       267       267       167         211       292       211       213       229         213       262       308       213       203         214       213       213       203       211         286       198       237       265       293         281       168       176       212       203         286       198       213       213       214         286       198       176       247       233         213       212       213       212       245         213       212       288       213       214         213       212       233       213       214         213       215       233       213       226         214       197       265       232       232         214       213       216       203       206         214       2                                                                                         | 206 | 305 | 135   | 315   | 217   | 344 | 232 | 239   |
| 201       157       157         270       264       277         211       199       167         284       277       267         211       199       167         264       277       267         211       199       267         288       237       160         219       262       308         281       160       213         285       210       203         286       198       211         286       198       211         286       198       214         287       265       213         288       213       216         289       213       216         281       188       215         285       188       216         213       212       285         213       212       286         214       197       265         213       216       203         214       219       273         214       293       216         215       212       203         214       216       2                                                                                                                                                         | 206 | 247 | 140   | 154   | 222   | 248 | 232 | 202   |
| 270       267       267         211       199       267         284       277       263         288       277       263         288       277       263         288       237       160         281       213       203         282       210       213       229         283       150       265       308       167         284       176       260       193       214         285       176       198       213       224         286       1988       216       233       211         285       176       188       215       285         213       215       188       216       193         213       215       218       273       273         213       215       218       273       273         213       215       212       273       273         213       215       285       285       286         214       297       203       216       273         214       297       203       216       273         214                                                                                                                | 170 | 213 | 148   | 214   | 174   | 298 | 240 | 216   |
| 211       199       163         264       277       264         288       277       213         288       237       160         211       213       203         288       237       160         281       213       203         282       210       213       203         286       199       167       229         281       183       176       224         193       176       260       193         286       198       211       212         286       198       176       224         281       188       211       212         285       213       212       213         213       215       218       174         286       198       175       245         213       212       233       247         239       156       232       233         210       200       203       211         213       216       232       232         214       203       216       145         210       200       203       2                                                                                                                         | 202 | 178 | 256   | 364   | 175   | 415 | 138 | 238   |
| 264       277       264       277         211       213       160       213       229         288       237       160       184       273         286       292       210       213       203         285       210       213       203       214         292       210       203       211       213         293       211       260       198       155         286       198       176       212       234         286       198       216       212       213         286       198       216       273       245         288       213       215       288       214         288       233       212       288       273         213       215       218       273       245         213       192       188       216       273         214       192       265       232       232         210       200       203       216       245         214       197       203       266       191         214       216       232       232       232                                                                                         | 174 | 268 | 237   | 1,553 | 1,215 | 468 | 233 | 420   |
| 211       213       213       203         286       237       160       184         282       237       160       184         282       2308       237       167         282       2308       237       167         282       203       211       203         292       210       224       155         193       176       168       215         203       211       260       193         213       265       198       174         285       138       265       273         213       215       188       216         213       215       188       216         213       215       265       273         213       212       265       273         213       212       265       273         214       197       203       266         214       203       161       145         214       203       216       232         214       203       266       191         214       203       266       161         214 <td< th=""><td>228</td><td>234</td><td>1,231</td><td>1,311</td><td>190</td><td>364</td><td>251</td><td>429</td></td<> | 228 | 234 | 1,231 | 1,311 | 190   | 364 | 251 | 429   |
| 288       237       167         331       150       237         262       308       237         262       308       231         262       308       211         262       308       211         262       308       211         263       128       254         191       266       198         285       265       198         286       198       174         281       188       212         285       265       273         213       212       265         213       212       273         213       212       265         213       212       273         213       212       273         213       212       273         213       192       188         214       197       203         214       203       161         215       203       266         214       203       266         214       285       167         214       285       161         214       285       1                                                                                                                                                         | 153 | 261 | 153   | 329   | 192   | 246 | 298 | 218   |
| 331       160       184         262       308       150         262       308       211         262       308       211         262       308       211         263       128       155         191       266       198         266       198       212         285       265       176         281       188       213         285       265       273         213       212       269         213       212       273         213       212       273         213       212       273         213       212       273         213       212       273         213       212       273         213       212       273         213       192       188         214       197       203         214       203       161         213       176       161         214       285       161         214       285       161         214       285       161         214       285       1                                                                                                                                                         | 249 | 168 | 189   | 573   | 203   | 295 | 201 | 254   |
| 262       308       211         292       210       224         195       128       155         191       260       128         191       260       193         203       211       260         191       260       193         203       211       260       193         285       179       168       174         286       198       176       213         285       265       273       273         213       212       273       245         213       212       273       245         213       192       188       245         213       192       182       245         214       197       203       266         213       176       200       266         214       200       266       191         214       285       163       161         214       285       169       161         214       286       161       161         214       285       161       161         214       285       161       1                                                                                                                         | 182 | 275 | 138   | 232   | 246   | 403 | 391 | 239   |
| 292       210       224         195       128       128         191       260       128         193       179       260         183       179       260         183       179       260         183       179       168         266       198       176         285       265       273         286       198       174         285       265       273         213       212       273         213       212       273         213       212       273         213       212       273         213       212       273         213       212       273         213       212       273         213       192       188         214       230       161         215       230       161         214       285       232         214       285       161         214       285       161         214       285       161         214       285       161         214       285       1                                                                                                                                                         | 281 | 301 | 1,351 | 2,592 | 1,349 | 334 | 147 | 651   |
| 195       128       155         203       211       260       191         191       260       193       112         183       173       212       193         183       179       168       174         286       198       179       168         285       243       175       245         285       213       212       245         213       215       188       210         213       215       188       210         213       212       265       273         213       212       209       214         213       192       188       211         213       192       182       209         214       197       202       202         213       176       145       202         214       197       202       266         214       200       266       145         214       285       161       273         214       285       186       191         214       285       185       191         214       285       1                                                                                                                 | 240 | 244 | 152   | 170   | 217   | 233 | 431 | 239   |
| 203       211       212         191       260       193         183       179       168         183       179       168         266       198       176         281       188       210         281       188       211         281       188       213         285       265       273         213       212       209         213       212       209         213       212       209         213       192       191         213       192       145         239       156       191         239       156       203         210       200       202         239       156       191         240       167       202         210       200       266         214       285       191         214       285       161         214       285       191         214       285       191         214       285       191         214       285       191         214       285       1                                                                                                                                                         | 169 | 289 | 156   | 250   | 172   | 171 | 220 | 200   |
| 191       260       193         183       179       168         286       198       174         281       188       210         285       198       174         285       198       210         285       213       245         285       265       273         213       212       245         213       212       209         213       212       209         213       212       209         213       192       191         239       156       145         239       156       145         210       200       202         213       197       232         214       197       232         214       197       232         214       200       266         214       200       266         214       285       191         214       285       191         214       285       191         214       285       191         213       275       232         214       285       1                                                                                                                                                         | 176 | 279 | 185   | 405   | 251   | 295 | 151 | 224   |
| 183       179       168         286       198       174         281       188       210         285       198       174         285       265       273         285       265       273         286       198       210         285       265       273         213       212       209         213       212       209         213       212       209         213       192       191         239       156       145         239       156       145         240       169       161         210       200       265         214       200       266         213       175       127         214       200       266         214       285       191         214       200       266         214       285       191         214       285       191         214       285       191         214       285       191         214       285       195         213       275       2                                                                                                                                                         | 257 | 246 | 161   | 185   | 143   | 374 | 180 | 211   |
| 266       198       174         281       188       210         285       265       245         285       265       273         285       265       273         285       265       273         213       212       245         213       212       265         213       212       209         213       192       191         213       192       191         239       156       145         239       156       145         240       197       202         214       200       202         231       230       161         233       156       145         210       200       266         213       175       127         214       200       266         213       175       127         214       285       191         214       285       191         214       285       191         214       285       191         213       275       232         290       325       2                                                                                                                                                         | 262 | 136 | 148   | 226   | 204   | 293 | 277 | 211   |
| 281     188     210       243     175     245       285     265     245       285     265     245       213     212     245       215     182     213       215     182     213       213     212     209       213     192     191       239     156     145       241     197     202       213     175     232       214     200     266       213     175     127       214     200     266       213     175     185       214     200     266       213     216     232       214     200     266       213     216     191       214     285     185       215     285     185       214     285     185                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 | 287 | 140   | 393   | 191   | 143 | 375 | 235   |
| 243 175 245<br>285 265 245<br>213 212 209<br>215 182 188<br>213 192 191<br>226 170 202<br>239 156 145<br>239 156 145<br>241 197 202<br>214 197 232<br>214 285 191<br>214 285 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166 | 135 | 205   | 963   | 407   | 213 | 294 | 293   |
| 285 265 273<br>213 212 209<br>215 182 188<br>288 231 247<br>213 192 191<br>226 170 202<br>239 156 145<br>241 197 202<br>240 159 266<br>213 175 266<br>213 175 266<br>214 285 191<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202 | 308 | 665   | 1,297 | 519   | 225 | 226 | 368   |
| 213       212       209         215       182       182         215       182       182         288       231       247         213       192       191         226       170       202         239       156       145         241       197       202         255       230       161         241       197       232         210       200       266         213       175       127         214       200       266         213       175       127         214       285       191         213       232       232         214       200       266         213       232       232         214       285       191         214       285       195         213       275       226                                                                                                                                                                                                                                                                                                                                                       | 251 | 215 | 600   | 2,434 | 1,256 | 369 | 286 | 562   |
| 215     182     182       288     231     247       213     192     191       226     170     202       239     156     145       255     230     161       241     197     232       213     175     127       214     200     266       213     175     127       214     285     191       213     216     266       214     200     266       213     175     127       214     285     191       213     275     232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 313 | 216 | 163   | 793   | 185   | 405 | 201 | 287   |
| 288 231 247<br>213 192 191<br>226 170 202<br>239 156 145<br>241 197 232<br>210 200 266<br>213 175 127<br>240 169 191<br>214 285 195<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 184 | 240 | 198   | 1,611 | 1,606 | 342 | 272 | 449   |
| 213       192       191         226       170       202         239       156       145         255       230       161         241       197       232         210       200       266         213       175       127         214       200       266         213       175       127         214       285       191         214       285       191         213       232       232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 243 | 230 | 650   | 1,383 | 440   | 381 | 221 | 398   |
| 226 170 202<br>239 156 145<br>255 230 161<br>241 197 232<br>210 200 266<br>213 175 127<br>240 169 191<br>214 285 185<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175 | 264 | 140   | 303   | 566   | 296 | 245 | 257   |
| 239 156 145<br>255 230 161<br>241 197 232<br>210 200 266<br>213 175 127<br>240 169 191<br>214 285 195<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 202 | 201 | 149   | 298   | 201   | 284 | 291 | 216   |
| 255 230 161<br>241 197 232<br>210 200 266<br>213 175 127<br>240 169 191<br>214 285 195<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 161 | 224 | 177   | 192   | 494   | 502 | 172 | 241   |
| 241 197 232<br>210 200 266<br>213 175 127<br>240 169 191<br>214 285 185<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 202 | 154 | 192   | 374   | 227   | 195 | 228 | 226   |
| 210 200 266<br>213 175 127<br>240 169 191<br>214 285 185<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 199 | 212 | 260   | 520   | 355   | 282 | 202 | 252   |
| 213 175 127<br>240 169 191<br>214 285 185<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 186 | 266 | 195   | 1,238 | 671   | 226 | 292 | 342   |
| 240 169 191<br>214 285 195<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 168 | 272 | 224   | 295   | 243   | 405 | 300 | 229   |
| 214 285 195<br>290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 186 | 198 | 174   | 347   | 282   | 258 | 136 | 214   |
| 290 325 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 188 | 303 | 150   | 1,984 | 2,975 | 957 | 294 | 665   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 221 | 286 | 2,427 | 5,055 | 2,323 | 805 | 315 | 1.073 |
| 364 280 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 261 | 145 | 736   | 2,051 | 668   | 274 | 258 | 500   |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River

No Action Alternative (CFS)

ANNUAL AVG ,073 <u>665</u> 233 331 176 304 215 247 SEP AUG 321 265 265 265 265 265 265 265 265 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 265 25 2 1,359 178 303 303 275 178 187 1,167 1,167 1,167 1,167 1,167 2,87 2,975 502 2,975 502 2,975 Ę NN 3,200 3,56 356 356 418 345 555 555 557 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,992 1,9 995 197 197 197 177 177 287 1,233 1,233 1,233 1,233 1,233 1,233 1,233 1,233 1,554 1,233 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1,554 1, MAY APR MAR FEB JAN DEC ð S :MUMINIM MAXIMUM: AVERAGE: WATER YEAR 992 994 995 8 1986 1987 1988 686 066 88 **66**2 666 2005 2005 2005 2005 2005 2005 **9**9

Simulated Flows at Colorado River below the Confluence with the Williams Fork River

No Action Alternative (AF)

| WATER<br>YEAR | ост    | NON   | DEC   | JAN   | FEB   | MAR   | АРК   | МАҮ    | NUL    | lur    | AUG   | SEP   | TOTAL  |
|---------------|--------|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|-------|--------|
| 1950          | 15425  | 12265 | 8395  | 7328  | 7004  | 9100  | 13537 | 11145  | 23144  | 10410  | 25817 | 16810 | 160380 |
| 1951          | 14451  | 13352 | 14007 | 9696  | 8561  | 11734 | 21476 | 19392  | 22344  | 34238  | 20833 | 2RGRR | 218775 |
| 1952          | 23506  | 15086 | 15117 | 13785 | 11594 | 13500 | 10843 | 34120  | 152249 | 29908  | 25101 | 24310 | 369119 |
| 1963          | 16227  | 15022 | 11679 | 14405 | 9478  | 12665 | 18130 | 8310   | 18743  | 13355  | 21165 | 13790 | 172969 |
| 1954          | 11629  | 13402 | 13250 | 11721 | 8167  | 12646 | 14695 | 8618   | 9187   | 13677  | 15224 | 13785 | 146001 |
| 1955          | 27830  | 11985 | 9648  | 10259 | 8340  | 10479 | 12682 | 2097   | 12737  | 10719  | 18347 | 14300 | 156423 |
| 1956          | 11487  | 16040 | 16439 | 11653 | 11487 | 12402 | 10578 | 15724  | 21643  | 10770  | 25511 | 8212  | 171946 |
| 1957          | 9463   | 12582 | 12219 | 10028 | 8950  | 10700 | 15954 | 14571  | 92394  | 74706  | 28756 | 13878 | 304201 |
| 1958          | 11612  | 15124 | 17046 | 14102 | 11844 | 14037 | 13923 | 75688  | 96677  | 11673  | 22394 | 14926 | 310264 |
| 1959          | 10589  | 12529 | 13118 | 12482 | 10330 | 9386  | 15511 | 9420   | 19572  | 11782  | 15108 | 17748 | 157575 |
| 1960          | 16456  | 17111 | 14579 | 10249 | 11765 | 15285 | 9982  | 11607  | 34077  | 12496  | 18113 | 11958 | 183678 |
| 1961          | 12911  | 19701 | 9826  | 11314 | 7732  | 11208 | 16353 | 8490   | 13790  | 15136  | 24809 | 23274 | 173154 |
| 1962          | 28427  | 15599 | 18926 | 12985 | 11020 | 17266 | 17906 | 83041  | 154222 | 82968  | 20512 | 8770  | 471642 |
| 1963          | 14976  | 17352 | 12921 | 13795 | 12072 | 14744 | 14544 | 9329   | 10124  | 13349  | 14301 | 25644 | 173151 |
| 1904          | 21229  | 11581 | 7867  | 9519  | 8030  | 10396 | 17191 | 9602   | 14852  | 10577  | 10527 | 13120 | 144491 |
| 1965          | 8742   | 12082 | 12958 | 13022 | 9785  | 10839 | 16609 | 11373  | 24092  | 15425  | 18119 | 8964  | 162010 |
| 1966          | E//6   | 11383 | 15980 | 11878 | 9950  | 15800 | 14642 | 9898   | 10979  | 8796   | 23012 | 10721 | 152812 |
| /961          | 1/618  | 10892 | 11026 | 10347 | 8926  | 16132 | 8105  | 9126   | 13454  | 12534  | 18039 | 16465 | 152664 |
| 1966          | 17490  | 15830 | 12209 | 10705 | 10504 | 11680 | 17090 | 8578   | 23374  | 11723  | 8767  | 22337 | 170287 |
| ROAL          | 1/36/  | 16/11 | 11579 | 12887 | 9645  | 10230 | 8033  | 12575  | 57320  | 25016  | 13086 | 17523 | 211972 |
| 0/61          | 4658   | 14434 | 10750 | 15045 | 9865  | 12427 | 18333 | 40874  | 77166  | 31919  | 13840 | 13477 | 266524 |
| 1/61          | 16684  | 16933 | 16316 | 16759 | 13185 | 15414 | 12765 | 36921  | 144863 | 77206  | 22704 | 17032 | 406782 |
| 1972          | 20081  | 12680 | 13047 | 12874 | 11521 | 19243 | 12870 | 10048  | 47170  | 11364  | 24920 | 11964 | 207782 |
| E/AL          | 10396  | 12819 | 11193 | 11541 | 9776  | 11314 | 14266 | 12170  | 95835  | 98779  | 21037 | 16194 | 325320 |
| 4/81          | 16501  | 1/143 | 14228 | 15160 | 10559 | 14960 | 13688 | 39943  | 82281  | 27063  | 23444 | 13177 | 288147 |
| C/AL          |        | 12672 | 11779 | 11749 | 11832 | 10775 | 15691 | 8621   | 18009  | 34827  | 18171 | 14600 | 185797 |
| 19/6          | 18/21  | 13424 | 10472 | 12429 | 9055  | 12407 | 11945 | 9133   | 17711  | 12336  | 17482 | 17303 | 156434 |
| 1/61          | 44671  | 14245 | 9620  | 8887  | 7509  | 9887  | 13328 | 10864  | 11440  | 30368  | 30882 | 10259 | 174643 |
| 9/61          | 194 /5 | 10291 | 14141 | 9887  | 9569  | 12419 | 9173  | 11816  | 22284  | 13984  | 11960 | 13585 | 163504 |
| 6/61          | 2096   | 14355 | 12115 | 14291 | 8834  | 12252 | 12612 | 15986  | 30959  | 21804  | 17335 | 11999 | 182394 |
| 1901          | 10/4/  | 12468 | 10521 | 16327 | 10632 | 11443 | 15853 | 12011  | 73653  | 41229  | 13879 | 17375 | 247938 |
| 1961          | 14021  |       | 10/86 | 1805  | 6353  | 10310 | 16197 | 13790  | 17574  | 14958  | 24895 | 17844 | 165866 |
| 1000          | C0141  | 142/3 | 10408 | 11725 | 8865  | 11443 | 11770 | 10676  | 20637  | 17338  | 15853 | 8112  | 155205 |
| 1963          | 9676   | 11/21 | 17547 | 11962 | 13168 | 11576 | 18044 | 9196   | 118060 | 182933 | 58875 | 17474 | 481302 |
| 1984          | 20416  | 17271 | 19961 | 13803 | 13481 | 13610 | 16999 | 149208 | 300792 | 142838 | 49474 | 18749 | 776608 |
| CREL          | 2/431  | 21651 | 17229 | 17035 | 13149 | 16025 | 8600  | 45262  | 122041 | 41056  | 16826 | 15331 | 361636 |
|               |        |       |       |       |       |       |       |        |        |        |       |       |        |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River No Action Afternative (AF)

| WATER    | UC1    | AQM    |        |        |        |        |        |         |         |         |                                         |                 |         |
|----------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|-----------------------------------------|-----------------|---------|
| YEAR     |        |        | 20     |        | 222    | MAH    | APR    | MAY     | NUL     | JUL     | AUG                                     | SEP             | TOTAL   |
| 1986     | 18159  | 23762  | 17368  | 15508  | 10090  | 8301   | 15225  | 61183   | 190395  | 83539   | 19714                                   | 18187           | 101101  |
| 1987     | 19752  | 16540  | 14806  | 14322  | 12004  | 13327  | 8033   | 11929   | 21205   | 10035   | 00491                                   |                 |         |
| 1988     | 11795  | 15529  | 12800  | 13821  | 12130  | 12101  | 9000   |         |         |         | 10000                                   | 2000            | 10093/  |
| 1000     | 10,000 |        |        |        |        |        | 0606   | SAU21   | COCAC   | 1804B   | 29807                                   | 12107           | 220301  |
| 80C      | 20201  | 11701  | C++11  | 10306  | 52011  | 15913  | 8033   | 12048   | 16345   | 16892   | 13231                                   | 14789           | 155524  |
| 066      | 10831  | 12920  | 11963  | 9813   | 9866   | 15428  | 15276  | 8433    | 24856   | 10928   | 29807                                   | 18695           | 178816  |
| 1881     | 21436  | 16055  | 10563  | 10255  | 8714   | 12919  | 16110  | 10869   | 20538   | 11507   | 13363                                   | 12537           | 164866  |
| 1992     | 12878  | 18381  | 12828  | 11675  | 10962  | 16675  | 13107  | 15160   | 13226   | 14161   | 40857                                   | 10400           |         |
| 1993     | 20149  | 17923  | 11511  | 10304  | 9538   | 12790  | 16852  | 16342   | 33022   | 16405   | 15660                                   | 10000           | 104881  |
| 1994     | 24302  | 19323  | 14618  | 13733  | 11898  | 17748  | 14209  | 13664   | 13780   | 16302   |                                         |                 | 11/002  |
| 1995     | 15674  | 15239  | 11004  | 10453  | 11093  | 14929  | 17884  | 8457    | E3676   | 7577    | 04061                                   | 60001           | 1346/4  |
| 1996     | 18991  | 18052  | 14453  | 17911  | 14854  | 15853  |        | 75027   |         | 01111   | 00007                                   | 01222           | 09/082  |
| 1997     | 21207  | 18315  | 17007  |        |        |        | 0025   | 12002   | 506811  | 360/8   | 14660                                   | 19274           | 373741  |
| 0001     | 1004   |        | /00/1  | 14/43  | 19502  | 14188  | 12172  | 77129   | 152997  | 62870   | 36650                                   | 14969           | 463571  |
| 0661     | 1/390  | 2/181  | 15681  | 16828  | 12681  | 16238  | 13942  | 8713    | 12986   | 18649   | 14243                                   | 17598           | 183126  |
| 6661     | 24331  | 21034  | 11834  | 14288  | 12718  | 20355  | 14604  | 9586    | 33988   | 17755   | 16747                                   | 04470           | 221212  |
| 2000     | 19267  | 14648  | 12572  | 15447  | 14070  | 16199  | 15325  | 44267   | 19747   | 00400   |                                         |                 | 11/177  |
| 2001     | 14704  | 15207  | 15990  | 13073  | 12397  | 15580  | 1 3070 | 14100   |         |         | 00,00                                   | 9/077           | 234023  |
| 2002     | 15820  | 13128  | 10806  | 10310  |        |        | 7170   | 14130   |         | 1204/   | ONTRO                                   | 18682           | 193817  |
| 2000     | 10151  | 1 2010 | 0020   |        |        | 6/011  | 9234   | 9C26    | 8110    | 17305   | 6261                                    | 6980            | 127091  |
| 200      |        | 01021  | 0106   | CC26   | 6906   | 12800  | 20270  | 33017   | 46319   | 18983   | 27874                                   | 26308           | 236525  |
| 1002     | COLCI  | 60261  | 14610  | 13501  | 12708  | 22581  | 16051  | 9812    | 11788   | 14961   | 37858                                   | 22523           | 210767  |
| 2005     | 31638  | 19842  | 13456  | 13337  | 9868   | 11281  | 12290  | 13156   | 27443   | 17629   | 16264                                   | 14626           | 200830  |
| AVERAGE: | 16,478 | 15,388 | 13,166 | 12,467 | 10,672 | 13,452 | 13,933 | 22.882  | 51.766  | 30.844  | 21 975                                  | 16.977          | 220.000 |
| WINIMUM: | 8,394  | 10,892 | 7,867  | 7,328  | 6,959  | 8,301  | 8.033  | 8.310   | 8,110   | 8 796   | 6 261                                   |                 | 100,001 |
| MAXIMUM: | 31,638 | 23,762 | 19,961 | 17,911 | 20,351 | 22,581 | 21,476 | 149,208 | 300.792 | 182,933 | 58.875                                  | 0,300<br>28,688 | 778,609 |
|          |        |        |        |        |        |        |        |         |         |         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 200124          | 00000   |

Simulated Flows at Middle Fork South Platte River below Montgomery Reservoir No Action Alternative (CFS)

| WATER<br>YEAR | oct          | NON | DEC | JAN | FEB | MAR | АРА | МАУ | NNr            | ,<br>IL        | AUG            | SEP | ANNUAL |
|---------------|--------------|-----|-----|-----|-----|-----|-----|-----|----------------|----------------|----------------|-----|--------|
| 1950          | ε            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | σ   |        |
| 1951          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | . <del>(</del> | 0   | : -    |
| 1952          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 0   | ÷      |
| 1953          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | ۰ D | -      |
| 1954          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | <del>5</del> 3 | 39             | 35             | 0   | 12     |
| 1955          | en 1         | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| 1956          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| 1957          | e .          | 0   | 0   | 0   | 0   | 0   | -   | 19  | <del>5</del> 3 | 39             | 16             | 6   | 7      |
| 1958          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | ÷      |
| 1959          | e 1          | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| 1960          | <b>c</b>     | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 1      |
| 1961          | <b>ო</b>     | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 21             | 6   | 11     |
| 1962          | en 1         | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | =      |
| 1963          | с (          | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 21             | თ   | 11     |
| 1964          | <del>س</del> | a   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | თ   | :      |
| 1965          | n -          | 0   | 0   | 0   | 0   | 0   | Ţ   | 19  | <b>4</b> 3     | 39             | 16             | 6   | 11     |
| 1966          | <b>က</b>     | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 66             | 21             | თ   | 11     |
| 1967          | <b>m</b>     | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | თ   |        |
| 1968          | e            | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | თ   | ŧ      |
| 1969          | en 1         | 0   | 0   | 0   | 0   | 0   | -   | 19  | <b>4</b> 3     | 39             | 16             | თ   | 11     |
| 1970          | en (         | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 0   | 11     |
| 1971          | (n)          | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | ი   | ŧ      |
| 1972          | en i         | 0   | 0   | 0   | 0   | 0   | -   | 19  | <b>4</b> 3     | 39             | 16             | 6   | =      |
| 1973          | en (         | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | თ   | =      |
| 1974          | ლ (          | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| 5781          | ლ<br>(       | 0   | 0   | 0   | 0   | 0   | 1   | 19  | 43             | 39             | 16             | 6   | 11     |
| 19/61         |              | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| 1/61          |              | 0 0 | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 34             | 6   | 12     |
| R/RL          |              | 0 0 | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| B/BL          |              | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | 11     |
| 1980          |              | 0   | 0   | 0   | 0   | 0   | -   | 19  | 43             | <b>3</b> 6     | 16             | 6   | 11     |
| 1981          |              | 0 0 | 0   | 0   | 0   | 0   | -   | 19  | 43             | <u> 3</u> 6    | 42             | 6   | 13     |
| 1982          |              | 0 0 | 0   | 0   | 0   | 0   | -   | 19  | 43             | <del>3</del> 6 | 16             | 6   | 11     |
| 1963          |              | 0 0 | 0   | 0   | 0   | 0   | -   | 19  | <del>5</del> 3 | 39             | 16             | 6   | 11     |
| 4961          |              | 0   | 0   | 0   | 0   | 0   | -   | 19  | <del>6</del>   | 39             | 16             | 6   | 11     |
| 1985          | <b>n</b>     | 5   | 0   | 0   | 0   | 0   | -   | 19  | 43             | 39             | 16             | 6   | :      |

Simulated Flows at Middle Fork South Platte River below Montgomery Reservoir No Action Alternative

(CFS)

ANNUAL AVG ဖမ္ 2 Ξ ÷ SEP 6 ~ 9 AUG 16 16 16 JUL JUL NN MAY <u> 6 6 8</u> АРВ oφ 0 MAR 0000000000000 00 0 FEB 000 00 NAU •••••• 00 000 0 DEC 000 0 00 0 Nov 0 00000000000-0000000000 50 ကဝဖ ო 0000, 4 AVERAGE: MINIMUM MAXIMUM: 2005

## PROPOSED ACTION ALTERNATIVE

Reservoir Data

Homestake Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| WATER |        |        |        |        |        |        |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR  | ост    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | МАҮ    | NUL    | JUL    | AUG    | SEP    |
| 1950  | 30,020 | 30,014 | 30,040 | 30,068 | 30,073 | 24,393 | 15,996 | 21,283 | 32,506 | 32,299 | 31.028 | 30.911 |
| 1951  | 28,540 | 28,534 | 28,559 | 28,586 | 28,592 | 22,913 | 13,995 | 20,713 | 34,485 | 42,008 | 42,328 | 42,199 |
| 1952  | 39,822 | 39,816 | 39,845 | 39,877 | 38,077 | 29,291 | 17,172 | 18,893 | 36,503 | 40,700 | 42,075 | 41,528 |
| 1953  | 38,908 | 38,155 | 38,183 | 38,215 | 38,221 | 32,539 | 23,613 | 27,995 | 41,473 | 42,951 | 42,704 | 42,575 |
| 1954  | 40,197 | 40,191 | 40,220 | 40,252 | 40,259 | 35,295 | 27,907 | 34,330 | 32,702 | 32,424 | 31,194 | 29,412 |
| 1955  | 29,315 | 29,139 | 29,164 | 29,191 | 29,197 | 23,518 | 14,600 | 18,444 | 23,833 | 19,947 | 18,696 | 18,594 |
| 1956  | 16,232 | 16,227 | 16,246 | 16,267 | 16,271 | 10,596 | 2,731  | 12,478 | 21,007 | 18,236 | 16,987 | 16,888 |
| 1957  | 14,527 | 14,523 | 14,540 | 14,560 | 12,758 | 3,982  | 189    | 418    | 16,690 | 31,578 | 33,932 | 33,392 |
| 1958  | 30,777 | 30,024 | 30,049 | 30,077 | 30,083 | 24,403 | 15,485 | 23,807 | 31,845 | 29,765 | 28,498 | 28,384 |
| 1959  | 26,014 | 26,009 | 26,032 | 26,058 | 26,064 | 20,386 | 11,471 | 15,497 | 26,520 | 25,305 | 24,045 | 23,935 |
| 1960  | 21,569 | 21,564 | 21,585 | 21,609 | 21,614 | 15,937 | 8,269  | 11,883 | 22,003 | 21,825 | 20,570 | 20,466 |
| 1961  | 18,102 | 18,098 | 18,118 | 18,139 | 18,143 | 12,468 | 3,563  | 8,384  | 13,097 | 9,236  | 8,001  | 10,451 |
| 1962  | 10,239 | 10,235 | 10,251 | 10,268 | 10,272 | 4,600  | 185    | 5,349  | 14,517 | 17,614 | 16,834 | 16,735 |
| 1963  | 14,374 | 14,370 | 14,388 | 14,407 | 14,411 | 8,738  | 175    | 6,165  | 9,974  | 6,122  | 4,426  | 4,347  |
| 1964  | 1,998  | 1,996  | 2,004  | 2,014  | 2,015  | 172    | 170    | 5,640  | 10,991 | 8,111  | 6,878  | 6,793  |
| 1965  | 4,440  | 4,438  | 4,449  | 4,462  | 4,465  | 169    | 166    | 5,053  | 17,402 | 26,629 | 29,056 | 30,490 |
| 1966  | 28,681 | 28,675 | 28,700 | 28,727 | 28,733 | 23,772 | 16,395 | 19,946 | 22,297 | 22,040 | 20,826 | 19,057 |
| 1967  | 18,968 | 18,793 | 18,813 | 18,835 | 18,839 | 13,164 | 4,912  | 12,029 | 20,561 | 20,589 | 19,336 | 19,234 |
| 1968  | 16,871 | 16,867 | 16,886 | 16,907 | 16,911 | 11,236 | 2,333  | 3,209  | 15,360 | 15,001 | 17,529 | 17,429 |
| 1969  | 15,067 | 15,063 | 15,081 | 15,101 | 15,105 | 9,431  | 1,531  | 10,446 | 17,151 | 17,882 | 16,634 | 16,535 |
| 1970  | 14,174 | 14,170 | 14,188 | 14,207 | 14,211 | 8,537  | 179    | 11,225 | 25,243 | 26,170 | 25,209 | 25,217 |
| 1871  | 23,408 | 23,403 | 23,425 | 23,450 | 23,454 | 17.777 | 9,669  | 13,064 | 20,915 | 20,962 | 19,709 | 19,606 |
| 1972  | 17,243 | 17,238 | 17,257 | 17,279 | 17,283 | 11,608 | 2,703  | 6,997  | 21,231 | 21,258 | 20,176 | 20,315 |
| 1973  | 17,951 | 17,947 | 17,966 | 17,988 | 17,992 | 12,317 | 3,412  | 7,730  | 20,897 | 27,171 | 27,998 | 27,884 |
| 1974  | 25,515 | 25,509 | 25,533 | 25,558 | 25,564 | 19,886 | 11,382 | 19,438 | 29,568 | 29,641 | 28,477 | 28,363 |
| 1975  | 25,993 | 25,988 | 26,011 | 26,037 | 26,043 | 20,365 | 11,450 | 13,759 | 23,129 | 32,719 | 32,966 | 32,847 |
| 1976  | 30,474 | 30,469 | 30,494 | 30,522 | 30,528 | 24,848 | 15,929 | 22,754 | 30,075 | 30,320 | 29,658 | 29,543 |
| 1977  | 27,172 | 27,167 | 27,191 | 27,218 | 27,223 | 22,263 | 14,887 | 15,634 | 17,200 | 16,955 | 15,750 | 13,987 |
| 1978  | 13,901 | 13,727 | 13,744 | 13,763 | 13,767 | 8,094  | 186    | 5,706  | 24,159 | 31,068 | 29,799 | 29,683 |
| 1979  | 27,313 | 27,308 | 27,332 | 27,358 | 27,364 | 21,685 | 12,769 | 19,526 | 30,970 | 36,865 | 37,300 | 37,176 |
|       |        |        |        |        |        |        |        |        |        |        |        |        |

Homestake Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| WATED    |        |        |        |        |        |        |        |        |        |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR     | ост    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NUL    | JUL    | AUG    | SEP    |
| 1980     | 34,801 | 34,795 | 34,823 | 34,853 | 34,859 | 29,178 | 20,255 | 24.418 | 38.883 | 40.761 | 39.481 | 30,355 |
| 1981     | 36,979 | 36,973 | 37,001 | 37,032 | 37,038 | 31,356 | 22,431 | 26,515 | 33,230 | 29.324 | 28.058 | 27,944 |
| 1982     | 25,575 | 25,569 | 25,593 | 25,618 | 25,624 | 19,946 | 11,031 | 14,398 | 26,964 | 32,399 | 34,364 | 34,243 |
| 1983     | 31,869 | 31,864 | 31,890 | 31,918 | 30,118 | 21,335 | 8,659  | 7,242  | 21,753 | 32,459 | 36.927 | 36.385 |
| 1984     | 33,767 | 33,015 | 33,041 | 33,070 | 31,270 | 22,487 | 9,810  | 16,699 | 31,391 | 40,810 | 42,996 | 43.011 |
| 1985     | 41,257 | 40,504 | 40,533 | 40,565 | 40,572 | 34,889 | 26,778 | 37,629 | 42,959 | 42,951 | 42,268 | 42.140 |
| 1986     | 40,832 | 40,825 | 40,855 | 40,887 | 40,894 | 35,211 | 27,680 | 33,287 | 42,963 | 42,952 | 41.705 | 41,687 |
| 1987     | 39,310 | 39,304 | 39,333 | 39,365 | 39,371 | 33,668 | 25,940 | 34,353 | 40,277 | 38,928 | 37,650 | 37,525 |
| 1988     | 35,150 | 35,144 | 35,172 | 35,202 | 35,208 | 29,527 | 21,453 | 25,406 | 36,079 | 34,386 | 33.113 | 32,993 |
| 1989     | 30,621 | 30,615 | 30,640 | 30,669 | 30,674 | 24,995 | 17,479 | 24,763 | 29,909 | 28,483 | 27,218 | 27,105 |
| 1990     | 24,736 | 24,731 | 24,754 | 24,779 | 24,784 | 19,107 | 10,193 | 14,778 | 25,300 | 23,819 | 22,560 | 22,453 |
| LAAL     | 20,088 | 20,084 | 20,104 | 20,127 | 20,131 | 14,455 | 5,547  | 13,212 | 24,038 | 24,686 | 23,426 | 23,318 |
| 1992     | 20,952 | 20,948 | 20,968 | 20,992 | 20,996 | 15,330 | 9,972  | 19,951 | 28,473 | 28,358 | 25,942 | 20.288 |
| 1883     | 19,955 | 19,951 | 19,971 | 19,993 | 19,998 | 10,960 | 3,319  | 13,699 | 28,202 | 29,931 | 30,327 | 30.238 |
| 1994     | 30,201 | 30,196 | 30,221 | 30,249 | 30,254 | 21,701 | 11,204 | 20,936 | 28,933 | 28,817 | 28,738 | 26,342 |
| 1895     | 14,923 | 14,919 | 14,936 | 14,956 | 14,960 | 14,634 | 186    | 3,202  | 24,469 | 38,551 | 40,698 | 40,668 |
| 1996     | 40,626 | 40,619 | 40,648 | 40,681 | 40,687 | 33,411 | 19,244 | 29,025 | 40,997 | 40,828 | 39,889 | 39.811 |
| 1997     | 39,770 | 39,763 | 39,792 | 39,824 | 39,831 | 30,015 | 15,909 | 25,862 | 42,970 | 42,951 | 42,994 | 43.012 |
| 1998     | 42,560 | 42,553 | 42,583 | 42,616 | 42,623 | 34,455 | 34,140 | 40,791 | 42,957 | 42,952 | 42,995 | 42.915 |
| 1999     | 42,872 | 42,865 | 42,895 | 42,928 | 42,935 | 34,468 | 19,663 | 23,202 | 39,423 | 42,570 | 42,995 | 42.752 |
| 2000     | 42,709 | 42,702 | 42,732 | 42,766 | 42,772 | 38,296 | 29,989 | 42,994 | 42,955 | 42,951 | 42,472 | 42.001 |
| 1002     | 41,958 | 41,951 | 41,981 | 42,014 | 42,021 | 33,066 | 16,046 | 18,598 | 29,206 | 29,090 | 28,502 | 28,437 |
| 2002     | 27,309 | 23,568 | 23,591 | 23,616 | 23,620 | 18,292 | 7,676  | 7,626  | 7,562  | 7,496  | 4,449  | 1,834  |
| E002     | 1,822  | 1,820  | 1,828  | 1,837  | 1,839  | 1,833  | 1,817  | 12,972 | 16,582 | 19,632 | 19,567 | 19.514 |
| 2004     | 5,480  | 5,478  | 5,490  | 5,504  | 5,507  | 5,285  | 184    | 8,710  | 16,858 | 16,770 | 16,710 | 16.660 |
| 2005     | 16,633 | 16,629 | 16,647 | 16,668 | 16,672 | 8,623  | 172    | 8,559  | 20,588 | 25,076 | 25,002 | 24,940 |
| AVERAGE: | 25,903 | 25,769 | 25,791 | 25,817 | 25,693 | 19,838 | 11,432 | 17,261 | 26,933 | 28,595 | 28,208 | 27,885 |
| MINIMUM: | 1,822  | 1,820  | 1,828  | 1,837  | 1,839  | 169    | 166    | 418    | 7,562  | 6,122  | 4,426  | 1.834  |
| MAXIMUM: | 42,872 | 42,865 | 42,895 | 42,928 | 42,935 | 38,296 | 34,140 | 42,994 | 42,970 | 42,952 | 42,996 | 43,012 |

Wolford Mountain Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

| WATER |        |        |        |        |        |        |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR  | 001    | NON    | DEC    | NAL    | FEB    | MAR    | APR    | МАҮ    | JUN    | JUL    | AUG    | SEP    |
| 1950  | 59,701 | 59,658 | 59,730 | 59,802 | 59,788 | 59,701 | 59,448 | 65,611 | 65,444 | 65,490 | 59.774 | 58.214 |
| 1961  | 52,892 | 52,812 | 52,822 | 52,889 | 52,840 | 52,710 | 52,475 | 65,625 | 65,444 | 65,490 | 65,090 | 60,900 |
| 1952  | 56,677 | 56,595 | 56,608 | 56,631 | 56,596 | 56,462 | 65,750 | 65,598 | 65,444 | 65.490 | 65.090 | 65.646 |
| 1953  | 56,811 | 56,720 | 56,790 | 56,817 | 56,761 | 56,627 | 56,325 | 65,618 | 65,444 | 65,490 | 65,090 | 53,563 |
| 1954  | 53,375 | 53,334 | 53,344 | 53,412 | 53,356 | 53,226 | 52,932 | 63,444 | 62,917 | 62,438 | 47,258 | 45,384 |
| 1855  | 29,037 | 28,396 | 27,893 | 27,658 | 27,393 | 26,913 | 26,705 | 40,486 | 45,613 | 45,236 | 39,945 | 34,445 |
| 1956  | 34,313 | 34,236 | 34,226 | 34,230 | 34,178 | 34,072 | 33,845 | 65,675 | 65,443 | 64,950 | 59,238 | 53,096 |
| 1957  | 52,909 | 52,820 | 52,829 | 52,896 | 52,841 | 52,711 | 52,418 | 65,625 | 65,444 | 65,490 | 65,583 | 65.244 |
| 1958  | 64,905 | 64,810 | 64,829 | 64,863 | 64,805 | 64,664 | 64,340 | 65,601 | 65,444 | 64,951 | 59,238 | 52,656 |
| 1959  | 52,470 | 52,381 | 52,390 | 52,414 | 52,358 | 52,279 | 51,988 | 65,626 | 65,444 | 65,490 | 61,627 | 53,228 |
| 1960  | 52,916 | 52,827 | 52,837 | 52,904 | 52,848 | 52,718 | 65,754 | 65,598 | 65,444 | 65,490 | 59,755 | 53,639 |
| 1961  | 53,450 | 53,361 | 53,428 | 53,496 | 53,482 | 53,351 | 53,058 | 65,624 | 65,444 | 64,951 | 53,682 | 54,304 |
| 1962  | 63,549 | 63,455 | 63,473 | 63,057 | 62,469 | 57,028 | 65,749 | 65,598 | 65,444 | 65,490 | 65,090 | 56,228 |
| 1963  | 53,383 | 53,343 | 53,410 | 53,434 | 53,379 | 53,248 | 52,954 | 65,624 | 65,444 | 59,598 | 51,058 | 48,238 |
| 1964  | 33,054 | 31,318 | 30,792 | 30,230 | 29,708 | 26,595 | 26,388 | 43,234 | 50,755 | 50,342 | 45,184 | 38,323 |
| 1965  | 38,179 | 38,149 | 38,143 | 38,151 | 38,098 | 37,987 | 37,746 | 65,665 | 65,443 | 65,490 | 65,174 | 64,837 |
| 1966  | 65,769 | 65,674 | 65,694 | 65,728 | 65,671 | 65,528 | 65,203 | 65,599 | 65,444 | 64,951 | 45,850 | 39,745 |
| 1967  | 39,473 | 39,442 | 39,437 | 39,446 | 39,394 | 39,281 | 40,708 | 61,515 | 65,456 | 65,490 | 61,625 | 53,803 |
| 1968  | 51,977 | 51,888 | 51,897 | 51,920 | 51,865 | 51,736 | 51,447 | 64,467 | 65,447 | 65,490 | 65,583 | 59,072 |
| 1969  | 53,829 | 53,740 | 53,750 | 53,775 | 53,719 | 53,638 | 61,519 | 65,607 | 65,444 | 65,490 | 62,236 | 53,235 |
| 1970  | 53,047 | 52,958 | 52,968 | 52,992 | 52,937 | 52,806 | 52,514 | 65,625 | 65,444 | 65,490 | 59,775 | 59,458 |
| 1871  | 59,256 | 59,164 | 59,179 | 59,208 | 59,151 | 59,015 | 65,746 | 65,598 | 65,444 | 65,490 | 65,090 | 64,752 |
| 1972  | 64,414 | 64,369 | 64,388 | 64,421 | 64,363 | 64,222 | 63,979 | 65,602 | 65,444 | 65,490 | 57,826 | 55,629 |
| 1973  | 55,436 | 55,345 | 55,414 | 55,398 | 55,384 | 55,252 | 54,953 | 65,620 | 65,444 | 65,490 | 65,136 | 59,103 |
| 1974  | 52,857 | 52,768 | 52,777 | 52,759 | 52,746 | 52,666 | 56,116 | 65,618 | 65,444 | 65,490 | 59,776 | 53,637 |
| 1975  | 53,325 | 53,236 | 53,303 | 53,285 | 53,272 | 53,191 | 52,977 | 65,624 | 65,444 | 65,490 | 65,090 | 53,646 |
| 1976  | 53,457 | 53,368 | 53,435 | 53,417 | 53,404 | 53,273 | 53,059 | 65,624 | 65,444 | 65,490 | 59,776 | 53,224 |
| 1977  | 53,037 | 52,947 | 53,014 | 53,081 | 53,068 | 52,987 | 52,695 | 52,361 | 51,897 | 46,131 | 40,178 | 39,872 |
| 1978  | 21,193 | 21,123 | 21,101 | 21,092 | 21,043 | 20,952 | 22,414 | 51,639 | 65,484 | 65,490 | 59,772 | 52,461 |
| 1979  | 52,275 | 52,186 | 52,195 | 52,218 | 52,205 | 52,076 | 51,864 | 65,626 | 65,444 | 65,490 | 65,090 | 53,233 |
|       |        |        |        |        |        |        |        |        |        |        |        |        |

Wolford Mountain Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| WATER    | 1.20   | 1014   |        |        |        |        |        |        |        |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR     | 5      | ADN    |        | NAC    |        | MAH    | APR    | MAY    | NUL    | JUL    | AUG    | SEP    |
| 1980     | 53,046 | 53,006 | 53,015 | 53,039 | 52,984 | 52,854 | 52,640 | 65.625 | 65.444 | 65.490 | 59.776 | 53 224 |
| 1981     | 53,037 | 52,947 | 53,014 | 53,081 | 53,068 | 52,937 | 52,645 | 65,625 | 65.444 | 62.972 | 48.384 | 46.542 |
| 1982     | 31,426 | 31,351 | 31,338 | 31,338 | 31,287 | 31,185 | 30,968 | 59.616 | 65.462 | 65.490 | 65,090 | 64 752 |
| 1983     | 64,538 | 64,443 | 64,462 | 64,496 | 64,438 | 64,297 | 63,975 | 65,602 | 65.444 | 65.490 | 65,583 | 62 952 |
| 1984     | 62,618 | 62,574 | 62,591 | 62,623 | 62,566 | 62,476 | 62,238 | 65,606 | 65.444 | 65.490 | 65.583 | 65,244 |
| 1985     | 65,769 | 65,939 | 65,985 | 65,985 | 65,970 | 65,877 | 65,737 | 65,598 | 65,444 | 65.490 | 65.090 | 64.752 |
| 1986     | 65,429 | 65,939 | 65,959 | 65,985 | 65,970 | 65,892 | 65,737 | 65,598 | 65,444 | 65.490 | 65.090 | 64.752 |
| 1987     | 65,755 | 65,939 | 65,959 | 65,985 | 65,928 | 65,785 | 65,737 | 65,598 | 65,444 | 65,202 | 64.803 | 53.454 |
| 1988     | 53,265 | 53,176 | 53,186 | 53,210 | 53,155 | 53,024 | 54,659 | 65,621 | 65,444 | 65,490 | 59,776 | 53,637 |
| 1989     | 53,448 | 53,359 | 53,426 | 53,493 | 53,438 | 53,307 | 64,126 | 65,601 | 65,444 | 64,951 | 54,177 | 53,105 |
| 1990     | 52,917 | 52,828 | 52,838 | 52,905 | 52,849 | 52,719 | 52,427 | 64,720 | 65,446 | 64,953 | 53,379 | 51,753 |
| 1991     | 51,445 | 51,356 | 51,422 | 51,487 | 51,474 | 51,345 | 51,058 | 65,629 | 65,444 | 65,490 | 59,776 | 53,636 |
| 1992     | 53,448 | 53,358 | 53,368 | 53,393 | 53,337 | 53,207 | 52,992 | 65,624 | 65,444 | 64,951 | 50,849 | 46.672 |
| 1993     | 45,412 | 45,327 | 45,329 | 45,345 | 45,291 | 45,171 | 44,984 | 65,646 | 65,444 | 65,490 | 65,090 | 64,340 |
| 1994     | 64,003 | 63,909 | 63,927 | 63,960 | 63,903 | 63,762 | 63,520 | 65,603 | 65,444 | 59,647 | 49,166 | 48.890 |
| 1895     | 48,619 | 48,534 | 48,586 | 48,601 | 48,554 | 48,429 | 48,215 | 65,637 | 65,444 | 65,490 | 65,090 | 64.752 |
| 1996     | 64,442 | 64,356 | 64,376 | 64,405 | 64,354 | 64,213 | 65,739 | 65,598 | 65,444 | 65,490 | 59.776 | 59.458 |
| 1997     | 59,161 | 59,078 | 59,092 | 59,117 | 59,068 | 58,961 | 64,816 | 65,600 | 65,444 | 65,490 | 65,090 | 64.752 |
| 1998     | 64,999 | 65,330 | 65,364 | 65,409 | 65,352 | 65,209 | 65,738 | 65,598 | 65,444 | 65,490 | 65,090 | 59,469 |
| 1999     | 59,172 | 59,089 | 59,161 | 59,185 | 59,136 | 59,000 | 58,707 | 65,613 | 65,444 | 65,490 | 65,090 | 64.280 |
| 2000     | 54,952 | 54,871 | 54,939 | 54,961 | 54,912 | 54,780 | 55,693 | 65,619 | 65,444 | 64,951 | 53,176 | 52,029 |
| 2001     | 51,844 | 51,764 | 51,773 | 51,792 | 51,744 | 51,615 | 51,383 | 65,628 | 65,444 | 64,951 | 54,185 | 47.220 |
| 2002     | 46,954 | 46,878 | 46,881 | 46,894 | 46,844 | 46,722 | 46,530 | 46,231 | 45,814 | 39,516 | 29,073 | 27,695 |
| 2003     | 19,448 | 19,382 | 19,356 | 19,341 | 19,296 | 19,209 | 19,045 | 48,582 | 65,496 | 65,003 | 59,045 | 52,638 |
| 2004     | 52,451 | 52,371 | 52,381 | 52,400 | 52,352 | 52,251 | 51,975 | 59,734 | 63,645 | 63,162 | 47,127 | 46.389 |
| 2005     | 29,765 | 29,700 | 29,685 | 29,681 | 29,637 | 29,536 | 29,379 | 57,522 | 65,467 | 65,490 | 65,090 | 58,319 |
| AVERAGE  | 52,220 | 52,129 | 52,134 | 52,138 | 52,072 | 51,798 | 52,924 | 63,126 | 64,161 | 63,597 | 58,574 | 54,527 |
| MINIMUM: | 19,448 | 19,382 | 19,356 | 19,341 | 19,296 | 19,209 | 19,045 | 40,486 | 45,613 | 39,516 | 29,073 | 27,695 |
| MAXIMUM: | 65,769 | 65,939 | 65,985 | 65,985 | 65,970 | 65,892 | 65,754 | 65,675 | 65,496 | 65,490 | 65,583 | 65,646 |

Williams Fork Reservoir Simulated End-Of-Month Contents Proposed Action Alternative (AF)

| WATER |        |        |        |        |        |        |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR  | oct    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NNC    | JUL    | AUG    | SEP    |
| 1950  | 66,230 | 61,473 | 59,007 | 58,061 | 56,473 | 54,174 | 59,260 | 68,579 | 86.429 | 90.030 | 73.597 | 66.382 |
| 1951  | 61,460 | 58,237 | 56,028 | 54,784 | 53,948 | 51,500 | 50,874 | 66,035 | 96,052 | 96,303 | 89.843 | 72.487 |
| 1952  | 62,937 | 58,921 | 55,994 | 53,371 | 51,688 | 49,386 | 57,503 | 82,436 | 96,289 | 96.302 | 89.842 | 79.610 |
| 1953  | 72,660 | 68,402 | 64,261 | 60,058 | 58,428 | 56,518 | 55,835 | 65,976 | 87,680 | 91,515 | 83.922 | 77,315 |
| 1954  | 71,991 | 67,956 | 64,038 | 60,058 | 59,436 | 57,596 | 56,720 | 60,662 | 63,081 | 59,819 | 53.056 | 47.690 |
| 1955  | 31,760 | 28,592 | 26,431 | 24,590 | 23,518 | 22,040 | 27,092 | 34,375 | 43,015 | 45,769 | 40.683 | 30.766 |
| 1956  | 24,876 | 20,958 | 18,582 | 16,799 | 15,018 | 12,651 | 18,518 | 33,889 | 43,620 | 45,618 | 37.497 | 32,618 |
| 1957  | 27,722 | 24,606 | 23,272 | 21,695 | 20,221 | 18,916 | 18,665 | 30,276 | 70,296 | 96,360 | 89.890 | 83.586 |
| 1958  | 72,530 | 68,315 | 64,218 | 60,058 | 57,917 | 55,640 | 55,210 | 82,436 | 96,069 | 96,303 | 80,310 | 73,830 |
| 1959  | 68,867 | 65,875 | 62,996 | 60,057 | 58,529 | 56,341 | 55,694 | 63,247 | 72,184 | 73,314 | 66,954 | 60,012 |
| 19981 | 56,450 | 51,262 | 46,402 | 43,953 | 41,843 | 39,863 | 49,419 | 63,666 | 91,097 | 95,961 | 86,484 | 80,628 |
| 1961  | 75,280 | 70,148 | 65,135 | 60,058 | 59,048 | 57,985 | 54,879 | 63,197 | 80,052 | 77,057 | 65,707 | 64,303 |
| 1962  | 63,062 | 61,443 | 56,990 | 54,672 | 53,151 | 51,378 | 66,397 | 92,168 | 96'039 | 96,303 | 88,551 | 82,519 |
| 1963  | 76,701 | 71,095 | 62,609 | 60,058 | 58,571 | 56,236 | 55,926 | 56,258 | 57,961 | 54,409 | 53,358 | 43,400 |
| 1964  | 29,443 | 26,763 | 25,238 | 23,777 | 22,267 | 20,494 | 16,619 | 26,788 | 32,811 | 32,722 | 29,335 | 23.714 |
| 1965  | 20,234 | 16,971 | 14,295 | 11,905 | 9,777  | 7,569  | 11,855 | 20,599 | 50,703 | 67,198 | 65,683 | 64,284 |
| 1966  | 63,048 | 61,302 | 57,207 | 55,116 | 53,874 | 51,519 | 51,001 | 55,482 | 58,941 | 60,141 | 42,813 | 37,840 |
| 1967  | 33,554 | 31,115 | 29,744 | 28,571 | 27,323 | 25,212 | 29,415 | 34,653 | 51,873 | 58,148 | 48.798 | 41.714 |
| 1968  | 36,546 | 33,140 | 31,303 | 29,755 | 27,943 | 25,842 | 21,743 | 26,391 | 38,958 | 43,288 | 45.780 | 29.847 |
| 1969  | 21,803 | 18,023 | 15,287 | 12,590 | 10,585 | 7,996  | 14,377 | 28,095 | 55,544 | 64,420 | 58,033 | 48,359 |
| 1970  | 49,950 | 47,918 | 46,285 | 43,442 | 41,143 | 38,511 | 38,173 | 62,858 | 96,182 | 96,303 | 89,842 | 83,548 |
| 1261  | 77,466 | 71,604 | 65,863 | 60,058 | 57,133 | 53,599 | 62,280 | 76,916 | 96,049 | 96,303 | 88,852 | 79,758 |
| 1972  | 71,136 | 67,112 | 63,615 | 60,057 | 57,766 | 53,966 | 58,120 | 62,602 | 71,934 | 72,080 | 55,015 | 50,257 |
| 1973  | 48,491 | 45,252 | 42,496 | 40,441 | 38,901 | 37,286 | 36,826 | 52,726 | 86,198 | 96,326 | 89,266 | 80,738 |
| 1974  | 75,363 | 70,203 | 65,162 | 60,058 | 58,418 | 56,201 | 61,638 | 82,209 | 96,016 | 96,303 | 83,411 | 76,044 |
| 1975  | 69,150 | 65,479 | 61,995 | 60,057 | 58,207 | 55,872 | 55,200 | 59,191 | 69,310 | 83,859 | 76,012 | 86,031 |
| 1976  | 60,679 | 57,089 | 54,572 | 52,412 | 50,413 | 47,704 | 51,416 | 57,569 | 65,612 | 68,964 | 62,236 | 55,050 |
| 1977  | 47,016 | 43,208 | 41,322 | 40,196 | 38,940 | 37,092 | 36,522 | 37,790 | 42,149 | 33,067 | 15,849 | 11,186 |
| 1978  | 3,025  | 1,462  | 1,145  | 1,043  | 941    | 831    | 5,928  | 13,760 | 31,247 | 35,092 | 30,574 | 23,356 |
| 6/61  | 19,976 | 17,144 | 14,700 | 11,832 | 9,494  | 6,309  | 10,439 | 22,377 | 49,540 | 60,199 | 54,528 | 48,680 |
|       |        |        |        |        |        |        |        |        |        |        |        |        |

Williams Fork Reservoir Simulated End-Of-Month Contents Proposed Action Alternative (AF)

| WATER    |        |        |        |        |        |        |        |        |        |        |        |          |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|
| YEAR     | oct    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NNr    | JUL    | AUG    | SEP      |
| 1980     | 43,654 | 40,421 | 37,588 | 34,084 | 31,068 | 29,388 | 29.749 | 43.117 | 64.424 | 67 635 | 61 114 | 51 082 . |
| 1981     | 46,010 | 42,978 | 40,855 | 39,521 | 38,288 | 36,600 | 31,028 | 35,587 | 43,181 | 41.811 | 24,400 | 13 443   |
| 1982     | 8,580  | 5,942  | 4,045  | 2,119  | 761    | 651    | 642    | 7.977  | 31,192 | 43.271 | 40.479 | 40.557   |
| 1983     | 40,239 | 36,407 | 32,125 | 29,510 | 26,154 | 24,852 | 19,647 | 31,556 | 95,107 | 96.305 | 89.844 | 80,869   |
| 1984     | 73,252 | 68,796 | 63,824 | 59,887 | 57,760 | 53,651 | 52,950 | 90,996 | 96,267 | 96,302 | 89.842 | 83.548   |
| 1985     | 77,466 | 71,604 | 65,863 | 60,058 | 58,166 | 55,099 | 65,494 | 88,839 | 96,273 | 96,302 | 89,412 | 81,975   |
| 1985     | 76,289 | 70,820 | 65,471 | 60,058 | 59,466 | 63,499 | 70,808 | 87,296 | 96,210 | 96,302 | 89,842 | 83,548   |
| 1987     | 77,466 | 71,604 | 65,863 | 60,058 | 57,260 | 54,631 | 59,608 | 70,530 | 84,110 | 86,390 | 77,305 | 71,431   |
| 1988     | 66,479 | 63,026 | 59,771 | 55,928 | 52,872 | 51,171 | 57,682 | 71,697 | 96,089 | 96,303 | 76,271 | 69,720   |
| 1989     | 65,001 | 61,721 | 59,349 | 57,566 | 55,711 | 52,958 | 58,874 | 66,970 | 72,130 | 68,901 | 66,823 | 59,199   |
| 1990     | 54,694 | 51,129 | 47,881 | 45,542 | 43,376 | 40,201 | 39,593 | 45,797 | 52,460 | 53,807 | 35,776 | 26,562   |
| 1991     | 17,941 | 13,502 | 10,684 | 8,441  | 6,864  | 4,294  | 3,779  | 20,255 | 43,875 | 46,193 | 43,169 | 39,774   |
| 1992     | 34,434 | 29,602 | 26,430 | 23,885 | 21,115 | 16,765 | 21,665 | 36,591 | 48,980 | 53,931 | 28,741 | 18,571   |
| 1993     | 6,855  | 2,244  | 1,264  | 1,163  | 1,061  | 950    | 938    | 28,058 | 64,108 | 78,288 | 74,891 | 64,502   |
| 1994     | 56,070 | 52,068 | 48,681 | 45,555 | 43,076 | 39,836 | 43,734 | 58,240 | 69,754 | 66,721 | 55,560 | 45,804   |
| 1895     | 40,427 | 37,127 | 34,613 | 32,464 | 29,736 | 26,075 | 19,526 | 28,177 | 69,051 | 96,363 | 89,892 | 74,980   |
| 1996     | 67,435 | 63,137 | 58,650 | 53,607 | 49,558 | 45,392 | 53,128 | 84,229 | 96,091 | 96,303 | 89.108 | 79.043   |
| 1997     | 70,586 | 64,512 | 59,331 | 54,847 | 50,182 | 46,059 | 51,503 | 78,448 | 96,148 | 96,303 | 89,842 | 83,548   |
| 1998     | 77,466 | 71,604 | 65,863 | 60,058 | 56,272 | 52,283 | 55,973 | 65,502 | 74,095 | 83,622 | 79,319 | 63,558   |
| 1999     | 55,003 | 49,916 | 46,885 | 43,289 | 40,232 | 35,407 | 34,760 | 43,602 | 61,972 | 69,439 | 67,544 | 51.351   |
| 2000     | 42,884 | 38,934 | 35,146 | 31,202 | 27,657 | 23,439 | 29,112 | 52,083 | 67,151 | 70,807 | 51.279 | 38.472   |
| 2001     | 31,224 | 27,556 | 23,539 | 20,340 | 17,563 | 13,797 | 13,379 | 27,336 | 37,825 | 43,441 | 19,238 | 7,747    |
| 2002     | 1,422  | 1,321  | 1,225  | 1,124  | 1,022  | 911    | 668    | 4,561  | 5,499  | 912    | 892    | 742      |
| 2003     | 734    | 634    | 536    | 433    | 331    | 224    | 220    | 33,075 | 70,763 | 76,719 | 67.872 | 54.659   |
| 2004     | 47,995 | 44,111 | 41,104 | 38,305 | 35,546 | 31,498 | 30,918 | 40,891 | 48,375 | 49,333 | 26,900 | 17.997   |
| 2005     | 10,010 | 6,395  | 4,279  | 1,682  | 1,059  | 948    | 8,323  | 29,941 | 51,315 | 59,669 | 54,090 | 47,770   |
| AVERAGE: | 49,090 | 45,325 | 42,144 | 39,291 | 37,376 | 35,122 | 37,455 | 50,974 | 67,919 | 71,619 | 62,771 | 54.766   |
|          | 734    | 634    | 536    | 433    | 331    | 224    | 220    | 4,561  | 5,499  | 912    | 892    | 742      |
| MAXIMUM: | 77,466 | 71,604 | 65,863 | 60,058 | 59,466 | 63,499 | 70,808 | 92,168 | 96,289 | 96,363 | 89,892 | 83.586   |
|          |        |        |        |        |        |        |        |        |        |        |        |          |

Dillon Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| 224,767         271,333         215,463         211,963         206,361         193,145         207,430         255,968         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,546         255,556         255,546         255,556         255,556         255,556         255,556         255,556         255,556         255,556         255,556         255,556         255,556         255,556         255,556         265,557         277,21         10,100         188,137         277,761         10,556         265,566         265,566         265,566         265,566         265,566         265,566         265,566         265,566         265,566         277,21         265,566 <th270< th="">         256,566         265,566</th270<>                                                                                                                                                                                                                | WATER<br>YEAR | ост     | NON     | DEC     | JAN     | FEB     | MAR     | APR       | MAY     | NUL                | JUL      | AUG     | SEP      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------|---------|---------|---------|---------|-----------|---------|--------------------|----------|---------|----------|
| 191,575         165,778         173,050         166,179         16,000         202,401         202,410         206,901         212,028         256,506         255,968         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         255,548         112,707         112,707         112,707         112,707         112,708         112,707         112,708         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702         112,702 <td< th=""><th>1950</th><th>224,767</th><th>221.933</th><th>215.493</th><th>211.963</th><th>208.859</th><th>201 QR7</th><th>102 1 A E</th><th>004 700</th><th>DEE DEO</th><th>DEE DEO</th><th></th><th>110000</th></td<>            | 1950          | 224,767 | 221.933 | 215.493 | 211.963 | 208.859 | 201 QR7 | 102 1 A E | 004 700 | DEE DEO            | DEE DEO  |         | 110000   |
| 233,784         228,119         221,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,002         216,003         217,005         116,173         113,186         116,173         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         116,172         113,186         117,248         116,172         113,186         117,248         116,172         113,173         113,186         117,248         113,151         112,202         116,172         117,248         117,248         117,248         113,053         117,248         117,248         113,053         117,248         117,248         117,248         117,248         117,248         117,248         117,248         117,248 <t< th=""><th>1951</th><th>191,575</th><th>185,278</th><th>178,652</th><th>173.050</th><th>166,179</th><th>161.068</th><th>160 007</th><th></th><th>200'909<br/>256 006</th><th>200,300</th><th>229,238</th><th>209, 214</th></t<> | 1951          | 191,575 | 185,278 | 178,652 | 173.050 | 166,179 | 161.068 | 160 007   |         | 200'909<br>256 006 | 200,300  | 229,238 | 209, 214 |
| 221,102         213,065         206,102         207,064         15,180         152,567         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,573         752,569         255,573         755,569         255,573         755,569         255,573         255,569         255,559         255,569         255,559         255,569         255,559         255,573         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         255,569         256,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569         266,569 <td< th=""><th>1952</th><th>233,784</th><th>228,119</th><th>221.002</th><th>216.059</th><th>211 400</th><th>206 201</th><th></th><th></th><th></th><th>2008'CC2</th><th>200,040</th><th>241,565</th></td<>                          | 1952          | 233,784 | 228,119 | 221.002 | 216.059 | 211 400 | 206 201 |           |         |                    | 2008'CC2 | 200,040 | 241,565  |
| 206,947         201,080         93,604         88,304         88,311         118,115         175,607         155,603         155,603         156,603         112,607           96,412         91,668         88,004         82,353         78,289         75,665         77,676         120,065         111,248         167,805         141,604           102,087         355,473         253,474         89,349         76,665         77,676         120,056         111,244         167,805         141,604           102,087         255,473         253,474         291,310         188,132         184,980         181,558         181,767         256,596         256,547         255,969         256,547         255,969         256,547         256,969         256,547         256,969         256,547         256,969         256,554         277,791           201,314         196,177         191,130         188,132         184,960         177,864         157,656         256,547         256,969         256,543         256,569         258,473         256,969         284,477         191,175         101,055         89,558         81,477         101,055         89,558         81,577         256,969         266,443         177,864         177,864         157,610                                                                                                                                                                                                                                                                             | 1953          | 221 102 | 213 985 | 208 513 | 206,004 |         |         |           | 102,002 | 200,871            | 200,909  | 256,162 | 236,564  |
| 56,412         91,686         88,004         80,334         81,915         17,506         17,576         15,603         11,504           106,180         102,426         88,004         80,335         83,499         77,576         19,3647         25,603         255,512           106,180         102,426         88,004         82,353         83,499         77,540         71,047         53,931         53,291         95,374         256,969         255,598           255,5928         255,473         233,490         187,165         177,91         73,256         96,525         73,256           201,314         196,177         191,170         63,490         187,156         70,056         117,248         717,761           211,720         196,177         197,175         191,180         177,91         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,916         177,91                                                                                                                                                                                                                                                                                       | 1954          | 208 047 |         |         |         |         | 134,400 | 180,797   | 200,889 | 255,983            | 255,968  | 255,624 | 229,777  |
| 39,4;         5,3,23         78,266         73,229         90,502         118,173         113,864         112,702           106,180         102,967         87,273         78,340         71,477         85,51         35,513         35,713         35,619         255,563         111,73         113,864         112,702           255,328         255,473         253,474         29,843         247,162         246,027         256,208         255,913         255,569         266,553         255,713         255,969         266,523         255,969         266,523         255,969         266,523         255,969         266,523         255,969         266,523         255,733         255,733         255,742         256,969         286,523         277,791         277,791         277,791         277,791         277,791         274,173         274,255         255,969         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         286,596         2                                                                                                                                                                                                                                                      | 1055          | 014007  |         | 193,004 | 00,931  | 181,915 | 1/5,664 | 151,880   | 152,587 | 146,576            | 126,037  | 112,607 | 101,777  |
| 106,180         102,426         98,245         83,499         76,665         77,576         120,056         171,248         167,805         14,505           255,282         255,473         256,206         256,917         256,206         256,969         225,593         225,596         225,596         225,596         225,596         225,596         225,596         225,597         255,596         226,596         226,596         226,596         226,596         226,596         226,596         226,596         226,596         226,596         226,596         226,596         226,596         226,517         237,791         237,791         237,791         237,791         237,791         237,791         237,793         255,541         255,546         236,516         236,516         236,516         235,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,556         236,567         236,567         236,567         236,566         236,567         236,566         236,566         236,566         236,566         236,566         236,567         236,566 </th <th>1900</th> <th>20,412</th> <th>91,686</th> <th>88,004</th> <th>82,353</th> <th>78,289</th> <th>72,860</th> <th>73,229</th> <th>90,502</th> <th>118,173</th> <th>113,864</th> <th>112,702</th> <th>112,101</th>                | 1900          | 20,412  | 91,686  | 88,004  | 82,353  | 78,289  | 72,860  | 73,229    | 90,502  | 118,173            | 113,864  | 112,702 | 112,101  |
| 102.987         94,785         87.279         77,240         71,047         63,931         63,291         94,227         192,374         256,067         255,698         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         235,598         237,731         117,731         117,731         117,731         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,733         117,734         117,731         117,731         117,7                                                                                                                                                                                                                             | 1956          | 106,180 | 102,426 | 98,274  | 89,345  | 83,499  | 76,665  | 77,676    | 120,056 | 171,248            | 167,805  | 141,604 | 115,532  |
| 255,928         255,473         253,474         249,042         246,027         256,208         255,929         235,592         235,592         235,573           201,314         196,177         191,130         188,132         181,538         187,2598         255,969         236,592         235,593         235,733           216,941         214,780         197,864         167,722         160,278         177,916         255,969         236,474         255,969         236,592         236,596         236,733           191,288         187,837         186,064         177,916         177,964         165,668         151,039         146,555         121,678         107,255           89,538         87,229         80,322         56,497         60,141         61,601         93,582         101,055         384,77           89,556         175,902         69,421         65,497         60,141         61,501         93,002         266,068         255,610         255,969         284,77           81,555         150,208         166,356         166,369         160,316         152,107         255,978         255,969         244,98           85,554         255,978         255,918         255,918         255,918         255,918                                                                                                                                                                                                                                                                                                       | 1957          | 102,987 | 94,785  | 87,279  | 77,240  | 71,047  | 63,931  | 63,291    | 94,227  | 192,374            | 256,087  | 255,698 | 255,827  |
| 201,314         196,177         191,130         188,132         184,990         181,538         183,383         205,164         255,968         235,793           216,941         214,780         209,907         204,381         199,286         197,865         197,865         285,928         255,969         228,347           197,757         191,986         186,064         177,916         177,916         177,916         177,916         107,259           197,757         191,986         186,064         177,916         177,636         256,168         235,793         286,590         255,617         255,969         228,347           197,757         191,986         176,966         177,964         167,712         166,5168         170,966         167,751         284,477         101,055           83,558         73,326         73,320         73,320         73,320         73,330         233,487         213,935         230,038         241,451         265,948         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610<                                                                                                                                                                                                                                                                              | 1958          | 255,928 | 255,473 | 253,474 | 249,843 | 247,162 | 246,420 | 246,027   | 256,208 | 255,871            | 255,969  | 236,525 | 216.087  |
| 215,941         214,80         209,907         204,361         199,282         197,805         201,526         228,282         255,969         228,347           197,757         191,926         239,966         239,966         239,561         179,388         219,151         224,544         217,791           197,757         191,926         239,966         239,962         239,561         179,384         156,668         151,039         148,555         121,578         101,055           197,757         191,926         255,541         254,343         253,941         55,302         233,546         213,685         101,055           83,425         73,325         75,902         69,421         65,417         65,166         151,039         148,555         101,055         117,689         101,055           83,425         75,902         69,421         65,497         60,141         61,501         93,567         233,546         213,689         255,610         255,541         255,948         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610                                                                                                                                                                                                                                                                                         | 1959          | 201,314 | 196,177 | 191,130 | 188,132 | 184,990 | 181,598 | 183,383   | 205,164 | 255,974            | 255,968  | 235,793 | 217,463  |
| 191,288         187,837         183,056         177,916         172,864         167,722         160,278         179,388         219,151         224,544         217,791           197,757         191,984         187,657         193,982         239,969         239,882         251,688         256,200         256,871         255,969         238,477           197,757         191,984         186,064         179,811         175,304         170,867         156,103         148,555         121,678         101,055           83,425         79,325         75,902         56,497         60,141         61,501         93,582         139,022         83,456         136,569         101,055           83,425         75,902         56,497         60,141         61,501         93,562         139,368         210,055           186,559         186,559         190,567         172,637         166,316         255,402         255,996         255,448         256,699         255,646         255,648         256,698         256,649         266,648         256,669         269,487         256,948         256,649         266,649         266,649         266,649         266,649         266,649         266,649         266,229         256,648         256,649                                                                                                                                                                                                                                                                                        |               | 216,941 | 214,780 | 209,907 | 204,381 | 199,282 | 197,805 | 201,526   | 228,282 | 255,928            | 255,969  | 228,347 | 202,909  |
| 242,135         240,250         239,969         239,868         236,688         256,506         256,871         255,969         238,477           197,757         191,984         186,064         175,304         170,864         156,668         151,039         148,555         121,678         107,259           89,538         87,229         83,022         89,0326         77,087         73,320         70,852         92,470         120,050         117,869         101,055           83,425         75,902         69,421         65,497         60,141         61,501         93,682         139,002         255,610         255,610         255,610         255,610         255,948         250,038         250,103         418,555         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         213,685         214,91         203,081         214,917         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,94                                                                                                                                                                                                                                                              | 1961          | 191,288 | 187,837 | 183,058 | 177,916 | 172,864 | 167,722 | 160,278   | 179,388 | 219,151            | 224,544  | 217,791 | 230.075  |
| 197./57         191./84         186,064         179,164         156,668         151,039         148,555         121,678         107,259           89,538         87.229         83,022         80,326         77,087         73,320         70,852         92,470         120,050         117,869         101,055           89,539         87,229         83,022         80,326         77,087         73,320         70,852         92,470         120,050         117,869         101,055           255,996         255,41         254,343         253,941         251,308         250,712         246,077         252,702         255,948         233,546         213,685           215,897         207,509         199,123         192,074         186,553         181,202         193,567         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948                                                                                                                                                                                                                                                                             | 1962          | 242,135 | 240,250 | 239,922 | 239,969 | 239,892 | 238,682 | 251,688   | 256,200 | 255,871            | 255,969  | 238,477 | 213,451  |
| B9,538         B7,229         B3,022         B0,326         77,087         73,320         70,852         92,470         120,050         117,869         101,055           B3,425         79,325         75,902         69,421         65,497         60,141         61,501         93,582         193,002         256,086         255,610           255,996         255,541         254,343         253,941         251,308         250,712         246,077         252,702         255,878         230,938         220,038           255,996         255,541         254,343         253,912         180,556         181,202         193,052         265,948         213,665           212,897         207,509         199,123         192,074         185,959         180,556         181,202         193,657         255,948         230,938         255,949         255,949         255,948         234,465         255,948         234,465         255,948         234,465         255,948         234,465         236,468         234,465         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,9468         254,277         2555,948 <th>1963</th> <th>197,757</th> <th>191,984</th> <th>186,064</th> <th>179,811</th> <th>175,304</th> <th>170,864</th> <th>156,668</th> <th>151,039</th> <th>148,555</th> <th>121,678</th> <th>107.259</th> <th>97.772</th>                                                 | 1963          | 197,757 | 191,984 | 186,064 | 179,811 | 175,304 | 170,864 | 156,668   | 151,039 | 148,555            | 121,678  | 107.259 | 97.772   |
| B3,425         79,325         75,902         69,421         65,497         60,141         61,501         93,582         193,002         255,616         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         260,038         250,038         260,038         260,031         211,020         193,150         265,610         265,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         255,610         266,294         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         255,616         256,217         255,61                                                                                                                                                                                                                             | 1964          | 89,538  | 87,229  | 83,022  | 80,326  | 77,087  | 73,320  | 70,852    | 92,470  | 120,050            | 117,869  | 101.055 | 90,317   |
| 255,996         255,541         254,343         250,712         246,077         252,702         255,878         233,546         213,685           186,559         180,567         172,637         166,326         160,316         152,103         143,053         165,197         213,935         230,938         220,038           212,897         207,509         199,123         192,074         185,959         180,558         181,202         193,567         255,978         255,948           212,897         207,509         199,123         192,074         185,959         180,558         181,202         193,567         255,949         255,948           235,572         229,492         233,617         220,493         214,491         209,087         203,081         241,875         255,969         243,668           238,876         238,426         238,198         237,482         234,772         233,820         235,622         255,871         255,969         245,465           238,876         238,486         237,482         234,772         233,820         235,6129         255,811         255,969         245,465           238,676         238,778         235,620         255,871         255,969         255,912         255,969                                                                                                                                                                                                                                                                                                     | 1965          | 83,425  | 79,325  | 75,902  | 69,421  | 65,497  | 60,141  | 61,501    | 93,582  | 193,002            | 256,086  | 255,610 | 255.739  |
| 186,559         180,567         172,637         166,326         160,316         152,103         143,053         165,197         213,935         230,938         220,038           212,897         207,509         199,123         192,074         185,959         180,556         181,202         193,567         255,978         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,948         255,                                                                                                                                                                                                                                     | 1966          | 255,996 | 255,541 | 254,343 | 253,941 | 251,308 | 250,712 | 246,077   | 252,702 | 255,878            | 233,546  | 213,685 | 196,616  |
| 212,897       207,509       199,123       192,074       185,959       180,558       181,202       193,567       255,978       255,978       255,948         235,572       229,492       223,677       223,677       223,677       223,677       255,969       243,989         235,572       229,492       223,677       220,493       214,491       209,087       203,081       241,875       255,969       243,969       243,969       243,969       243,969       245,468       245,664       256,223       255,969       245,465       255,468       236,465       239,301       245,464       256,209       256,871       255,969       237,119       266,209       255,969       237,119       265,969       237,119       265,361       255,969       237,119       277,119       255,969       237,119       277,119       255,969       237,119       265,969       237,119       265,969       237,119       265,969       237,119       265,969       237,119       265,969       237,119       265,969       237,119       265,969       237,119       265,969       237,119       265,969       237,963       255,969       237,219       255,969       237,219       265,969       237,963       255,969       237,933       211,138 <td< th=""><th>1967</th><th>186,559</th><th>180,567</th><th>172,637</th><th>166,326</th><th>160,316</th><th>152,103</th><th>143,053</th><th>165,197</th><th>213,935</th><th>230,938</th><th>220,038</th><th>219,336</th></td<>                                                                                           | 1967          | 186,559 | 180,567 | 172,637 | 166,326 | 160,316 | 152,103 | 143,053   | 165,197 | 213,935            | 230,938  | 220,038 | 219,336  |
| 235,572         229,492         223,677         220,493         214,491         209,087         203,081         241,875         255,900         255,969         243,989         255,468         255,468         255,468         255,468         255,468         255,468         255,468         255,468         255,468         255,468         255,468         255,689         243,569         243,689         245,465         255,871         255,969         255,468         237,119         238,876         238,876         238,876         238,876         238,876         238,876         238,876         238,876         233,820         235,862         256,871         255,969         245,465         237,119         237,119         237,119         237,119         237,119         237,119         237,119         237,240         235,861         235,816         237,119         237,119         237,240         235,861         235,816         237,119         237,240         235,817         255,968         237,119         237,240         235,817         255,968         237,119         237,240         235,817         255,969         237,119         237,240         235,817         255,968         237,119         237,246         231,773         255,817         255,968         237,983         231,773 <t< th=""><th>1968</th><th>212,897</th><th>207,509</th><th>199,123</th><th>192,074</th><th>185,959</th><th>180,558</th><th>181,202</th><th>193,567</th><th>250,773</th><th>255,978</th><th>255,948</th><th>243,587</th></t<>       | 1968          | 212,897 | 207,509 | 199,123 | 192,074 | 185,959 | 180,558 | 181,202   | 193,567 | 250,773            | 255,978  | 255,948 | 243,587  |
| 238,876         238,426         238,198         237,482         234,772         233,820         235,862         255,871         255,969         255,468         235,465         235,465         235,465         235,465         235,465         235,465         235,569         235,465         235,465         235,465         235,465         235,465         235,369         235,465         235,369         235,465         235,369         235,465         235,369         235,465         235,369         235,465         235,369         235,465         235,369         235,465         235,465         235,369         235,465         237,119         237,119         235,369         235,465         237,119         237,119         237,119         237,119         235,369         235,369         237,119         237,119         237,240         233,861         230,625         229,404         228,654         228,440         231,773         256,229         255,969         237,119         237,240         233,861         230,625         229,404         255,969         237,119         237,240         233,861         230,625         229,427         255,969         237,119         237,240         231,773         255,979         255,969         237,711         237,232         211,116         185,507 <t< th=""><th>1969</th><th>235,572</th><th>229,492</th><th>223,677</th><th>220,493</th><th>214,491</th><th>209,087</th><th>203,081</th><th>241,875</th><th>255,900</th><th>255,969</th><th>243.989</th><th>238,550</th></t<>       | 1969          | 235,572 | 229,492 | 223,677 | 220,493 | 214,491 | 209,087 | 203,081   | 241,875 | 255,900            | 255,969  | 243.989 | 238,550  |
| 246,878         246,426         241,482         240,196         239,301         245,664         255,871         255,969         245,465           238,548         235,272         230,999         228,823         225,372         223,223         220,929         245,172         255,969         237,119           207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,969         237,119           207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,969         237,983           207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,969         237,983           237,240         233,861         230,625         229,404         228,654         228,440         231,773         256,229         255,969         237,983           211,138         204,077         196,490         191,614         188,366         185,118         185,507         202,765         255,969         256,028         255,969         237,719           211,138         204,077         196,490         191,146         193,236                                                                                                                                                                                                                                                                                                      | 1970          | 238,876 | 238,426 | 238,198 | 237,482 | 234,772 | 233,820 | 235,862   | 256,223 | 255,871            | 255,969  | 255,468 | 246.407  |
| 238,548         235,272         230,999         228,823         225,372         223,223         220,929         245,172         255,964         255,969         237,119           207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,964         255,968         254,277           207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,969         237,983           207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,969         237,983           237,240         233,861         230,625         229,404         228,654         228,440         231,773         256,229         255,969         237,983           211,138         204,077         196,490         191,614         188,366         185,118         185,507         202,765         255,979         255,968         250,282           215,522         215,532         203,338         205,561         202,765         255,979         255,968         250,782           215,522         215,532         206,1135         206,192         206,1919                                                                                                                                                                                                                                                                                                    | 1971          | 246,878 | 246,426 | 243,264 | 241,482 | 240,196 | 239,301 | 245,664   | 256,209 | 255,871            | 255,969  | 245,465 | 242.245  |
| 207,589         202,065         196,140         189,405         181,714         174,268         174,494         202,119         255,981         255,968         254,277           237,240         233,861         230,625         229,404         228,654         228,440         231,773         256,229         255,871         255,969         237,983           211,138         204,077         196,490         191,614         188,366         185,118         185,507         202,765         255,979         255,969         237,983           211,138         204,077         196,490         191,614         188,366         185,118         185,507         202,765         255,979         255,968         250,282           215,522         212,332         208,338         205,561         202,662         201,146         193,236         214,392         239,443         241,477         229,771           215,522         212,332         208,045         200,824         194,140         189,714         196,192         204,115         211,003         184,847         166,239           137,624         133,757         128,395         121,448         118,066         113,338         111,860         135,507         224,178         248,847         166,239 </th <th>19/2</th> <th>238,548</th> <th>235,272</th> <th>230,999</th> <th>228,823</th> <th>225,372</th> <th>223,223</th> <th>220,929</th> <th>245,172</th> <th>255,894</th> <th>255,969</th> <th>237,119</th> <th>221.944</th>                                                         | 19/2          | 238,548 | 235,272 | 230,999 | 228,823 | 225,372 | 223,223 | 220,929   | 245,172 | 255,894            | 255,969  | 237,119 | 221.944  |
| 237,240         233,861         230,625         229,404         228,440         231,773         256,229         255,871         255,969         237,983           211,138         204,077         196,490         191,614         188,366         185,118         185,507         202,765         255,979         255,968         250,282           211,138         204,077         196,490         191,614         188,366         185,118         185,507         202,765         255,968         250,282           215,522         212,332         208,338         205,561         202,662         201,146         193,236         214,392         239,443         241,477         229,771           219,931         215,611         208,045         200,824         194,140         189,714         196,192         204,115         211,003         184,847         166,239           219,931         215,611         208,045         200,824         194,140         189,714         196,192         204,115         211,403         184,847         166,239           137,624         133,757         128,395         121,433         141,860         135,507         224,178         243,892         218,987           173,914         167,256         159,771                                                                                                                                                                                                                                                                                                      | . 18/3        | 207,589 | 202,065 | 196,140 | 189,405 | 181,714 | 174,268 | 174,494   | 202,119 | 255,981            | 255,968  | 254,277 | 241,352  |
| 211,138 204,077 196,490 191,614 188,366 185,118 185,507 202,765 255,979 255,968 250,282<br>215,522 212,332 208,338 205,561 202,662 201,146 193,236 214,392 239,443 241,477 229,771<br>219,931 215,611 208,045 200,824 194,140 189,714 196,192 204,115 211,003 184,847 166,239<br>137,624 133,757 128,395 121,448 118,066 113,338 111,860 135,507 224,178 243,892 218,987<br>173,914 167,256 159,771 151,208 147,188 145,576 149,220 180,783 256,026 255,968 255,661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1974          | 237,240 | 233,861 | 230,625 | 229,404 | 228,654 | 228,440 | 231,773   | 256,229 | 255,871            | 255,969  | 237,983 | 218,619  |
| 215,522 212,332 208,338 205,561 202,662 201,146 193,236 214,392 239,443 241,477 229,771 219,931 215,611 208,045 200,824 194,140 189,714 196,192 204,115 211,003 184,847 166,239 137,624 133,757 128,395 121,448 118,066 113,338 111,860 135,507 224,178 243,892 218,987 173,914 167,256 159,771 151,208 147,188 145,576 149,220 180,783 256,026 255,968 255,651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975          | 211,138 | 204,077 | 196,490 | 191,614 | 188,366 | 185,118 | 185,507   | 202,765 | 255,979            | 255,968  | 250,282 | 230,827  |
| 219,931 215,611 208,045 200,824 194,140 189,714 196,192 204,115 211,003 184,847 166,239<br>137,624 133,757 128,395 121,448 118,066 113,338 111,860 135,507 224,178 243,892 218,987<br>173,914 167,256 159,771 151,208 147,188 145,576 149,220 180,783 256,026 255,968 255,651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1976          | 215,522 | 212,332 | 208,338 | 205,561 | 202,662 | 201,146 | 193,236   | 214,392 | 239,443            | 241,477  | 229,771 | 221,155  |
| 137,624 133,757 128,395 121,448 118,066 113,338 111,860 135,507 224,178 243,892 218,987 173,914 167,256 159,771 151,208 147,188 145,576 149,220 180,783 256,026 255,968 255,651 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1977          | 219,931 | 215,611 | 208,045 | 200,824 | 194,140 | 189,714 | 196,192   | 204,115 | 211,003            | 184,847  | 166,239 | 146.477  |
| 173,914 167,256 159,771 151,208 147,188 145,576 149,220 180,783 256,026 255,968 255,651 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1978          | 137,624 | 133,757 | 128,395 | 121,448 | 118,066 | 113,338 | 111,860   | 135,507 | 224,178            | 243,892  | 218,987 | 190,430  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1979          | 173,914 | 167,256 | 159,771 | 151,208 | 147,188 | 145,576 | 149,220   | 180,783 | 256,026            | 255,968  | 255,651 | 235,036  |

Dillon Reservoir Simulated End-Of-Month Contents Proposed Action Alternative (AF)

| WATER    |         |         |         |         |         |         |         |         |         |         |         |         |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| YEAR     | OCT     | NON     | DEC     | JAN     | FEB     | MAR     | APH     | MAY     | NUL     | JUL     | AUG     | SEP     |
| 1980     | 220,523 | 215,756 | 211,475 | 211,419 | 210,972 | 210,770 | 213,470 | 244,775 | 255.894 | 255.969 | 231.099 | 212.875 |
| 1981     | 197,804 | 193,983 | 189,179 | 184,004 | 178,587 | 175,997 | 169,266 | 169,210 | 177,985 | 167.594 | 155.369 | 142.264 |
| 1982     | 134,144 | 130,429 | 126,299 | 123,754 | 119,913 | 114,783 | 111,871 | 135,400 | 201,925 | 234.610 | 248.106 | 250.465 |
| 1983     | 250,114 | 247,928 | 245,338 | 244,640 | 244,392 | 244,167 | 247,116 | 256,170 | 255,871 | 255,969 | 256.125 | 256,251 |
| 1984     | 255,666 | 255,211 | 254,515 | 253,410 | 250,018 | 249,789 | 254,502 | 256,196 | 255.871 | 255.969 | 255,989 | 256,116 |
| 1985     | 256,372 | 256,726 | 256,508 | 256,565 | 254,192 | 253,960 | 256,486 | 256,193 | 255,871 | 255,969 | 251,898 | 243,857 |
| 1986     | 243,772 | 243,577 | 242,399 | 241,338 | 239,228 | 234,039 | 241,276 | 256,215 | 255,871 | 255,969 | 248,732 | 234,808 |
| 1987     | 234,349 | 230,878 | 226,537 | 224,373 | 223,713 | 223,502 | 229,769 | 256,232 | 255,871 | 255,969 | 238,440 | 220,458 |
| 1988     | 209,492 | 206,843 | 202,820 | 202,030 | 201,762 | 201,567 | 206,940 | 231,156 | 255,922 | 255,969 | 248,994 | 227,017 |
| 1989     | 212,258 | 204,638 | 198,794 | 193,991 | 189,955 | 189,768 | 186,176 | 215,501 | 255,953 | 255,969 | 239,017 | 219,856 |
| 1990     | 205,678 | 198,107 | 190,129 | 184,154 | 179,401 | 173,430 | 177,861 | 197,711 | 249,834 | 255,980 | 249,728 | 234,517 |
| 1991     | 232,679 | 228,751 | 221,359 | 214,939 | 208,697 | 201,508 | 196,768 | 226,945 | 255,930 | 255,969 | 249,346 | 230,031 |
| 1992     | 219,314 | 216,154 | 211,664 | 208,194 | 205,279 | 204,003 | 200,522 | 228,912 | 253,875 | 252,955 | 244,316 | 233,610 |
| 1993     | 228,746 | 226,867 | 221,761 | 216,991 | 212,888 | 208,069 | 211,171 | 253,580 | 255,877 | 255,969 | 254,182 | 245,073 |
| 1994     | 237,195 | 233,190 | 228,940 | 226,079 | 222,868 | 220,449 | 217,463 | 245,536 | 255,893 | 238,772 | 226,177 | 216,180 |
| 1995     | 211,067 | 207,971 | 204,179 | 200,544 | 198,220 | 195,997 | 198,969 | 215,270 | 255,954 | 255,969 | 256,162 | 251,706 |
| 1896     | 251,129 | 250,675 | 248,896 | 248,159 | 247,150 | 246,372 | 255,876 | 256,194 | 255,871 | 255,969 | 245,795 | 237.743 |
| 1997     | 236,668 | 236,220 | 235,127 | 233,824 | 233,430 | 233,212 | 240,214 | 256,217 | 255,871 | 255,969 | 256,162 | 249,229 |
| 1998     | 243,977 | 241,770 | 238,056 | 235,346 | 232,950 | 231,194 | 229,656 | 254,263 | 255,875 | 255,969 | 254,173 | 240,983 |
| 1999     | 235,318 | 232,390 | 227,319 | 224,455 | 221,332 | 219,798 | 218,201 | 244,088 | 255,896 | 255,969 | 256,162 | 245,137 |
| 2000     | 238,990 | 234,929 | 230,609 | 228,088 | 225,454 | 223,322 | 227,199 | 256,235 | 255,871 | 255,969 | 248,027 | 235,569 |
| 2001     | 226,787 | 222,461 | 218,818 | 216,005 | 213,096 | 211,235 | 208,492 | 241,475 | 255,901 | 253,804 | 245,723 | 235,667 |
| 2002     | 225,981 | 219,516 | 212,890 | 207,797 | 202,856 | 197,126 | 193,674 | 198,097 | 193,713 | 171,747 | 131,119 | 113,816 |
| 2003     | 102,202 | 95,762  | 88,692  | 83,193  | 77,918  | 71,645  | 72,059  | 118,603 | 189,583 | 205,121 | 187,257 | 174,857 |
| 2004     | 165,487 | 161,393 | 156,713 | 153,476 | 150,555 | 149,002 | 144,005 | 153,098 | 157,618 | 141,607 | 128,304 | 115,593 |
| 2005     | 107,604 | 103,270 | 97,174  | 93,199  | 87,924  | 81,645  | 81,693  | 108,916 | 150,599 | 161,015 | 143,289 | 126,945 |
| AVERAGE  | 204,744 | 200,892 | 196,242 | 192,407 | 188,779 | 185,408 | 184,998 | 205,597 | 231,793 | 233,015 | 222,761 | 210,167 |
| MINIMUM  | 83,425  | 79,325  | 75,902  | 69,421  | 65,497  | 60,141  | 61,501  | 90,502  | 118,173 | 113,864 | 101,055 | 90,317  |
| MAXIMUM: | 256,372 | 256,726 | 256,508 | 256,565 | 254,192 | 253,960 | 256,486 | 256,257 | 256,026 | 256,087 | 256,162 | 256,251 |

Upper Blue Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(FF)

SEP 2,059 2,059 2,059 2,059 2,059 2,059 1,935 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,0559 2,05 AUG 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,050 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,055 2,046 2,055 2,046 2,055 2,046 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 2,055 J C 2,066 2,066 2,066 2,066 2,066 2,066 2,066 2,066 2,066 2,066 1,290 1,290 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,593 1,5931 NUL MAY APR ooooooooooooooooooooooooooooooooo MAR 0000000000000 FEB 00 NAL  $\circ \circ \circ$ 00 DEC 000000000 0 0 Nov 50 CT WATER **YEAR** 1950 
 1962

 1963

 1965

 1965

 1966

 1967

 1968

 1969

 1973

 1973

 1975

 1975

 1976

 1977

 1976

 1977

 1976

 1977

 1973

 1973

 1974

 1975

 1976

 1977

 1978

 1978

 1978

 1978
 1954 1955 958 959 1960 952 953 956 957 **1961** 1951

Upper Blue Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

SEP 250 250 250 250 2,059 2,059 760 760 760 760 760 744 760 744 744 744 744 744 744 7530 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,059 2,050 AUG 1,665 847 847 1,565 2,058 2,058 2,046 2,046 2,046 2,046 2,046 2,046 2,046 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,048 2,04 JUL 1,720 560 560 1,092 1,231 1,591 1,595 1,595 1,595 1,505 1,505 1,506 1,936 1,936 1,936 1,936 1,936 1,936 2,074 1,936 1,936 2,074 2,074 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,076 2,07 NN MAY APR MAR 000 0000000 000 EB  $\circ \circ \circ$ 000000000000 000 JAN 00000000 00 000 DEC 00000000000 000 Nov 0000000 000 50 **MINIMUM: AVERAGE MAXIMUM:** WATER YEAR 1980 982 983 1988 1989 068 1994 1995 1996 1998 1998 1998 2000 2001 2003 2003 2004 1981 984 985 986 1987 **991** 1992 1993 2005

Green Mountain Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| WATER |         |         |         |        |        |        |        |         |         |         |         |         |
|-------|---------|---------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| YEAR  | oct     | NON     | DEC     | JAN    | FEB    | MAR    | APR    | MAY     | JUN     | JUL     | AUG     | SEP     |
| 1950  | 103,699 | 93,313  | 87,557  | 81,774 | 75,873 | 69,926 | 78,823 | 111.439 | 153.974 | 153.965 | 130.399 | 110 034 |
| 1951  | 94,171  | 87,293  | 80,538  | 73,756 | 66,866 | 59,933 | 56,099 | 93.613  | 154.012 | 153.965 | 154 093 | 140 197 |
| 1952  | 114,777 | 103,771 | 92,906  | 82,008 | 70,990 | 59,932 | 68,927 | 104.551 | 153.988 | 153 965 | 154.093 | 140.011 |
| 1953  | 115,403 | 105,271 | 95,282  | 85,260 | 75,116 | 64,928 | 60,713 | 85,104  | 154.030 | 153.965 | 152 808 | 140 525 |
| 1954  | 115,050 | 105,989 | 97,071  | 88,121 | 79,046 | 69,925 | 66,043 | 89,460  | 93.965  | 77,201  | 76,866  | 75,603  |
| 1955  | 74,492  | 73,556  | 72,729  | 71,880 | 70,927 | 69,928 | 75,878 | 100,002 | 123,246 | 120.625 | 119.713 | 111.509 |
| 1956  | 86,116  | 81,852  | 77,705  | 73,533 | 69,254 | 64,930 | 70,550 | 131,540 | 153,938 | 140.766 | 126.978 | 117 008 |
| 1957  | 91,561  | 85,206  | 78,972  | 72,711 | 66,343 | 59,933 | 57,587 | 66,456  | 131,262 | 153.999 | 154.093 | 140.911 |
| 1958  | 127,987 | 115,335 | 102,835 | 90,299 | 77,635 | 64,927 | 61,545 | 154,244 | 153,902 | 151,743 | 121.678 | 113.190 |
| 1959  | 87,360  | 82,846  | 78,451  | 74,031 | 69,503 | 64,930 | 58,615 | 80,383  | 142,228 | 153,983 | 138,066 | 127 204 |
| 1960  | 103,534 | 95,780  | 88,158  | 80,508 | 72,740 | 64,929 | 75,123 | 94,618  | 154,009 | 153,965 | 136,849 | 126.877 |
| 1961  | 101,490 | 95,146  | 88,933  | 82,691 | 76,332 | 69,926 | 63,234 | 87,022  | 116,111 | 100,820 | 100,001 | 93.948  |
| 1962  | 88,085  | 82,426  | 76,885  | 71,319 | 65,647 | 59,934 | 78,475 | 150,074 | 153,908 | 153,965 | 149,760 | 122,026 |
| 1963  | 96,639  | 91,266  | 86,021  | 80,749 | 75,361 | 69,926 | 72,996 | 88,105  | 106,641 | 80,969  | 80.214  | 78.464  |
| 1964  | 76,872  | 75,459  | 74,157  | 72,833 | 71,404 | 69,928 | 64,574 | 85,783  | 107,139 | 120.952 | 112.079 | 104.270 |
| 1965  | 82,245  | 77,756  | 73,380  | 68,980 | 64,478 | 59,934 | 64,474 | 86,563  | 137,742 | 153,990 | 154.093 | 141.624 |
| 1966  | 129,413 | 117,475 | 105,692 | 93,873 | 81,922 | 69,924 | 75,032 | 95,141  | 116,317 | 102,887 | 90,410  | 86.464  |
| 1967  | 78,330  | 75,625  | 73,031  | 70,415 | 67,695 | 64,931 | 69,260 | 86,907  | 124,080 | 144.369 | 120.955 | 108.267 |
| 1968  | 84,844  | 80,834  | 76,941  | 73,023 | 68,999 | 64,931 | 56,027 | 67,332  | 111,791 | 129.456 | 145.066 | 133,190 |
| 1969  | 107,759 | 99,159  | 90,694  | 82,199 | 73,586 | 64,929 | 71,125 | 88,304  | 151,147 | 153,969 | 138.773 | 127.095 |
| 1970  | 115,658 | 104,475 | 93,434  | 82,360 | 71,167 | 59,932 | 63,448 | 134,799 | 153,933 | 153,965 | 138,841 | 127,154 |
| 1971  | 115,707 | 104,514 | 93,463  | 82,380 | 71,177 | 59,932 | 71,130 | 108,445 | 153,980 | 153,965 | 147,168 | 121,567 |
| 2/61  | 97,956  | 91,319  | 84,811  | 78,274 | 71,624 | 64,929 | 72,022 | 90,115  | 154,019 | 153,965 | 134,122 | 123,831 |
| 1973  | 113,775 | 103,969 | 94,305  | 84,608 | 74,791 | 64,928 | 56,238 | 80,212  | 140,425 | 153,985 | 154,093 | 123,845 |
| 18/4  | 97,838  | 90,225  | 82,739  | 75,225 | 67,600 | 59,933 | 66,701 | 128,520 | 153,943 | 153,965 | 143,386 | 131.754 |
| 1975  | 106,319 | 98,007  | 89,830  | 81,623 | 73,298 | 64,929 | 67,563 | 82,741  | 125,504 | 154,008 | 154,093 | 133,865 |
| 1976  | 108,366 | 100,644 | 93,059  | 85,445 | 77,708 | 69,925 | 75,260 | 92,668  | 125,704 | 146,565 | 135,844 | 126.017 |
| 1.61  | 100,631 | 94,458  | 88,417  | 82,347 | 76,160 | 69,926 | 56,147 | 61,866  | 77,307  | 70,061  | 69,750  | 68.096  |
| 1978  | 66,584  | 65,232  | 63,980  | 62,709 | 61,343 | 59,935 | 65,247 | 78,081  | 133,183 | 153,996 | 144.098 | 131,649 |
| 1979  | 105,926 | 96,693  | 87,593  | 78,463 | 69,219 | 59,932 | 65,340 | 90,813  | 146,544 | 153,976 | 150,469 | 137,811 |
|       |         |         |         |        |        |        |        |         |         |         |         |         |

Green Mountain Reservoir Simulated End-Of-Month Contents Proposed Action Alternative (AF)

| WATED    |         |         |         |        |        |        |        |         |         |         |         |         |
|----------|---------|---------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| YEAR     | OCT     | NON     | DEC     | NAL    | FEB    | MAR    | APR    | МАҮ     | NNC     | ากเ     | AUG     | SEP     |
| 1960     | 112,319 | 102,805 | 93,431  | 84,026 | 74,499 | 64,928 | 68,704 | 89.851  | 154.020 | 153.965 | 135.676 | 125 R74 |
| 1981     | 100,436 | 94,302  | 88,300  | 82,269 | 76,121 | 69,926 | 57,467 | 68,109  | 91.801  | 86.067  | 85 702  | 82 441  |
| 1982     | 76,519  | 74,177  | 71,944  | 69,690 | 67,333 | 64,931 | 58,029 | 78.320  | 120.346 | 154.016 | 154 003 | 140 107 |
| 1983     | 126,560 | 113,194 | 99,978  | 86,726 | 73,349 | 59,931 | 51.767 | 81.405  | 154,038 | 153.965 | 154 003 | 116,303 |
| 1984     | 90,885  | 84,665  | 78,566  | 72,440 | 66,208 | 59,934 | 63,304 | 154.241 | 153,902 | 153.965 | 154 093 | 140 197 |
| 1985     | 126,560 | 113,194 | 99,978  | 86,726 | 73,349 | 59,931 | 80,978 | 154.212 | 153,902 | 153.965 | 151 401 | 137 894 |
| 1986     | 124,644 | 111,662 | 98,828  | 85,959 | 72,966 | 59,931 | 70,986 | 115,888 | 153.964 | 153,965 | 154,093 | 141 624 |
| 1987     | 129,413 | 117,475 | 105,692 | 93,873 | 81,922 | 69,924 | 76,751 | 112,939 | 153,970 | 153.965 | 145,895 | 101,853 |
| 1988     | 86,224  | 81,937  | 77,769  | 73,576 | 69,275 | 64,930 | 72,138 | 96,510  | 154,005 | 153,965 | 126.750 | 118.240 |
| 1989     | 92,238  | 87,747  | 83,380  | 78,987 | 74,480 | 69,926 | 79,918 | 96,981  | 125,793 | 133,293 | 124,669 | 116,460 |
| 0661     | 90,996  | 86,753  | 82,634  | 78,489 | 74,231 | 69,927 | 59,153 | 71,171  | 104,542 | 117,623 | 103,981 | 98,063  |
| 1991     | 79,587  | 76,630  | 73,786  | 70,918 | 67,947 | 64,931 | 59,533 | 84,097  | 154,032 | 153,965 | 129,544 | 120,629 |
| 1992     | 95,200  | 90,115  | 85,157  | 80,173 | 75,073 | 69,926 | 75,607 | 98,970  | 115,243 | 108,556 | 108,113 | 100.881 |
| 1993     | 82,725  | 78,140  | 73,868  | 69,173 | 64,574 | 59,934 | 56,661 | 91,336  | 154,016 | 153,965 | 145,325 | 134.126 |
| 1994     | 123,174 | 112,485 | 101,947 | 91,374 | 80,673 | 69,924 | 75,470 | 101,148 | 138,825 | 116,904 | 94,295  | 89.071  |
| 1995     | 81,566  | 77,213  | 72,973  | 68,708 | 64,342 | 59,934 | 50,164 | 64,851  | 154,075 | 153,965 | 154.093 | 140.197 |
| 1996     | 126,560 | 113,194 | 99,978  | 86,726 | 73,349 | 59,931 | 69,456 | 154,231 | 153,902 | 153,965 | 110.985 | 103,335 |
| 1997     | 95,893  | 88,670  | 81,571  | 74,446 | 67,210 | 59,933 | 67,957 | 135,846 | 153,931 | 153,965 | 154.093 | 140.911 |
| 1998     | 127,987 | 115,335 | 102,835 | 90,299 | 77,635 | 64,927 | 70,901 | 94,207  | 151,936 | 153,968 | 147,389 | 115,148 |
| 1999     | 69,754  | 84,760  | 79,888  | 74,990 | 69,982 | 64,930 | 68,409 | 83,482  | 154,033 | 153,965 | 154.093 | 140.911 |
| 2000     | 115,583 | 105,415 | 95,390  | 85,332 | 75,152 | 64,928 | 71,907 | 133,674 | 153,935 | 148,883 | 128,925 | 118,673 |
| 2001     | 93,176  | 86,497  | 79,941  | 73,358 | 66,666 | 59,933 | 57,536 | 86,255  | 125,264 | 113,150 | 109,864 | 103.804 |
| 2002     | 79,631  | 77,665  | 75,813  | 73,938 | 71,956 | 69,927 | 58,507 | 67,163  | 56,896  | 54,937  | 75,027  | 73,319  |
| 2003     | 64,883  | 64,302  | 63,833  | 63,335 | 62,819 | 62,927 | 70,317 | 108,706 | 151,248 | 142,982 | 116,558 | 109.525 |
| 2004     | 83,279  | 80,582  | 78,002  | 75,399 | 72,686 | 69,927 | 70,485 | 88,396  | 104,876 | 89,882  | 89,505  | 85,691  |
| 2005     | 80,089  | 77,032  | 74,087  | 71,119 | 68,047 | 64,931 | 72,765 | 98,476  | 133,397 | 152,975 | 141,360 | 130,021 |
| AVEHAGE  | 99,366  | 92,336  | 85,517  | 78,669 | 71,708 | 64,715 | 66,769 | 98,310  | 136,319 | 138,085 | 129,973 | 117,861 |
|          | 64,883  | 64,302  | 63,833  | 62,709 | 61,343 | 59,931 | 50,164 | 61,866  | 56,896  | 54,937  | 69,750  | 68,096  |
| MAXIMUM: | 129,413 | 117,475 | 105,692 | 93,873 | 81,922 | 69,928 | 80,978 | 154,244 | 154,075 | 154,016 | 154,093 | 141,624 |

Montgomery Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| 1950         4,186         3,840         3,300         2,760         2,181         1,429         662         1,382           1951         3,936         3,590         3,056         2,510         1,931         1,179         662         1,382           1955         3,936         3,590         3,056         2,510         1,931         1,179         662         1,382           1955         3,936         3,590         3,050         2,510         1,931         1,179         662         1,382           1955         3,936         3,590         3,050         2,510         1,931         1,179         662         1,382           1956         3,590         3,050         2,510         1,931         1,179         662         1,382           1956         3,590         3,050         2,510         1,931         1,179         662         1,382           1956         3,936         3,590         3,050         2,510         1,931         1,179         662         1,382           1956         3,590         3,050         2,510         1,931         1,179         662         1,382           1956         3,590         3,050         2,510                                                                                                  | WATER<br>YEAR | oct   | NON   | DEC   | NAL   | FEB   | MAR   | APR   | MAY   | NUL   | JUL   | AUG   | SEP   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3,952         3,506         3,066         2,528         1,947         1,195         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,500         3,050                                                                                                                    | 1950          | 4,186 | 3,840 | 3,300 | 2,760 | 2,181 | 1,429 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.323 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,530         3,050         2,510         1,931         1,179         662           3,936         3,500         2,510                                                                                                                    | 1951          | 3,952 | 3,606 | 3,066 | 2,526 | 1,947 | 1,195 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,500         2,510         1,931         1,179         662         3,37           3,936         3,500         2,510         <                                                                                                           | 1952          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,055         2,703         2,163         1,624         1,045         662         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,723         2,184         1,092         4,15         2,43           3,240         2,686         2,113         1,541         1,019         4,49         2,06           3,979         3,793         3,602         3,407         2,542         1,296         3,07           2,990         2,702         <                                                                                                           | 1953          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,050         2,703         2,163         1,624         1,045         662         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,938         3,590         3,050         2,510         1,931         1,179         662           3,938         3,590         3,050         2,510         1,931         1,179         662           3,919         3,733         892         415         2,43         2,43           3,240         2,686         2,113         1,019         449         2,493         2,066           2,930         2,744         1,403         2,066         2,                                                                                                               | 1954          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 3,307 | 3,233 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,543         2,113         1,541         1,019         449         2,066           3,240         2,648         2,113         1,541         1,019         449         2,066           2,930         2,244         2,493         2,223         3,07         3,545         3,07           2,960         2,545         3,602                                                                                                                    | 1955          | 3,050 | 2,703 | 2,163 | 1,624 | 1,045 | 662   | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,263         2,723         2,184         1,604         853         662           3,979         3,793         3,602         3,407         2,542         1,779         662           3,979         3,793         3,602         1,409         2,742         2,433         2,223           3,979         3,733         1,541         1,019         449         2,433         2,15           2,980         2,744         2,493         <                                                                                                           | 1956          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4.369 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,979         3,793         3,050         2,184         1,604         853         662           3,979         3,793         3,602         3,407         2,542         1,779         662           3,979         3,793         3,602         3,407         2,542         1,296         352           2,980         2,241         1,704         3,598         3,244         2,493         2,223           2,980         2,245         1,702         1,429         3,07         4,566         3,244         2,493         2,266           2,980                                                                                                                   | 1957          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,979         3,263         2,723         2,184         1,604         853         662           3,979         3,793         3,602         3,407         2,542         1,296         352           2,980         2,241         1,704         3,598         3,244         2,493         2,056           2,980         2,241         1,704         3,598         3,244         2,493         2,223           1,962         1,702         1,454         1,207         998         908         161           2,980         2,344         2,493         2,344         2,493         2,223         3,44         2,493         2,266           2,981         <                                                                                                           | 1958          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,936         3,590         3,050         2,510         1,931         1,179         662           3,610         3,263         2,723         2,184         1,604         853         662           3,979         3,793         3,602         3,407         2,542         1,296         352           2,980         2,241         1,704         3,598         3,244         2,493         2,223           2,980         2,241         1,704         3,598         3,244         2,493         2,223           2,980         2,241         1,704         3,598         3,244         2,493         2,223           2,980         2,241         1,704         3,598         3,244         2,493         2,223           2,966         3,545         1,454         1,207         998         161         161           2,933         2,345         1,207         998         908         161         161           2,933         2,545         1,429                                                                                                                        | 1959          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,936       3,590       3,050       2,510       1,931       1,179       662         3,610       3,263       2,723       2,184       1,604       853       662         2,932       2,380       1,810       1,323       892       415       243         3,240       2,686       2,113       1,541       1,019       449       206         3,979       3,793       3,602       3,407       2,542       1,296       352         2,980       2,241       1,702       1,454       1,207       998       908       161         2,980       2,241       1,702       1,454       1,207       998       908       161         2,939       2,340       1,850       1,429       3,545       3,092       2,744       2,493       2,223         2,939       2,340       1,850       1,429       3,908       161       161         2,939       2,344       2,493       2,223       3,07       3,244       2,493       2,223         2,966       3,545       3,092       2,142       1,207       3,998       908       161         2,933       2,545       1,422       3,07       2,177 <t< th=""><th>1960</th><th>3,936</th><th>3,590</th><th>3,050</th><th>2,510</th><th>1,931</th><th>1,179</th><th>662</th><th>1,382</th><th>4,155</th><th>4,545</th><th>4,444</th><th>4,369</th></t<> | 1960          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,610       3,263       2,723       2,184       1,604       853       662         2,932       2,380       1,810       1,323       892       415       243         3,240       2,686       2,113       1,541       1,019       449       206         3,979       3,793       3,602       3,407       2,542       1,296       352         2,980       2,241       1,704       3,598       3,244       2,493       2,066         2,980       2,241       1,702       1,454       1,207       998       908       161         2,980       2,241       1,702       1,454       1,207       998       908       161         2,939       2,240       1,850       1,429       979       4,22       307         2,939       2,344       2,493       2,723       307       4,22       307         2,933       2,345       1,420       3,544       2,493       2,223       307         4,506       3,545       3,092       2,744       2,335       1,226       307         2,933       2,548       1,777       1,288       808       515       4,22       307         4,565 <th>1961</th> <th>3,936</th> <th>3,590</th> <th>3,050</th> <th>2,510</th> <th>1,931</th> <th>1,179</th> <th>662</th> <th>1,382</th> <th>4,155</th> <th>4,545</th> <th>4,120</th> <th>4,046</th>           | 1961          | 3,936 | 3,590 | 3,050 | 2,510 | 1,931 | 1,179 | 662   | 1,382 | 4,155 | 4,545 | 4,120 | 4,046 |
| 2,932       2,380       1,810       1,323       892       415       243         3,240       2,686       2,113       1,541       1,019       449       206         3,979       3,793       3,602       3,407       2,542       1,296       352         2,980       2,241       1,704       3,598       3,244       2,493       2,223         2,980       2,241       1,702       1,454       1,207       998       908       161         1,962       1,770       1,454       1,207       998       908       161       161         2,939       2,340       1,850       1,429       979       422       307         4,506       3,545       3,092       2,744       2,335       1,226       334         4,697       4,524       3,602       2,177       1,288       808       515         4,557       3,493       2,578       1,777       1,288       808       515         4,555       3,345       2,797       2,177       1,583       968       665         3,481       3,043       2,579       1,777       1,593       968       665         3,481       3,043                                                                                                                                                                                                            | 1962          | 3,610 | 3,263 | 2,723 | 2,184 | 1,604 | 853   | 662   | 1,382 | 4,155 | 4,545 | 4,444 | 4,369 |
| 3,240       2,686       2,113       1,541       1,019       449       206         3,979       3,793       3,602       3,407       2,542       1,296       352         2,980       2,241       1,704       3,598       3,244       2,493       2,223         2,980       2,241       1,702       1,454       1,207       998       908       161         2,980       2,245       1,702       1,454       1,207       998       908       161         2,939       2,340       1,850       1,429       979       422       307         2,939       2,345       3,092       2,744       2,335       1,226       334         4,566       3,545       3,092       2,744       2,335       1,226       334         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,443       2,453       1,777       1,586       808       515         3,565       3,345       2,797       2,177       1,588       808       515         3,481       3,049       2,529       1,977       1,593       968       665         3,481       3,04                                                                                                                                                                                                       | 1963          | 2,932 | 2,380 | 1,810 | 1,323 | 892   | 415   | 243   | 1,085 | 2,968 | 3,066 | 4,644 | 4,286 |
| 3,979       3,793       3,602       3,407       2,542       1,296       352         2,980       2,241       1,704       3,598       3,244       2,493       2,223         2,980       2,241       1,702       1,454       1,207       998       908       161         2,980       2,241       1,702       1,454       1,207       998       908       161         2,980       2,345       3,092       2,744       2,335       1,226       307         4,506       3,545       3,092       2,744       2,335       1,226       334         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,588       808       515         4,557       3,493       2,578       1,777       1,526       616       164         3,565       3,345       2,777       1,528       808       515       334         3,481       3,049       2,529       1,949       1,656       1,119       944         2,799       2,331       1,949       1,656       1,1007       325       233         3,481       3                                                                                                                                                                                                       | 1964          | 3,240 | 2,686 | 2,113 | 1,541 | 1,019 | 449   | 206   | 1,673 | 3,791 | 4,388 | 4,604 | 4,421 |
| 2,980       2,241       1,704       3,598       3,244       2,493       2,223         1,962       1,702       1,454       1,207       998       908       161         2,939       2,340       1,850       1,429       979       422       307         2,939       2,340       1,850       1,429       979       422       307         2,939       2,340       1,850       1,429       979       422       307         4,506       3,545       3,092       2,744       2,335       1,226       334         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,593       968       665         3,481       3,049       2,797       2,177       1,593       968       665         3,481       3,049       2,529       1,949       1,656       1,119       944         2,799       2,315       1,949       1,656       1,119       944       2,333         3,481       3,049       2,331       1,949<                                                                                                                                                                                                       | 1965          | 3,979 | 3,793 | 3,602 | 3,407 | 2,542 | 1,296 | 352   | 82    | 3,284 | 4,574 | 4,227 | 4,641 |
| 1,962       1,702       1,454       1,207       998       908       161         2,939       2,340       1,850       1,429       979       422       307         2,939       2,345       3,092       2,744       2,335       1,226       334         4,506       3,545       3,092       2,744       2,335       1,226       334         4,567       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,288       808       515         4,516       3,676       3,100       2,177       1,593       968       665         3,565       3,345       2,797       2,177       1,593       968       665         3,481       3,049       2,529       1,949       1,656       1,119       944         2,799       2,346       1,903       1,450       1,007       325       233         3,822       3,315       2,808       2,331       1,893       1,441       920         3,266       2,424       1,903       1,46                                                                                                                                                                                                       | 1966          | 2,980 | 2,241 | 1,704 | 3,598 | 3,244 | 2,493 | 2,223 | 3,032 | 3,330 | 4,355 | 3,284 | 2,238 |
| 2,939       2,340       1,850       1,429       979       422       307         4,506       3,545       3,092       2,744       2,335       1,226       334         4,567       3,545       3,092       2,744       2,335       1,226       334         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,593       968       665         3,565       3,345       2,797       2,177       1,593       968       665         3,481       3,049       2,529       1,949       1,656       1,119       944         2,799       2,346       1,903       1,450       1,007       325       233         3,822       3,315       2,808       2,331       1,893       1,441       920         3,266       2,435       1,903       1,465       858       725       233         3,272       2,950       2,063       1,612       1,316       999       961         2,887       2,424       1,944       1,465       858       725       233         3,572       2,950       2,063       1,612<                                                                                                                                                                                                       | 1967          | 1,962 | 1,702 | 1,454 | 1,207 | 998   | 908   | 161   | 435   | 2,366 | 4,628 | 4.206 | 3.637 |
| 4,506       3,545       3,092       2,744       2,335       1,226       334         4,697       4,524       3,629       2,103       1,085       731       629         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,288       808       515         4,557       3,493       2,578       1,777       1,593       968       665         3,565       3,345       2,797       2,177       1,593       968       665         3,481       3,049       2,529       1,949       1,656       1,119       944         2,799       2,346       1,903       1,450       1,007       325       233         3,822       3,315       2,808       2,331       1,893       1,441       920         3,266       2,435       1,960       1,612       1,316       999       961         2,887       2,424       1,944       1,465       858       725       233         3,572       2,950       2,063       1,612       1,316       999       961         2,887       2,424       1,944       1,46                                                                                                                                                                                                       | 1968          | 2,939 | 2,340 | 1,850 | 1,429 | 626   | 422   | 307   | 155   | 4,145 | 4,901 | 4.852 | 4,353 |
| 4,697         4,524         3,629         2,103         1,085         731         629           4,557         3,493         2,578         1,777         1,288         808         515           4,557         3,493         2,578         1,777         1,288         808         515           4,557         3,493         2,578         1,777         1,526         616         164           4,216         3,676         3,100         2,177         1,526         616         164           3,565         3,345         2,797         2,177         1,526         616         164           3,481         3,049         2,529         1,949         1,656         1,119         944           2,799         2,346         1,903         1,450         1,007         325         233           3,822         3,315         2,808         2,331         1,893         1,441         920           3,266         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         233           3,572         2,950         2,063         1,612                                                                                                                          | 1969          | 4,506 | 3,545 | 3,092 | 2,744 | 2,335 | 1,226 | 334   | 3,799 | 4,851 | 4,826 | 4,031 | 4,718 |
| 4,557       3,493       2,578       1,777       1,288       808       515         4,216       3,676       3,100       2,177       1,526       616       164         4,216       3,676       3,100       2,177       1,526       616       164         3,565       3,345       2,797       2,177       1,593       968       665         3,481       3,049       2,529       1,949       1,656       1,119       944         2,799       2,346       1,903       1,450       1,007       325       233         3,822       3,315       2,808       2,331       1,893       1,441       920         3,822       3,315       2,808       2,331       1,893       1,441       920         3,826       2,435       1,960       1,612       1,316       999       961         2,887       2,424       1,944       1,465       858       725       725         3,572       2,950       2,063       1,688       1,323       820       556                                                                                                                                                                                                                                                                                                                                          | 1970          | 4,697 | 4,524 | 3,629 | 2,103 | 1,085 | 731   | 629   | 2,072 | 4,739 | 4,742 | 4,739 | 4,584 |
| 4,216         3,676         3,100         2,177         1,526         616         164           3,565         3,345         2,797         2,177         1,593         968         665           3,565         3,345         2,797         2,177         1,593         968         665           3,481         3,049         2,529         1,949         1,656         1,119         944           2,799         2,346         1,903         1,4450         1,007         325         233           3,822         3,315         2,808         2,331         1,893         1,441         920           3,822         3,315         2,808         2,331         1,893         1,441         920           3,826         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         725           3,572         2,950         2,063         1,688         1,323         820         556                                                                                                                                                                                                                                                                                 | 1971          | 4,557 | 3,493 | 2,578 | 1,777 | 1,288 | 808   | 515   | 1,190 | 4,555 | 4,640 | 4,644 | 4,690 |
| 3,565         3,345         2,797         2,177         1,593         968         665           3,481         3,049         2,529         1,949         1,656         1,119         944           2,799         2,346         1,903         1,450         1,007         325         233           3,822         3,315         2,808         2,331         1,893         1,441         920           3,822         3,315         2,808         2,331         1,893         1,441         920           3,826         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         725           3,572         2,950         2,063         1,688         1,323         820         556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1972          | 4,216 | 3,676 | 3,100 | 2,177 | 1,526 | 616   | 164   | 1,421 | 4,264 | 4,423 | 4,263 | 4,129 |
| 3,481         3,049         2,529         1,949         1,656         1,119         944           2,799         2,346         1,903         1,450         1,007         325         233           3,822         3,315         2,808         2,331         1,893         1,441         920           3,822         3,315         2,808         2,331         1,893         1,441         920           3,826         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         725           3,572         2,950         2,063         1,688         1,323         820         556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1973          | 3,565 | 3,345 | 2,797 | 2,177 | 1,593 | 968   | 665   | 1,845 | 4,842 | 4,713 | 4,286 | 4,409 |
| 2,799         2,346         1,903         1,450         1,007         325         233           3,822         3,315         2,808         2,331         1,893         1,441         920           3,822         3,315         2,808         2,331         1,893         1,441         920           3,826         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         725           3,572         2,950         2,063         1,688         1,323         820         556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1974          | 3,481 | 3,049 | 2,529 | 1,949 | 1,656 | 1,119 | 944   | 1,967 | 4,906 | 4,653 | 4,198 | 4,167 |
| 3,822         3,315         2,808         2,331         1,893         1,441         920           3,826         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         725           3,572         2,950         2,063         1,688         1,323         820         556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1975          | 2,799 | 2,346 | 1,903 | 1,450 | 1,007 | 325   | 233   | 395   | 3,870 | 4,524 | 4,368 | 4,392 |
| 3,266         2,435         1,960         1,612         1,316         999         961           2,887         2,424         1,944         1,465         858         725         725           3,572         2,950         2,063         1,688         1,323         820         556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1976          | 3,822 | 3,315 | 2,808 | 2,331 | 1,893 | 1,441 | 920   | 1,683 | 4,374 | 4,534 | 4,668 | 4,306 |
| 2,887 2,424 1,944 1,465 858 725 725<br>3,572 2,950 2,063 1,688 1,323 820 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1977          | 3,266 | 2,435 | 1,960 | 1,612 | 1,316 | 666   | 961   | 1,553 | 3,777 | 4,190 | 3,302 | 3,320 |
| · 3,572 2,950 2,063 1,688 1,323 820 556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1978          | 2,887 | 2,424 | 1,944 | 1,465 | 858   | 725   | 725   | 1,016 | 4,815 | 4,948 | 4,542 | 4.724 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1979          | 3,572 | 2,950 | 2,063 | 1,688 | 1,323 | 820   | 556   | 1,049 | 4,803 | 4,730 | 4,826 | 4,758 |

Montgomery Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| YEAR     | OCT   | NON   | DEC   | NAL   | FEB   | MAR   | APR   | MAY   | กมา   | JUL   | AUG   | SEP   |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1980     | 4,180 | 3,560 | 2,946 | 2,273 | 1,567 | 1,036 | 626   | 1.087 | 4.643 | 4.423 | 3 299 | 3 407 |
| 1981     | 3,147 | 3,007 | 2,758 | 2,514 | 1,957 | 1,370 | 1,320 | 1.962 | 4.354 | 4.227 | 2,706 | 2 338 |
| 1982     | 2,143 | 1,577 | 826   | 443   | 443   | 443   | 443   | 309   | 2.986 | 4.731 | 4.322 | 4,230 |
| 1983     | 3,862 | 3,276 | 2,346 | 2,043 | 1,783 | 1,487 | 751   | 959   | 4.780 | 4.854 | 4.956 | 3,828 |
| 1984     | 3,719 | 2,801 | 1,830 | 1,287 | 851   | 611   | 611   | 2,140 | 4,499 | 4.805 | 4.856 | 4.5R4 |
| 1985     | 4,432 | 4,227 | 3,472 | 2,682 | 2,404 | 1,769 | 662   | 1,478 | 4,822 | 4.865 | 4.155 | 4 237 |
| 1986     | 2,664 | 2,111 | 1,608 | 1,428 | 1,229 | 866   | 993   | 366   | 4,222 | 4.947 | 4.811 | 4.742 |
| 1987     | 4,538 | 3,781 | 3,340 | 2,791 | 2,307 | 1,588 | 953   | 3,238 | 4,824 | 4,901 | 4.655 | 4.565 |
| 1988     | 4,166 | 3,928 | 3,097 | 2,335 | 1,854 | 1,255 | 208   | 1,031 | 4,694 | 4,592 | 4.840 | 4.907 |
| 1989     | 4,527 | 4,281 | 3,515 | 2,437 | 1,492 | 882   | 516   | 1,035 | 2,281 | 4,407 | 4,945 | 4.879 |
| 1990     | 4,555 | 4,381 | 3,368 | 2,702 | 2,170 | 1,619 | 1,347 | 783   | 3,258 | 4,398 | 4,555 | 4,263 |
| 1991     | 4,104 | 3,963 | 3,008 | 2,319 | 2,038 | 1,730 | 546   | 736   | 3,397 | 4,741 | 4,814 | 4,611 |
| 1992     | 4,537 | 4,435 | 3,589 | 2,709 | 1,927 | 1,103 | 449   | 1,397 | 4,695 | 4,540 | 4,686 | 4,730 |
| 1993     | 4,649 | 4,520 | 4,036 | 3,546 | 3,096 | 1,801 | 307   | 1,289 | 4,914 | 4,671 | 4,617 | 4.954 |
| 1894     | 4,780 | 4,575 | 4,045 | 3,497 | 2,627 | 1,449 | 573   | 1,276 | 4,414 | 4,159 | 3,715 | 4.405 |
| 1995     | 4,621 | 4,552 | 4,254 | 3,963 | 3,382 | 1,550 | 408   | 202   | 4,870 | 5,069 | 4,851 | 3,847 |
| 1996     | 3,791 | 4,699 | 4,533 | 4,360 | 4,199 | 2,597 | 815   | 502   | 4,907 | 4,976 | 4,196 | 4,993 |
| 1997     | 4,64B | 3,728 | 2,728 | 2,571 | 1,791 | 959   | 744   | 752   | 4,965 | 4,910 | 4,888 | 4.465 |
| 1998     | 4,569 | 4,522 | 4,423 | 3,551 | 2,611 | 1,565 | 829   | 1,582 | 2,458 | 4,889 | 4,386 | 4,463 |
| 1999     | 4,362 | 4,270 | 3,585 | 2,675 | 1,796 | 832   | 389   | 788   | 4,733 | 4,893 | 4,903 | 4.778 |
| 2000     | 4,741 | 4,741 | 4,679 | 3,836 | 2,933 | 1,883 | 1,327 | 2,600 | 4,827 | 4,733 | 4,884 | 4,884 |
| 2001     | 4,632 | 4,632 | 4,613 | 3,873 | 2,461 | 564   | 387   | 1,532 | 2,481 | 2,794 | 2,998 | 3,961 |
| 2002     | 4,668 | 4,659 | 4,577 | 3,640 | 2,550 | 1,335 | 644   | 1,321 | 2,971 | 2,966 | 1,432 | 1,432 |
| 2003     | 1,427 | 1,427 | 1,251 | 965   | 965   | 965   | 965   | 2,732 | 4,801 | 4,727 | 4,726 | 4.697 |
| 2004     | 4,623 | 4,699 | 4,113 | 2,673 | 986   | 529   | 529   | 1,978 | 4,447 | 4,714 | 4,222 | 4,241 |
| 2005     | 4,238 | 4,219 | 4,118 | 3,659 | 3,301 | 1,525 | 699   | 1,882 | 4,737 | 4,686 | 4,092 | 2,935 |
| AVERAGE  | 3,856 | 3,510 | 2,970 | 2,436 | 1,865 | 1,142 | 662   | 1,382 | 4,155 | 4,545 | 4,313 | 4,222 |
|          | 1,427 | 1,427 | 826   | 443   | 443   | 325   | 161   | 82    | 2,281 | 2,794 | 1,432 | 1,432 |
| MAXIMUM: | 4,780 | 4,741 | 4,679 | 4,360 | 4,199 | 2,597 | 2,223 | 3,799 | 4,965 | 5,069 | 4,956 | 4,993 |

Elevenmile Canyon Reservoir Simulated End-Of-Month Contents Proposed Action Alternative

(AF)

| WATER | L.C.C  | NOT    |        |        |          |        |        |        |        |        |        |        |
|-------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|
| YEAR  | 5      |        |        | NAU    | FEB<br>F | MAR    | APR    | MAY    | NUL    | JUL    | AUG    | SEP    |
| 1950  | 96,676 | 96,674 | 96,680 | 96,679 | 96,679   | 96,679 | 96,679 | 96,656 | 96,661 | 96.699 | 96.702 | 96.682 |
| 1951  | 96,664 | 96,559 | 96,579 | 96,492 | 96,666   | 96,673 | 96,673 | 96,631 | 96,249 | 96,689 | 96,699 | 96,624 |
| 1952  | 96,673 | 96,670 | 96,674 | 96,626 | 96,673   | 96,673 | 96,678 | 96,680 | 97,193 | 97.156 | 96.710 | 96,679 |
| 1953  | 96,666 | 96,685 | 96,674 | 96,644 | 96,673   | 96,673 | 96,677 | 96,612 | 96,663 | 96,716 | 96.705 | 96.628 |
| 1954  | 96,673 | 96,673 | 96,675 | 96,647 | 96,673   | 96,673 | 96,666 | 96,639 | 96,621 | 96,626 | 96,356 | 94,422 |
| 1955  | 92,192 | 90,217 | 87,030 | 80,783 | 75,210   | 70,279 | 66,691 | 64,262 | 63,941 | 61,373 | 57,776 | 56.192 |
| 1956  | 53,976 | 51,725 | 49,308 | 43,660 | 40,945   | 37,425 | 35,700 | 34,596 | 34,444 | 34,276 | 34,148 | 33,677 |
| 1957  | 32,724 | 31,757 | 30,446 | 29,500 | 29,109   | 29,020 | 29,016 | 29,013 | 35,121 | 72,539 | 97,710 | 97,619 |
| 1958  | 96,534 | 96,715 | 96,668 | 96,522 | 96,668   | 96,679 | 96,679 | 96,669 | 97,128 | 97,056 | 96.701 | 96.651 |
| 1959  | 96,579 | 96,646 | 96,663 | 96,527 | 96,656   | 96,672 | 96,676 | 96,626 | 96,636 | 96,702 | 96,704 | 96,668 |
| 1960  | 96,687 | 96,672 | 96,669 | 96,627 | 96,668   | 96,672 | 96,459 | 96,632 | 96,920 | 96,638 | 96,663 | 96,626 |
| 1961  | 96,670 | 96,658 | 96,665 | 96'296 | 96,669   | 96,674 | 96,674 | 96,618 | 96,590 | 96,720 | 96,732 | 96,697 |
| 1962  | 96,673 | 96,672 | 96,677 | 96,643 | 96,675   | 96,679 | 96,679 | 96,655 | 96,714 | 96,756 | 96,693 | 96,659 |
| 1963  | 96,670 | 96,678 | 96,680 | 96,665 | 96,669   | 96,672 | 96,671 | 96,641 | 96,642 | 96,624 | 96,591 | 96,641 |
| 1964  | 96,577 | 96,192 | 95,642 | 94,565 | 93,049   | 91,446 | 90,532 | 89,774 | 89,544 | 91 144 | 91,294 | 87,802 |
| 1965  | 82,919 | 78,848 | 75,797 | 70,514 | 66,484   | 63,105 | 61,737 | 61,541 | 63,213 | 86,657 | 96,834 | 96,691 |
| 1966  | 96,668 | 96,674 | 96,680 | 96,679 | 96,679   | 96,677 | 96,672 | 96,640 | 96,641 | 96,556 | 96,655 | 96,457 |
| 1967  | 95,679 | 95,428 | 95,467 | 95,068 | 95,491   | 96,229 | 96,651 | 96,633 | 96,609 | 96,702 | 96,707 | 96,685 |
| 1968  | 96,681 | 96,664 | 96,669 | 96,609 | 96,668   | 96,668 | 96,677 | 96,640 | 96,631 | 96,694 | 96,712 | 96,690 |
| 1969  | 96,674 | 96,666 | 96,669 | 96,591 | 96,668   | 96,668 | 96,672 | 96,650 | 97,237 | 602'26 | 96,868 | 96,680 |
| 1970  | 96,683 | 96,667 | 96,679 | 96,679 | 96,679   | 96,679 | 96,679 | 96,682 | 97,413 | 97,039 | 96,725 | 96,690 |
| 1971  | 96,673 | 96,676 | 96,675 | 96,679 | 96,679   | 96,679 | 96,676 | 96,608 | 96,809 | 96,725 | 96,708 | 96,613 |
| 1972  | 96,679 | 96,675 | 96,680 | 96,679 | 96,679   | 96,679 | 96,679 | 96,654 | 96,679 | 96,696 | 96,704 | 96,692 |
| 1973  | 96,675 | 96,669 | 96,680 | 96,679 | 96,679   | 96,679 | 96,677 | 96,700 | 97,364 | 97,307 | 96,991 | 96,683 |
| 1974  | 96,673 | 96,672 | 96,680 | 96,679 | 96,679   | 96,679 | 96,662 | 96,464 | 96,585 | 96,715 | 96,700 | 96,682 |
| 1975  | 96,675 | 96,672 | 96,680 | 96,679 | 96,679   | 96,679 | 96,679 | 96,655 | 96,782 | 96,733 | 96,711 | 96,685 |
| 1976  | 96,675 | 96,678 | 96,680 | 96,679 | 96,679   | 96,679 | 96,679 | 96,661 | 96,669 | 96,710 | 96,713 | 96,709 |
| 1977  | 96,684 | 96,674 | 96,680 | 96,679 | 96,679   | 96,679 | 96,679 | 96,648 | 96,639 | 96,674 | 96,659 | 96,515 |
| 1978  | 96,192 | 96,555 | 96,676 | 96,666 | 96,666   | 96,666 | 96,364 | 95,834 | 96,356 | 96,662 | 96,692 | 96,601 |
| 6/61  | 96,518 | 96,636 | 96,649 | 94,033 | 93,009   | 92,682 | 94,172 | 96,327 | 96,919 | 97,439 | 96,711 | 96,684 |
| 1980  | 96,674 | 96,672 | 96,673 | 96,650 | 96,670   | 96,671 | 96,673 | 96,689 | 97,394 | 97,362 | 96,710 | 96,672 |
| 1981  | 96,626 | 96,674 | 96,676 | 96,634 | 96,670   | 96,677 | 96,679 | 96,650 | 96,654 | 96,655 | 96,659 | 96,646 |
| 1982  | 96,613 | 96,649 | 96,666 | 96,480 | 96,668   | 96,667 | 96,663 | 96,659 | 96,666 | 96,694 | 96,706 | 96,698 |
|       |        |        |        |        |          |        |        |        |        |        |        |        |

Elevenmile Canyon Reservoir Simulated End-Of-Month Contents **Proposed Action Alternative** 

(AF)

| WATER    |        |        |        |        |        |        |        |        |        |        |        |        |
|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| YEAR     | OCT    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | МАҮ    | NUL    | JUL    | AUG    | SEP    |
| 1983     | 96,674 | 96,673 | 96,674 | 96,634 | 96,669 | 96,675 | 96,661 | 96,605 | 96,817 | 97,630 | 97,201 | 96,652 |
| 1984     | 96,650 | 96,674 | 96,679 | 96,679 | 96,679 | 96,679 | 96,679 | 96,649 | 97,067 | 97,517 | 96,875 | 96,689 |
| 1985     | 96'696 | 96,666 | 96,596 | 96,658 | 96,679 | 96,679 | 96,679 | 96,679 | 97,215 | 97,050 | 96,695 | 96,692 |
| 1986     | 96,670 | 96,683 | 96,680 | 96,679 | 96,679 | 96,679 | 96,625 | 96,581 | 96,663 | 96,933 | 96,723 | 96,687 |
| 1987     | 96,679 | 96,688 | 96,680 | 96,679 | 96,679 | 96,679 | 96,675 | 96,680 | 97,276 | 97,366 | 96,716 | 96,681 |
| 1988     | 96,663 | 96,676 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,654 | 96,665 | 96,785 | 96,715 | 96,686 |
| 1989     | 96,667 | 96,675 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,652 | 96,687 | 96,710 | 96,709 | 96,687 |
| 1990     | 96,665 | 96,672 | 96,680 | 96,679 | 96,679 | 96,679 | 96,676 | 96,653 | 96,659 | 96,719 | 96,715 | 96,690 |
| 1991     | 96,673 | 96,674 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,666 | 96,687 | 96,728 | 96,735 | 96,689 |
| 1992     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1993     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1994     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1995     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1996     | 93,651 | 93,432 | 93.186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1997     | 93,651 | 93,432 | 93.186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1998     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 1999     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2000     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2001     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2002     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2003     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2004     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| 2005     | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| AVERAGE: | 93,651 | 93,432 | 93,186 | 92,633 | 92,307 | 91,996 | 91,846 | 91,758 | 92,097 | 93,593 | 94,201 | 93,957 |
| MINIMUM: | 32,724 | 31,757 | 30,446 | 29,500 | 29,109 | 29,020 | 29,016 | 29,013 | 34,444 | 34,276 | 34,148 | 33,677 |
| MAXIMUM: | 96,696 | 96,715 | 96,680 | 96,679 | 96,679 | 96,679 | 96,679 | 96,700 | 97,413 | 97,709 | 97,710 | 97,619 |
| i        | :      |        |        | ,      |        |        |        |        |        |        |        |        |

Source: Elevenmile Reservoir end-of-month contents from Denver Water's PACSM model for the Existing System Existing Demand simulation (Base285). Data from PACSM from 1950 through 1991, EOM contents from 1992 through 2005 were assumed to be the average of 1950 through 1991.

## PROPOSED ACTION ALTERNATIVE

Diversions

Simulated Deliveries through Homestake Tunnel Proposed Action Alternative (AF)

Simulated Deliveries through Homestake Tunnel Proposed Action Alternative

| WATER    |        |       |     |     |       |       |        |       |       |       |       |       |        |
|----------|--------|-------|-----|-----|-------|-------|--------|-------|-------|-------|-------|-------|--------|
| YEAR     | OCT    | NON   | DEC | NAL | FEB   | MAR   | APR    | MAY   | NUL   | JUL   | AUG   | SEP   | TOTAL  |
| 1983     | 2335   | 0     | 0   | 0   | 1806  | 8765  | 12642  | 3667  | 2862  | 2471  | 850   | 468   | 35866  |
| 1984     | 2578   | 747   | 0   | 0   | 1806  | 8765  | 12642  | 3667  | 2862  | 2471  | 850   | 468   | GEREE  |
| 1985     | 2578   | 747   | 0   | 0   | 0     | 5661  | 8880   | 781   | 3110  | 3786  | 1187  | 48    | 26779  |
| 1986     | 2335   | 0     | 0   | 0   | 0     | 5661  | 8880   | 781   | 3110  | 3786  | 1187  | 49    | 25789  |
| 1987     | 2335   | 0     | 0   | 0   | 0     | 5661  | 8880   | 781   | 3110  | 3786  | 1187  | 49    | 25789  |
| 1988     | 2335   | 0     | 0   | 0   | 0     | 5661  | 8880   | 781   | 3110  | 3786  | 1187  | 49    | 25789  |
| 1989     | 2335   | 0     | 0   | 0   | 0     | 5661  | 8880   | 781   | 3110  | 3786  | 1187  | 64    | 25789  |
| 1990     | 2335   | 0     | 0   | 0   | 0     | 5681  | 8880   | 781   | 3110  | 3786  | 1187  | 49    | 25789  |
| 1991     | 2335   | 0     | 0   | 0   | 0     | 5661  | 8880   | 781   | 3110  | 3786  | 1187  | 64    | 25789  |
| 1992     | 2335   | 0     | 0   | 0   | 0     | 5651  | 5326   | 0     | 0     | 0     | 2339  | 5596  | 21247  |
| 1993     | 303    | 0     | 0   | 0   | 0     | 9024  | 7616   | 0     | 2114  | 8190  | 1048  | 22    | 28317  |
| 1864     | 0      | 0     | 0   | 0   | 0     | 8535  | 10462  | 0     | 2928  | 0     | 0     | 2331  | 24256  |
| 1995     | 11390  | 0     | 0   | 0   | 0     | 312   | 14431  | 0     | ←     | 4414  | 3687  | 0     | 34235  |
| 1996     | 0      | 0     | 0   | 0   | 0     | 7255  | 14852  | 1730  | 7237  | 6372  | 1131  | 0     | 38577  |
| 1997     | 0      | 0     | 0   | 0   | 0     | 9795  | 14712  | 0     | 4146  | 5981  | 2612  | 0     | 37246  |
| 1998     | 409    | 0     | 0   | 0   | 0     | 8146  | 725    | 951   | 6702  | 6897  | 1084  | 0     | 24914  |
| 1999     | 0      | 0     | 0   | 0   | 0     | 8445  | 14760  | 3302  | 0     | 3218  | 1304  | 275   | 31304  |
| 2000     | 0      | 0     | 0   | 0   | 0     | 4453  | 9510   | 0     | 7530  | 780   | 382   | 392   | 23047  |
| 2001     | 0      | 0     | 0   | 0   | 0     | 8933  | 16977  | 8997  | 0     | 0     | 509   | 0     | 35416  |
| 2002     | 1093   | 3735  | 0   | 0   | 0     | 5312  | 10584  | 0     | 0     | 0     | 3006  | 2589  | 26319  |
| 2003     | 0      | 0     | 0   | 0   | 0     | 0     | 0      | 0     | 9843  | 0     | 0     | 0     | 9843   |
| 2004     | 14010  | 0     | 0   | 0   | 0     | 212   | 5088   | 0     | 0     | 0     | 0     | 0     | 19310  |
| 2005     | 0      | ð     | 0   | 0   | 0     | 8036  | 9488   | 431   | 0     | 0     | 0     | 0     | 17955  |
| AVERAGE: | 2,174  | 129   | 0   | 0   | 129   | 5,838 | 8,706  | 1,117 | 2,952 | 3,191 | 1,169 | 356   | 25,762 |
| MINIMUM  | 0      | 0     | 0   | 0   | 0     | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 9,843  |
| MAXIMUM: | 14,010 | 3,735 | 0   | 0   | 1,806 | 9,795 | 16,977 | 8,997 | 9,843 | 8,190 | 3,687 | 5,596 | 38,577 |

Simulated Deliveries through Hoosier Tunnel Proposed Action Alternative

Ł

Simulated Deliveries through Hoosier Tunnel Proposed Action Alternative

Ē

## PROPOSED ALTERNATIVE

Substitution Summary

Simulated Springs Utilities Total Substitution Bill Repayment Proposed Action Alternative (AF)

|      |   |   | DEC | JAN | FEB | MAR | APR | MAY | NUL | JUL | AUG   | SEP | TOTAL |
|------|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-------|-----|-------|
| 1950 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | C     |
| 1951 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | • c |       |
| 1952 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0 0   |     | c     |
| 1953 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0 0 |       |
| 1954 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2.767 | 0   | 2.767 |
| 1955 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 726   | 0   | 726   |
| 1956 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1957 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   |       |
| 1958 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 00    |
| 1959 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1960 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1961 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2,338 | 0   | 2,338 |
| 1962 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1963 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 4,318 | 0   | 4.318 |
| 1964 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 623   | 0   | 623   |
| 1965 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1966 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2,324 | 0   | 2,324 |
| 1967 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 968  | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 696  | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 970  | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1971 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 972  | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1973 | 0 | 0 | 0   | 0   | Q   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1974 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1975 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | С     |
| 1976 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 00    |
| 1977 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 1.605 |     | 1 605 |
| 1978 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | c     |
| 1979 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | Ō     | 0   | 00    |
| 1980 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | 0   | 0     |
| 1981 | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 2,396 | 0   | 2.396 |
| 982  | 0 | 0 | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0     | c   | Ċ     |

Simulated Springs Utilities Total Substitution Bill Repayment Proposed Action Alternative

(AF)

## PROPOSED ALTERNATIVE

Streamflows

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000

Proposed Action Alternative (CFS)

| WOV         DEC         JAN         FEB         MAR         APH         MAY         JUN         JUL         AUL         AUL <th>WATER</th> <th>+00</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WATER     | +00                 |        |             |        |         |          |                |      |     |      |     |            |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------|-------------|--------|---------|----------|----------------|------|-----|------|-----|------------|----------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YEAR      | 001                 | NON    | DEC         | JAN    | FEB     | MAR      | APR            | MAY  | NN  | JUL  | AUG | SEP        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1950      | 20                  | 14     | 12          | 10     | 8       | 2        | ¢              | 30   | 94  | 03   | 10  |            | AVG      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1951      | 9                   | ъ      | S           | 4      | e<br>co | с<br>С   | i Ç            | 84   | 110 | 2 2  | 4 6 | 2 c        | 3 8      |
| 6       4       4         6       6       6         6       6       6         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7         7       7       7       7         7       7       7       7         7       7       7       7       7         7       7       7       7       7       7         7       7       7       7       7       7       7         7       7       7       7       7       7       7       7       7         7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 <th>1952</th> <th>1</th> <th>8</th> <th>5</th> <th>5</th> <th>4</th> <th>0</th> <th>4</th> <th>2 45</th> <th>134</th> <th>43</th> <th>24</th> <th>n (;</th> <th>0, 10</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1952      | 1                   | 8      | 5           | 5      | 4       | 0        | 4              | 2 45 | 134 | 43   | 24  | n (;       | 0, 10    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1953      | 9                   | 4      | 4           | 4      | 4       | 4        | Ŧ              | 5 8  | 127 | 40   | 100 | 47         | ŝ        |
| 16         16         17         18         18         19         19         19         10         10         11         12         12         12         12         12         12         12         12         12         13         14         15         15         15         15         15         15         15         15         15          16         17         17         18         17         17         17         17         17         18         17         18         18         19         19         10         10         10         11         11         11         11         11         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1954      | 4                   | 5      | 4           | 4      | e       | <b>м</b> | 32             | 52   | 134 | e es | 5   | - 61       | ן ג<br>ל |
| 8       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1955      | 16                  | ი      | 7           | 5      | 4       | 4        | 20             | 30   | 56  | 14   | 39  | ! <b>σ</b> | 23       |
| 4       4         21       4         22       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 </th <th>1958</th> <th>5</th> <th>7</th> <th>7</th> <th>9</th> <th>ъ</th> <th>7</th> <th>7</th> <th>67</th> <th>76</th> <th>36</th> <th>19</th> <th>) ц</th> <th>5 5</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1958      | 5                   | 7      | 7           | 9      | ъ       | 7        | 7              | 67   | 76  | 36   | 19  | ) ц        | 5 5      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1957      | 4                   | 4      | ю           | 4      | 4       | ъ        | 12             | 25   | 125 | 110  | 21  | 6          | 38       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1958      | <b>თ</b>            | 0      | 7           | 9      | 9       | ъ        | 1              | 58   | 73  | 11   | 17  | ~          | 18       |
| 21       21         23       5       5         24       5       5         25       5       5         26       6       6         27       5       5         26       6       6         27       5       5         28       6       6         29       5       6         20       5       5         29       5       5         20       5       5         20       5       5         21       5       5         22       5       5         23       5       5         24       7       7       5         25       5       5       5         26       5       5       5         27       5       5       5         28       5       5       5         29       5       5       5         29       5       5       5         29       5       5       5       5         29       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1959      | 4                   | 4      | e           | ო      | ო       | ო        | 11             | 31   | 93  | 17   | 20  | . co       | 17       |
| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1960      | 21                  | 42     | ហ           | 4      | 4       | 7        | œ              | 28   | 87  | 23   | 25  | 0 00       | 19       |
| $ \begin{bmatrix} 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1961      | م                   | ເກ (   | ი :         | ო      | ო       | 4        | ø              | 36   | 51  | 37   | 24  | 17         | 16       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2081      | 51                  | 19     | 14          | Ø      | ω       | 6        | 11             | 38   | 80  | 44   | 24  | 10         | 23       |
| $^{\prime}$ 6       4       5       4       5       4       1 $^{\prime}$ 6       6       4       5       4       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2061      | <ul><li>I</li></ul> | 4      | 0           | ო      | ო       | 8        | 19             | 43   | 45  | 39   | 50  | 22         | 20       |
| 6       6       6       6       6       6       6       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | ~ `                 | 9      | 4           | S      | 4       | 4        | 10             | 40   | 55  | 83   | 41  | 12         | 23       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1965      | 9                   | 9      | 9           | 9      | S       | ഹ        | 17             | 36   | 101 | 83   | 23  | 10         | 25       |
| u $u$ $u$ $12$ $u$ $u$ $u$ $12$ $u$ $u$ $u$ $u$ $12$ $u$ $u$ $u$ $u$ $u$ $12$ $u$ $u$ $u$ $u$ $u$ $u$ $12$ $u$ $u$ $u$ $u$ $u$ $u$ $u$ $24$ $u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1996<br>1 | 24                  | 11     | ω           | 9      | ß       | 7        | 19             | 8    | 26  | 36   | 53  | 10         | 20       |
| $ \begin{bmatrix} 12 \\ 13 \\ 14 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1961      | 5                   | 4      | ო           | 4      | 4       | ω        | 4              | 50   | 4   | 25   | 31  | 23         | 20       |
| 13 $12$ $8$ $7$ $7$ $2$ $65$ $29$ $73$ $12$ $8$ $7$ $7$ $22$ $65$ $23$ $23$ $14$ $17$ $17$ $12$ $8$ $7$ $7$ $22$ $23$ $14$ $17$ $17$ $12$ $26$ $29$ $23$ $23$ $14$ $25$ $23$ $21$ $26$ $23$ $23$ $114$ $25$ $23$ $2114$ $25$ $23$ $2114$ $25$ $23$ $24$ $23$ $24$ $23$ $23$ $114$ $25$ $23$ $2114$ $25$ $23$ $2114$ $25$ $23$ $2114$ $25$ $23$ $2114$ $25$ $23$ $2114$ $25$ $23$ $24$ $23$ $24$ $23$ $133$ $9$ $7$ $7$ $9$ $9$ $7$ $7$ $33$ $107$ $66$ $2114$ $25$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $23$ $24$ $24$ $25$ $23$ $24$ $24$ $25$ $23$ $24$ $24$ $25$ $23$ $24$ $24$ $24$ $25$ $23$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $24$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1968      | 12                  | ω.     | S           | 4      | 4       | 5<br>2   | ω              | 11   | 100 | 22   | 24  | 28         | 19       |
| $\begin{bmatrix} 16 & 9 & 7 \\ 24 & 17 & 7 \\ 10 & 7 & 7 \\ 24 & 17 & 12 \\ 24 & 17 & 12 \\ 24 & 17 & 12 \\ 24 & 17 & 12 \\ 24 & 17 & 12 \\ 25 & 27 & 13 \\ 24 & 14 & 11 \\ 33 & 55 & 8 \\ 57 & 11 & 3 \\ 27 & 23 & 107 \\ 14 & 25 & 27 & 72 \\ 23 & 114 & 25 & 27 \\ 15 & 33 & 107 & 64 \\ 13 & 11 & 25 & 23 \\ 114 & 25 & 23 & 114 \\ 25 & 27 & 72 & 25 \\ 113 & 31 & 15 & 28 & 87 \\ 25 & 27 & 13 & 31 & 15 \\ 25 & 32 & 114 & 25 & 20 \\ 27 & 33 & 107 & 64 & 13 \\ 25 & 32 & 114 & 25 \\ 23 & 21 & 23 & 31 & 15 \\ 23 & 21 & 15 & 23 & 31 & 17 \\ 29 & 57 & 13 & 31 & 15 \\ 20 & 37 & 26 & 27 & 33 & 107 \\ 64 & 13 & 25 & 27 & 25 \\ 21 & 25 & 23 & 214 & 25 \\ 23 & 20 & 26 & 24 & 13 \\ 25 & 114 & 25 & 23 & 211 \\ 26 & 21 & 12 & 23 & 211 \\ 26 & 27 & 103 & 26 & 24 & 13 \\ 27 & 103 & 26 & 211 & 15 \\ 26 & 21 & 16 & 68 & 66 \\ 27 & 115 & 66 & 27 & 103 \\ 26 & 116 & 66 & 66 & 46 \\ 27 & 103 & 59 & 26 & 211 \\ 26 & 27 & 103 & 59 & 26 & 211 \\ 26 & 27 & 103 & 59 & 26 & 211 \\ 26 & 27 & 103 & 59 & 26 & 211 \\ 26 & 27 & 103 & 59 & 20 & 23 \\ 27 & 115 & 76 & 47 & 32 \\ 28 & 21 & 116 & 68 & 46 \\ 27 & 115 & 76 & 47 & 32 \\ 28 & 21 & 16 & 68 & 27 \\ 21 & 20 & 23 & 20 & 21 \\ 21 & 20 & 23 & 20 & 21 \\ 21 & 21 & 21 & 21 & 21 \\ 26 & 21 & 16 & 21 & 21 \\ 26 & 21 & 16 & 21 & 21 \\ 26 & 21 & 16 & 21 & 21 \\ 26 & 21 & 16 & 21 & 21 \\ 26 & 21 & 16 & 21 & 21 \\ 26 & 27 & 103 & 59 & 20 & 22 \\ 27 & 16 & 20 & 20 & 20 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 16 & 21 & 21 \\ 28 & 21 & 21 & 21 & 21 \\ 28 & 21 & 21 & 21 & 21 \\ 28 & 21 & 21 & 21 & 21 \\ 28 & 21 & 21 & 21 & 21 \\ 28 & 21 & 21 & 2$ | 1969      | 19                  | 13     | 12          | 8      | 7       | 7        | 7              | 62   | 65  | 29   | 23  | 14         | 22       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19/0      | 16                  | ი      | 7           | 9      | 9       | 9        | 12             | 75   | 113 | 31   | 24  | 22         | 27       |
| $\begin{bmatrix} 24 & 4 & 7 & 4 \\ 24 & 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 & 5 & 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19/1      | 24                  | 17     | 12          | 7      | 7       | 8        | ۵              | 27   | 72  | 25   | 21  | 15         | 20       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19/2      | 10                  | 7      | 8           | 9      | 7       | 6        | 15             | 32   | 114 | 25   | 20  | 24         | 23       |
| 4       55       4         55       5       5       5         55       5       5       5         56       5       5       5         10       6       5       5         11       5       5       5         12       5       5       5         13       5       5       5         13       5       5       5         13       5       5       5         13       5       5       5         14       6       6       5         15       5       5       5       5         14       6       6       5       5       5         15       5       5       5       5       5       5         16       6       6       6       6       5       5       5         16       6       6       6       6       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1973      | 24                  | 14     | 11          | ო      | 0       | ស        | 12             | 33   | 107 | 64   | 13  | ÷          | 25       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/8L      | 4 1                 | n<br>O | ო           | S      | 0       | 4        | ო              | 56   | 87  | 25   | 23  | 2          | 19       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C/81      | ມ (                 | en l   | 2           | 0      | 7       | ო        | 15             | 20   | 82  | 85   | 10  | 12         | 20       |
| $\begin{bmatrix} 14 & 1 & 4 & 4 & 3 \\ 13 & 9 & 7 & 5 & 5 & 33 & 99 & 25 & 14 & 10 \\ 7 & 7 & 4 & 6 & 6 & 7 & 17 & 5 & 5 & 40 & 141 & 68 & 46 & 12 \\ 5 & 7 & 8 & 5 & 0 & 57 & 23 & 248 & 96 & 62 & 11 & 14 \\ 9 & 9 & 5 & 5 & 7 & 8 & 96 & 62 & 11 & 14 \\ 19 & 9 & 5 & 5 & 6 & 332 & 116 & 37 & 21 & 13 \\ 19 & 13 & 10 & 10 & 5 & 5 & 23 & 322 & 116 & 37 & 21 & 13 \\ 19 & 13 & 10 & 10 & 5 & 5 & 8 & 27 & 103 & 59 & 20 & 29 \\ 11 & 9 & 9 & 9 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 11 & 9 & 9 & 9 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 11 & 9 & 9 & 0 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 11 & 9 & 9 & 0 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 11 & 9 & 9 & 0 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 11 & 12 & 11 & 12 & 116 & 12 & 13 & 10 \\ 12 & 11 & 12 & 116 & 12 & 13 & 10 \\ 13 & 10 & 10 & 10 & 10 & 10 & 10 \\ 13 & 10 & 11 & 14 & 11 & 14 & 14 \\ 11 & 11 & 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1976      | 10                  | 9      | 2           | 2      | 2       | ю        | 11             | 49   | 69  | 26   | 24  | 13         | 18       |
| $\begin{bmatrix} 13 & 9 & 7 & 5 & 5 & 5 & 5 & 40 & 141 & 68 & 46 & 12 \\ 7 & 7 & 4 & 6 & 6 & 7 & 17 & 2 & 48 & 96 & 62 & 11 & 14 \\ 5 & 7 & 8 & 5 & 0 & 5 & 48 & 96 & 62 & 11 & 14 \\ 9 & 8 & 9 & 5 & 0 & 5 & 23 & 232 & 116 & 37 & 21 & 13 \\ 19 & 13 & 10 & 10 & 5 & 5 & 8 & 27 & 103 & 59 & 20 & 29 \\ 19 & 13 & 10 & 10 & 5 & 5 & 8 & 27 & 103 & 59 & 20 & 29 \\ 11 & 9 & 9 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 18 & 14 & 11 & 9 & 9 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 19 & 11 & 9 & 9 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 10 & 10 & 10 & 5 & 5 & 5 & 15 & 114 & 84 & 23 \\ 10 & 10 & 10 & 5 & 5 & 15 & 114 & 84 & 23 \\ 10 & 10 & 10 & 5 & 67 & 115 & 76 & 47 & 18 \\ 11 & 9 & 9 & 0 & 10 & 13 & 67 & 115 & 76 & 47 & 18 \\ 11 & 12 & 12 & 116 & 13 & 10 & 10 \\ 12 & 12 & 116 & 13 & 10 & 10 & 10 \\ 13 & 10 & 10 & 10 & 10 & 10 & 10 \\ 13 & 10 & 11 & 14 & 11 & 14 & 14 \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ 13 & 10 & 11 & 14 & 11 & 14 & 14 \\ 10 & 10 & 10 & 10 & 10 & 10 & 10 \\ 10 & 10 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1781      | 4                   | - (    | 4           | 4      | ო       | 11       | 15             | 35   | 66  | 25   | 14  | 10         | 20       |
| 7       4       6       6       7       17       2       48       96       62       11       14         5       7       8       5       0       5       23       48       96       62       11       14         9       8       5       0       5       23       32       116       37       21       13         9       8       5       0       5       23       32       116       37       21       13         12       10       8       5       23       32       116       37       21       13         19       13       10       10       5       5       8       27       103       59       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       29       20       20       29       20 <td< th=""><th>9/8I</th><th>2</th><th>ית.</th><th>2</th><th>S.</th><th>4</th><th>S</th><th>ъ</th><th>40</th><th>141</th><th>68</th><th>46</th><th>12</th><th>R</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/8I      | 2                   | ית.    | 2           | S.     | 4       | S        | ъ              | 40   | 141 | 68   | 46  | 12         | R        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A/At      | < I                 | 41     | 9 0         | 9      | ~       | 17       | N              | 48   | 96  | 62   | 11  | 14         | 23       |
| 9         5         4         7         6         31         65         42         16         20           12         10         8         4         6         5         8         27         16         20           12         10         8         4         6         5         8         27         103         59         20         29           18         14         11         9         9         10         13         67         115         76         47         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1991      | n (                 | ~ 1    | 20          | £      | 0       | ഹ        | 23             | 32   | 116 | 37   | 21  | 13         | 23       |
| 12     10     8     4     6     5     8     27     103     59     20     29       19     13     10     10     5     5     2     15     114     84     34     23       18     14     11     9     9     10     13     67     115     76     47     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1961      | л (                 | æ (    | 6           | ۍ<br>۲ | 4       | 7        | Q              | 31   | 65  | 42   | 16  | 20         | 19       |
| 19     13     10     10     5     5     2     15     114     84     34     23       18     14     11     9     9     10     13     67     115     76     47     18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7961      | 2 9                 | 01     | <b>20</b> ( | 4      | 9       | 2        | œ              | 27   | 103 | 59   | 20  | 29         | 24       |
| l 18 14 11 9 9 10 13 67 115 76 47 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1998      | 5                   | 51     | 10          | 10     | 2       | 2        | N              | 15   | 114 | 84   | \$  | 23         | 28       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1984      | 18                  | 14     | 11          | 6      | б       | 10       | <del>1</del> 3 | 67   | 115 | 76   | 47  | 18         | \$       |

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000

| WATER    |            |     |     |          |          |        |      |     |     |          |     |         |        |
|----------|------------|-----|-----|----------|----------|--------|------|-----|-----|----------|-----|---------|--------|
| YEAR     |            | NON | DEC | NAL      | FEB      | MAR    | APR  | МАҮ | NUL | JUL      | AUG | SEP     |        |
| 1985     | 18         | 42  | 7   | 7        | 2        | 10     | 2    | 74  | 156 | 78       | 10  | 17      | 24     |
| 1986     | 2          | 15  | 13  | 0        | 10       | 12     | σ    | 41  | 214 | 141      | 2 0 | P C     | 5 ₹    |
| 1987     | 23         | 14  | 12  | 6        | 7        | σ      | . 00 | 50  |     | at<br>at | 2   | t 0     | - c    |
| 1988     | 4          | 4   | 7   | 11       | e.       | i ur   | ) U  | 200 | 86  | 2        |     |         | 7      |
| 1080     | 14         | Ľ   | • • |          | •        | 2      | 5 (  | 2   | מ   | +        | 2   | CN<br>N | 18     |
|          | <u>t</u> . | o • | - ( | 4        | 4        | 13     | 6    | 51  | 55  | 24       | 17  | S       | 17     |
| DARI     | - (        | 4   | m   | ო        | ო        | 2      | 19   | 8   | 06  | 24       | 9   | ~       | 16     |
| 1991     | 8          | 15  | 2   | 4        | 4        | ŋ      | 80   | 54  | 92  | 29       | 27  | 19      | 22     |
| 1992     | 80         | 7   | ഗ   | ო        | 4        | S      | 31   | 2   | 56  | 06       | 26  | 20      | 27     |
| 1883     | 18         | 14  | 10  | <b>б</b> | <b>б</b> | 8      | 12   | 66  | 109 | 63       | 24  | 25      | 3      |
| 1994     | 14         | 13  | ø   | 9        | 9        | 7      | 18   | 62  | 72  | 36       | 15  | 14      | 33     |
| 1995     | 10         | 8   | 4   | ო        | 4        | 7      | 10   | 19  | 139 | 170      | 37  | 24      | 98     |
| 1996     | 21         | 11  | 11  | 6        | 10       | 6      | 5    | 73  | 126 | 4        | 24  | 18      | 5 C    |
| 1997     | 13         | 6   | 7   | 9        | -        | 6      | 4    | 63  | 181 | 57       | 37  | 25      | 3 2    |
| 1998     | 22         | 11  | 9   | 4        | ო        | 2      | ო    | 49  | 86  | 58       | 29  | 14      | 24     |
| 1999     |            | æ   | 5   | 2        | ស        | 7      | 15   | 4   | 107 | 41       | 28  | 54      | ۲<br>۲ |
| 2000     | 15         | 8   | ß   | 4        | ъ        | 5<br>L | 8    | 96  | 149 | 52       | 1   | 8       | 3 8    |
| 2001     | 12         | 7   | 5   | 4        | 4        | 4      | 20   | 73  | 70  | 55       | 28  | 0.0     | 25     |
| 2002     | 2          | 9   | -   | ო        | ო        | ى      | 25   | 170 | 102 | 14       | 80  | 15      | 30     |
| 2003     | 21         | 14  | 2   | ო        | ო        | S      | ស    | 71  | 88  | 24       | 21  | 54      | 25     |
| 2004     | 7          | 5   | 5   | 4        | 4        | 7      | 33   | 2   | 2   | 62       | 15  | Ŧ       | 2      |
| 2005     | 11         | 6   | 5   | 9        | 10       | 7      | 7    | 56  | 79  | 29       | 27  | . ~     | 12     |
| AVERAGE: | 12         | ი   | 9   | ഹ        | 5        | 9      | 12   | 48  | 8   | 49       | 23  | 15      | 24     |
| WINIMOW: | -          | -   | -   | 0        | 0        | ო      | 2    | ÷   | 26  | 11       | 0   | ~       | 18     |
| MAXIMUM: | 24         | 19  | 14  | 11       | 10       | 17     | R    | 170 | 214 | 170      | 53  | 00      | 41     |
|          |            |     |     |          |          |        |      |     |     |          |     |         |        |

## Proposed Action Alternative (CFS)

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000 Proposed Action Alternative (AF)

| 833         738         615         144         273         538         1,432         730         2,375         5,588         1,432         739         5284         1,432         739         5,588         1,432         739         5,242         1,476         1,221         5,385         1,437         730         5,237         5,588         1,432         739         2,403         739         5,243         1,19         5,231         5,386         1,437         739         2,403         5,386         1,437         739         2,403         5,386         1,437         739         2,403         5,386         1,437         739         2,403         5,386         1,436         5,396         1,436         739         2,403         5,396         1,436         5,396         1,436         5,396         1,436         739         2,403         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         5,396         1,436         1,436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER | 001         | NON      | DEC | NAL |     | avn   |       | 2411  |       |       |       |            |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|----------|-----|-----|-----|-------|-------|-------|-------|-------|-------|------------|----------|
| $ \begin{bmatrix} 1,4,2 \\ 6,75 \\ 6,80 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,82 \\ 2,81 \\ 2,81 \\ 2,82 \\ 2,82 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,81 \\ 2,8$ | YEAH  |             |          |     |     |     |       |       | MAT   | NOC   | JUL   | AUG   | SEP        | TOTAL    |
| 353         309         332         226         194         277         750         2.927         6.575         4.428         1.300         523           388         249         273         233         233         233         242         1.300         253         211         7.997         2.402         754         690         233           314         415         416         200         316         7.997         2.402         754         690         233           314         415         230         216         200         3163         7.997         2.403         7.491         7.337         7.493         7.397         7.493         7.397         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493         7.493 <th>1950</th> <th>1,242</th> <th>833</th> <th>738</th> <th>615</th> <th>444</th> <th>430</th> <th>703</th> <th>2.375</th> <th>5.588</th> <th>1 432</th> <th>710</th> <th>604</th> <th>15 740</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1950  | 1,242       | 833      | 738 | 615 | 444 | 430   | 703   | 2.375 | 5.588 | 1 432 | 710   | 604        | 15 740   |
| 676         369         338         277         230         215         75-6         2632         1476         125           242         286         244         280         136         318         75-6         242         243         215         300         325         1476         1275         302         375-6         242         248         557         1215         302         375-6         242         248         557         1201         1161         3326         4739         2406         556         327         302         375-6         2432         1215         302         277         2413         275         302         271         275         302         271         275         567         1002         146         566         566         743         1517         745         302         277         242         413         275         567         146         566         1002         145         566         1002         145         566         1002         1456         566         1002         2414         1517         1475         566         1007         1566         1007         1567         146         566         567         146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1951  | 353         | 309      | 332 | 228 | 194 | 277   | 750   | 2.927 | 6.575 | 4 428 | 1 280 |            |          |
| 338         249         228         240         226         231         653         275         2402         7546         275         326           242         521         415         77         100         316         7297         2402         754         600           314         517         475         267         3551         7367         2402         754         600           314         517         408         377         3787         2402         744         600           2233         224         187         206         1006         1272         1414           1306         716         300         205         342         1517         485         748         667         153           2233         234         167         172         2184         1772         1476         584         740         1517         485           2391         386         249         536         346         1507         1272         1416           394         566         10.05         1272         2428         746         146           2461         366         243         342         1172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1952  | 676         | 369      | 338 | 277 | 230 | 215   | 218   | 2,112 | 7,965 | 2632  | 1 476 | 07C        | . 0/2/01 |
| 242         286         234         230         193         270         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97         7,97<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1953  | 398         | 249      | 228 | 240 | 205 | 231   | 658   | 2.029 | 7.546 | 2 432 | 1 215 | 302        | 15,023   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1954  | 242         | 286      | 234 | 230 | 194 | 207   | 1,903 | 3,183 | 7.997 | 2,402 | 754   | 200<br>600 | 18 200   |
| 314         415         408         346         300         402         4557         2242         1181         275           541         517         748         317         211         214         415         7423         6.757         1.272         1.163         275           541         517         216         205         278         751         7.423         6.757         1.272         1.153           223         224         330         271         222         5.153         1.434         1517         446           327         306         106         103         441         1722         1.657         1.272         1.153           327         301         231         233         233         1366         1.032         1.446         963           461         330         271         249         3.772         1.527         1.752         1.661         1.307           384         366         230         456         5.361         1.032         2.414         3.075         2.547         7.475         1.557         1.757           384         467         236         640         5.372         2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1955  | 1,012       | 521      | 413 | 292 | 215 | 262   | 1,209 | 1,816 | 3.326 | 4,739 | 2 40R |            | 18 760   |
| 230         237         211         216         205         278         738         1,511         7,23         6,757         1,272         1,153           231         231         231         233         231         627         3,551         4,366         706         1,032         441           232         233         264         168         199         627         3,551         4,366         706         1,032         441           237         308         205         184         171         218         487         2,116         3,056         2,301         1,456         1,517         446           237         239         1657         163         160         191         344         1,132         2,468         1,677         1,456         584           461         381         233         282         236         266         502         2,407         3,476         1,476         1,676         567           384         1,476         1,392         5,031         4,566         1,616         1,470         266         1,556         1,566         1,566         1,566         1,566         1,566         1,576         1,446         1,616<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1956  | 314         | 415      | 408 | 346 | 300 | 405   | 402   | 4.092 | 4.537 | 2.242 | 1,181 | 275        | 14 017   |
| 541         517         436         367         309         321         627         3,551         4,356         706         1,022         444           327         308         205         184         171         218         487         2,723         433         456         533         660         2,301         4,556         1,036         1,573         486           327         308         205         184         171         218         487         2,783         486         1,571         486           327         308         205         184         171         218         487         2,722         2,941         456         1,456         466         506         1,036         1,456         506         1,036         5,476         506         1,377         446         506         1,376         5,476         5,66         1,376         5,476         5,66         1,376         5,471         466         5,66         1,376         5,471         476         2,587         446         5,960         1,366         1,476         2,586         5,77         2,547         5,66         1,376         5,67         1,476         1,566         5,571         1,428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1857  | 230         | 237      | 211 | 216 | 205 | 278   | 738   | 1,511 | 7.423 | 6.757 | 1.272 | 1 153      | 20.231   |
| 223         224         187         204         168         199         642         1,884         5,506         1,036         1,533         400           223         326         716         330         271         223         482         1,884         5,506         1,036         1,533         400           403         239         168         180         191         344         1,132         2,631         2,772         2,426         3,060         1,307           403         3391         233         580         2,309         4,778         2,697         1,476         583           461         386         355         340         2,33         583         422         1,132         2,631         2,772         2,426         3,060         1,307           1,476         649         489         365         2,631         2,772         2,426         3,060         1,307           1,476         764         2,98         2,072         1,537         2,013         2,565         5,77         2,446         1,476         5,965           1,476         763         366         2,844         1,032         2,663         1,3660         1,307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1958  | 54          | 517      | 436 | 367 | 309 | 321   | 627   | 3,551 | 4.356 | 706   | 1.032 | 414        | 13 177   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1959  | 223         | 224      | 187 | 204 | 168 | 199   | 642   | 1,884 | 5,506 | 1,036 | 1,253 | 480        | 12 006   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1960  | 1,306       | 716      | 330 | 271 | 232 | 423   | 482   | 1,722 | 5,153 | 1.434 | 1.517 | 485        | 14.071   |
| 829         1,153         657         493         456         533         680         2,309         4,776         5,67         1,476         5,84           403         239         166         180         191         344         1,132         2,631         2,702         2,476         5,84           461         381         233         283         422         1,132         2,631         2,702         2,476         1,307           552         247         212         235         235         266         244         1,327         2,201         3,256         567           552         247         212         235         235         508         265         3,091         4,560         1,520         1,906         1,355           559         467         559         472         380         313         368         7,11         4,611         6,66         1,856         1,465         1,476         1,286           1,476         789         261         372         241         4,560         1,520         1,906         1,355           569         447         280         343         741         4,611         6,617         2,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1961  | 327         | 308      | 205 | 184 | 171 | 218   | 487   | 2,186 | 3,056 | 2,301 | 1,456 | 983        | 11,882   |
| 403         239         166         180         191         344         1,132         2,631 $2,702$ $2,426$ 3,060         1,307           552         247         266         284         1,032         2,202         6,017         2,547         741           552         247         2702         2,426         3,060         1,355         5,074         1,428         6,00           552         247         2112         236         255         3,091         4,560         1,520         1,906         1,355           552         247         2112         236         255         3,091         4,560         1,520         1,006         1,355           553         467         293         363         353         288         744         390         3,787         2,601         1,402         1,468         1,661           1,476         983         720         412         367         5,960         1,468         1,661         1,226         1,428         600           1,476         983         720         412         366         5,766         1,468         1,661         1,428         600         1,428         1,611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1902  | 829         | 1,153    | 657 | 493 | 458 | 533   | 680   | 2,309 | 4,778 | 2,697 | 1.476 | 584        | 16.847   |
| 461         361         233         282         236         256         602         2,429         3,295         5,107         2,477         741           1,476         765         340         356         340         256         2002         2,429         3,295         5,07         1,426         600           1,476         765         730         351         283         422         3,091         4,560         1,520         1,906         1,355           738         467         298         271         244         390         3,787         3,848         1,792         1,402         835           967         559         400         536         741         6,966         1,365         1,476         1,292         1,256         1,476         1,296         1,355           1,476         983         720         412         390         3,787         3,848         1,772         1,402         835           1,476         983         741         1,989         6,776         1,292         1,428         600           1,476         983         741         1,989         6,776         1,292         1,428         626         235 <td< th=""><th>206</th><th>403</th><th>239</th><th>168</th><th>180</th><th>191</th><th>344</th><th>1,132</th><th>2,631</th><th>2,702</th><th>2,426</th><th>3.060</th><th>1.307</th><th>14.783</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206   | 403         | 239      | 168 | 180 | 191 | 344   | 1,132 | 2,631 | 2,702 | 2,426 | 3.060 | 1.307      | 14.783   |
| 394         360         356         340         266         284         1,032         2,202         6,010         5,074         1,428         600           552         247         212         235         233         233         235         566         567           738         467         298         271         240         329         490         656         5,960         1,520         1,906         1,355           738         467         598         271         240         329         490         656         1,406         1,428         600           967         559         405         5160         1,520         1,905         1,355         1,402         835           967         559         472         313         368         741         4,611         6,696         1,426         1,426           1,476         983         720         412         367         518         1,428         835           599         405         472         313         366         576         1,428         875           599         405         472         313         366         233         1,646         4,296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1964  | 461         | 381      | 233 | 282 | 236 | 256   | 602   | 2,429 | 3,299 | 5,107 | 2.547 | 741        | 16.574   |
| 1,476         649         489         363         283         422         1,129         2,072         1,537         2,201         3,256         567           738         467         212         235         2031         4,560         1,520         1,906         1,355           758         785         730         271         240         329         444         390         3,787         3,848         1,792         1,402         835           967         559         420         6586         7,41         4,611         6,696         1,876         1,476         1,296           1,476         983         720         412         367         521         313         1,646         4,296         1,476         1,296           599         405         472         313         1,646         4,296         1,522         1,226         987           599         405         472         363         500         3,954         813         652           1,456         1,476         1,296         1,476         1,296         1,476         1,296           1,456         824         1655         5101         1,969         6,776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1965  | 965         | 360      | 356 | 340 | 266 | 284   | 1,032 | 2,202 | 6,010 | 5,074 | 1,428 | 600        | 18.346   |
| 552         247         212         235         508         255         3,091         4,560         1,520         1,906         1,355           738         467         298         271         240         329         490         658         5,960         1,366         1,468         1,681           967         559         422         380         313         368         741         4,611         6,696         1,476         1,296         835           967         559         405         521         313         1,646         4,792         1,402         835           599         405         472         380         313         1646         4,522         1,402         835           599         405         476         933         11         936         131         1,698         6,776         1,292         922         922           533         108         1244         19         362         1476         1,476         1,476         1,426           333         108         1244         1989         6,776         5,224         5,292         6,05           333         108         1244         103         1,776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 996   | 1,476       | 649      | 489 | 363 | 283 | 422   | 1,129 | 2,072 | 1,537 | 2,201 | 3,256 | 567        | 14.444   |
| 738         467         298         271         240         329         490         658         5,960         1,366         1,468         1,681           1,176         765         730         561         332         444         330         3,787         3,848         1,792         1,476         1,296           967         553         730         561         332         444         330         3,787         3,848         1,792         1,476         1,296           1,476         983         720         412         367         521         313         1,646         4,296         1,522         1,292         922           596         456         536         516         1,646         4,296         1,522         1,428         835           533         168         124         19         362         233         160         1,522         1,296         1,428         1,428           235         275         176         328         509         5,766         1,412         365         1,428           333         168         124         19         3,462         5,189         1,412         365         657 <t< th=""><th>1961</th><th>552</th><th>247</th><th>212</th><th>235</th><th>223</th><th>508</th><th>255</th><th>3,091</th><th>4,560</th><th>1,520</th><th>1.906</th><th>1.355</th><th>14,664</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1961  | 552         | 247      | 212 | 235 | 223 | 508   | 255   | 3,091 | 4,560 | 1,520 | 1.906 | 1.355      | 14,664   |
| 1,176 $765$ $730$ $501$ $392$ $444$ $390$ $3,787$ $3,048$ $1,792$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,476$ $1,876$ $1,296$ $1,876$ $1,292$ $922$ $922$ $1,476$ $983$ $720$ $412$ $366$ $536$ $911$ $1,989$ $6,776$ $1,292$ $922$ $922$ $922$ $922$ $923$ $914$ $920$ $3,954$ $813$ $652$ $1,226$ $1,412$ $982$ $1,226$ $1,412$ $982$ $1,230$ $3,954$ $813$ $652$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$ $1,428$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1968  | 738         | 467      | 298 | 271 | 240 | 329   | 490   | 658   | 5,960 | 1.366 | 1.468 | 1.681      | 13 968   |
| 967         559         422         380         313         368         741         4,611         6,696         1,376         1,476         1,296           1,476         983         720         412         367         521         313         1,646         4,296         1,528         1,292         922           599         405         472         389         536         911         1,989         6,776         1,522         1,292         922           559         405         476         369         536         911         1,989         6,776         1,522         1,292         922           5535         275         176         328         496         233         160         3,462         5,189         1,412         98           333         188         124         19         362         1,295         4,98         5,247         592         687           333         188         124         19         362         1,216         1,476         749           814         5,0         2177         5,391         1,255         4,988         5,247         592         687           814         5,0         2177 </th <th>1969</th> <th>1,176</th> <th>765</th> <th>730</th> <th>501</th> <th>392</th> <th>444</th> <th>390</th> <th>3,787</th> <th>3,848</th> <th>1,792</th> <th>1.402</th> <th>835</th> <th>16.062</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1969  | 1,176       | 765      | 730 | 501 | 392 | 444   | 390   | 3,787 | 3,848 | 1,792 | 1.402 | 835        | 16.062   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0/81  | 967         | 559      | 422 | 380 | 313 | 368   | 741   | 4,611 | 6,696 | 1,876 | 1.476 | 1.296      | 19.705   |
| 599         405         472         389         369         536         911         1,989         6,776         1,522         1,259         1,428           1,458         824         655         206         20         309         718         2,001         8,360         3,954         813         652           235         275         176         328         496         233         160         3,462         5,189         1,412         98           333         188         124         19         362         156         908         1,225         4,866         5,247         592         687           602         344         146         103         109         177         633         2,966         4,098         1,612         1,476         749           814         548         433         2,96         881         2,171         5,891         1,542         881         5,876         667         836           814         548         433         2,956         1,033         1,772         5,891         1,542         836         5,876         6692           303         410         491         5,373         1,303         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/61  | 1,476       | 983      | 720 | 412 | 367 | 521   | 313   | 1,646 | 4,296 | 1,528 | 1,292 | 922        | 14.476   |
| 1,458         B24         655         206         20         309         718         2,001         8,360         3,954         813         652           235         275         176         328         496         233         160         3,462         5,189         1,412         98           235         275         176         328         496         233         160         3,462         5,189         1,412         98           333         188         124         19         362         158         908         1,225         4,888         5,247         592         687           602         344         146         103         109         177         633         2,966         4,098         1,412         98           814         548         433         295         249         329         313         2,460         8,418         4,203         2,829         689           814         548         433         295         249         329         313         2,460         8,418         6,747         5,92         687           814         548         2,32         249         3,13         2,460         8,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/81  | 599         | 405      | 472 | 389 | 369 | 536   | 911   | 1,989 | 6,776 | 1,522 | 1,259 | 1.428      | 16,655   |
| Z35       Z75       176       328       496       233       160       3,462       5,189       1,546       1,412       98         333       188       124       19       362       158       908       1,225       4,888       5,247       592       687         602       344       146       103       109       177       633       2,986       4,098       1,612       1,476       749         838       50       217       232       193       680       881       2,171       5,891       1,542       881       5,68         814       548       433       295       249       329       313       2,171       5,891       1,542       881       5,68         814       548       433       295       249       329       313       2,171       5,891       1,542       881       5,68         814       544       433       295       249       329       313       2,460       8,418       4,203       2,829       6,87         303       410       491       2,365       1,953       6,880       2,566       1,175         303       410       491 <t< th=""><th>19/3</th><th>1,458</th><th>824</th><th>655</th><th>206</th><th>20</th><th>309</th><th>718</th><th>2,001</th><th>8,360</th><th>3,954</th><th>813</th><th>652</th><th>17,970</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19/3  | 1,458       | 824      | 655 | 206 | 20  | 309   | 718   | 2,001 | 8,360 | 3,954 | 813   | 652        | 17,970   |
| 333         188         124         19         362         158         908         1,225         4,888         5,247         592         687           602         344         146         103         109         177         633         2,986         4,098         1,612         1,476         749           838         50         217         232         193         680         881         2,171         5,891         1,542         881         568           814         5,48         433         295         249         329         313         2,171         5,891         1,542         881         5,68           814         5,48         433         295         249         329         313         2,171         5,891         1,542         881         5,68           814         5,48         433         295         249         329         313         2,171         5,891         1,542         831         5,68           814         5,48         433         295         2,460         8,418         4,203         2,829         692           303         410         491         28         1,953         6,880         2,611 <th>4/8 I</th> <th><b>G</b>52</th> <th>275</th> <th>176</th> <th>328</th> <th>496</th> <th>233</th> <th>160</th> <th>3,462</th> <th>5,189</th> <th>1,546</th> <th>1,412</th> <th>98</th> <th>13,610</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/8 I | <b>G</b> 52 | 275      | 176 | 328 | 496 | 233   | 160   | 3,462 | 5,189 | 1,546 | 1,412 | 98         | 13,610   |
| 002 $344$ $146$ $103$ $109$ $177$ $633$ $2,986$ $4,098$ $1,612$ $1,476$ $749$ $838$ $50$ $217$ $232$ $193$ $680$ $881$ $2,171$ $5,891$ $1,542$ $881$ $568$ $814$ $548$ $433$ $295$ $249$ $329$ $313$ $2,460$ $8,418$ $4,203$ $2,829$ $692$ $428$ $232$ $375$ $329$ $313$ $2,460$ $8,418$ $4,203$ $2,829$ $692$ $428$ $232$ $375$ $329$ $313$ $2,460$ $8,418$ $4,203$ $2,829$ $692$ $303$ $410$ $491$ $286$ $16$ $2,365$ $5,702$ $3,814$ $667$ $836$ $580$ $450$ $552$ $313$ $2,122$ $3,814$ $667$ $836$ $580$ $450$ $5,702$ $3,814$ $667$ $3,732$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1010  | 555         | 188      | 124 | 19  | 362 | 158   | 806   | 1,225 | 4,888 | 5,247 | 592   | 687        | 14,731   |
| 838         50         217         232         193         680         881         2,171         5,891         1,542         881         568           814         548         433         295         249         329         313         2,460         8,418         4,203         2,829         692           814         548         433         295         249         329         313         2,460         8,418         4,203         2,829         692           428         232         375         359         381         1,039         147         2,956         5,702         3,814         667         836           303         410         491         286         16         293         1,358         1,953         6,880         2,611         994         1,175           580         450         5772         3,865         2,611         994         1,175           748         615         473         263         1,636         6,133         3,632         1,728           1,194         773         6395         6,1665         4,129         6,865         4,674         2,908         1,728           1,1125         816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 209         | 945<br>1 | 146 | 103 | 109 | 177   | 633   | 2,986 | 4,098 | 1,612 | 1,476 | 749        | 13.035   |
| 814         548         433         295         249         329         313         2,460         8,418         4,203         2,829         692           428         232         375         359         381         1,039         147         2,956         5,702         3,814         667         836           428         232         375         359         381         1,039         147         2,956         5,702         3,814         667         836           303         410         491         286         16         293         1,358         1,953         6,880         2,256         1,310         775           580         450         552         313         212         423         368         1,953         6,880         2,611         994         1,175           748         615         473         229         307         293         468         1,636         6,133         3,632         1,728           1,194         773         6395         6,133         3,632         1,259         1,728           1,1125         816         677         539         468         1,636         6,7126         2,103         1,728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JIRI  | 838         | 50       | 217 | 232 | 193 | 680   | 881   | 2,171 | 5,891 | 1,542 | 881   | 568        | 14,144   |
| 428         232         375         359         381         1,039         147         2,956         5,702         3,814         667         836           303         410         491         286         16         293         1,358         1,953         6,880         2,256         1,310         775           580         450         552         313         212         423         368         1,924         3,865         2,611         994         1,175           748         615         473         229         307         293         468         1,636         6,133         3,632         1,259         1,728           1,194         773         634         620         274         320         122         895         6,733         3,632         1,259         1,728           1,194         773         636         6,7133         3,632         1,259         1,728           1,125         816         677         538         488         605         786         4,129         6,865         4,674         2,908         1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8/61  | 814         | 548      | 433 | 295 | 249 | 329   | 313   | 2,460 | 8,418 | 4,203 | 2,829 | 692        | 21.581   |
| 303         410         491         286         16         293         1,358         1,953         6,880         2,256         1,310         775           580         450         552         313         212         423         368         1,924         3,865         2,611         994         1,175           748         615         473         229         307         293         468         1,636         6,133         3,632         1,259         1,728           1,194         773         634         6,73         3655         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,674         2,908         1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/A   | 428         | 232      | 375 | 359 | 381 | 1,039 | 147   | 2,956 | 5,702 | 3,814 | 667   | 836        | 16,936   |
| 580         450         552         313         212         423         368         1,924         3,865         2,611         994         1,175           748         615         473         229         307         293         468         1,636         6,133         3,632         1,259         1,758           1,194         773         634         620         274         320         122         895         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,674         2,908         1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DRR I | 303         | 410      | 491 | 286 | 16  | 293   | 1,358 | 1,953 | 6,880 | 2,256 | 1,310 | 775        | 16,331   |
| 748         615         473         229         307         293         468         1,636         6,133         3,632         1,259         1,728           1,194         773         634         620         274         320         122         895         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,674         2,908         1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1981  | 580         | 450      | 552 | 313 | 212 | 423   | 368   | 1,924 | 3,865 | 2,611 | 994   | 1.175      | 13,467   |
| 1,194         773         634         620         274         320         122         895         6,786         5,168         2,103         1,343           1,125         816         677         538         488         605         786         4,129         6,865         4,674         2,908         1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1982  | 748         | 615      | 473 | 229 | 307 | 293   | 468   | 1,636 | 6,133 | 3,632 | 1.259 | 1.728      | 17,521   |
| 1,125 816 677 538 488 605 786 4,129 6,865 4,674 2,908 1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 225   | 1,194       | E/1      | 634 | 620 | 274 | 320   | 122   | 895   | 6,786 | 5,168 | 2.103 | 1.343      | 20.232   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1984  | 1,125       | 816      | 677 | 538 | 488 | 605   | 786   | 4,129 | 6,865 | 4,674 | 2,908 | 1,080      | 24.891   |

Simulated Flows at Homestake Creek below Homestake Project at USGS Gage 09064000 **Proposed Action Alternative** 

(AF)

| WATER    | OCT   | NOV   | DEC        | JAN | FEB | MAR   | APR   | MAY    |        |        | AliG       | d H S      | TOTAL   |
|----------|-------|-------|------------|-----|-----|-------|-------|--------|--------|--------|------------|------------|---------|
| 1985     | 1.101 | 704   | 441        | 405 | 37F | 613   | 010   | 101    | 0000   |        |            | 3          | 10.01   |
| TORK     | 416   |       |            |     |     |       | 010   | 100'4  | 9,208  | 4,768  | 1,155      | 899        | 24,609  |
|          |       | 311   | 070        | 240 | /90 | 715   | 544   | 2,519  | 12,750 | 8,651  | 14         | 1,427      | 29,980  |
| 1081     | c04,1 | 808   | 767        | 544 | 406 | 544   | 460   | 3,611  | 3,562  | 1,000  | 1.217      | 473        | 14,797  |
| 1988     | 218   | 242   | 434        | 659 | 140 | 325   | 331   | 1,872  | 5.404  | 863    | 924        | 1 461      | 10 873  |
| 1989     | 869   | 287   | 48         | 224 | 245 | 781   | 546   | 3,166  | 3.263  | 1.476  | 1 025      |            | 10,000  |
| 1990     | 58    | 265   | 199        | 155 | 151 | 308   | 1.136 | 2.110  | 5 338  | 1 476  | 357        | 200        | 11 550  |
| 1991     | 503   | 912   | 280        | 243 | 229 | 318   | 497   | 3.306  | 5,455  | 1 766  | 1635       | 120        | 160,11  |
| 1992     | 500   | 418   | 908<br>908 | 195 | 206 | 321   | 1,845 | 3,906  | 3.355  | 5,531  | 1 590      | 154        | 10,2,01 |
| 1993     | 1,092 | 845   | 599        | 525 | 498 | 513   | 203   | 4.056  | 6,499  | 3,902  | 1 476      | 1 473      | 20181   |
| 1994     | 880   | 761   | 465        | 377 | 349 | 435   | 1,088 | 3.811  | 4.288  | 2,207  | 640        | 852        | 16 455  |
| 1995     | 642   | 465   | 240        | 192 | 221 | 405   | 611   | 1,181  | 8,300  | 10 434 | 2.05       | 1 428      |         |
| 1996     | 1,300 | 658   | 671        | 631 | 544 | 532   | 283   | 4.507  | 7,518  | 2 466  | 1 476      | 1024       | 21 867  |
| 1997     | 828   | 545   | 420        | 377 | 52  | 543   | 252   | 3,899  | 10.796 | 3.511  | 2220       | 1 463      | 24 062  |
| 1998     | 1,332 | 642   | 344        | 237 | 191 | 307   | 179   | 2,996  | 5,130  | 3,560  | 1 789      | BOA        | 17 511  |
| 1999     | 698   | 502   | 314        | 145 | 268 | 461   | 890   | 2.689  | 6.354  | 2 528  | 1 605      | 1 428      | 17 070  |
| 2000     | 929   | 485   | 286        | 247 | 270 | 310   | 487   | 5,906  | 8,886  | 3 217  | 1068       | 1001       | 2/6'/1  |
| 2001     | 714   | 415   | 295        | 265 | 211 | 263   | 1,193 | 4.518  | 4,165  | 3 389  | 1 707      | 760        | 17 004  |
| 2002     | 455   | 334   | 34         | 190 | 189 | 321   | 1,508 | 10.452 | 6.051  | 884    | 508        | 867        | 102,10  |
| 2003     | 1,289 | 805   | 297        | 185 | 166 | 281   | 1.330 | 4.355  | 5 263  | 1 476  | 1 278      | 1 427      | 10 100  |
| 2004     | 437   | 295   | 304        | 251 | 208 | 433   | 1.936 | 3.327  | 3 198  | DUB C  | 008<br>008 | 676<br>676 | 10,100  |
| 2005     | 684   | 549   | 288        | 344 | 546 | 402   | 409   | 3.441  | 4,708  | 1.785  | 1 689      | 2070       | 20/101  |
| AVERAGE: | 731   | 510   | 390        | 319 | 274 | 393   | 713   | 2.943  | 5.716  | 3 011  | 1 438      | A08        | 17 336  |
| MINIMUM: | 58    | 50    | 34         | 19  | 16  | 158   | 122   | 658    | 1 537  | 706    | 1          | 020        | 11 660  |
| MAXIMUM: | 1,476 | 1,153 | 857        | 629 | 567 | 1,039 | 1.936 | 10.452 | 12,750 | 10 434 | 3 756      | 1 708      |         |
|          |       |       |            |     |     |       |       |        |        |        | 21-22      | 1,201      | 000 03  |

Simulated Flows at Blue River below Green Mountain Reservoir Proposed Action Alternative (CFS)

|               | AVG      | 110  |      | 334  | 295  | 187  | 306  | 381        | 494  | 274  | 352  | 305  | 481  | 297      | 193  | 343        | 319  | 218  | 204  | 337  | 546  | 475  | 350            | 357  | 383      | 341            | 250            | 259  | 229  | 341  | 446  | 247  | 207  | 714  | 868  |
|---------------|----------|------|------|------|------|------|------|------------|------|------|------|------|------|----------|------|------------|------|------|------|------|------|------|----------------|------|----------|----------------|----------------|------|------|------|------|------|------|------|------|
| SEP           | 240      | 2010 | 384  | 337  | 179  | 292  | 312  | 498        | 292  | 361  | 303  | 402  | 587  | 230      | 245  | 605        | 207  | 394  | 353  | 351  | 412  | 586  | 377            | 630  | 337      | 462            | 371            | 146  | 405  | 374  | 319  | 209  | 498  | 1039 | 845  |
| AUG           | AGE      | 202  | 411  | 324  | 185  | 500  | 610  | 937        | 683  | 689  | 631  | 545  | 341  | 492      | 613  | 677        | 509  | 748  | 156  | 620  | 552  | 350  | 570            | 243  | 393      | 299            | 447            | 216  | 550  | 438  | 634  | 156  | 370  | 1029 | 1393 |
| ר<br>חר       | 567      | 1760 | 685  | 767  | 669  | 411  | 539  | 1175       | 524  | 366  | 663  | 634  | 1082 | 833      | 178  | 836        | 672  | 178  | 178  | 847  | 1283 | 1067 | 511            | 1130 | 629      | 1240           | 176            | 499  | 362  | 1211 | 1020 | 414  | 182  | 2330 | 2391 |
| NUL           | 509      | 505  | 2311 | 347  | 240  | 173  | 568  | 2          | 2055 | 142  | 583  | 169  | 1936 | 171      | 152  | 138        | 164  | 124  | 4    | 157  | 2150 | 1586 | 822            | 176  | 1312     | 9 <del>8</del> | 107            | 166  | 169  | 118  | 1351 | 162  | 130  | 1820 | 3306 |
| MAY           | 81<br>81 | 113  | 135  | 67   | 70   | 61   | 120  | 76         | 166  | 67   | 91   | 65   | 151  | 2        | 88   | 85         | 61   | 61   | 62   | 225  | 150  | 94   | <del>9</del> 3 | 87   | 83<br>83 | 61             | 151            | 133  | 140  | 119  | 61   | 123  | 86   | 62   | 581  |
| АРВ           | 65       | 226  | 06   | 241  | 254  | 82   | 06   | 202        | 210  | 279  | 8    | 269  | 06   | 93<br>93 | 242  | <b>9</b> 3 | 100  | 06   | 259  | 66   | 102  | 90   | 8              | 293  | 06       | 120            | <del>9</del> 4 | 412  | 91   | 8    | 92   | 400  | 276  | 268  | 104  |
| MAR           | 211      | 196  | 286  | 298  | 257  | 115  | 187  | 208        | 323  | 173  | 203  | 218  | 260  | 210      | 139  | 179        | 338  | 173  | 154  | 237  | 283  | 319  | 265            | 276  | 257      | 250            | 234            | 203  | 178  | 244  | 293  | 208  | 183  | 366  | 219  |
| FEB           | 205      | 208  | 311  | 284  | 172  | 101  | 183  | 209        | 330  | 175  | 244  | 211  | 242  | 202      | 126  | 181        | 337  | 144  | 160  | 250  | 297  | 308  | 245            | 285  | 240      | 258            | 245            | 197  | 155  | 249  | 283  | 203  | 141  | 325  | 229  |
| NAL           | 163      | 196  | 292  | 272  | 427  | 66   | 175  | 213        | 298  | 177  | 216  | 192  | 51   | 190      | 124  | 181        | 306  | 141  | 159  | 241  | 284  | 286  | 226            | 270  | 233      | 248            | 216            | 184  | 154  | 235  | 257  | 189  | 143  | 301  | 208  |
| DEC           | 171      | 198  | 301  | 261  | 256  | 110  | 183  | 231<br>231 | 325  | 168  | 216  | 206  | 205  | 272      | 123  | 182        | 307  | 147  | 165  | 240  | 329  | 302  | 240            | 275  | 225      | 238            | 223            | 187  | 168  | 237  | 254  | 200  | 139  | 294  | 239  |
| NON           | 278      | 229  | 315  | 276  | 264  | 132  | 192  | 219        | 360  | 171  | 272  | 222  | 040  | 194      | 137  | 191        | 357  | 165  | 184  | 241  | 362  | 360  | 244            | 297  | 256      | 692            | 246            | 190  | 169  | 230  | 264  | 212  | 150  | 329  | 288  |
| OCT           | 554      | 515  | 552  | 522  | 523  | 152  | 505  | 513        | 378  | 507  | 635  | 516  | 2    | 584      | 88   | 440        | 456  | 243  | 476  | 516  | 358  | 364  | 504            | 318  | 531      | 450            | 485            | 562  | 199  | 511  | 515  | 481  | 190  | 393  | 585  |
| WATER<br>YEAR | 1950     | 1951 | 1952 | 1953 | 1954 | 1955 | 1956 | 1857       | 1958 | 1959 | 1960 | 1961 | 1962 |          | 1964 | 1965       | 1966 | 1967 | 1968 | 1969 | 1970 | 1/61 | 1972           | 1973 | 1974     |                | 9/8L           | 1197 | 8/81 | 8/81 | 1980 | 1961 | 1982 | 1983 | 1984 |

Simulated Flows at Blue River below Green Mountain Reservoir Proposed Action Alternative

(CFS)

Simulated Flows at Blue River below Green Mountain Reservoir Proposed Action Alternative (AF)

| 34,047 $16,549$ $10,497$ $10,045$ $11,397$ $31,645$ $13,611$ $12,177$ $12,047$ $11,574$ $33,939$ $18,718$ $18,514$ $17,941$ $17,297$ $32,036$ $16,412$ $16,023$ $16,712$ $5,573$ $19,567$ $32,132$ $15,702$ $15,718$ $26,277$ $9,563$ $17,2941$ $32,032$ $11,422$ $11,248$ $10,736$ $10,162$ $11,729$ $31,0337$ $13,010$ $13,567$ $13,090$ $11,608$ $13,574$ $31,195$ $10,189$ $10,355$ $10,864$ $9,738$ $13,439$ $31,719$ $13,185$ $12,201$ $13,574$ $13,738$ $13,732$ $21,000$ $13,1395$ $11,507$ $15,731$ $11,220$ $13,438$ $31,179$ $13,856$ $11,507$ $13,569$ $13,469$ $13,250$ $31,196$ $13,560$ $11,5707$ $13,530$ $11,220$ $8,453$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WATER       | OCT    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    |         |         | AUG    | SED    | TOTAL   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|---------|
| 31,645         13,611         12,177         12,043         11,574         12,036           32,132         15,772         15,773         16,773         16,773         16,773           32,132         15,770         15,773         16,773         16,773         16,706           32,132         15,770         15,773         16,712         15,773         16,703           32,132         15,702         15,773         16,724         17,294         17,294           31,043         11,422         11,248         10,736         10,162         11,490           31,043         11,422         11,248         10,736         10,168         17,490           31,719         13,185         10,864         9,738         10,664         9,738           31,719         13,185         12,669         11,733         19,667         16,174           31,719         13,185         15,691         11,703         11,203         10,644           31,719         13,185         15,669         11,713         13,404         17,713         13,404           23,207         11,327         15,649         11,733         11,703         11,713         10,664           31,719         <                                                                                                                                             | 1950        | 34.047 | 16 540 | 10.407 | 10.045 | 11 207 | 10,001 | 100    |        |         |         |        | ;      |         |
| 37,033         15,71         15,714         17,237         17,237         17,580           32,132         15,702         15,718         16,712         15,773         15,773         15,723         15,723           32,47         7,855         6,769         6,110         5,636         7,100           31,043         11,422         11,248         10,736         10,162         11,490           31,037         13,010         13,567         13,090         11,608         12,787           31,719         10,189         10,355         10,864         9,738         10,162         11,490           31,719         10,189         10,3255         13,209         11,733         13,404           31,719         13,185         10,189         10,3255         13,269         15,74         13,490           31,719         13,185         10,189         10,3255         13,269         15,763         15,769           31,719         13,185         15,71         16,731         11,703         11,220         12,897           31,719         13,185         15,516         13,564         13,464         17,419         11,014           20,100         20,207         11,586         <                                                                                                                                     | 1051        | 21 645 |        |        |        |        | 12,804 | 0,489  | 3,/61  | 30,277  | 34,838  | 36,580 | 18,447 | 224,911 |
| 35,553 $16,712$ $17,297$ $17,297$ $17,560$ $32,132$ $15,7702$ $16,7702$ $16,773$ $17,297$ $17,560$ $32,132$ $15,7702$ $16,773$ $16,773$ $56,536$ $7,100$ $31,043$ $11,422$ $11,422$ $11,248$ $10,736$ $11,602$ $11,713$ $31,043$ $11,422$ $11,248$ $10,736$ $10,162$ $11,400$ $31,195$ $10,189$ $10,3555$ $10,864$ $9,738$ $10,644$ $39,074$ $16,181$ $13,285$ $13,269$ $11,713$ $13,404$ $23,732$ $21,417$ $19,974$ $18,356$ $11,713$ $13,404$ $39,074$ $16,181$ $13,285$ $12,644$ $9,738$ $10,644$ $31,779$ $13,185$ $12,644$ $9,738$ $11,713$ $13,404$ $20,100$ $21,561$ $13,226$ $11,713$ $11,713$ $10,661$ $20,100$ $21,532$ $11,322$ $14,548$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |        |        | 1/1/21 | 12,047 | 4/c'll | 12,039 | 13,425 | 6,937  | 31,234  | 108,339 | 36,800 | 23,630 | 313,458 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1832        | 33,939 | 18,718 | 18,514 | 17,941 | 17,297 | 17,580 | 5,382  | 8,265  | 137,518 | 60,383  | 25,251 | 22,839 | 383,627 |
| 32,132 $15,702$ $15,702$ $15,703$ $11,603$ $15,783$ $56,336$ $7,100$ $31,043$ $11,422$ $11,248$ $10,736$ $10,162$ $11,490$ $31,537$ $13,010$ $13,557$ $13,090$ $11,608$ $12,787$ $31,719$ $11,422$ $11,248$ $10,736$ $10,162$ $11,490$ $31,719$ $10,188$ $10,355$ $10,864$ $9,3574$ $10,644$ $31,719$ $10,188$ $12,569$ $11,703$ $11,713$ $13,404$ $31,719$ $10,188$ $12,569$ $11,703$ $11,713$ $13,404$ $31,701$ $13,188$ $12,569$ $13,574$ $13,404$ $13,744$ $20,100$ $20,207$ $12,616$ $13,574$ $13,404$ $11,014$ $20,100$ $21,549$ $10,651$ $11,703$ $11,220$ $12,649$ $20,100$ $21,549$ $11,703$ $11,703$ $11,220$ $12,649$ $27,070$ $11,322$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1853        | 32,096 | 16,412 | 16,023 | 16,712 | 15,773 | 18,204 | 14,344 | 4,123  | 20,668  | 47,192  | 19,900 | 20,064 | 241,511 |
| 9,347 $7,855$ $6,769$ $6,110$ $5,636$ $7,100$ $31,043$ $11,422$ $11,248$ $10,736$ $10,162$ $11,490$ $31,537$ $13,010$ $13,557$ $13,010$ $13,557$ $11,490$ $31,719$ $10,189$ $10,355$ $10,864$ $9,738$ $10,644$ $31,719$ $10,189$ $10,3555$ $10,864$ $9,738$ $10,644$ $31,719$ $13,185$ $12,691$ $11,734$ $11,713$ $13,404$ $31,719$ $13,185$ $12,691$ $13,744$ $13,438$ $15,997$ $31,719$ $13,182$ $13,524$ $13,434$ $15,997$ $3444$ $27,070$ $11,571$ $16,731$ $11,703$ $11,244$ $13,744$ $27,070$ $11,392$ $11,161$ $11,1131$ $10,061$ $11,014$ $27,070$ $11,392$ $11,161$ $11,7703$ $18,905$ $18,400$ $18,723$ $27,070$ $11,332$ $11,6161$ <td< th=""><th>1954</th><th>32,132</th><th>15,702</th><th>15,718</th><th>26,277</th><th>9,563</th><th>15,789</th><th>15,111</th><th>4,321</th><th>14,279</th><th>42,950</th><th>11,374</th><th>10,626</th><th>213,842</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1954        | 32,132 | 15,702 | 15,718 | 26,277 | 9,563  | 15,789 | 15,111 | 4,321  | 14,279  | 42,950  | 11,374 | 10,626 | 213,842 |
| 31,043 $11,422$ $11,222$ $11,222$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,422$ $11,713$ $13,404$ $21,424$ $21,424$ $21,424$ $21,722$ $11,713$ $13,404$ $31,722$ $11,611$ $11,713$ $13,404$ $31,404$ $31,722$ $11,612$ $11,713$ $13,404$ $31,722$ $11,713$ $13,404$ $31,722$ $11,713$ $13,404$ $31,722$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,713$ $11,7120$ $11,402$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1955        | 9,347  | 7,855  | 6,769  | 6,110  | 5,636  | 7,100  | 5,485  | 3,760  | 10,286  | 25,268  | 30,748 | 17,361 | 135.725 |
| 31,537 $13,010$ $13,567$ $13,000$ $11,608$ $12,787$ $31,195$ $10,189$ $10,3567$ $13,000$ $11,608$ $12,787$ $31,195$ $10,189$ $10,3557$ $13,000$ $11,713$ $13,404$ $31,719$ $13,185$ $12,691$ $11,713$ $13,404$ $15,997$ $31,719$ $13,185$ $12,691$ $11,720$ $12,898$ $15,997$ $31,719$ $13,185$ $12,616$ $11,720$ $12,898$ $15,997$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,898$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,898$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,997$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,997$ $35,902$ $11,331$ $10,661$ $11,014$ $12,319$ $10,643$ $28,0202$ $14,756$ $14,411$ $11,733$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1956        | 31,043 | 11,422 | 11,248 | 10,736 | 10,162 | 11,490 | 5,382  | 7,405  | 33,795  | 33,114  | 37,515 | 18,556 | 221,868 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1957        | 31,537 | 13,010 | 13,567 | 13,090 | 11,608 | 12,787 | 12,005 | 4,701  | 3,786   | 72,276  | 57,606 | 29,605 | 275,578 |
| 31,195 $10,189$ $10,355$ $10,864$ $9,738$ $10,644$ $39,074$ $16,181$ $13,285$ $13,550$ $16,174$ $31,719$ $13,185$ $12,691$ $11,784$ $11,713$ $13,404$ $20,100$ $20,207$ $12,616$ $13,574$ $13,438$ $15,997$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,898$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,898$ $27,070$ $11,332$ $7,649$ $6,989$ $8,574$ $11,014$ $27,070$ $11,332$ $11,161$ $11,131$ $10,061$ $11,014$ $28,028$ $21,255$ $18,905$ $18,840$ $18,723$ $20,758$ $14,939$ $9,798$ $9,057$ $8,697$ $7,893$ $10,632$ $28,028$ $21,436$ $14,756$ $14,813$ $13,907$ $14,548$ $21,436$ $16,608$ $15,813$ $12,5631$ $14,548$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1958        | 23,232 | 21,417 | 19,974 | 18,349 | 18,351 | 19,857 | 12,479 | 10,210 | 122,258 | 32,208  | 41,978 | 17,391 | 357 704 |
| 39,074         16,181         13,285         13,269         13,550         16,174 $31,719$ 13,185         12,691         11,713         13,404 $20,100$ $20,207$ 12,616         13,574         13,438         15,997 $31,719$ 13,185         12,616         13,574         13,438         15,997 $31,719$ 13,182         7,549         7,649         6,989         8,574 $20,100$ $20,207$ 11,161         11,131         10,061         11,014 $27,070$ 11,392         11,161         11,131         10,061         11,014 $28,028$ $21,255$ 18,905         18,840         18,723         20,758 $28,028$ $21,346$ 14,756         14,813         10,061         11,014 $28,028$ $14,569$ 10,149         9,801         8,893         9,440 $31,732$ $14,569$ $17,406$ $17,419$ 17,419 $27,017$ $21,436$ $14,756$ $14,756$ $17,406$ $17,419$ $22,91242$ $10,9161$ $17,466$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1959        | 31,195 | 10,189 | 10,355 | 10,864 | 9,738  | 10,644 | 16,597 | 4,096  | 8,420   | 22,488  | 42,364 | 21,506 | 198.456 |
| 31,719 $13,185$ $12,691$ $11,713$ $13,404$ $20,100$ $20,207$ $12,616$ $13,574$ $13,438$ $15,997$ $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,898$ $8,453$ $8,132$ $7,549$ $7,649$ $6,989$ $8,574$ $27,070$ $11,392$ $11,161$ $11,131$ $10,061$ $11,014$ $28,028$ $21,255$ $18,905$ $18,840$ $18,723$ $20,758$ $28,028$ $21,255$ $18,905$ $18,840$ $18,723$ $20,758$ $28,028$ $21,346$ $14,756$ $14,813$ $13,907$ $14,548$ $29,242$ $10,961$ $10,149$ $9,801$ $8,893$ $9,440$ $21,436$ $14,756$ $14,756$ $14,719$ $17,419$ $17,419$ $21,732$ $14,569$ $17,419$ $13,300$ $16,283$ $10,632$ $29,990$ $14,756$ $14,756$ $14,759$ $13,309$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1960        | 39,074 | 16,181 | 13,285 | 13,269 | 13,550 | 16,174 | 5,382  | 5,574  | 34,681  | 40,773  | 38,769 | 18.044 | 254.756 |
| Z0,100         Z0,700         12,616         13,574         13,438         15,997 $35,880$ $11,571$ $16,731$ $11,703$ $11,220$ $12,898$ $8,574$ $27,070$ $11,392$ $11,161$ $11,131$ $10,061$ $11,014$ $27,070$ $11,392$ $11,161$ $11,131$ $10,061$ $11,014$ $28,028$ $21,255$ $18,905$ $18,840$ $18,723$ $20,758$ $28,028$ $21,255$ $18,905$ $18,840$ $18,723$ $20,758$ $28,028$ $21,556$ $10,149$ $9,801$ $8,893$ $9,440$ $28,028$ $21,516$ $20,238$ $17,466$ $16,468$ $17,419$ $22,017$ $21,436$ $18,550$ $17,466$ $16,468$ $17,419$ $22,039$ $14,729$ $13,309$ $15,812$ $16,632$ $9,440$ $22,354$ $21,436$ $14,729$ $13,314$ $15,803$ $12,471$ $22,333$ $15,450$ $11,331$ $13,314$ </th <th>1961</th> <th>31,719</th> <th>13,185</th> <th>12,691</th> <th>11,784</th> <th>11,713</th> <th>13,404</th> <th>16,010</th> <th>3,967</th> <th>10,042</th> <th>38,981</th> <th>33,528</th> <th>23,892</th> <th>220,916</th>                                                                                                                                                                                                                                                                                                                                                                                                                 | 1961        | 31,719 | 13,185 | 12,691 | 11,784 | 11,713 | 13,404 | 16,010 | 3,967  | 10,042  | 38,981  | 33,528 | 23,892 | 220,916 |
| 35,880         11,571         16,731         11,703         11,220         12,898 $8,463$ $8,132$ $7,549$ $7,649$ $6,989$ $8,574$ $27,070$ $11,392$ $11,161$ $11,131$ $10,061$ $11,014$ $27,070$ $11,392$ $11,161$ $11,131$ $10,061$ $11,014$ $28,028$ $21,255$ $18,905$ $18,840$ $18,723$ $20,758$ $14,939$ $9,796$ $9,057$ $8,697$ $7,983$ $10,632$ $28,028$ $21,516$ $10,149$ $9,801$ $8,893$ $9,440$ $29,242$ $10,961$ $11,160$ $11,131$ $10,632$ $9,440$ $29,242$ $10,961$ $12,790$ $13,807$ $14,548$ $17,419$ $21,732$ $14,756$ $14,719$ $13,309$ $16,283$ $9,440$ $22,033$ $14,566$ $14,7806$ $17,419$ $17,419$ $17,419$ $22,354$ $21,456$ $14,579$ $14,322$ $15,471$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1962        | 20,100 | 20,207 | 12,616 | 13,574 | 13,438 | 15,997 | 5,382  | 9,309  | 115,184 | 66,540  | 20,944 | 34,958 | 348.249 |
| B,453         B,132         7,549         7,649         6,989         8,574           27,070         11,392         11,161         11,131         10,061         11,014           28,028         21,255         18,905         18,840         18,723         20,758           14,933         9,798         9,057         8,697         7,983         10,632           28,028         21,255         18,905         18,840         18,723         20,758           14,933         9,796         9,057         8,697         7,983         10,632           29,242         10,961         10,149         9,801         8,893         9,440           29,242         10,961         14,756         14,813         13,907         14,548           21,732         14,509         14,756         17,406         16,468         17,419           22,017         21,436         18,550         17,466         16,468         17,419           22,039         14,509         14,729         13,909         13,630         16,283           22,033         15,411         17,100         19,616         17,419         17,419           22,513         17,560         15,816         14,322                                                                                                                                                       | 1963        | 35,880 | 11,571 | 16,731 | 11,703 | 11,220 | 12,898 | 5,562  | 3,919  | 10,156  | 51,194  | 30,244 | 13,679 | 214.757 |
| 27,070         11,392         11,161         11,131         10,061         11,014           28,028         21,255         18,905         18,840         18,723         20,758           14,939         9,798         9,057         8,697         7,983         10,632           29,242         10,961         10,149         9,801         8,893         9,440           29,242         10,961         10,149         9,801         8,893         9,440           29,242         10,961         14,756         14,813         13,907         14,548           21,732         14,509         14,756         17,466         16,468         17,419           22,017         21,516         20,238         17,466         16,468         17,419           22,017         21,436         18,550         17,466         16,468         17,419           22,017         21,436         14,729         13,909         13,630         16,168           22,017         21,436         14,729         13,909         14,512         16,985           22,017         21,436         14,729         13,909         14,322         16,408           22,017         21,436         14,729         13,35                                                                                                                                                 | 1965        | 8,463  | 8,132  | 7,549  | 7,649  | 6,989  | 8,574  | 14,382 | 5,394  | 9,060   | 10,938  | 37,703 | 14,608 | 139.441 |
| 28,028         21,255         18,905         18,840         18,723         20,758           14,939         9,798         9,057         8,697         7,983         10,632           29,242         10,961         10,149         9,801         8,893         9,440           29,242         10,961         10,149         9,801         8,893         9,440           31,732         14,346         14,756         14,813         13,907         14,548           29,242         10,961         14,756         14,813         13,907         14,548           22,017         21,516         20,238         17,466         16,468         17,419           22,030         14,509         14,726         13,909         13,630         16,583           22,033         15,516         13,806         17,410         19,616         16,608         17,419           22,033         15,513         14,729         13,909         13,630         16,616         16,468         17,419           22,033         15,413         14,664         15,258         14,322         16,965         16,411           29,51         17,466         16,608         13,255         13,600         14,411         1                                                                                                                                         | 1965        | 27,070 | 11,392 | 11,161 | 11,131 | 10,061 | 11,014 | 5,563  | 5,224  | 8,200   | 51,404  | 60,066 | 35,971 | 248,257 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 996<br>1906 | 28,028 | 21,255 | 18,905 | 18,840 | 18,723 | 20,758 | 5,968  | 3,760  | 9,758   | 41,316  | 31,316 | 12,338 | 230,965 |
| 29,242       10,961       10,149       9,801       8,893       9,440         31,732       14,346       14,756       14,813       13,907       14,548         22,017       21,516       20,238       17,466       16,468       17,419         22,017       21,516       20,238       17,466       16,468       17,419         22,035       21,436       18,550       17,666       16,468       17,419         22,354       21,436       18,550       17,666       16,468       17,419         22,354       21,456       16,509       13,909       13,630       16,583         30,990       14,509       14,729       13,909       13,630       16,283         32,668       15,150       13,826       14,318       13,314       15,803         32,668       15,162       13,826       14,318       13,314       15,803         32,668       15,413       14,664       15,255       14,322       15,471         32,668       15,413       14,664       15,255       14,322       15,471         32,658       14,579       14,447       13,854       14,411         12,222       10,031       10,316       14,447                                                                                                                                                                                                                            | 1967        | 14,939 | 9,798  | 9,057  | 8,697  | 7,983  | 10,632 | 5,382  | 3,760  | 7,386   | 10,938  | 45,991 | 23,472 | 158,035 |
| 31,732       14,346       14,756       14,813       13,907       14,548         22,017       21,516       20,238       17,466       16,468       17,419         22,0354       21,436       18,550       17,466       16,468       17,419         22,354       21,436       18,550       17,466       16,468       17,419         22,354       21,436       18,550       17,666       17,100       19,616         30,990       14,509       14,729       13,909       13,630       16,283         19,551       17,662       16,909       16,608       15,812       16,985         32,668       15,150       13,826       14,318       13,314       15,803         32,668       15,150       13,826       14,318       13,314       15,803         32,668       15,150       13,826       14,322       15,357         32,668       15,133       14,664       15,255       14,322       15,357         32,668       15,413       11,331       10,936       12,471         12,222       10,031       10,319       9,477       8,617       10,973         31,429       13,630       14,579       14,447       13,854 <th>1968</th> <th>29,242</th> <th>10,961</th> <th>10,149</th> <th>9,801</th> <th>8,893</th> <th>9,440</th> <th>15,418</th> <th>3,784</th> <th>8,594</th> <th>10,938</th> <th>9,563</th> <th>20,983</th> <th>147,766</th> | 1968        | 29,242 | 10,961 | 10,149 | 9,801  | 8,893  | 9,440  | 15,418 | 3,784  | 8,594   | 10,938  | 9,563  | 20,983 | 147,766 |
| 22,017       21,516       20,238       17,466       16,468       17,419         22,354       21,436       18,550       17,466       16,468       17,419         22,354       21,436       18,550       17,606       17,100       19,616         30,990       14,509       14,729       13,909       13,630       16,283         19,551       17,662       18,909       16,608       15,812       16,985         32,668       15,150       13,826       14,318       13,314       15,803         32,668       15,413       14,662       13,826       14,318       13,314       15,803         32,668       15,413       14,664       15,258       14,322       15,357         32,668       15,413       14,664       15,255       14,322       15,357         32,658       11,329       11,489       11,331       10,936       12,471         12,222       10,031       10,319       9,477       8,617       10,973         31,453       15,355       14,579       14,447       13,854       14,993         31,4568       15,770       8,911       8,520       8,784       7,993         31,455       12,770                                                                                                                                                                                                                              | 1969        | 31,732 | 14,346 | 14,756 | 14,813 | 13,907 | 14,548 | 5,382  | 13,855 | 9,368   | 52,060  | 36,102 | 20,916 | 243,785 |
| 22,354       21,436       18,550       17,100       19,616         30,990       14,509       14,729       13,909       15,812       16,985         30,990       14,509       14,729       13,909       15,812       16,985         30,990       14,509       14,729       13,909       15,812       16,985         32,668       15,150       13,826       14,318       13,314       15,803         32,658       15,150       13,826       14,318       13,314       15,803         32,658       15,150       13,826       14,322       15,357         32,658       11,329       11,489       11,331       10,936       12,471         34,535       11,3229       11,489       11,331       10,936       12,471         12,222       10,031       10,319       9,477       8,617       10,973         31,429       13,633       14,579       14,447       13,854       14,993         31,458       15,816       15,718       18,041       12,270         31,458       15,810       15,718       18,041       22,519         31,458       15,806       15,770       8,911       8,520       8,784       7,850                                                                                                                                                                                                                              | 1970        | 22,017 | 21,516 | 20,238 | 17,466 | 16,468 | 17,419 | 6,073  | 9,205  | 127,911 | 78,863  | 33,939 | 24,537 | 395,652 |
| 30,990       14,509       14,729       13,909       16,283         19,551       17,662       16,909       16,608       15,812       16,985         32,668       15,150       13,826       14,318       13,314       15,803         32,668       15,150       13,826       14,318       13,314       15,803         32,668       15,150       13,826       14,318       13,314       15,803         32,688       15,150       13,826       14,322       15,357       15,357         29,818       14,662       13,255       13,600       14,411         34,535       11,329       11,489       11,331       10,936       12,471         12,222       10,031       10,319       9,477       8,617       10,973         31,429       13,693       14,579       14,447       13,854       14,993         31,658       15,737       15,631       15,806       15,718       18,041         29,551       12,631       15,806       15,770       8,911       8,520       8,784       7,850       11,270         29,551       11,707       8,911       8,520       8,784       7,850       11,270         24,170                                                                                                                                                                                                                                   | 1/81        | 22,354 | 21,436 | 18,550 | 17,606 | 17,100 | 19,616 | 5,382  | 5,757  | 94,346  | 65,632  | 21,492 | 34,852 | 344,123 |
| 19.551         17,662         16,909         16,608         15,812         16,985           32,668         15,150         13,826         14,318         13,314         15,803           32,683         15,150         13,826         14,318         13,314         15,803           32,683         15,150         13,826         14,318         13,314         15,803           32,633         15,413         14,664         15,258         14,322         15,327           29,818         14,662         13,868         13,255         13,600         14,411           34,535         11,329         11,489         11,331         10,936         12,471           12,222         10,031         10,319         9,477         8,617         10,973           31,429         13,658         15,737         15,631         15,806         15,718         18,041           29,551         12,633         14,579         14,447         13,854         14,993         31,655         12,770           31,658         15,737         15,631         15,806         15,770         12,255         14,770           29,551         12,770         8,911         8,520         8,784         7,850                                                                                                                                              | 19/2        | 30,990 | 14,509 | 14,729 | 13,909 | 13,630 | 16,283 | 5,584  | 5,727  | 48,893  | 31,418  | 35,063 | 22,421 | 253,156 |
| 32,668         15,150         13,826         14,318         13,314         15,803           32,833         15,413         14,664         15,258         14,322         15,357           29,818         14,662         13,888         13,255         13,600         14,411           32,655         11,329         11,489         11,331         10,936         12,471           34,535         11,329         11,489         11,331         10,936         12,471           12,222         10,031         10,319         9,477         8,617         10,973           31,429         13,693         14,579         14,447         13,854         14,993           31,458         15,737         15,631         15,806         15,718         18,041           29,551         12,636         12,319         11,605         11,265         12,770           29,551         12,636         12,319         11,605         11,265         12,770           29,551         12,636         18,518         18,049         22,519           31,656         18,718         18,049         22,519           24,170         19,566         18,716         12,471           24,170         19                                                                                                                                                         | 1973        | 19,551 | 17,662 | 16,909 | 16,608 | 15,812 | 16,985 | 17,422 | 5,377  | 10,496  | 69,460  | 14,918 | 37,460 | 258,660 |
| 32,833         15,413         14,664         15,258         14,322         15,357           29,818         14,662         13,688         13,255         13,600         14,411           34,535         11,329         11,489         11,331         10,936         12,471           12,222         10,031         10,319         9,477         8,617         10,973           31,429         13,693         14,579         14,447         13,854         14,993           31,429         13,693         14,579         14,447         13,854         14,993           31,458         15,737         15,631         15,806         15,718         18,041           29,551         12,636         12,319         11,605         11,265         12,770           11,707         8,911         8,520         8,784         7,850         11,270           24,170         19,566         18,,080         18,518         18,049         22,519           35,982         17,152         14,776         12,776         12,471         12,486                                                                                                                                                                                                                                                                                                     | 19/4        | 32,668 | 15,150 | 13,826 | 14,318 | 13,314 | 15,803 | 5,382  | 5,717  | 78,077  | 38,665  | 24,183 | 20,059 | 277,162 |
| 29,818     14,662     13,688     13,255     13,600     14,411       34,535     11,329     11,489     11,331     10,936     12,471       12,222     10,031     10,319     9,477     8,617     10,973       31,429     13,693     14,579     14,447     13,854     14,993       31,429     13,693     14,579     14,447     13,854     14,993       31,658     15,737     15,631     15,806     15,718     18,041       29,551     12,636     12,319     11,605     11,265     12,770       21,770     8,911     8,520     8,784     7,850     11,270       24,170     19,566     18,716     18,518     18,049     22,519       35,982     17,152     14,716     12,776     12,776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C/RI        | 32,833 | 15,413 | 14,664 | 15,258 | 14,322 | 15,357 | 7,138  | 3,760  | 5,831   | 76,265  | 18,364 | 27,512 | 246,717 |
| 34,535         11,329         11,489         11,331         10,936         12,471           12,222         10,031         10,319         9,477         8,617         10,973           31,429         13,693         14,579         14,447         13,854         14,993           31,429         13,693         14,579         14,447         13,854         14,993           31,658         15,737         15,631         15,806         15,718         18,041           29,551         12,636         12,319         11,605         11,265         12,770           11,707         8,911         8,520         8,784         7,850         11,270           24,170         19,566         18,716         18,518         18,049         22,519           35,982         17,152         14,716         12,776         12,766         12,716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1976        | 29,818 | 14,662 | 13,688 | 13,255 | 13,600 | 14,411 | 5,581  | 9,255  | 6,353   | 10,803  | 27,497 | 22,064 | 180,987 |
| 12,222         10,031         10,319         9,477         8,617         10,973           31,429         13,693         14,579         14,447         13,854         14,993           31,658         15,737         15,631         15,806         15,718         18,041           29,551         12,636         12,319         11,605         11,265         12,770           11,707         8,911         8,520         8,784         7,850         11,270           24,170         19,566         18,518         18,049         22,519           35,982         17,152         14,716         12,776         12,766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1781        | 34,535 | 11,329 | 11,489 | 11,331 | 10,936 | 12,471 | 24,537 | 8,162  | 9,898   | 30,654  | 13,278 | 8,705  | 187,325 |
| 31,429 13,693 14,579 14,447 13,854 14,993<br>31,658 15,737 15,631 15,806 15,718 18,041<br>29,551 12,636 12,319 11,605 11,265 12,770<br>11,707 8,911 8,520 8,784 7,850 11,270<br>24,170 19,566 18,080 18,518 18,049 22,519<br>35,982 17,152 14,716 12,761 12,665 13,481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/61        | 12,222 | 10,031 | 10,319 | 9,477  | 8,617  | 10,973 | 5,401  | 8,600  | 10,036  | 22,284  | 33,827 | 24,085 | 165,872 |
| 31,658 15,737 15,631 15,806 15,718 18,041<br>29,551 12,636 12,319 11,605 11,265 12,770<br>11,707 8,911 8,520 8,784 7,850 11,270<br>24,170 19,566 18,080 18,518 18,049 22,519<br>35,982 17,152 14,716 12,761 12,665 13,481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ê/AL        | 31,429 | 13,693 | 14,579 | 14,447 | 13,854 | 14,993 | 5,460  | 7,346  | 7,051   | 74,477  | 26,955 | 22,234 | 246,518 |
| 29,551 12,636 12,319 11,605 11,265 12,770<br>11,707 8,911 8,520 8,784 7,850 11,270<br>24,170 19,566 18,080 18,518 18,049 22,519<br>35,982 17,152 14,716 12,761 12,665 13,481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19981       | 31,658 | 15,737 | 15,631 | 15,806 | 15,718 | 18,041 | 5,460  | 3,760  | 80,417  | 62,748  | 39,002 | 18,995 | 322,973 |
| 11,707 8,911 8,520 8,784 7,850 11,270<br>24,170 19,566 18,080 18,518 18,049 22,519<br>35,982 17,152 14,716 12,761 12,695 13,481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1981        | 29,551 | 12,636 | 12,319 | 11,605 | 11,265 | 12,770 | 23,787 | 7,585  | 9,636   | 25,438  | 9,598  | 12,466 | 178,656 |
| 1 24,170 19,566 18,080 18,518 18,049 22,519<br>1 35,982 17,152 14,716 12,761 12,695 13,481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1982        | 11,707 | 8,911  | 8,520  | 8,784  | 7,850  | 11,270 | 16,439 | 5,291  | 7,730   | 11,172  | 22,761 | 29,662 | 150,097 |
| 1 35.982 17152 14.716 12.761 12.695 12.481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1983        | 24,170 | 19,566 | 18,080 | 18,518 | 18,049 | 22,519 | 15,818 | 3,784  | 108,302 | 143,244 | 63,268 | 61,843 | 517,161 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7988 L      | 35,982 | 17,152 | 14,716 | 12,761 | 12,695 | 13,481 | 6,218  | 35,716 | 196,697 | 147,048 | 85,666 | 50,277 | 628,409 |

Simulated Flows at Blue River below Green Mountain Reservoir Proposed Action Alternative

(Hereit

501,616 423,602 201,880 212,363 377,466 186,533 155,140 251,754 272,735 233,690 159,026 TOTAL 442,694 371,466 263,713 181,374 274,566 185,283 175,604 262,528 135,725 628,409 206,101 89,913 307,992 26,441 25,395 52,023 14,774 17,915 14,643 26,353 15,194 21,154 13,233 24,872 39,746 21,418 18,835 16,399 11,792 17,722 12,740 20,438 61,843 19,281 28,141 23,117 8,705 SEP 9,739 25,072 32,038 43,093 61,424 61,424 22,034 22,034 22,034 30,389 17,138 11,693 51,429 9,935 22,004 16,842 31,019 38,634 38,684 36,987 31,908 85,666 26,087 50,762 9,563 AUG 21,002 40,997 25,845 78,265 42,799 163,267 69,633 75,467 46,708 72,332 40,085 18,029 30,452 41,845 49,644 10,560 63,267 0,560 37,266 20,938 70,022 78,648 20,868 JUL 178,188 10,268 51,965 67,661 174,295 00,840 139,186 32,546 11,382 9,996 76,368 10,742 53,988 12,678 30,249 11,306 196,697 32,557 10,272 44,241 8,459 9,844 8,094 3,786 SUN 9,241 5,698 9,261 7,455 7,455 7,855 3,760 5,153 5,153 8,657 44,736 12,516 6,352 3,760 3,760 3,760 8,421 3,760 3,761 5,992 4,592 5,376 7,300 3,760 3,760 МΑΥ 5,382 5,638 5,382 13,372 21,245 10,438 5,382 9,550 5,382 24,537 6,008 APR 16,398 21,191 13,071 11,100 15,224 17,978 12,421 20,799 11,810 14,737 7,100 17,145 14,611 11,981 10,864 11,807 24,787 25,452 19,504 11,963 11,963 11,963 12,991 10,534 9,352 9,352 25,452 MAR 12,354 16,150 9,932 19,928 13,732 15,937 12,730 9,123 7,803 9,427 0,194 22,094 9,044 10,458 8,977 9,369 9,819 5,636 22,094 20,673 17,122 2,771 FEB 10,009 9,798 20,170 14,305 20,027 10,760 16,303 13,257 10,385 24,448 20,365 17,368 9,532 0,989 10,434 12,310 16,693 9,412 10,839 3,580 6,110 26,277 9,874 8,644 JAN 10,134 20,320 14,740 27,830 20,723 18,384 9,644 10,579 12,442 16,636 19,050 10,623 16,300 13,303 10,749 9,139 0,252 27,830 11,004 3,789 6,769 10,631 9,899 9,795 DEC 17,614 11,375 21,494 16,510 11,932 21,026 12,553 29,145 29,145 23,562 22,087 10,562 12,126 17,347 13,857 12,096 10,786 11,038 11,038 11,093 14,858 11,065 7,855 Nov 22,983 32,099 33,716 27,215 31,253 23,209 18,756 14,480 30,689 31,949 18,822 33,047 27,232 23,650 15,613 23,440 34,002 32,790 39,074 24,154 27,033 38,839 17,981 8,463 oct AVERAGE: **MAXIMUM: MINIMUM:** WATER YEAR 1985 1986 866 666 2000 2003 2003 2004 1987 1988 1989 1990 1992 1993 8 1995 886 997 1991 2005

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 Proposed Action Alternative

(CFS)

| NOV DEC |
|---------|
| 0       |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
| 0 50    |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 Proposed Action Alternative (CFS)

| WATER    |     |     |     |     |     |     |     |       |       |       |     |     |        |
|----------|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|-----|-----|--------|
| YEAR     | ост | NON | DEC | JAN | FEB | MAR | APR | MAY   | NUL   | JUL   | AUG | SEP | ANNUAL |
| 1983     | 83  | 50  | 50  | 63  | 68  | 118 | 50  | 218   | 171   | 1209  | 459 | 185 | 357    |
| 1984     | 83  | 87  | 50  | 50  | 50  | 53  | 50  | 1061  | 1929  | 1338  | 840 | 323 | 495    |
| 1985     | 228 | 117 | 101 | 82  | 50  | 61  | 167 | 755   | 1283  | 516   | 50  | 20  | 289    |
| 1986     | 11  | 62  | 50  | 50  | 50  | 74  | 50  | 374   | 1430  | 678   | 50  | 20  | 250    |
| 1987     | 67  | 61  | 50  | 50  | 50  | 60  | 50  | 258   | 823   | 162   | 220 | 20  | 158    |
| 1988     | 50  | 50  | 50  | 50  | 50  | 73  | 50  | 50    | 697   | 304   | 50  | 50  | 127    |
| 1989     | 50  | 50  | 50  | 50  | 50  | 56  | 50  | 50    | 131   | 114   | 245 | 20  | 62     |
| 1990     | 50  | 50  | 50  | 52  | 50  | 50  | 50  | 20    | 50    | 220   | 50  | 50  | 65     |
| 1991     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 597   | 301   | 245 | 155 | 141    |
| 1992     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 50    | 50    | 50  | 50  | 22     |
| 1993     | 50  | 50  | 82  | 80  | 94  | 123 | 50  | 50    | 1385  | 616   | 50  | 20  | 223    |
| 1994     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 336   | 186   | 50  | 20  | 85     |
| 1995     | 50  | 50  | 50  | 50  | 50  | 62  | 50  | 50    | 1349  | 1615  | 326 | 50  | 314    |
| 1996     | 62  | 57  | 50  | 50  | 50  | 50  | 50  | 1357  | 1824  | 598   | 160 | 20  | 364    |
| 1997     | 50  | 58  | 50  | 50  | 50  | 54  | 50  | 582   | 2111  | 651   | 219 | 50  | 331    |
| 1998     | 50  | 50  | 50  | 20  | 50  | 50  | 50  | 20    | 654   | 351   | 50  | 20  | 125    |
| 1899     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 1372  | 705   | 124 | 20  | 221    |
| 2000     | 50  | 50  | 50  | 50  | 50  | 50  | 50  | 485   | 851   | 189   | 50  | 50  | 165    |
| 2001     | 50  | 20  | 50  | 50  | 50  | 50  | 50  | 22    | 347   | 165   | 50  | 5   | 8      |
| 2002     | 69  | 107 | 92  | 68  | 82  | 101 | 50  | 50    | 50    | 136   | 449 | 66  | 115    |
| 2003     | 104 | 95  | 79  | 75  | 75  | 100 | 50  | 50    | 50    | 50    | 248 | 50  | 86     |
| 2004     | 20  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 50    | 159   | 50  | 20  | 59     |
| 2005     | 50  | 50  | 50  | 50  | 71  | 81  | 50  | 20    | 50    | 50    | 224 | 20  | 69     |
| AVERAGE: | 63  | 59  | 54  | 54  | 54  | 60  | 52  | 182   | 612   | 364   | 170 | 67  | 149    |
| MINIMUM: | 20  | 50  | 50  | 50  | 50  | 50  | 50  | 50    | 50    | 50    | 50  | 50  | 50     |
| MAXIMUM: | 228 | 142 | 101 | 88  | 94  | 123 | 167 | 1,357 | 2,111 | 1,615 | 840 | 323 | 495    |

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 **Proposed Action Alternative** 

| <b>a</b> – a |             |     | 2     |       |       |       | Ċ     | INAT   |         | 200    | AUG    |        | TOTAL   |
|--------------|-------------|-----|-------|-------|-------|-------|-------|--------|---------|--------|--------|--------|---------|
|              |             |     | 3,074 | 4,190 | 2,777 | 3,074 | 2,975 | 3.074  | 18,481  | 9.534  | 3.074  | 2.975  | 59.277  |
|              | -           |     | 3,074 | 3,645 | 3,935 | 3,074 | 2,975 | 3.074  | 33.538  | 56.844 | 17.764 | 2,975  | 136.947 |
|              |             | 75  | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 7,734  | 115,426 | 28,726 | 6,763  | 2.975  | 182.647 |
|              | _           | 75  | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 29,530  | 21,237 | 4,834  | 2.975  | 82.673  |
|              |             |     | 3,074 | 3,074 | 3,788 | 3,074 | 2,975 | 3,074  | 2,975   | 15,131 | 3,074  | 2,975  | 49.263  |
|              |             |     | 3,074 | 3,193 | 3,037 | 3,824 | 2,975 | 3,074  | 2,975   | 3,074  | 15,342 | 2,975  | 49,592  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,825 | 2,975 | 3,074  | 2,975   | 3,074  | 13,408 | 2,975  | 47,280  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 23,785 | 36,522 | 9,261  | 96,640  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 42,703 | 73,096  | 14,962 | 3,074  | 2,975  | 161,692 |
| 1959 3.      | 3,074 2,975 |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 16,276  | 13,639 | 13,161 | 2,975  | 70,148  |
| _            |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 43,733  | 20,870 | 11,981 | 2,975  | 108,086 |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 9,553  | 17,711 | 2,975  | 57.311  |
|              |             |     | 3,074 | 3,738 | 3,640 | 4,924 | 2,975 | 44,851 | 68,118  | 27,403 | 3,074  | 2,975  | 176,305 |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 12,562 | 14,986 | 2,975  | 57.595  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,824 | 2,975 | 3,074  | 2,975   | 3,074  | 17,642 | 2,975  | 51,513  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,824 | 2,975 | 3,074  | 2,975   | 7,999  | 34,391 | 13,897 | 84,109  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 9,484   | 11,434 | 9,441  | 2,975  | 64,516  |
|              |             |     | 3,074 | 3,074 | 2.777 | 3,825 | 2,975 | 3,074  | 2,975   | 3,074  | 12,116 | 3,689  | 46,902  |
|              |             |     | 3,074 | 3,074 | 2.777 | 3,074 | 2,975 | 3,074  | 2,975   | 5,477  | 10,750 | 2,975  | 46,274  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 39,069  | 28,030 | 14,334 | 2,975  | 108,505 |
|              |             |     | 5,314 | 3,074 | 2,777 | 3,074 | 2,975 | 41,894 | 69,102  | 44,112 | 4,216  | 2,975  | 209,739 |
| -            |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 23,214 | 81,681  | 31,796 | 3,074  | 2,975  | 167,422 |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 56,691  | 8,924  | 3,074  | 2,975  | 95,761  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 23,441  | 43,370 | 3,074  | 2,975  | 96,957  |
|              |             |     | 3,074 | 3,074 | 2.777 | 3,765 | 2,975 | 25,572 | 51,779  | 12,476 | 3,074  | 2,975  | 117,610 |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 10,634  | 56,103 | 3,074  | 2,975  | 96,883  |
|              |             |     | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 2,975  | 36,195  |
|              |             |     | 3,074 | 3,153 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 12,287 | 3,074  | 2,975  | 45,955  |
|              | ~.          |     | 4,913 | 4,495 | 3,866 | 5,558 | 2,975 | 3,074  | 2,975   | 3,074  | 7,036  | 2,975  | 52,397  |
|              | 3,074 3,135 |     | 3,074 | 3,074 | 2,913 | 3,074 | 2,975 | 3,074  | 6,964   | 40,417 | 7,750  | 2,975  | 82,499  |
|              | 4           |     | 3,074 | 3,074 | 2,777 | 4,356 | 2,975 | 3,074  | 89,904  | 33,910 | 10,698 | 2,975  | 162,866 |
| 1981 3       | 3,074 2,975 | 175 | 3,074 | 3,074 | 2,777 | 3,074 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 2,975  | 36,195  |
| _            | 4           | 175 | 3,074 | 3,074 | 2,911 | 5,154 | 2,975 | 3,074  | 2,975   | 3,074  | 3,074  | 6,700  | 42,134  |

Simulated Flows at Blue River below Dillon Reservoir at USGS Gage 09050700 **Proposed Action Alternative** 

| WATER    |        |       |       |       |              |         |       |        |         |        |        | ſ      |         |
|----------|--------|-------|-------|-------|--------------|---------|-------|--------|---------|--------|--------|--------|---------|
| YEAR     | ост    | NON   | DEC   | JAN   | FEB          | MAR     | APR   | MAY    | NUL     | JUL    | AUG    | SEP    | TOTAL   |
| 1983     | 5,688  | 2,975 | 3,074 | 3,897 | 3,749        | 7.258   | 2,975 | 13.388 | 101.821 | 74.359 | 28.247 | 10 080 | 958 A11 |
| 1984     | 5,108  | 5,198 | 3,074 | 3.074 | 2.777        | 3 274   | 2 975 | 65 254 | 114 750 | 82 250 | 51 605 | 10,046 | 114004  |
| 1985     | 14,024 | 6.983 | 8.241 | 5,066 | 1110         | 5 7 2 3 | 0 080 | 46.404 | CYC 32  | 002,20 | 070,10 | 012'61 |         |
| 1986     | 4 710  | 3 608 | 2074  | 0000  |              |         |       |        |         | 00/10  | 410.0  | G/A'Z  | 208,304 |
| 1001     |        |       |       | 0,074 | z' <i>11</i> | 6/C'4   | C/6/2 | 23,008 | 85,071  | 41,681 | 3,074  | 2,975  | 180,692 |
| 1961     | 4,130  | 3,629 | 3,074 | 3,074 | 2,777        | 3,679   | 2,975 | 15,881 | 48,946  | 9,949  | 13,547 | 2,975  | 114,642 |
| 1988     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 4,504   | 2,975 | 3,074  | 41,469  | 18,678 | 3.074  | 2,975  | 91.723  |
| 1989     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,420   | 2,975 | 3,074  | 7,789   | 6,995  | 15,043 | 2.975  | 57.245  |
| 1990     | 3,074  | 2,975 | 3,074 | 3,210 | 2,777        | 3,074   | 2,975 | 3,074  | 2,975   | 13,508 | 3.074  | 2.975  | 46.765  |
| 1991     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 35,527  | 18,499 | 15.038 | 9.196  | 102.357 |
| 1992     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 2,975   | 3,074  | 3.074  | 2.975  | 36.195  |
| 1993     | 3,074  | 2,975 | 5,057 | 4,934 | 5,243        | 7,551   | 2,975 | 3,074  | 82,411  | 37,896 | 3,074  | 2.975  | 161.239 |
| 1994     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 19,993  | 11,425 | 3,074  | 2.975  | 61.564  |
| 1995     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,825   | 2,975 | 3,074  | 80,278  | 99,295 | 20.025 | 2,975  | 227 421 |
| 1996     | 3,806  | 3,409 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 83,456 | 108,538 | 36.773 | 9.854  | 2,975  | 263 785 |
| 1997     | 3,074  | 3,426 | 3,074 | 3,074 | 2,777        | 3,307   | 2,975 | 35,764 | 125,597 | 40.018 | 13.471 | 2 975  | 239 532 |
| 1998     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 38.934  | 21.577 | 3.074  | 2 975  | 90,657  |
| 1999     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 81,621  | 43.373 | 7,610  | 2,975  | 159.676 |
| 2000     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 29,849 | 50,662  | 11.641 | 3.074  | 2 975  | 119 224 |
| 2001     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3.074  | 20.652  | 10.151 | 3.074  | 2 9 75 | RU DAG  |
| 2002     | 4,176  | 6,394 | 5,684 | 5,457 | 4,539        | 6,228   | 2,975 | 3,074  | 2,975   | 8,350  | 27.595 | 5.899  | 83.346  |
| 2003     | 6,376  | 5,638 | 4,855 | 4,599 | 4,146        | 6,157   | 2,975 | 3,074  | 2,975   | 3.074  | 15.251 | 2,975  | 62 095  |
| 2004     | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 2,975   | 9.755  | 3.074  | 2,975  | 42 876  |
| 2005     | 3,074  | 2,975 | 3,074 | 3,074 | 3,930        | 4,963   | 2,975 | 3,074  | 2,975   | 3,074  | 13,787 | 2.975  | 49.950  |
| AVERAGE: | 3,846  | 3,502 | 3,317 | 3,301 | 2,998        | 3,693   | 3,100 | 11,216 | 36,426  | 22,363 | 10,459 | 3,961  | 108,181 |
| MINIMUM  | 3,074  | 2,975 | 3,074 | 3,074 | 2,777        | 3,074   | 2,975 | 3,074  | 2,975   | 3,074  | 3.074  | 2.975  | 36,195  |
| MAXIMUM: | 14,024 | 8,459 | 6,241 | 5,457 | 5,243        | 7,551   | 9,962 | 83,456 | 125,597 | 99,295 | 51,626 | 19,216 | 358,594 |

Simulated Flows at Blue River below Continental-Hoosier Project Proposed Action Alternative

(CFS)

Simulated Flows at Blue River below Continental-Hoosier Project Proposed Action Alternative

(CFS)

Simulated Flows at Blue River below Continental-Hoosier Project Proposed Action Alternative (AF)

| 2,128         1,566         963         657         800         1,566         4,543         1,0,156         5,046         2,439         1,900           1,178         1,11         1,11         1,11         1,11         1,11         1,11         1,11         1,11         1,11         1,200         2,439         1,488         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,428         1,418         1,428         1,418         1,428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WATER        | OCT   | NON   | DEC   | JAN   | FEB   | MAR   | APR   | МАУ    | NUL    | <br>  10r | AUG   | SEP   | TOTAL  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-----------|-------|-------|--------|
| 1,456         1,181         816         706         687         800         1,156         1,223         1,724         1,725         720         1,422         1,726         1,723         770         2,546         7,700         2,556         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         1,725         7305         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737         2,737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1950         | 2,129 | 1,566 | 983   | 696   | 657   | 809   | 1.566 | 4.543  | 10.156 | 5.046     | 2 439 | 1 9A0 | 32 570 |
| 1,786         1,415         886         660         642         613         2,080         7,585         12,336         4,117         2,335         1,375           1,111         1,101         737         715         645         7,44         536         2,901         1,423           1,111         1,101         737         715         645         7,44         536         3,553         3,297         2,803         3,297         2,803         3,297         2,803         3,297         2,803         3,297         2,803         3,297         2,803         3,297         2,803         2,901         1,423         2,743         1,416         3,743         1,416         3,743         1,416         3,743         1,971         2,873         1,871         1,971         2,873         1,871         1,971         2,873         1,971         2,873         1,971         2,873         1,971         2,974         1,971         2,974         1,971         2,974         1,971         2,974         1,971         2,974         1,971         2,974         2,974         2,974         2,974         2,974         2,974         2,974         2,974         2,974         2,974         2,974         2,974         2,974 <th>1951</th> <th>1,465</th> <th>1,181</th> <th>816</th> <th>706</th> <th>687</th> <th>800</th> <th>1,156</th> <th>7.210</th> <th>14,224</th> <th>12.468</th> <th>4,720</th> <th>2.546</th> <th>47 979</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1951         | 1,465 | 1,181 | 816   | 706   | 687   | 800   | 1,156 | 7.210  | 14,224 | 12.468    | 4,720 | 2.546 | 47 979 |
| 1615         1288         896         005         645         744         942         5,115         1,434         5,966         2,901         1,433           1,461         1,101         797         715         575         596         1,867         3,564         3,565         2,901         1,433           1,468         1,967         935         937         730         826         1,101         737         7,13         2,374         1,619           1,468         1,967         935         765         1,46         987         3,565         2,690         3,165         2,713         2,347         1,619           1,468         1,907         983         825         756         981         4,457         1,074         1,597         2,947         1,619         2,713         2,347         1,619         2,743         1,619         2,743         1,619         2,743         1,619         2,743         1,616         2,743         1,616         2,947         1,617         2,743         1,616         2,947         1,616         2,947         1,616         2,947         1,616         2,947         1,616         2,947         1,616         2,947         1,616         2,947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1952         | 1,798 | 1,415 | 886   | 660   | 642   | 613   | 2,089 | 7,695  | 12.836 | 4,117     | 2 305 | 7:7.1 | 36.793 |
| 1/11         1/10         797         715         675         702         1,322         2,330         1,642         2,888         2,553         1,536           1,665         1,265         994         754         537         7305         2,563         3,237         2,063         3,277         2,063         3,274         2,566         3,556         3,055         2,055         3,055         2,054         3,956         2,057         2,063         3,274         2,059         3,170         2,743         1,917         2,917         2,093         1,917         9,68         7,745         1,917         2,917         2,053         3,274         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523         1,523 <t< th=""><th>1953</th><th>1,615</th><th>1,288</th><th>896</th><th>805</th><th>645</th><th>744</th><th>942</th><th>5,115</th><th>14,884</th><th>5.988</th><th>2.901</th><th>1 423</th><th>37 246</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1953         | 1,615 | 1,288 | 896   | 805   | 645   | 744   | 942   | 5,115  | 14,884 | 5.988     | 2.901 | 1 423 | 37 246 |
| 1666         1256         914         754         637         696         1,865         1,258         914         754         637         2,863         3,297         2,803         3,952         2,663         3,297         2,803         1,971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971         971 <th>1954</th> <th>1,111</th> <th>1,101</th> <th>797</th> <th>715</th> <th>675</th> <th>702</th> <th>1,332</th> <th>2,390</th> <th>1.642</th> <th>2.868</th> <th>2.563</th> <th>1.538</th> <th>17 444</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1954         | 1,111 | 1,101 | 797   | 715   | 675   | 702   | 1,332 | 2,390  | 1.642  | 2.868     | 2.563 | 1.538 | 17 444 |
| 1,469         1,446         987         730         826         1,106         9,274         1,619           1,268         1,303         966         77         730         825         756         2,743         1,619           1,268         1,303         867         739         865         747         1,756         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,745         2,756         2,745         2,756         2,756         2,756         2,756         2,757         2,745         1,610         2,745         1,610         2,745         5,475         1,610         2,741         5,455         4,457         1,610         2,741         5,455         4,457         1,610         2,741         5,455         2,445         1,416         779         7,465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1955         | 1,665 | 1,258 | 914   | 754   | 637   | 696   | 1,667 | 3,554  | 3,952  | 2,683     | 3,297 | 2.803 | 23.880 |
| 1,029         1,265         956         905         827         686         1,086         1,45         13,054         14,589         7,666         2,776         2,795           1,261         1,903         1,045         922         685         747         17,784         1,305         3,465         2,776         2,073         3,465         2,776         2,073         3,455         2,776         2,073         3,455         2,776         2,073         3,455         2,776         2,073         3,455         2,772         5,455         4,457         1,073         3,193         1,074         3,193         1,074         3,195         2,195         3,675         5,455         5,455         5,455         5,455         5,455         5,455         5,455         5,455         5,455         5,455         5,455         5,455         5,194         1,597         3,194         1,723         3,194         3,176         2,194         1,597         3,194         1,597         3,194         5,976         2,194         1,597         3,194         1,597         3,194         1,597         3,194         1,597         3,194         1,597         3,194         1,597         3,194         1,597         1,4457         1,392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1858         | 1,469 | 1,448 | 987   | 937   | 730   | 826   | 1,186 | 9,229  | 7,605  | 2,713     | 2.374 | 1.619 | 31,123 |
| 1.661         1.603         1.045         382         645         749         883         8.423         10.960         3.120         2.743         1.971           1.278         1.197         828         735         523         744         2.956         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.523         7.445         5.764         7.934         5.765         5.523         7.445         5.764         7.934         5.764         7.934         5.764         7.934         5.764         7.934         5.764         7.934         5.764         7.937         7.937         7.937         7.937         7.945         7.934         7.945         7.937         7.937         7.937         7.937         7.937         7.937         7.937         7.937         7.937         7.947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1957         | 1,029 | 1,265 | 956   | 905   | 827   | 686   | 1,086 | 4,145  | 13,054 | 14,589    | 7,666 | 2,979 | 49.187 |
| 1.284         1,191         891         893         825         756         891         4,127         8,029         3,465         2,726         2,036           1,278         1,197         828         773         555         737         1,784         3,555         5,237         1,523         1,457         1,074         6,79         5,237         1,523         1,457         1,074         6,79         5,237         1,523         1,457         1,074         6,79         3,465         2,523         1,457         1,523         1,457         1,074         6,79         3,465         2,328         7,457         1,074         6,79         3,103         907         7,58         7,39         2,743         1,074         6,79         3,169         3,650         1,241         5,756         5,281         1,074         6,79         3,069         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         3,063         1,074         6,79         1,074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1958         | 1,861 | 1,603 | 1,045 | 922   | 685   | 749   | 883   | 8,423  | 10,960 | 3,120     | 2,743 | 1,971 | 34,965 |
| 1         1568         1,399         968         779         655         747         1,784         2,805         6,154         3,602         2,347         1,523           913         1,197         828         779         655         747         1,110         527         564         1,924         5,523         1,416         662           913         1,164         662         723         623         642         7,19         5,564         1,924         3,870         2,282           913         1,164         662         723         623         642         7,19         2,766         2,300         3,904         860           910         1,129         767         648         7,19         2,163         1,934         1,679         1,743         1,160         3,605         1,541         1,074         1,507         3,069         1,571         1,743         1,160         3,605         1,541         1,011         1,773         1,743         1,160         3,605         1,541         1,014         6,79         3,695         5,010         1,928         1,941         1,577         1,516         1,241         1,707         1,561         1,567         1,561         1,561 </th <th>1959</th> <th>1,284</th> <th>191</th> <th>891</th> <th>663</th> <th>825</th> <th>756</th> <th>891</th> <th>4,127</th> <th>8,029</th> <th>3,465</th> <th>2,726</th> <th>2,059</th> <th>27,137</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1959         | 1,284 | 191   | 891   | 663   | 825   | 756   | 891   | 4,127  | 8,029  | 3,465     | 2,726 | 2,059 | 27,137 |
| 1,220         1,197         828         7/3         575         623         744         2,287         3,339         3,732         5,523         1,416           9,10         1,129         1,228         771         5,455         6,427         7,19         5,455         6,457         5,523         1,416         679         3,904         862           1,129         1,228         771         708         5,365         6,42         7,19         2,638         3,904         862           910         1,143         168         836         6,42         7,19         2,638         3,904         862           910         1,123         7,69         636         6,42         7,19         2,638         3,904         862           910         1,126         934         7,19         1,3920         14,995         7,194         1,597           1,074         1,256         934         7,194         1,597         1,074         1,597           1,074         1,256         934         7,194         1,597         1,074         1,597         1,010           1,074         1,259         1,247         910         0,285         7,576         5,281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1960         | 1,668 | 1,399 | 986   | 6//   | 655   | 747   | 1,784 | 2,956  | 6,154  | 3,602     | 2,347 | 1,523 | 24,582 |
| Z-100         1,775         1,055         929         817         794         2,342         6,487         5,455         4,457         1,074         679           913         1,164         862         723         622         739         3,970         2,292           1,999         1,145         823         780         632         642         1,10         5,758         7,395         7,904         1,577           910         1,128         780         632         642         1,10         5,176         1,930         3,904         5,67           910         1,128         767         708         550         1,139         2,149         1,743         1,507         3,690         1,574           910         1,128         767         568         561         1,241         1579         1,573         3,640         1,571           1,930         1,400         994         770         5,44         815         864         9,433         1,776         1,797         1,777           910         1,247         917         1,772         5,135         9,343         3,063         1,679         1,778           1,983         1,520         1,020<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1961         | 1,278 | 1,197 | 828   | 713   | 575   | 623   | 744   | 2,287  | 3,339  | 3,732     | 5,523 | 1,416 | 22,255 |
| 913         1,164         862         747         1,110         527         564         1,934         3,870         2,282           910         1,128         1,71         708         636         642         719         2,176         1,3920         1,995         7,194         1,567         3,004         862           910         1,129         767         686         581         653         642         7,19         1,57         3,904         862           910         1,129         767         686         581         650         1,004         1,835         3,816         1,567         3,069         1,679           1,074         1,250         1,029         907         748         719         1,797         1,797         1,797           1,003         1,226         1,189         972         744         816         1,679         3,042         3,043         3,042         3,043         3,042         3,048           1,003         1,226         1,189         972         744         817         1,776         5,135         1,040         3,042         1,797         1,778           1,903         1,226         1,189         771         5,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7961         | 2,609 | 1,715 | 1,065 | 929   | 817   | 794   | 2,342 | 6,487  | 5,455  | 4,457     | 1,074 | 679   | 28,423 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5961         | 913   | 1,164 | 862   | 723   | 627   | 747   | 1,110 | 527    | 564    | 1,934     | 3,870 | 2,282 | 15,323 |
| 800         1,145         823         780         632         624         910         5,176         13,920         14,995         7,194         1,597           1,090         1,1129         767         758         755         1,139         1,743         1,160         3,650         1,241           1,074         1,226         767         686         581         699         1,004         1,836         5,010         1,928           1,074         1,256         910         5,149         1,737         3,616         1,567         3,069         1,071           1,930         1,720         566         5,281         755         6,085         3,438         5,010         1,928           1,930         1,406         994         770         5,136         9,335         6,224         1,01           2,037         1,591         1,189         972         788         7,778         3,042         3,042         3,01           2,037         1,550         1,189         977         743         3,751         8,940         3,042         1,797         1,777           1,020         888         721         831         1,772         5,135         1,797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 1,129 | 1,228 | 4     | 708   | 636   | 642   | 719   | 2,638  | 2,766  | 2,300     | 3,904 | 862   | 18,303 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1965         | 800   | 1,145 | 823   | 780   | 632   | 624   | 910   | 5,176  | 13,920 | 14,995    | 7,194 | 1,597 | 48.596 |
| 910         1,129         767         686         581         699         1,004         1,836         3,816         1,567         3,069         1,679           1,074         1,256         934         770         546         701         1,188         3,556         7,576         5,281         3,042         3,043         3,042         3,043         3,042         3,043         3,042         3,043         3,042         3,043         3,042         3,048         3,043         3,042         3,048         3,043         3,042         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,048         3,167 <t< th=""><th>1966</th><th>1,999</th><th>1,413</th><th>1,089</th><th>907</th><th>758</th><th>765</th><th>1,139</th><th>2,149</th><th>1,743</th><th>1,160</th><th>3,650</th><th>1,241</th><th>18,013</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1966         | 1,999 | 1,413 | 1,089 | 907   | 758   | 765   | 1,139 | 2,149  | 1,743  | 1,160     | 3,650 | 1,241 | 18,013 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1961         | 910   | 1,129 | 767   | 686   | 581   | 669   | 1,004 | 1,836  | 3,816  | 1,567     | 3,069 | 1,679 | 17 743 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1968         | 1,074 | 1,256 | 934   | 263   | 850   | 645   | 748   | 2,242  | 6,085  | 3,438     | 5,010 | 1,928 | 24,803 |
| $ \begin{bmatrix} 1,387 & 1,520 & 1,020 & 881 & 744 & 815 & 864 & 9,433 & 14,783 & 10,060 & 2.795 & 1,101 \\ 2,037 & 1,591 & 1,189 & 972 & 788 & 787 & 1,772 & 5,135 & 9,335 & 6,324 & 1,797 & 1,778 \\ 1,983 & 1,226 & 1,029 & 888 & 721 & 831 & 1,368 & 3,791 & 8,940 & 3,063 & 2,211 & 1,840 \\ 980 & 1,247 & 977 & 816 & 670 & 725 & 744 & 4,780 & 10,724 & 7,630 & 2,322 & 1,329 \\ 980 & 1,247 & 912 & 835 & 724 & 816 & 949 & 6,889 & 5,767 & 4,485 & 1,757 & 1,467 \\ 1,120 & 1,200 & 1,200 & 995 & 870 & 719 & 732 & 1,146 & 3,968 & 5,767 & 4,485 & 1,757 & 1,467 \\ 1,500 & 1,200 & 995 & 870 & 719 & 732 & 1,146 & 3,968 & 5,767 & 4,485 & 1,757 & 1,467 \\ 1,500 & 1,300 & 995 & 870 & 719 & 732 & 1,146 & 3,968 & 5,767 & 4,485 & 1,757 & 1,467 \\ 1,500 & 1,300 & 995 & 870 & 719 & 732 & 1,146 & 3,968 & 7,919 & 3,147 & 2,050 & 1,899 \\ 1,838 & 1,247 & 833 & 696 & 696 & 656 & 1,235 & 3,462 & 2,901 & 2,292 & 2,984 & 1,239 \\ 1,838 & 1,247 & 833 & 527 & 614 & 1,187 & 4,592 & 12,087 & 8,277 & 1,939 & 1,511 \\ 1,296 & 1,291 & 913 & 748 & 645 & 712 & 1,050 & 4,087 & 7,212 & 2,362 & 2,005 \\ 1,560 & 1,441 & 1,121 & 1,050 & 880 & 934 & 1,108 & 4,314 & 8,136 & 5,269 & 4,173 & 1,810 \\ 1,560 & 1,441 & 1,121 & 1,050 & 880 & 934 & 1,108 & 4,314 & 8,136 & 5,269 & 4,173 & 1,810 \\ 1,560 & 1,441 & 1,121 & 1,050 & 880 & 934 & 1,108 & 4,314 & 8,136 & 5,269 & 4,173 & 2,201 \\ 1,560 & 1,441 & 1,121 & 1,050 & 880 & 934 & 1,108 & 4,314 & 8,136 & 5,269 & 4,173 & 2,201 \\ 2,330 & 1,868 & 1,281 & 1,001 & 1,051 & 1,055 & 977 & 3,745 & 17,805 & 14,664 & 6,728 & 4,149 \\ 2,819 & 2,375 & 1,741 & 1,301 & 997 & 962 & 1,116 & 10,266 & 16,410 & 11,823 & 7,413 & 2,596 \\ 2,619 & 2,375 & 1,741 & 1,301 & 997 & 962 & 1,116 & 10,266 & 16,410 & 11,823 & 7,413 & 2,596 \\ 2,619 & 2,375 & 1,741 & 1,301 & 997 & 962 & 1,116 & 10,266 & 16,410 & 11,823 & 7,413 & 2,596 \\ 2,819 & 2,375 & 1,741 & 1,301 & 997 & 962 & 1,116 & 10,266 & 16,410 & 11,823 & 7,413 & 2,596 \\ 2,619 & 2,741 & 2,741 & 1,301 & 997 & 962 & 1,116 & 10,266 & 16,410 & 11,823 & 7,413 & 2,596 \\ 2,619 & 2,741 & 2,741 & 2,712 & 2,592 & 2,102 & 2,26$ | 1969         | 1,930 | 1,400 | 994   | 70    | 546   | 701   | 1,186 | 3,556  | 7,576  | 5,281     | 3,042 | 3.048 | 30,130 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0/81         | 1,387 | 1,520 | 1,020 | 881   | 744   | 815   | 864   | 9,433  | 14,783 | 10,060    | 2,795 | 1,101 | 45,403 |
| 1,903 $1,226$ $1,029$ 888 $721$ 831 $1,366$ $3,791$ $8,940$ $3,063$ $2,211$ $1,840$ 980 $1,247$ $977$ $816$ $670$ $725$ $744$ $4,780$ $10,724$ $7,630$ $2,3222$ $1,329$ 980 $1,247$ $815$ $691$ $6333$ $3,751$ $6,889$ $5,767$ $4,485$ $1,757$ $1,467$ $1,425$ $1,220$ $843$ $691$ $6339$ $7591$ $3,150$ $1,827$ $1,425$ $1,208$ $995$ $8770$ $719$ $732$ $1,146$ $3,968$ $4,440$ $3,147$ $2,050$ $1,827$ $1,820$ $995$ $8770$ $7193$ $7342$ $2,901$ $2,292$ $2,394$ $1,239$ $992$ $990$ $702$ $6366$ $5366$ $1,467$ $2,901$ $2,292$ $2,901$ $2,777$ $1,939$ $1,511$ $1,296$ $1,291$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/81         | 2,037 | 1,591 | 1,189 | 972   | 788   | 787   | 1,772 | 5,135  | 9,335  | 6,324     | 1,797 | 1,778 | 33,505 |
| 980         1,247         977         816         670         725         744         4,780         10,724         7,630         2,322         1,329           1,120         1,282         912         835         724         816         949         6,889         5,767         4,485         1,757         1,467           1,120         1,282         912         835         724         816         949         6,889         5,767         4,485         1,757         1,467           1,500         1,208         995         870         719         732         1,146         3,968         4,440         3,147         2,050         1,827           1,500         1,308         995         870         719         732         1,146         3,968         4,440         3,147         2,050         1,827           1,838         1,247         833         686         596         655         1,235         3,462         2,901         2,399         1,219           1,296         1,291         913         742         4,592         12,087         8,277         1,939         1,511           1,266         1,291         913         7,212         2,362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1972         | 1,983 | 1,226 | 1,029 | 888   | 721   | 831   | 1,368 | 3,791  | 8,940  | 3,063     | 2,211 | 1,840 | 27,891 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19/3         | 980   | 1,247 | 677   | 816   | 670   | 725   | 744   | 4,780  | 10,724 | 7,630     | 2,322 | 1,329 | 32,944 |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19/4         | 07L'L | 1,282 | 912   | 835   | 724   | 816   | 949   | 6,889  | 5,767  | 4,485     | 1.757 | 1,467 | 27,003 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C/AI         | 624 L | 1,320 | 843   | 691   | 639   | 758   | 833   | 3,751  | 6,859  | 7,919     | 3,150 | 1,827 | 30,015 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/61         | 1,500 | 1,308 | 995   | 870   | 719   | 732   | 1,146 | 3,968  | 4,440  | 3,147     | 2,050 | 1,899 | 22,774 |
| 992         990         702         638         527         614         1,187         4,592         12,087         8,277         1,939         1,511           1,296         1,291         913         748         645         712         1,050         4,083         10,253         8,089         3,058         1,827           1,521         1,625         1,130         860         686         720         922         6,028         14,987         7,212         2,362         2,005           1,566         1,563         1,095         855         679         795         1,152         1,637         2,782         2,362         2,005           1,560         1,441         1,121         1,050         880         934         1,108         4,314         8,138         5,269         4,173         1,810           2,330         1,868         1,281         1,101         1,055         977         3,745         17,805         1,419         2,596         4,149           2,619         2,771         1,055         962         1,116         10,266         16,410         11,823         7,413         2,596         4,149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | //AL         | 1,838 | 1,247 | 833   | 686   | 596   | 656   | 1,235 | 3,462  | 2,901  | 2,292     | 2,384 | 1,239 | 19,369 |
| 1,296       1,291       913       748       645       712       1,050       4,083       10,253       8,089       3,058       1,827       1         1,521       1,525       1,130       860       686       720       922       6,028       14,987       7,212       2,362       2,005       1         1,566       1,563       1,095       855       679       795       1,152       1,637       2,782       2,388       2,271       2,271         1,566       1,441       1,121       1,050       880       934       1,108       4,314       8,138       5,269       4,173       1,810         2,330       1,868       1,281       1,101       1,055       977       3,745       17,805       14,664       6,728       4,149         2,619       2,375       1,741       1,301       997       962       1,116       10,266       16,410       11,823       7,413       2,596       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1978<br>1976 | 992   | 066   | 702   | 859   | 527   | 614   | 1,187 | 4,592  | 12,087 | 8,277     | 1,939 | 1,511 | 34,056 |
| 1,521         1,525         1,130         860         686         720         922         6,028         14,987         7,212         2,362         2,005         1           1,566         1,563         1.095         855         679         795         1,152         1,637         2,782         2,368         2,271         2,271           1,566         1,441         1,121         1,050         880         934         1,108         4,314         8,138         5,269         4,173         1,810           2,330         1,868         1,281         1,101         1,055         977         3,745         17,805         14,664         6,728         4,149           2,619         2,375         1,741         1,301         997         962         1,116         10,266         16,410         11,823         7,413         2,596         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/81         | 1,296 | 1,291 | 913   | 748   | 645   | 712   | 1,050 | 4,083  | 10,253 | 8,089     | 3,058 | 1,827 | 33,965 |
| 1,566         1,563         1.095         855         679         795         1,152         1,637         2,782         2,388         2,857         2,271           1,560         1,441         1,121         1,050         880         934         1,108         4,314         8,138         5,269         4,173         1,810         2,330         1,868         1,810         3,745         17,805         14,664         6,728         4,149         2,398         2,596         14,0         2,596         14,10         1,011         1,055         977         3,745         17,805         14,1664         6,728         4,149         2,596         12,619         2,375         1,741         1,301         997         962         1,116         10,266         16,410         11,823         7,413         2,596         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1980         | 1,521 | 1,625 | 1,130 | 860   | 686   | 720   | 922   | 6,028  | 14,987 | 7,212     | 2,362 | 2,005 | 40,058 |
| 1,560         1,441         1,121         1,050         880         934         1,108         4,314         8,138         5,269         4,173         1,810         2,330         1,868         1,281         1,101         1,055         977         3,745         17,805         14,664         6,728         4,149         2,619         2,375         1,741         1,301         997         962         1,116         10,266         16,410         11,823         7,413         2,596         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1981         | 1,566 | 1,563 | 1,095 | 855   | 679   | 795   | 1,152 | 1,637  | 2,782  | 2,388     | 2,857 | 2,271 | 19,640 |
| 2,330 1,868 1,281 1,101 1,051 1,055 977 3,745 17,805 14,664 6,728 4,149 2,619 2,375 1,741 1,301 997 962 1,116 10,266 16,410 11,823 7,413 2,596 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1982         | 1,560 | 1441  | 1,121 | 1,050 | 880   | 934   | 1,108 | 4,314  | 8,138  | 5,269     | 4 173 | 1,810 | 31,798 |
| 2,619 2,375 1,741 1,301 997 962 1,116 10,266 16,410 11,823 7,413 2,596 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1983         | 2,330 | 1,868 | 1,281 | 1,101 | 1,051 | 1,055 | 977   | 3,745  | 17,805 | 14,664    | 6,728 | 4,149 | 56.754 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1984         | 2,619 | 2,375 | 1,741 | 1,301 | 667   | 962   | 1,116 | 10,266 | 16.410 | 11,823    | 7,413 | 2,596 | 59,819 |

Simulated Flows at Blue River below Continental-Hoosier Project Proposed Action Alternative (AF)

| WATER    | OCT   | NON   | DEC   | NAL   | LEB   | MAR   | APR    | MAY    | NI     |             |       |       | TOTAL  |
|----------|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------------|-------|-------|--------|
| TEAH     |       |       |       |       |       |       | -<br>- |        | 100    | <b>10</b> L | 504   | 100   | IUIAL  |
| C2861    | 3,160 | 2,564 | 1,611 | 1,151 | 869   | 895   | 2,437  | 10,213 | 11,083 | 6,682       | 2.780 | 2.417 | 45.862 |
| 1986     | 2,226 | 1,775 | 1,105 | 916   | 789   | 893   | 1,610  | 4,810  | 5.996  | 5.409       | 1.474 | 413   | 27 416 |
| 1987     | 1.704 | 1,528 | 1,013 | 833   | 630   | 780   | 1,404  | 4,785  | 7,137  | 3.644       | 2 676 | 1 475 | 27 600 |
| 1988     | 1,192 | 1,260 | 869   | 947   | 880   | 883   | 1,472  | 3.971  | 6.199  | 4,449       | 2 971 | 1 832 | 26 045 |
| 1989     | 1,608 | 1,596 | 1,108 | 950   | 844   | 780   | 1,980  | 5,780  | 5,999  | 2.218       | 3 024 | 1 874 | 27 761 |
| 1990     | 1,599 | 1,426 | 850   | 765   | 639   | 673   | 1,440  | 3.204  | 5,509  | 2 352       | 2573  | 0.066 | 23 206 |
| 1991     | 2,649 | 1,728 | 1,227 | 1,044 | 877   | 1,038 | 1,346  | 6,164  | 7.257  | 2.416       | 3,096 | 2,115 | 30,957 |
| 1892     | 1,615 | 1,204 | 818   | 620   | 525   | 598   | 1,322  | 4,743  | 4,050  | 2,123       | 4.007 | 2.157 | 23,782 |
| 1993     | 1,361 | 1,209 | 709   | 554   | 545   | 696   | 926    | 6,479  | 9,634  | 5.552       | 1.685 | 1,897 | 31.247 |
| 1994     | 1,096 | 1,292 | 1,025 | 829   | 638   | 661   | 1,827  | 4,119  | 4,174  | 3.316       | 2,490 | 1.864 | 23.331 |
| 1995     | 1,357 | 1.271 | 724   | 553   | 545   | 560   | 931    | 4,151  | 18,684 | 20.340      | 7,123 | 3 050 | 59 289 |
| 1996     | 2,216 | 1,453 | 1,300 | 1,090 | 963   | 830   | 1,885  | 14,350 | 12.060 | 7.051       | 2,212 | 2 086 | 47 496 |
| 1997     | 1,942 | 1,737 | 1,213 | 1,022 | 771   | 953   | 1,813  | 9,011  | 17.245 | 8.910       | 5,931 | 2.054 | 52 802 |
| 1898     | 1,936 | 1,606 | 667   | 812   | 693   | 804   | 939    | 3,708  | 4,860  | 2.874       | 2.964 | 2.027 | 24 220 |
| 1999     | 1,799 | 1,555 | 1,201 | 920   | 800   | 736   | 1,084  | 4.945  | 11.870 | 7.437       | 2,590 | 2,261 | 37 198 |
| 2000     | 1,543 | 1,263 | 894   | 780   | 689   | 962   | 1,626  | 7,231  | 5,187  | 2,673       | 2.071 | 2.095 | 27,014 |
| 2001     | 1,325 | 1,193 | 932   | 757   | 604   | 646   | 1,351  | 6,302  | 8,391  | 6.291       | 3,378 | 2,245 | 33,415 |
| 2002     | 1,457 | 1,309 | 882   | 725   | 629   | 623   | 1,099  | 1,391  | 1,034  | 1.529       | 1.916 | 1,007 | 13.601 |
| 2003     | 1,078 | 1,042 | 824   | 663   | 541   | 594   | 1,190  | 7,232  | 10.887 | 5,661       | 3,063 | 1 923 | 34 698 |
| 2004     | 1,371 | 1,162 | 895   | 748   | 655   | 782   | 1,073  | 1.538  | 1.203  | 1.784       | 3,385 | 1 289 | 15 AA5 |
| 2005     | 1,276 | 1,346 | 955   | 767   | 563   | 674   | 995    | 3,059  | 4,422  | 2.101       | 2,804 | 1.387 | 20.349 |
| AVERAGE: | 1,600 | 1,407 | 986   | 829   | 703   | 756   | 1,262  | 4,988  | 8,176  | 5.482       | 3.279 | 1 880 | 31 348 |
| MINIMUM  | 800   | 066   | 702   | 553   | 525   | 560   | 719    | 527    | 564    | 1.160       | 1.074 | 413   | 13 601 |
| MAXIMUM: | 3,160 | 2,564 | 1,741 | 1,301 | 1,051 | 1,055 | 2.437  | 14.350 | 18,684 | 20.340      | 7 RFF | 4 140 | 50 B10 |
|          |       |       |       |       |       |       |        |        |        | 2.2/22      | 2221. |       | 20.00  |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir Proposed Action Alternative (CFS)

| WATER<br>YEAR | OCT | NON | DEC | JAN | FEB      | MAR | APR | MAY | NN         | nr  | AUG | SEP |          |
|---------------|-----|-----|-----|-----|----------|-----|-----|-----|------------|-----|-----|-----|----------|
| 1950          | 91  | 10  | 10  | 7   | 6        | 15  | 130 | 161 | 320        | 56  | 104 | 33  | 70       |
| 1951          | 95  | 12  | 14  | 80  | 12       | 18  | 12  | 245 | 396        | 122 | 25  | 78  | . 60     |
| 1952          | 79  | 16  | 14  | 80  | 14       | 17  | 60  | 614 | 606<br>606 | 87  | 28  | 119 | 130      |
| 1953          | 171 | 35  | 28  | 27  | 15       | 29  | 11  | 132 | 388        | 68  | 21  | 198 | 39       |
| 1954          | 11  | 20  | 11  | 12  | თ        | 17  | 6   | 57  | 139        | 49  | 256 | 2   | 20       |
| 1955          | 274 | 26  | 52  | 16  | 13       | 20  | 122 | 57  | 82         | 73  | 100 | 5 8 | 22<br>76 |
| 1956          | 13  | 19  | 16  | 12  | 6        | 24  | 150 | 6   | 297        | 60  | 108 | 104 | 75       |
| 1957          | 11  | 20  | 15  | 14  | 12       | 19  | 14  | 195 | 682        | 225 | 33  | 21  | 110      |
| 1958          | 23  | 30  | 20  | 16  | 16       | 26  | 78  | 603 | 304        | 58  | 109 | 128 | 118      |
| 1959          | = : | ß   | 20  | 15  | =        | 14  | 73  | 102 | 355        | 63  | 74  | 145 | 75       |
| 1960          | 20  | 22  | 13  | 15  | 14       | 72  | 69  | 469 | 307        | 67  | 105 | 105 | 107      |
| 1961          | 13  | 23  | 17  | 18  | თ        | 19  | 56  | 152 | 208        | 66  | 198 | 24  | 67       |
| 1962          | 13  | 57  | 39  | 88  | 37       | 131 | 461 | 747 | 378        | 125 | 31  | 157 | 185      |
| 1963          | 59  | 26  | 21  | 17  | 14       | 29  | 89  | 74  | 211        | 145 | 156 | 55  | 75       |
| 1964          | 253 | 54  | 24  | 22  | 15       | 60  | 53  | 56  | 81         | 82  | 103 | 121 | 78       |
| 1965          | თ   | 21  | 20  | 18  | 12       | 15  | 116 | 65  | 559        | 145 | 31  | 19  | 85       |
| 1966          | 25  | 37  | 26  | 52  | 11       | 37  | 6   | 333 | 182        | 59  | 320 | 104 | 105      |
| 1967          | თ   | 13  | 17  | 16  | 6        | 34  | 80  | 57  | 166        | 93  | 85  | 141 | 60       |
| 1968          | 39  | 27  | 20  | 16  | 12       | 14  | 58  | 57  | 398        | 79  | 33  | 116 | 72       |
| 1969          | 33  | 24  | 22  | 20  | 12       | 19  | 13  | 954 | 245        | 100 | 78  | 159 | 148      |
| 1970          | 18  | 30  | 30  | 25  | 13       | 26  | 88  | 434 | 363        | 89  | 113 | 4   | 105      |
| 1971          | 20  | 29  | 21  | 17  | 17       | 50  | 121 | 469 | 474        | 111 | 28  | 17  | 115      |
| 1972          | 15  | 25  | 22  | 17  | 23       | 55  | 124 | 637 | 361        | 53  | 136 | 49  | 127      |
| 1973          | 18  | 26  | 21  | 18  | 15       | 25  | 65  | 499 | 343        | 134 | 33  | 109 | 109      |
| 1974          | 115 | 27  | 20  | 17  | 16       | 46  | 76  | 812 | 294        | 82  | 107 | 105 | 144      |
| C/81          | 15  | 24  | 16  | 16  | 17       | 27  | 70  | 154 | 386        | 126 | 30  | 200 | 06       |
| 1976          | 17  | 26  | 19  | 19  | 18       | 35  | 88  | 528 | 276        | 99  | 102 | 116 | 110      |
| 1977          | 16  | 17  | 13  | 12  | 10       | 11  | 66  | 300 | 88         | 140 | 103 | 10  | 69       |
| 1978          | 312 | 15  | 10  | 12  | 6        | 24  | 133 | 4   | 324        | 111 | 107 | 129 | 103      |
| 1979          | 11  | 19  | 23  | 16  | <b>o</b> | 23  | 107 | 391 | 495        | 95  | 24  | 206 | 118      |
| 1980          | 10  | 23  | 19  | 15  | 20       | 25  | 92  | 287 | 499        | 73  | 111 | 115 | 107      |
| 1981          | 13  | 21  | 12  | 12  | 7        | 13  | 78  | 319 | 211        | 96  | 249 | 33  | 89       |
| 1982          | 254 | 25  | 17  | 13  | 10       | 23  | 60  | 37  | 446        | 109 | 25  | 23  | 87       |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir Proposed Action Alternative (CFS)

| WATER    |          |     |     |     |       |            |       |          |     |     |          |          |          |
|----------|----------|-----|-----|-----|-------|------------|-------|----------|-----|-----|----------|----------|----------|
| YEAR     | 007      | NON | DEC | JAN | FEB   | MAR        | APR   | МАҮ      | NN  | JUL | AUG      | SEP      |          |
| 1983     | 21       | 21  | 18  | 15  | 16    | 24         | 64    | 366      | 767 | 281 | VV       | EA<br>EA | AVG      |
| 1984     | 17       | 20  | 24  | 23  | 54    | 27         | C a   | BER      | 660 |     | 5        | 58       | 50       |
| 1985     | 25       | 24  | 25  | 74  | . r.c | , <u>,</u> | 341   | 100      |     |     | <u>ה</u> | 3        | CO I     |
| 1986     | ç        |     | 3 5 |     | 3     | ÷ 0        | - + 2 | C0/      | 205 | ٩/  | 17       | 12       | 132      |
| 1007     | 2 4      | 2 2 | 5 ; | C · | 4     | 22         | 205   | /39      | 388 | 118 | 23       | 19       | 151      |
| /061     | 2        |     | /1  | 16  | 21    | 90         | 201   | 339      | 172 | 64  | 17       | 198      | 03<br>03 |
|          | 20 2     | 12  | 12  | 13  | 15    | 32         | 183   | 356      | 334 | 65  | 101      | 107      | 103      |
| 1989     | 13       | ส   | 17  | 16  | 16    | 82         | 13    | 307      | 199 | 72  | 193      | 29       | 82       |
| 0661     | =        | 14  | 0   | ø   | ÷     | 25         | 130   | 90<br>90 | 173 | 109 | 234      | æ        | 67       |
| 1991     | 12       | 17  | 8   | 9   | 8     | 32         | 86    | 187      | 393 | 82  | 104      | 108      | 87       |
| 1992     | 80       | 13  | თ   | ø   | 11    | 25         | 100   | 66       | 139 | 63  | 239      | 73       | 63       |
| 1993     | 27       | 13  | თ   | 11  | 14    | 28         | 74    | 186      | 426 | 6   | 21       | 21       | 48       |
| 1994     | 24       | 16  | 13  | 10  | 13    | 27         | 121   | 338      | 163 | 136 | 176      | . ~      | 88       |
| 1995     |          | 11  | 8   | 11  | 14    | 20         | 54    | 41       | 607 | 119 | 23       | 52       | 78       |
| 1996     | 25       | 18  | 13  | 18  | 27    | 37         | 178   | 669      | 448 | 83  | 105      | 18       | 140      |
| 1997     | 52       | 21  | 17  | 17  | 20    | 68         | 46    | 780      | 622 | 90  | 22       | 2 0      | 145      |
| 1998     | 21       | 13  | 18  | 21  | 24    | 65         | 86    | 332      | 218 | 89  | 22       | 66       | 28       |
| 1999     | 19       | 18  | 12  | 14  | 18    | 47         | 87    | 293      | 445 | 86  | 25       | 5 5      | 58       |
| 2000     | 163      | 18  | 11  | 14  | 19    | 26         | 148   | 395      | 190 | 68  | 203      | . 22     | 108      |
| 2001     | <b>ნ</b> | 17  | 15  | 10  | 14    | 25         | 81    | 88       | 174 | 69  | 188      | 124      | 68       |
| 2002     | 12       | 15  | 11  | 10  | 10    | 18         | 69    | 129      | 2   | 151 | 174      | 28       | 29       |
| 2003     | 143      | =   | 9   | 7   | 8     | 20         | 129   | 50       | 127 | 79  | 115      | 123      | 68       |
| 2000     | 6        | ส   | თ   |     | 12    | 49         | 66    | 68       | 49  | 68  | 271      | 20       | 85       |
| 2005     | 280      | 15  | ω   | 18  | 12    | 18         | 138   | 38       | 155 | 76  | 20       | 118      | 75       |
| AVEHAGE: | Z.       | 52  | 17  | 16  | 15    | 33         | 106   | 314      | 323 | 96  | 66       | 78       | 9.8      |
| WINIMUM: | ω        | 10  | 9   | 9   | 7     | :          | 13    | 37       | 49  | 49  | 17       | 2        | 6        |
| MAXIMUM: | 312      | 57  | 39  | 38  | 41    | 131        | 461   | 954      | 767 | 261 | 320      | 206      | 185      |
|          |          |     |     |     |       |            |       |          |     |     | 2        | 224      | 3        |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir Proposed Action Alternative (AF)

| WATER<br>YEAR | ост    | NOV   | DEC   | JAN   | FE8   | MAR   | APR    | MAY    | INN    | l<br>JUL | AUG    | SEP    | TOTAL   |
|---------------|--------|-------|-------|-------|-------|-------|--------|--------|--------|----------|--------|--------|---------|
| 1950          | 5,614  | 573   | 596   | 407   | 474   | 913   | 7.706  | 9.909  | 19 057 | 3 421    | R GRO  | 1 035  | 56 074  |
| 1951          | 5,869  | 731   | 838   | 484   | 652   | 1,087 | 4.578  | 15.070 | 23.571 | 7.532    | 1 520  | 4 505  | 4/2/00  |
| 1952          | 4,831  | 925   | 856   | 500   | 767   | 1,048 | 3,593  | 37.724 | 36.048 | 5.319    | 1,600  | 7004   | 100.305 |
| 1953          | 10,491 | 2,086 | 1,728 | 1,655 | 806   | 1,805 | 4,602  | 8.109  | 23,116 | 4.151    | 1 267  | 11 770 | 71 588  |
| 1954          | 664    | 1,179 | 704   | 748   | 494   | 1,032 | 5,343  | 3,505  | 8,262  | 3.033    | 15.741 | 2 025  | 42 730  |
| 1955          | 16,851 | 1,554 | 1,370 | 968   | 714   | 1,247 | 7,266  | 3,505  | 4,886  | 4,486    | 6.144  | 5,722  | 54,713  |
| 1956          | 111    | 1.101 | 954   | 751   | 485   | 1,460 | 8,914  | 5,504  | 17,683 | 3,701    | 6.616  | 6,186  | 54 139  |
| 1957          | 849    | 1,206 | 915   | 875   | 650   | 1,185 | 4,591  | 11,990 | 40.607 | 13.815   | 2,136  | 1,223  | 70 842  |
| 1958          | 1,397  | 1,799 | 1,207 | 966   | 896   | 1,586 | 4,647  | 37,062 | 18,074 | 3,552    | 6.683  | 7.628  | 85.520  |
| 1959          | 667    | 1,501 | 1,213 | 006   | 606   | 840   | 4,356  | 6,255  | 21,139 | 3,887    | 4,563  | 8,622  | 54,549  |
| 1960          | 1,223  | 1,312 | 787   | 951   | 751   | 4,426 | 4,107  | 28,615 | 18,262 | 4,143    | 6.439  | 6.245  | 77,461  |
| 1961          | 785    | 1,397 | 1,031 | 1,128 | 515   | 1,155 | 3,314  | 9,371  | 12,378 | 4,068    | 12,167 | 1.427  | 48.736  |
| 1962          | 662    | 3,419 | 2,426 | 2,351 | 2,046 | 8,072 | 27,455 | 45,926 | 22,521 | 7,670    | 1,877  | 9,359  | 133.921 |
| 1963          | 3,619  | 1,529 | 1,265 | 1,054 | 768   | 1,762 | 5,291  | 4,527  | 12,529 | 8,904    | 9,611  | 3.297  | 54 156  |
| 1964          | 15,558 | 3,243 | 1,470 | 1,360 | 847   | 3,712 | 3,182  | 3,431  | 4,834  | 5,019    | 6.348  | 7.179  | 56,183  |
| 1965          | 555    | 1,251 | 1,217 | 1,130 | 646   | 914   | 606'9  | 3,990  | 33,269 | 8,895    | 1.881  | 1.131  | 61,788  |
| 1966          | 1,518  | 2,181 | 1,615 | 1,376 | 634   | 2,296 | 5,347  | 20,495 | 10,822 | 3,640    | 19,655 | 6.183  | 75,762  |
| 1967          | 533    | 772   | 1,063 | 998   | 490   | 2,062 | 4,782  | 3,505  | 9,862  | 5,734    | 5.197  | 8.419  | 43,417  |
| 1968          | 2,393  | 1,624 | 1,258 | 686   | 664   | 849   | 3,466  | 3,505  | 23,709 | 4,882    | 2.051  | 6.875  | 52,265  |
| 1969          | 5,740  | 1,422 | 1,355 | 1,241 | 661   | 1,180 | 774    | 58,686 | 14,606 | 6,145    | 4.788  | 9.433  | 106.031 |
| 1970          | 1,084  | 2,350 | 1,830 | 1,536 | 698   | 1,584 | 5,217  | 26,679 | 21,603 | 5,480    | 6,956  | 816    | 75.833  |
| 1971          | 1,216  | 1,738 | 1,305 | 1,024 | 955   | 3,082 | 7,184  | 28,849 | 28,190 | 6,819    | 1.737  | 1.000  | 83.099  |
| 19/2          | 934    | 1,516 | 1,377 | 1,046 | 1,269 | 3,377 | 7,407  | 39,145 | 21,470 | 3,260    | 8,347  | 2,938  | 92.086  |
| 1973          | 1,078  | 1,532 | 1,293 | 1,106 | 831   | 1,536 | 3,842  | 30,713 | 20,383 | 8,229    | 2,001  | 6,504  | 79,048  |
| 1974          | 7,048  | 1,628 | 1,221 | 1,032 | 606   | 2,848 | 4,532  | 49,921 | 17,506 | 5,052    | 6,593  | 6,259  | 104,549 |
| C/8L          | 945    | 1,439 | 983   | 677   | 953   | 1,646 | 4,150  | 9,445  | 22,950 | 7,755    | 1,872  | 11,885 | 65.000  |
| 19/6          | 1,017  | 1,569 | 1,152 | 1,144 | 973   | 2,134 | 5,237  | 32,439 | 16,440 | 4,050    | 6,288  | 6,908  | 79.351  |
| 19/7          | 975    | 1,007 | 821   | 755   | 565   | 203   | 5,905  | 18,436 | 5,226  | 8,593    | 6,359  | 584    | 49,929  |
| 19/8          | 19,169 | 868   | 614   | 731   | 489   | 1,501 | 7,939  | 2.717  | 19,289 | 6,820    | 6,587  | 7,694  | 74,449  |
| 6/61          | 666    | 1,157 | 1,393 | 987   | 500   | 1,408 | 6,366  | 24,038 | 29,447 | 5,833    | 1,474  | 12,239 | 85,508  |
| 1980          | 636    | 1,386 | 1,150 | 833   | 1,113 | 1,585 | 5,445  | 17,642 | 29,708 | 4,467    | 6,810  | 6,814  | 77.669  |
| 1981          | 111    | 1,222 | 726   | 768   | 413   | 828   | 4,615  | 19,586 | 12,582 | 5,923    | 15,290 | 1,984  | 64.708  |
| 1982          | 15,590 | 1,517 | 1,052 | 812   | 528   | 1,442 | 3,543  | 2,253  | 26,559 | 6,705    | 1,528  | 1,343  | 62,872  |
|               |        |       |       |       |       |       |        |        |        |          |        |        |         |

Simulated Flows at Muddy Creek below Wolford Mountain Reservoir Proposed Action Alternative

(AF)

| WATER    |        |       |            |       |       |       |        |        |        |        |        | ſ      |         |
|----------|--------|-------|------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|---------|
| YEAR     | OCT    | NON   | DEC        | JAN   | FEB   | MAR   | APR    | MAY    | NUL    | JUL    | AUG    | SEP    | TOTAL   |
| 1983     | 1,318  | 1,247 | 1,087      | 953   | 910   | 1,461 | 3,829  | 22.515 | 45.612 | 16.037 | 2 680  | 3.218  | 100 867 |
| 1984     | 1,055  | 1,163 | 1,486      | 1,438 | 1,322 | 1.633 | 4.881  | 52,618 | 39,295 | 11 056 | 2 186  | 1 203  | 110 436 |
| 1985     | 1,552  | 1,418 | 1,522      | 1,463 | 1,367 | 2.874 | 14.319 | 47,008 | 17,967 | 4 604  | 1 007  | 602    | 05 003  |
| 1986     | 799    | 1,361 | 1,893      | 1,521 | 2,303 | 5,419 | 17,941 | 45,427 | 23,085 | 7.272  | 1.386  | 1118   | 109 525 |
| 1987     | 915    | 1,279 | 1,039      | 970   | 1,157 | 1,835 | 11,951 | 20,870 | 10.247 | 3,923  | 1.026  | 11 799 | 67 011  |
| 1988     | 466    | 743   | 718        | 771   | 809   | 1,945 | 10,864 | 21,897 | 19,889 | 4.015  | 6.233  | 6.386  | 74 736  |
| 1989     | 817    | 1,286 | 1,044      | 971   | 873   | 5,029 | 774    | 18,883 | 11,819 | 4.427  | 11.840 | 1,725  | 59.4RB  |
| 1990     | 696    | 840   | 579        | 494   | 619   | 1,556 | 7,754  | 2,383  | 10,306 | 6,685  | 14.378 | 2.022  | 48.312  |
| 1991     | 722    | 1,022 | 472        | 374   | 465   | 1,968 | 5,129  | 11,494 | 23,414 | 5,018  | 6.420  | 6.436  | 62,934  |
| 1992     | 466    | 786   | 562        | 495   | 600   | 1,512 | 5,937  | 4,052  | 8,300  | 3,881  | 14,675 | 4.365  | 45,631  |
| 1993     | 1,635  | 773   | 536        | 681   | 789   | 1,739 | 4,397  | 11,410 | 25,337 | 5,556  | 1,311  | 1.241  | 55,405  |
| 1994     | 1,472  | 949   | <u>111</u> | 618   | 708   | 1,681 | 7,206  | 20,779 | 9,685  | 6,337  | 10.839 | 418    | 63 489  |
| 1995     | 689    | 671   | 513        | 678   | 770   | 1,200 | 3,188  | 2,525  | 36,136 | 7,338  | 1.431  | 1.306  | 56.445  |
| 1996     | 1,558  | 1,078 | 822        | 1,078 | 1,508 | 2,284 | 10,592 | 43,007 | 26,677 | 5,075  | 6.446  | 1.049  | 101.174 |
| 1997     | 1,330  | 1,268 | 1,074      | 1,076 | 1,115 | 4,196 | 2,754  | 47,975 | 37,010 | 5,509  | 1,329  | 529    | 105,165 |
| 1998     | 1,270  | 774   | 1,122      | 1,276 | 1,332 | 3,984 | 5,114  | 20,413 | 12,949 | 5,501  | 1,348  | 5.882  | 60.965  |
| 1999     | 1,150  | 1,089 | 743        | 851   | 988   | 2,875 | 5,198  | 18,005 | 26,478 | 5,307  | 1.543  | 1.236  | 65.463  |
| 2000     | 10,039 | 1,097 | 695        | 838   | 1,033 | 1,619 | 8,806  | 24,263 | 11,312 | 4,201  | 12.473 | 1.581  | 77,957  |
| 2001     | 582    | 984   | 927        | 596   | 763   | 1,553 | 4,837  | 5,403  | 10,339 | 4,267  | 11.588 | 7.387  | 49.226  |
| 2002     | 734    | 903   | 671        | 599   | 580   | 1,118 | 4,084  | 7,916  | 3,810  | 9,283  | 10,700 | 1.657  | 42.055  |
| 2003     | 8,809  | 649   | 379        | 439   | 433   | 1,221 | 7,695  | 3,101  | 7,571  | 4,861  | 7,057  | 7.290  | 49.505  |
| 2004     | 559    | 1,288 | 568        | 656   | 652   | 2,989 | 5,866  | 4,157  | 2,915  | 4,163  | 16,673 | 1,191  | 41.677  |
| 2005     | 17,195 | 891   | 522        | 1,089 | 647   | 1,130 | 8,220  | 2,320  | 9,228  | 4,646  | 1,257  | 7,046  | 54,191  |
| AVERAGE: | 3,348  | 1,309 | 1,045      | 958   | 830   | 2,055 | 6,303  | 19,307 | 19,214 | 5,929  | 6,078  | 4,646  | 71.022  |
|          | 466    | 573   | 379        | 374   | 413   | 203   | 774    | 2,253  | 2,915  | 3,033  | 1,026  | 418    | 41,677  |
| MAXIMUM: | 19,169 | 3,419 | 2,426      | 2,351 | 2,303 | 8,072 | 27,455 | 58,686 | 45,612 | 16,037 | 19,655 | 12,239 | 133,921 |

| Simulated Flows at Williams Fork River below Williams Fork Reservoir |                            |
|----------------------------------------------------------------------|----------------------------|
| Williams F                                                           | ×                          |
| ver below                                                            | Descend Antion Alternation |
| ns Fork Ri                                                           | - A - Martin               |
| at William                                                           | 0.00                       |
| liated Flows                                                         |                            |
| Simu                                                                 |                            |

Proposed Action Alternative (CFS) •

| 2   |          | DEC | JAN           |            | MAH            | APR | МАҮ | NUL  | JUL         | AUG        | SEP | -UNA |
|-----|----------|-----|---------------|------------|----------------|-----|-----|------|-------------|------------|-----|------|
|     | 136      | 78  | 63            | 11         | 67             | 15  | 29  | 247  | 55          | 321        | 159 | 124  |
|     | 116      | 92  | 76            | 59         | 86             | 102 | 48  | 186  | 422         | 230        | 356 |      |
|     | 127      | 102 | 96            | 84         | 88             | 15  | 5   | 299  | 273         | 256        | 256 | 196  |
|     | 140      | 108 | 132<br>132    | 75         | 79             | 76  | 26  | 180  | 62          | 235        | 154 | 120  |
|     | 134      | 112 | 102           | 52         | 73             | 06  | \$  | 37   | <u>1</u> 06 | 142        | 109 | 3    |
|     | 107      | 76  | 76            | 60         | 64             | 15  | 32  | 93   | 4           | 182        | 201 | 105  |
|     | 125      | 89  | 71            | 79         | 85             | 15  | 78  | 237  | 46          | 186        | 104 | 103  |
|     | 104      | 65  | 71            | <b>6</b> 8 | 68             | 76  | 21  | 162  | 274         | 275        | 184 | 124  |
|     | 138      | 123 | 115           | 86         | 89             | 62  | 79  | 398  | 70          | 287        | 142 | 155  |
|     | 103      | 67  | 06            | ន          | 73             | 56  | 35  | 203  | 65          | 145        | 149 | 102  |
| _   | 157      | 127 | 65            | 85         | 66             | 27  | 38  | 164  | 63          | 183        | 125 | 108  |
|     | 135      | 118 | 114           | 27         | 63             | 121 | 24  | 107  | 116         | 251        | 158 | 116  |
|     | 121      | 137 | <del>89</del> | 71         | 81             | 21  | 66  | 656  | 336         | 203        | 131 | 178  |
|     | 44       | 132 | 126           | 69         | <del>6</del> 3 | 96  | 40  | 51   | 103         | 58         | 179 | 103  |
|     | 94       | 64  | 59            | 3          | 2              | 132 | 28  | 127  | 55          | 101        | 118 | 98   |
|     | 1.1      | 96  | 88            | 79         | 74             | 15  | 26  | 166  | 118         | 188        | 98  | 96   |
|     | 90       | 119 | 7             | 52         | 98             | 103 | 49  | 68   | 8           | 316        | 109 | 101  |
|     | 93       | 69  | 60            | 61         | 91             | 15  | 36  | 102  | 20          | 197        | 157 | 06   |
|     | 117      | 82  | 20            | 7          | 80             | 136 | 15  | 264  | ន           | 19         | 301 | 113  |
|     | 114      | 92  | 93            | 76         | 75             | 15  | 61  | 40   | 61          | 149        | 210 | 97   |
|     | 81<br>19 | 57  | 94            | ß          | 82             | 83  | 73  | 137  | 222         | 162        | 161 | 106  |
|     | 17       | 154 | 149           | 66         | 128            | 15  | 39  | 499  | 343         | 203        | 226 | 184  |
| _   | 132      | 117 | 107           | 93         | 129            | 27  | 45  | 257  | 59          | 317        | 130 | 135  |
|     | 5        | 90  | 78            | 22         | 71             | 84  | 28  | 100  | 205         | 196        | 183 | 110  |
| _   | 150      | 131 | 129           | 71         | 94             | 15  | 69  | 441  | 183         | 267        | 163 | 154  |
| -   | 117      | 106 | 4             | 78         | 83             | 96  | പ്പ | 180  | 125         | 192        | 204 | 120  |
|     | 60       | 86  | 76            | 7          | 84             | 33  | 37  | 140  | 69          | 159        | 175 | 98   |
|     | 121      | 81  | 62            | <u>8</u> 3 | 20             | 86  | 28  | 50   | 206         | 319        | 95  | 114  |
| _   | 80       | 48  | 4             | 43         | 54             | 15  | 46  | 214  | 101         | 112        | 146 | 91   |
|     | 86       | 87  | 88            | 78         | 91             | 15  | 43  | 143  | 73          | 164        | 122 | 32   |
| 114 | 115      | 101 | 105           | 95         | 67             | 84  | 27  | 130  | 73          | 145        | 179 | 103  |
| _   | 105      | 87  | 26            | 58         | 69             | 159 | 21  | 155  | 117         | 908<br>908 | 209 | 124  |
|     | 96       | 60  | 80            | 65         | 48             | 60  | 18  | 121  | 120         | 132        | 65  | 83   |
|     | 120      | 126 | 68            | 108        | 72             | 162 | 15  | 26   | 841         | 326        | 211 | 181  |
|     | 15<br>22 | 147 | 114           | 94         | 116            | 06  | 79  | 1009 | 542         | 331        | 210 | 256  |
|     | 176      | 148 | 154           | 70         |                |     |     |      |             |            | 2   |      |

Proposed Action Alternative (CFS)

| 1986         180         169         149         139         70         21         15         58         566         257         152           1987         173         167         144         137         102         93         15         57         78         351         171           1986         112         106         114         137         102         93         15         57         78         351         171           1980         112         109         96         81         83         107         81         56         237         76         351         125         77           1990         112         109         96         81         83         107         81         75         78         315         126         144         137         126         146         126         141         31         86         32         126         148         31         126         148         31         126         148         137         126         141         31         26         127         128         126         141         112         148         31         126         141         156         5 | WATER<br>YEAR | oct      | VON | DEC | JAN | FEB        | MAR  | APR            | MAY        | NUL   | ากเ         | AUG          | SEP  | ANNUAL     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-----|-----|-----|------------|------|----------------|------------|-------|-------------|--------------|------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1986          | 180      | 169 | 149 | 139 | 20         | 21   | 15             | 82         | 566   | 967         | 160          | ţ    | AVG        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1987          | 173      | 167 | 144 | 137 | 102        | 6    | 0 IG           | 273        | 78    | 38          | 171          | 1    | 26         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1988          | 120      | 106 | 106 | 114 | 105        | 78   | 10             | 20         | 237   | 78          | 2014<br>2014 | 2 6  | 101        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1989          | 109      | 113 | 95  | 84  | 85         | 101  | с<br>т         | ) 4<br>1   |       | 301         | <u>,</u>     | 201  | 22         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1990          | 112      | 109 | 8   | 6   |            | 107  | 2.6            | 86         |       | 150         | 210          | 23   | £          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1991          | 196<br>1 | 129 | 88  | 75  | 20         |      | 5 6            |            |       | 0<br>0<br>0 | 0.0          | 55   | 124        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1992          | 126      | 145 | 9   | 5.8 | 1 40       | Ş    | 1 U            | ₽ b        | 681   |             |              | 201  | 106        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1003          | 246      |     | 1 6 | 5 9 | D<br>D     | 5 C4 | <u>0</u>       | 8          | 69    | 47          | 448          | 230  | 131        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |          |     |     | 49  | <b>4</b> 4 | 56   | 70             | 15         | 168   | 112         | 126          | 244  | 112        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 207      |     | 60  | 66  | 91         | 114  | 31             | 60         | 66    | 115         | 205          | 183  | 121        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 22       | 701 | 85  | 75  | 86         | 107  | 165            | 15         | 231   | 280         | 272          | 322  | 155        |
| 208       171       140       80       253       80       15       64       684       284         170       162       145       145       115       136       15       31       83       56         204       149       98       107       103       146       98       31       105       43         204       123       114       115       111       126       15       76       109       21         167       122       123       101       97       116       92       52       90       30         166       59       49       44       40       47       109       18       223       59         161       133       108       102       101       97       59       52       50       30       30         161       133       102       101       142       122       37       79       223       59         161       133       102       59       50       50       37       79       22       50         161       153       96       97       59       50       46       155       50                                                                                                                                                    | 1996          | 209      | 135 | 129 | 142 | 126        | 114  | 15             | 137        | 643   | 228         | 140          | 666  | 186<br>186 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1997          | 208      | 171 | 140 | 80  | 253        | 80   | 15             | 2          | 664   | 284         | 215          | 167  | 194        |
| 204         149         98         107         103         146         98         31         105         43           201         123         114         115         111         126         15         76         109         21           167         122         123         101         97         166         15         76         109         21           149         63         52         45         42         53         75         17         42         107           161         133         108         102         101         142         122         37         79         223         59           216         133         108         102         101         142         122         37         79         22         59           216         135         96         97         59         55         50         22         50         22         50         22         50         22         50         22         50         22         50         22         50         22         50         22         50         22         50         22         50         23         24         141                                  | 1998          | 170      | 162 | 145 | 145 | 115        | 136  | 15             | 31         | 83    | 56          | 138          | 2    |            |
| 201     123     114     115     111     126     15     76     109     21       167     122     123     101     97     116     92     52     90     30       149     63     52     45     42     53     75     17     42     107       149     63     52     45     42     53     75     17     42     107       161     133     108     102     101     142     122     37     79     22       161     133     108     102     101     142     122     37     79     22       216     135     96     97     59     50     46     155     50       216     123     102     97     59     52     15     46     155     50       216     125     97     59     52     15     46     155     50       216     125     97     59     59     52     50     50       161     159     48     44     40     21     15     26     21       177     154     154     253     146     165     137     1009     84<                                                                                                                                                                                                                                                 | 6661          | 204      | 149 | 98  | 107 | 103        | 146  | 98             | 31         | 105   | 43          | 120          | 17   | 801        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000          | 52<br>S  | 123 | 114 | 115 | 111        | 126  | - <del>1</del> | 76         | 001   | 2 5         | 200          |      | 027        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2001          | 167      | 122 | 123 | 101 | 97         | 118  | 2 8            | ) (<br>. 4 | 25    |             | 200          |      | 8          |
| 46     59     49     44     40     47     109     18     223     59       161     133     108     102     101     142     122     37     79     22       216     135     96     97     59     52     15     46     155     50       216     135     96     97     59     52     15     46     155     50       216     123     102     97     59     52     15     46     155     50       216     123     102     92     81     87     60     44     224     141       41     59     48     44     40     21     15     15     26     21       310     177     154     154     253     146     165     137     1009     841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2002          | 149      | 8   | 5   | ÅF. |            | 2    |                | 2 1        | 2     | 20          | 044          | 22   | 87         |
| 40         59         44         40         47         109         18         223         59           161         133         108         102         101         142         122         37         79         22           216         135         96         97         59         52         15         46         155         50           216         123         102         97         59         52         15         46         155         50           216         123         102         92         81         87         60         44         224         141           41         59         48         44         40         21         15         26         21         15         26         21         141           310         177         154         154         253         146         165         137         1009         841                                                                                                                                                                                                                                                                                          |               | 24       | 3 6 | 9 9 | 2:  | 4          | 2    | 6/             |            | 42    | 107         | 23           | 90   | 58         |
| 161         133         108         102         101         142         122         37         79         22           216         135         96         97         59         52         15         46         155         50           158         123         102         92         81         87         60         44         224         141           41         59         48         44         40         21         15         26         21           310         177         154         154         253         146         165         137         1009         841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200           | ₽ ;      | А , | 49  | 4   | 40         | 47   | 109            | 18         | 223   | 59          | 214          | 293  | <u>6</u>   |
| 216         135         96         97         59         52         15         46         155         50           158         123         102         92         81         87         60         44         224         141           41         59         48         44         40         21         15         26         21           310         177         154         154         253         146         165         137         1009         841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 101      | E E | 108 | 102 | 101        | 142  | 122            | 37         | 79    | 2           | 414          | 191  | 135        |
| 158         123         102         92         81         87         60         44         224         141           41         59         48         44         40         21         15         15         26         21           310         177         154         154         253         146         165         137         1.009         841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5002          | 216      | 135 | 96  | 97  | 59         | 52   | 15             | 46         | 155   | 50          | 168          | 153  | 104        |
| 21 41 59 48 44 40 21 15 15 26 21<br>2 310 177 154 154 253 146 165 137 1.009 841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VEHAGE:       | 158      | 22  | 102 | 92  | 81         | 87   | 60             | 4          | 224   | 141         | 212          | 179  | 126        |
| <u>:] 310 177 154 154 253 146 165 137 1.009 841</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 41       | 59  | 48  | 44  | 40         | 21   | 15             | 15         | 26    | 5           | 0            | 2    | i g        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 310      | 17  | 154 | 154 | 253        | 146  | 165            | 137        | 1.009 | 841         | 448          | 35.6 | 35         |

| ork River below Williams Fork Reservolr           | ronced Action Alternative |
|---------------------------------------------------|---------------------------|
| Williams                                          | Dronog                    |
| Simulated Flows at Williams Fork River below Will |                           |

Proposed Action Alternative (AF)

| WATER<br>YEAR | OCT    | NOV            | DEC   | JAN   | FE8   | MAR   | APR   | МАҮ   | NUL    | JUL    | AUG    | SEP    | TOTAL             |
|---------------|--------|----------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------------------|
| 1950          | 12,555 | 8,093          | 4,797 | 3,844 | 4.293 | 5.970 | 893   | 1.778 | 14 705 | 3 352  | 10 718 | 0 467  | 00 460            |
| 1951          | 8,187  | 6,924          | 5,682 | 4,686 | 3,270 | 5,305 | 6.055 | 2.928 | 11.079 | 25.965 | 14 279 | 21 203 | 08,400<br>115,563 |
| 1952          | 12,766 | 7,544          | 6,247 | 5,911 | 4,640 | 5,384 | 893   | 3,335 | 47,536 | 16,800 | 15.749 | 15.256 | 142.061           |
| 1953          | 10,844 | 8,324          | 6,621 | 8,127 | 4,148 | 4,838 | 4,535 | 1,589 | 10,731 | 3.798  | 14.421 | 9,155  | 87 131            |
| 1854          | 7,843  | 7,957          | 6,901 | 6,290 | 2,893 | 4,473 | 5,376 | 2,064 | 2,212  | 6,516  | 8.735  | 6.503  | 67.763            |
| 1955          | 19,058 | 8,353          | 4,648 | 4,650 | 3,307 | 3,948 | 893   | 1,957 | 5,557  | 2,724  | 11,174 | 11.955 | 76.224            |
| 1956          | 2,339  | 7,413          | 5,497 | 4,349 | 4,366 | 5,224 | 893   | 4,797 | 14,104 | 2,823  | 11,445 | 6.211  | 74,461            |
| 1957          | 6,769  | 6,196          | 4,014 | 4,366 | 3,775 | 4,169 | 4,652 | 1,285 | 9,653  | 16,818 | 16,924 | 10,975 | 89.496            |
| 1958          | 15,358 | 8,186          | 7,588 | 7,041 | 4,753 | 5,494 | 4,722 | 4,887 | 23,706 | 4,302  | 17,674 | B.422  | 112,133           |
| 1859          | 7,852  | 6,119          | 5,934 | 5,544 | 3,523 | 4,480 | 4,708 | 2,139 | 12,055 | 3,988  | 8,910  | 8.847  | 74.099            |
| 1960          | 8,601  | 9,316          | 7,810 | 5,212 | 4,731 | 6,068 | 1,630 | 2,313 | 9,786  | 3,854  | 11,233 | 7,412  | 77 966            |
| 1961          | 7,848  | 8,049          | 7,244 | 7,036 | 3,150 | 3,893 | 7,174 | 1,475 | 6,365  | 7,124  | 15,423 | 9,406  | 84,187            |
| 1962          | 11,464 | 7,175          | 8,411 | 5,445 | 3,950 | 4,972 | 1,254 | 6,102 | 39,055 | 20,654 | 12,497 | 7,778  | 128 757           |
| 2061          | 8,855  | 8,563          | 8,126 | 7,765 | 3,813 | 5,712 | 5,806 | 2,462 | 3,022  | 6,326  | 3,558  | 10,668 | 74,676            |
|               | 16,177 | 5,591          | 3,906 | 3,598 | 3,487 | 3,924 | 7,861 | 1,750 | 7,576  | 3,378  | 6,412  | 6,994  | 70,654            |
| 1965          | 5,424  | 6,595          | 5,880 | 5,414 | 4,415 | 4,575 | 893   | 1,624 | 9,896  | 7,278  | 11,542 | 5,845  | 69,381            |
| 1966          | 5,629  | 5,105          | 7,335 | 4,728 | 2,909 | 6,031 | 6,108 | 2,997 | 4,041  | 2,066  | 19,416 | 6,491  | 73,056            |
| 1967          | 7,597  | 5,525          | 4,238 | 3,698 | 3,412 | 5,569 | 893   | 2,185 | 6,048  | 4,285  | 12,125 | 9,332  | 64,917            |
| 1961          | 8,922  | 6,981          | 5,054 | 4,317 | 4,263 | 4,901 | 8,111 | 922   | 15,696 | 3,885  | 1,170  | 17,907 | 82,129            |
| 1969          | 10,578 | 6,783          | 5,640 | 5,691 | 4,234 | 4,613 | 893   | 3,744 | 2,381  | 3,755  | 9,178  | 12,503 | 69,993            |
| 0/61          | 2,495  | 4,810          | 3,535 | 5,758 | 4,611 | 5,034 | 4,947 | 4,477 | 8,177  | 13,669 | 9,951  | 9,584  | 77,048            |
| 1/61          | 10,531 | 10,506         | B,499 | 9,169 | 5,497 | 7,848 | 893   | 2,398 | 29,706 | 21,099 | 12,460 | 13,446 | 133,052           |
| 1972          | 12,247 | 7,884          | 7,164 | 6,590 | 5,191 | 7,944 | 1,617 | 2,776 | 15,313 | 3,623  | 19,484 | 7,732  | 97,565            |
| 5261          | 5,381  | 6,504          | 6,129 | 4,784 | 3,988 | 4,338 | 4,978 | 1,739 | 5,933  | 12,612 | 12,027 | 10,909 | 79,322            |
| 1974          | B,255  | 8,948          | B,072 | 7,950 | 3,920 | 5,799 | 893   | 4,219 | 26,281 | 11,273 | 16,407 | 9,713  | 111,710           |
| 1975          | 10,139 | 6,952<br>- 22  | 6,547 | 4,705 | 4,243 | 5,125 | 5,705 | 1,373 | 10,701 | 7,690  | 11,792 | 12,118 | 87,090            |
| 9/61          | 8,886  | 5,931          | 5,292 | 4,684 | 4,268 | 5,178 | 1,936 | 2,263 | 8,317  | 4,236  | 9,803  | 10,414 | 71,208            |
| 1970          | 11,306 | 7,185          | 4,962 | 3,840 | 3,514 | 4,324 | 5,096 | 1,716 | 2,988  | 12,640 | 19,610 | 5,670  | 82,851            |
| 8/61          | 11,690 | 4,739          | 2,973 | 2,711 | 2,413 | 3,313 | 668   | 2,847 | 12,718 | 6,184  | 6,865  | 8,662  | 66,008            |
| 6/BL          | 5,942  | 5,826          | 5,328 | 5,409 | 4,322 | 5,595 | 893   | 2,655 | 8,496  | 4,481  | 10,056 | 7,259  | 66,260            |
|               | 6,9/9  | 6,854<br>0,000 | 6,228 | 6,463 | 5,302 | 4,150 | 4,992 | 1,687 | 7,712  | 4,465  | 8,926  | 10,625 | 74,383            |
|               | 8,618  | 6,2/3          | 5,322 | 3,601 | 3,200 | 4,232 | 9,486 | 1,294 | 9,216  | 7,201  | 18,991 | 12,422 | 89,856            |
| 1982          | 8,063  | 5,817          | 3,682 | 4,895 | 3,602 | 2,924 | 3,556 | 1,118 | 7,219  | 7,359  | 8,117  | 3,879  | 60,231            |
| 1961          | 3,941  | 7.169          | 7,718 | 5,447 | 5,988 | 4,409 | 9,650 | 922   | 1,556  | 51,726 | 20,053 | 12,582 | 131,161           |
|               | 11,412 | 9,188          | 9,066 | 7,033 | 5,244 | 7,113 | 5,374 | 4,832 | 60,035 | 33,344 | 20,359 | 12,506 | 185,506           |
| 1985          | 14,221 | 10,458         | 9,095 | 9,484 | 4,850 | 6,660 | 893   | 4,239 | 27,125 | 8,452  | 10,037 | 10,264 | 115,778           |
|               |        |                |       |       |       |       |       |       |        |        |        |        |                   |

Simulated Flows at Williams Fork River below Williams Fork Reservoir Proposed Action Alternative (AF)

| WATER<br>YEAR | ост    | NON    | DEC   | JAN   | FEB    | MAR   | APR   | MAY   | nun    | ינו    | AUG    | SEP    | TOTAL   |
|---------------|--------|--------|-------|-------|--------|-------|-------|-------|--------|--------|--------|--------|---------|
| 1986          | 11,091 | 10,031 | 9,138 | 8,546 | 3,882  | 1,280 | 893   | 3,596 | 33,665 | 15.793 | 9.351  | 10.771 | 118.037 |
| 1987          | 10,626 | 9,937  | 8,885 | 8,446 | 5,641  | 5,727 | 893   | 3,488 | 4,624  | 1,994  | 10,502 | 6.844  | 77.607  |
| 1988          | 7,394  | 6,323  | 6,501 | 6,993 | 5,820  | 4,816 | 893   | 3,636 | 14,094 | 4,688  | 21,571 | 7,865  | 90.594  |
| 1989          | 6,694  | 6,728  | 5,853 | 5,152 | 4,741  | 6,404 | 668   | 3,444 | 7,809  | 7,715  | 4.434  | 9.676  | 69.543  |
| 1990          | 6,909  | 6,485  | 5,932 | 4,983 | 4,624  | 6,610 | 4,824 | 1,967 | 13,641 | 2,834  | 19.356 | 11.551 | 89.716  |
| 1991          | 12,034 | 7,666  | 5,446 | 4,611 | 3,972  | 5,627 | 5,620 | 2,959 | 11,849 | 3,836  | 7,438  | 6,083  | 77.041  |
| 1992          | 7,769  | 8,641  | 6,063 | 6,357 | 5,354  | 7,648 | 893   | 4,009 | 5,293  | 2,863  | 27,571 | 13.700 | 95,181  |
| 1983          | 15,126 | 8,398  | 4,391 | 3,029 | 2,659  | 3,422 | 4,164 | 922   | 10,019 | 6,905  | 7,753  | 14,547 | 81,335  |
| 1994          | 12,719 | 7,877  | 6,725 | 6,085 | 5,044  | 6,986 | 1,852 | 3,711 | 5,873  | 7,073  | 12,586 | 10,906 | 87,437  |
| 1995          | 8,101  | 6,346  | 5,202 | 4,595 | 4,757  | 6,554 | 9,792 | 922   | 13,136 | 17,204 | 16,736 | 19,160 | 112,505 |
| 1996          | 12,881 | 8,019  | 7,928 | 8,701 | 6,994  | 7,008 | 921   | 8,417 | 38,235 | 13,990 | 8,630  | 13,186 | 134.910 |
| 1997          | 12,812 | 10,192 | 8,636 | 4,933 | 14,041 | 4,915 | 893   | 3,934 | 39,528 | 17,445 | 13,232 | 9,963  | 140.524 |
| 1998          | 10,435 | 9,613  | 8,910 | 8,934 | 6,411  | 8,374 | 893   | 1,929 | 4,951  | 3,450  | 8,479  | 18,491 | 88.870  |
| 1999          | 12,530 | 8,859  | 6,023 | 6,594 | 5,697  | 8,991 | 5,827 | 1,876 | 6,267  | 2,629  | 7,349  | 18,877 | 91,519  |
| 2000          | 12,350 | 7,346  | 7,007 | 7,084 | 6,189  | 7,776 | 893   | 4,675 | 6,502  | 1,320  | 21,636 | 15.471 | 98.249  |
| 2001          | 10,250 | 7,249  | 7,579 | 6,236 | 5,372  | 7,114 | 5,503 | 3.180 | 5,370  | 1,827  | 27,434 | 13,131 | 100.245 |
| 2002          | 9,157  | 3,736  | 3,200 | 2,764 | 2,353  | 3,246 | 4,462 | 1,029 | 2,623  | 6,606  | 1,391  | 1,782  | 42.249  |
| 2003          | 2,849  | 3,495  | 2,986 | 2,676 | 2,201  | 2,907 | 6,463 | 1,117 | 13,296 | 3,603  | 13,183 | 17,427 | 72.203  |
| 2004          | 9,926  | 7,914  | 6,621 | 6,258 | 5,612  | 8,758 | 7,252 | 2,275 | 4,724  | 1,376  | 26,429 | 11,347 | 97,492  |
| 2005          | 13,286 | 8,053  | 5,916 | 5,957 | 3,275  | 3,209 | 893   | 2,829 | 9,227  | 3,093  | 10,356 | 9,078  | 75,172  |
| AVERAGE:      | 9,731  | 7,335  | 6,270 | 5,682 | 4,502  | 5,371 | 3,583 | 2,729 | 13,345 | 8,679  | 13,052 | 10,678 | 90,957  |
| MINIMUM       | 2,495  | 3,495  | 2,973 | 2,676 | 2,201  | 1,280 | 893   | 526   | 1,556  | 1,320  | 1,170  | 1.782  | 42.249  |
| MAXIMUM:      | 19,058 | 10,506 | 9 499 | 9,484 | 14,041 | 8,991 | 9,792 | 8,417 | 60,035 | 51,726 | 27,571 | 21,203 | 185,506 |
|               |        |        |       |       |        |       |       |       |        |        |        |        |         |

Simulated Flows at Colorado River Below the Confluence with the Eagle River Proposed Action Alternative (CFS)

| YEAR      | ост  | NOV  | DEC  | NAL | FEB | MAR             | APR  | МАҮ  | NUL   | JUL  | AUG  | SEP          | ANNUAL |
|-----------|------|------|------|-----|-----|-----------------|------|------|-------|------|------|--------------|--------|
| 350       | 1242 | 860  | 599  | 552 | 655 | 694             | 1265 | 1929 | 4241  | 1523 | 1317 | <u> G</u> RR | 1320   |
| 51        | 1154 | 860  | 815  | 720 | 771 | 772             | 1136 | 2378 | 4226  | 3893 | 1486 | 1366         | 1636   |
| 52        | 1379 | 1055 | 912  | 872 | 851 | 838             | 1383 | 4668 | 10579 | 2962 | 1785 | 1883         | 5429   |
| 53        | 1283 | 1008 | 965  | 974 | 861 | 955             | 1097 | 1548 | 4625  | 2063 | 1264 | 1058         | 1475   |
| 5         | 1002 | 983  | 844  | 898 | 698 | 769             | 1092 | 1196 | 1159  | 1199 | 952  | 710          | 960    |
| 55        | 1199 | 741  | 595  | 662 | 563 | 633             | 1141 | 1786 | 2081  | 1172 | 1291 | 1006         | 1066   |
| 120       | 951  | 840  | 111  | 687 | 671 | 840             | 1196 | 3207 | 3636  | 1209 | 1470 | 824          | 1362   |
| 57        | 902  | 836  | 743  | 707 | 749 | 783             | 1099 | 2745 | 8767  | 6608 | 2383 | 1278         | 2305   |
| 22<br>22  | 1164 | 1187 | 1057 | 887 | 956 | 964             | 1100 | 5085 | 6746  | 1218 | 1395 | 926          | 1891   |
| 59        | 696  | 802  | 763  | 725 | 708 | 686             | 1118 | 2086 | 4000  | 1300 | 1378 | 1067         | 1300   |
| 8         | 1479 | 1119 | 850  | 713 | 765 | 1145            | 1445 | 2446 | 4383  | 1520 | 1313 | 901          | 1508   |
| <u>19</u> | 1047 | 962  | 765  | 733 | 720 | 766             | 1023 | 1660 | 2176  | 1215 | 1427 | 1404         | 1161   |
|           | 1590 | 1243 | 926  | 844 | 959 | 1070            | 3009 | 5971 | 8809  | 4335 | 1277 | 1231         | 2608   |
| 22        | 8221 | 972  | 795  | 752 | 811 | 902             | 1087 | 1580 | 1492  | 1489 | 1333 | 1097         | 1131   |
| 5         | 086  | 763  | 556  | 566 | 549 | 621             | 1060 | 1992 | 2582  | 1187 | 1423 | 870          | 1098   |
| 2         | 872  | 178  | 725  | 692 | 656 | 655             | 1167 | 2398 | 5350  | 3363 | 2360 | 1406         | 1705   |
| 8 1       | 1265 | 1099 | 066  | 880 | 861 | 1072            | 1050 | 2015 | 1469  | 1241 | 1489 | 752          | 1166   |
| 2         | 218  | 752  | 627  | 610 | 612 | 914             | 1220 | 1465 | 3076  | 1493 | 1441 | 1197         | 1194   |
| 88        | 1042 | 694  | 1068 | 628 | 668 | 625             | 1105 | 1829 | 4716  | 1526 | 1270 | 1209         | 1365   |
| 8 8       | 1290 | 1070 | 890  | 882 | 608 | 802             | 1395 | 2906 | 3342  | 2574 | 1365 | 1162         | 1544   |
| 2 2       | 1244 | 982  | 696  | 917 | 848 | 906             | 1040 | 5385 | 7233  | 3390 | 1515 | 1420         | 2159   |
|           | 1400 | 1216 | 908  | 893 | 972 | 1061            | 1567 | 3249 | 8562  | 3923 | 1327 | 1418         | 2207   |
| 21        | 1275 | 1138 | 888  | 825 | 887 | 1090            | 1065 | 2386 | 5210  | 1346 | 1427 | 1211         | 1561   |
| 27        | 1196 | 1065 | 858  | 863 | 853 | 809             | 1113 | 3267 | 5913  | 4802 | 1312 | 1356         | 1955   |
| 5 4       | 1308 | 1029 | 931  | B18 | 856 | 1056            | 1227 | 5127 | 6143  | 2250 | 1420 | 666          | 1943   |
| 0         | 1248 | 8/6  | 855  | 847 | 907 | 854             | 1016 | 1956 | 4982  | 4457 | 1383 | 1328         | 1737   |
| 2         | 1229 | 1013 | 869  | 857 | 889 | 933             | 1157 | 2410 | 2899  | 1357 | 1404 | 1190         | 1352   |
| 2         | 1334 | 824  | 676  | 597 | 639 | 662             | 1148 | 1149 | 1175  | 1380 | 1119 | 562          | 941    |
| 78        | 1139 | 794  | 744  | 652 | 638 | 796             | 1202 | 2541 | 5769  | 2428 | 1399 | 1082         | 1600   |
| 8         | 1084 | 968  | 839  | 808 | 774 | 852             | 1230 | 3781 | 6047  | 3606 | 1397 | 1027         | 1872   |
| 8         | 1056 | 984  | 915  | 958 | 924 | 902             | 1120 | 3022 | 6606  | 2928 | 1470 | 1102         | 1833   |
| 81        | 1080 | 803  | 788  | 663 | 670 | <del>6</del> 86 | 1174 | 1318 | 2707  | 1321 | 1072 | 879          | 1105   |
| 82        | 1133 | 854  | 696  | 704 | 648 | 734             | 1060 | 2198 | 4655  | 2620 | 1321 | 1225         | 1489   |
| 83        | 1159 | 1107 | 1014 | 883 | 930 | 957             | 1115 | 2355 | 10739 | 8949 | 3221 | 1854         | 2863   |
| 8         | 1412 | 1178 | 1089 | 873 | 934 | 858             | 1036 | 8598 | 15098 | 8058 | 3698 | 0187         | 3761   |

Simulated Flows at Colorado River Below the Confluence with the Eagle River Proposed Action Alternative

(CFS)

Simulated Flows at Colorado River Below the Confluence with the Eagle River Proposed Action Alternative (AF)

| WATER<br>VFAR | OCT              | NON              | DEC              | JAN                | FEB    | MAR    | APR              | MAY     |         |         | ALIG    | CED     | TOTAL     |
|---------------|------------------|------------------|------------------|--------------------|--------|--------|------------------|---------|---------|---------|---------|---------|-----------|
| 1950          | 76.376           | 51.167           | 36,804           | 33 041             | 3R 377 | 10 CO  | 75 200           | 110 500 | 010 040 | 00000   |         |         |           |
| 1951          | 70 947           | 51 162           | E0 000           |                    |        |        | 200'0'           | 110,000 | 2/2'202 | 93,636  | 80,973  | 57,581  | 955,792   |
| 1057          | RA 770           | 001'10<br>001 00 | 20,030<br>56,060 | 067' <del>11</del> | 42,629 | 41,485 | 67,618<br>00,000 | 146,216 | 251,497 | 239,400 | 91,349  | 81,258  | 1,184,158 |
|               |                  |                  | 200,005          | 220'50             | 41,23/ | 51,526 | 82,286           | 287,054 | 629,494 | 182,130 | 109,761 | 112,027 | 1,758,791 |
| 2081          | 18,908           | 59,984           | 59,327           | 59,877             | 47,812 | 58,714 | 65,260           | 95,192  | 275,183 | 126,830 | 77,706  | 62,958  | 1,067,731 |
|               | 61,614           | 58,513           | 51,903           | 55,205             | 38,766 | 47,254 | 64,969           | 73,549  | 68,961  | 73,742  | 58,509  | 42.258  | 695.243   |
| 1955          | 73,715           | 44,096           | 36,576           | 34,563             | 31,249 | 38,919 | 67,882           | 109,810 | 123,838 | 72,063  | 79.387  | 59,860  | 771.958   |
| 1956          | 58,496           | 49,959           | 47,758           | 42,265             | 37,240 | 51,678 | 71,194           | 197,179 | 216,354 | 74.345  | 90.361  | 49 040  | 985 869   |
| 1957          | 55,482           | 49,765           | 45,692           | 43,457             | 41,605 | 48,127 | 65,373           | 168.781 | 521.705 | 406.304 | 146.532 | 76.025  | 1 668 848 |
| 1858          | 71,556           | 70,646           | 64,975           | 54,521             | 53,067 | 59,288 | 65,444           | 312,647 | 401,399 | 74.921  | 85 763  | 56 128  | 1 360 255 |
| 1959          | 59,218           | 47,706           | 46,929           | 44,565             | 39,310 | 42,173 | 66,548           | 128,258 | 238.039 | 79.945  | 84.702  | 63,513  | 040 008   |
| 1960          | 90,913           | 66,565           | 52,245           | 43,844             | 42,489 | 70,391 | 85,983           | 150,398 | 260,797 | 93.459  | 80.711  | 53.627  | 1 091 422 |
| 1961          | 64,400           | 57,238           | 47,037           | 45,069             | 40,013 | 47,117 | 60,882           | 103,288 | 129,483 | 74.730  | 87.714  | 83,550  | 840.521   |
| 1962          | 97,742           | 73,946           | 56,963           | 51,883             | 53,272 | 65,765 | 179,074          | 367,155 | 524,166 | 266,523 | 78.536  | 73,276  | 1,888,301 |
| 1963          | 75,525           | 57,861           | 48,903           | 46,257             | 45,049 | 55,454 | 64,706           | 97,161  | 88,762  | 91,539  | 81.950  | 65 299  | B18 466   |
| 1964          | 60,230           | 45,380           | 34,207           | 34,814             | 30,489 | 38,168 | 63,095           | 122,472 | 153,636 | 73,013  | 87,469  | 51.745  | 794,718   |
| 1965          | 53,616           | 46,275           | 44,553           | 42,574             | 36,423 | 40,265 | 69,465           | 147,455 | 318,357 | 206,800 | 145,113 | 83,638  | 1.234.534 |
| 99A           | 06/'//           | 65,409           | 60,852           | 54,127             | 47,826 | 65,919 | 62,461           | 123,880 | 87,436  | 76,327  | 91,575  | 44,728  | 858.330   |
| /981          | 56,107           | 44,770           | 38,564           | 37,514             | 34,006 | 56,184 | 72,573           | 90,098  | 183,025 | 91,774  | 88,580  | 71,254  | 864,449   |
| 1908          | 64,063           | 41,288           | 65,670           | 38,604             | 37,124 | 38,428 | 65,771           | 112,481 | 280,606 | 93,830  | 78,089  | 71,918  | 987,872   |
| 1969          | 79,326           | 63,648           | 54,744           | 54,240             | 44,924 | 49,320 | 83,039           | 178,664 | 198,862 | 158,244 | 83,909  | 69,119  | 1.118,039 |
| 19/0          | 76,487           | 58,432           | 59,567           | 56,404             | 47,088 | 55,690 | 61,886           | 331,126 | 430,422 | 208,432 | 93,128  | 84,526  | 1.563.188 |
| 1/61          | 86,108           | 72,373           | 55,837           | 54,882             | 53,963 | 65,232 | 93,219           | 199,794 | 509,474 | 241,209 | 81,598  | 84,367  | 1.598.054 |
| 1872          | 78,382           | 67,728           | 54,632           | 50,746             | 49,263 | 67,051 | 63,375           | 146,739 | 310,000 | 82,739  | 87,740  | 72.031  | 1,130,426 |
| 1973          | 73,645           | 63,388           | 52,743           | 53,072             | 47,374 | 49,754 | 66,210           | 200,867 | 351,880 | 295,280 | 80,700  | 80,701  | 1,415,514 |
| 18/4          | 80,413<br>20,213 | 61,241           | 57,219           | 56,425             | 47,545 | 64,933 | 72,990           | 315,243 | 365,539 | 138,352 | 87,316  | 59,428  | 1,406,644 |
| C/AL          | /6,/62           | 58,204           | 52,551           | 52,101             | 50,368 | 52,498 | 60,475           | 120,254 | 296,436 | 274,078 | 85,039  | 79,050  | 1.257,816 |
| 19/6          | /5,546           | 60,285           | 53,407           | 52,677             | 49,349 | 57,378 | 68,846           | 148,205 | 172,501 | 83,430  | 86,327  | 70,809  | 978,760   |
| //81          | 82,010           | 49,014           | 41,536           | 36,729             | 35,469 | 40,687 | 68,333           | 70,624  | 69,905  | 84,866  | 66,790  | 33,459  | 681,422   |
| 8/81          | 70,022           | 47,245           | 45,760           | 40,085             | 35,443 | 48,960 | 71,523           | 156,261 | 343,306 | 149,291 | 85,992  | 64,402  | 1,158,290 |
| 6/A1          | 66,630           | 57,624           | 51,614           | 49,671             | 42,984 | 52,399 | 73,175           | 232,498 | 359,801 | 221,757 | 85,682  | 61,094  | 1,355,129 |
| 1961          | 04,443           | 58,563           | 56,272           | 58,894             | 51,317 | 55,450 | 66,671           | 185,823 | 393,102 | 180,068 | 90,379  | 65,594  | 1,327,076 |
|               | 66,423           | 53,714           | 48,436           | 40,791             | 37,210 | 42,203 | 69,862           | 81,056  | 161,064 | 81,201  | 65,917  | 52,327  | 800.204   |
| 1982          | 69,641           | 50,846           | 42,777           | 43,281             | 35,977 | 45,115 | 63,066           | 135,165 | 276,972 | 161,110 | 81,223  | 72.923  | 1.078.096 |
| 1983          | 71,271           | 65,851           | 62,326           | 54,311             | 51,644 | 58,846 | 66,346           | 144,807 | 639,008 | 550,265 | 198.082 | 110.311 | 2.073,068 |
| 1984          | 86,845           | 70,114           | 66,971           | 53,688             | 51,853 | 52,781 | 61,675           | 528,668 | 898,409 | 495,457 | 227,369 | 128,923 | 2,722,753 |
|               |                  |                  |                  |                    |        |        |                  |         |         |         |         |         |           |

Simulated Flows at Colorado River Below the Confluence with the Eagle River Proposed Action Alternative (AF)

| WATER<br>YEAR | OCT     | NOV    | DEC    | NAL    | FEB    | MAR    | APR     | MAY     | NUL     | ากก     | AUG     | SEP     | TOTAL     |
|---------------|---------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|-----------|
| 1985          | 123,243 | 89,527 | 76,522 | 69,471 | 59,644 | 74,065 | 111,567 | 340.173 | 515,121 | 205.962 | 74,917  | 72,626  | 1 812 838 |
| 1986          | 90,913  | 86,230 | 72,726 | 66,762 | 65,390 | 79,655 | 126,366 | 292.185 | 567.757 | 292.066 | 79,445  | 80.716  | 1 900 211 |
| 1987          | 87,785  | 77,397 | 63,984 | 57,742 | 52,944 | 61,767 | 82,123  | 176.012 | 169.115 | 74,008  | 72.784  | 85,538  | 1 061 199 |
| 1968          | 54,229  | 59,105 | 51,002 | 49,856 | 45,611 | 51,734 | 69,931  | 143,204 | 246.587 | 89.050  | 88.516  | 49.618  | 998 645   |
| 1989          | 57,453  | 56,411 | 46,090 | 46,311 | 42,098 | 65,500 | 68,342  | 147,133 | 130,903 | 78,798  | 83.235  | 44.577  | 866.851   |
| 1990          | 61,307  | 47,757 | 45,387 | 40,952 | 36,234 | 49,830 | 73,807  | 75,165  | 170,091 | 77.513  | 78.209  | 47.561  | 803,833   |
| 1991          | 71,588  | 52,784 | 42,800 | 41,348 | 38,347 | 45,887 | 64,134  | 146,151 | 224,941 | 114,177 | 96,495  | 67.637  | 1.006.289 |
| 1992          | 62,679  | 60,594 | 46,642 | 42,460 | 40,519 | 53,290 | 64,121  | 151,581 | 121,633 | 80,471  | 82,775  | 53,863  | 863.628   |
| 1993          | 57,796  | 52,355 | 44,373 | 45,202 | 41,489 | 52,760 | 65,961  | 242,761 | 413,057 | 220,547 | 77,088  | 69,457  | 1.382,864 |
| 1894          | 72,327  | 65,815 | 52,611 | 48,132 | 44,666 | 64,360 | 69,931  | 147,226 | 124,566 | 84,389  | 78,146  | 47.512  | 899.681   |
| 1995          | 51,259  | 49,143 | 42,622 | 39,314 | 39,515 | 53,849 | 66,339  | 99,768  | 464,717 | 472,413 | 132,738 | 76,813  | 1.588.490 |
| 1996          | 76,711  | 72,133 | 56,850 | 56,137 | 53,929 | 63,173 | 87,169  | 410,526 | 546,234 | 180,850 | 106,475 | 66.700  | 1.776.889 |
| 1997          | 69,489  | 66,716 | 60,774 | 54,503 | 54,678 | 71,016 | 69,321  | 372,013 | 715,930 | 233,112 | 128,676 | 84.488  | 1.980.718 |
| 1998          | 82,241  | 75,872 | 60,577 | 62,948 | 54,702 | 75,747 | 70,851  | 180,591 | 171,101 | 142,298 | 73,845  | 83,002  | 1.133.775 |
| 1999          | 88,290  | 64,699 | 43,584 | 49,824 | 46,164 | 65,861 | 65,795  | 149,262 | 292,336 | 169,089 | 78,851  | 70.810  | 1.184.565 |
| 2000          | 85,626  | 606'09 | 50,477 | 54,185 | 61,232 | 56,118 | 72,756  | 238,313 | 223,205 | 76,081  | 90,967  | 67.238  | 1.129.107 |
| 2001          | 62,195  | 61,110 | 53,305 | 48,652 | 44,671 | 53,541 | 63,511  | 162,984 | 132,997 | 79,407  | 62,624  | 62,237  | 907.234   |
| 2002          | 65,772  | 49,402 | 39,312 | 37,913 | 33,884 | 45,236 | 65,273  | 74,162  | 65,982  | 46,060  | 31,646  | 32,931  | 587.573   |
| 2003          | 53,087  | 42,502 | 36,974 | 35,918 | 32,354 | 46,747 | 66,894  | 180,347 | 236,805 | 76,904  | 101,446 | 73,737  | 983.715   |
| 2004          | 62,957  | 52,821 | 44,789 | 40,787 | 38,186 | 64,375 | 65,624  | 104,729 | 97,217  | 78,858  | 76.412  | 56,883  | 783.638   |
| 2005          | 85,869  | 54,952 | 42,787 | 42,569 | 36,390 | 43,344 | 65,238  | 158,154 | 213,805 | 89,036  | 75,957  | 60,119  | 968.220   |
| AVERAGE:      | 72,529  | 58,946 | 51,352 | 48,214 | 44,051 | 64,709 | 72,886  | 180,713 | 296,891 | 158,182 | 91,168  | 67.889  | 1.197.530 |
|               | 51,259  | 41,286 | 34,207 | 33,941 | 30,489 | 38,168 | 60,475  | 70,624  | 65,982  | 46.060  | 31.646  | 32.931  | 587.573   |
| MAXIMUM:      | 123,243 | 89,527 | 76,522 | 69,471 | 65,390 | 79,655 | 179,074 | 528,668 | 898.409 | 550.265 | 227 369 | 128,923 | 9 799 753 |
|               |         |        |        |        |        |        |         |         |         |         |         |         |           |

| WATER<br>YEAR | oct  | NON            | DEC        | JAN | FEB         | MAR      | APR  | МАҮ  | NUL   | JUL        | AUG             | SEP  |            |
|---------------|------|----------------|------------|-----|-------------|----------|------|------|-------|------------|-----------------|------|------------|
| 1950          | 096  | 598            | 402        | 383 | 480         | 518      | 873  | 898  | 1896  | PAR 1      | 1100            | 710  | AVG        |
| 1951          | 924  | 626            | 607        | 535 | 595         | 585      | 859  | 1179 | 3401  | DAAF       | 070             | 1106 | 200        |
| 1952          | 1115 | 008            | 702        | 675 | 669         | 659      | 839  | 2948 | 6067  | 9901       | 0/0             |      | /501       |
| 1953          | 1082 | 766            | 726        | 753 | 875         | 753      | 858  | 24   | 0000  | 105.0      |                 |      | 200        |
| 1954          | 825  | 733            | 648        | 722 | 536         | 619      | 809  | 484  | 469   | 100        | 745             | 100  | 1000       |
| 1955          | 940  | 519            | 416        | \$  | 417         | 478      | 808  | 837  | 519   | FOR        |                 | 107  | 000        |
| 1956          | 787  | 610            | 576        | 513 | 499         | 630      | 820  | 1302 | 1738  | 748        | 1203            | 101  | 2/0        |
| 1957          | 768  | 630            | 565        | 535 | 582         | 608      | 843  | 1820 | 5149  | 3R2R       | 1648            | 865  | 240        |
| 1958          | 888  | 888            | 807        | 677 | 745         | 768      | 853  | 3026 | 4644  | 803        | 1196            | 002  | 1917       |
| 1859          | 802  | 585            | 569        | 548 | 544         | 532      | 869  | 1206 | 1489  | 659        | 1095            | P.44 | ers<br>ers |
| 1960          | 1142 | 843            | <u>660</u> | 541 | 593         | 006      | 917  | 1331 | 2020  | 863        | 1062            |      | 585        |
| 1961          | 860  | 731            | 569        | 585 | 561         | <b>6</b> | 832  | 827  | 856   | 832        | 1136            | 816  | 787        |
| 1962          | 1087 | 912            | 689        | 639 | 730         | 851      | 2190 | 4165 | 6132  | 2983       | 882             | 886  | 1856       |
| 1962          | 996  | 712            | 602        | 585 | 630         | 728      | 829  | 790  | 673   | 1136       | 596             | 807  | 785        |
| 1964          | 626  | 561            | 397        | 414 | <b>4</b> 00 | 479      | 860  | 957  | 1095  | 462        | 1037            | 637  | 678        |
| 1965          | 20   | 586            | 551        | 525 | 503         | 514      | B64  | 1346 | 2527  | 1531       | 1586            | 987  | 1020       |
| 0041          | 698  | 841            | 778        | 669 | 687         | 863      | 730  | 895  | 562   | 830        | 1234            | 544  | 79.8       |
| 1967          | 683  | 552            | 455        | 452 | 459         | 718      | 658  | 725  | 1198  | 638        | 1201            | 939  | 725        |
| 1968          | 945  | 649            | 548        | 489 | 546         | 548      | 910  | 1022 | 2134  | 652        | 629             | 266  | 838        |
| BGASL         | 1068 | 161            | 623        | 657 | 618         | 624      | 764  | 1565 | 1954  | 1599       | 1052            | 928  | 1024       |
| D/8L          | 486/ | 896            | 702        | 731 | 711         | 743      | 887  | 3116 | 5041  | 2300       | 1134            | 813  | 1491       |
| 1/81          | 516  | 886<br>986     | 742        | 727 | 734         | 625      | 936  | 2279 | 5678  | 2748       | 922             | 1045 | 1536       |
| 7/61          |      | 671            | 716        | 640 | 685         | 80       | 847  | 1457 | 2851  | 878        | 1248            | 777  | 1059       |
| 51A1          | ///  | 803            | 874        | 650 | 646         | 680      | 1005 | 1936 | 3264  | 3403       | <del>98</del> 3 | 1123 | 1332       |
| 8/A           | 1901 | 79/            | 718        | 202 | 999         | 838      | 897  | 2937 | 3864  | 1480       | 1083            | 762  | 1317       |
| 0/61          | 2010 | 142            | 668        | 899 | 742         | 680      | 795  | 1267 | 2496  | 2549       | 962             | 1082 | 1142       |
| 0/81          |      | 1//            | 673        | 672 | 692         | 748      | 914  | 1382 | 1179  | 532        | 1012            | 920  | 872        |
| 1/81          | acut | 19<br>19<br>19 | 513        | 447 | 496         | 513      | 934  | 642  | 339   | 1156       | 944             | 388  | 674        |
| 0/81          | 5    | ARC            | 853        | 492 | 484         | 816      | 833  | 1487 | 2556  | 1009       | 991             | 839  | 952        |
| 0001          | 200  | 45/            | 612        | 613 | 587         | 656      | 912  | 2433 | 2738  | 2025       | 940             | 783  | 1162       |
| 1200          | 1    | 2              | /Ad        | 211 | 715         | 687      | 835  | 1992 | 3981  | 2042       | 1177            | 869  | 1281       |
| 1001          |      | 8/2            | 282        | 493 | 514         | 550      | 920  | 725  | 1418  | 847        | 859             | 632  | 758        |
| 1207          | 1/9  | 97.9           | 202        | 623 | 488         | 568      | 827  | 1185 | 1926  | <b>7</b> 6 | 812             | 814  | 846        |
| 2041          | 609  | 845<br>270     | 805        | 969 | 763         | 786      | 936  | 1557 | 6882  | 6411       | 2319            | 1523 | 2032       |
| 1964          | 1098 | 872            | 812        | 627 | 706         | 646      | 762  | 5969 | 11067 | 5609       | 2585            | 1533 | 2699       |
| 1965          | 1499 | 1118           | 971        | 905 | 862         | 956      | 1257 | 3532 | 5734  | 2255       | 808             | 871  | 1732       |
| 20021         | 901  | 5113           | 226        | 864 | 924         | 987      | 1555 | 3342 | 6699  | 3324       | 852             | 955  | 1885       |
| 1961          | 2    | LAA            | 814        | 742 | 770         | 817      | 385  | 1493 | 1391  | 719        | 885             | 1248 | 982        |
| B041          | CZ/  | 19/            | 637        | 647 | 640         | 657      | 881  | 1343 | 2305  | 1016       | 1230            | 625  | 954        |
| 896~          | 787  | 731            | 566        | 578 | 590         | 857      | 713  | 1269 | 8     | 742        | 1082            | 800  | 787        |
| Des I         | 212  | 518            | 575        | 521 | 517         | 661      | 996  | 549  | 1050  | 710        | 1115            | 647  | 731        |
| 1.0021        | DCA  | 6/1            | 524        | 508 | 538         | 590      | 876  | 1150 | 1498  | 1094       | 1243            | 846  | 875        |
|               |      |                |            |     |             |          |      |      |       |            |                 |      |            |

Simulated Flows at Colorado River above the Confluence with the Eagle River Proposed Action Alternative (CFS)

|               |          |       |                 |     |         | (CFS) |       | 1     |          |       |       |                                 |       |
|---------------|----------|-------|-----------------|-----|---------|-------|-------|-------|----------|-------|-------|---------------------------------|-------|
| WATER<br>YEAR | oct      | NON   | DEC             | JAN | FEB     | MAR   | APR   | МАҮ   | ΠŪΝ      | JUL   | AUG   | SEP                             |       |
| 1982          | 865<br>1 | 776   | <b>0</b> 9      | 542 | 595     | 712   | 969   | 971   | 683      | 642   | 1026  | 636                             | 730   |
| 1993          | 756      | 662   | 546             | 571 | 596     | 679   | 830   | 1927  | 3566     | 1960  | 752   | 812                             | 1139  |
| 1994          | 907      | 863   | 673             | 612 | 644     | B64   | 805   | 1103  | 88<br>89 | 1041  | 1073  | 287                             | 822   |
| 1985          | 608      | 22    | 524             | 492 | 548     | 676   | 883   | 906   | 4197     | 4783  | 1342  | 927                             | 1381  |
| 1996          | 887      | 939   | 727             | 705 | 764     | 798   | 996   | 4202  | 6181     | 1948  | 1415  | 822                             | 1700  |
| 1997          | 811      | 614   | 744             | 865 | 769     | 868   | 783   | 4150  | 6204     | 2702  | 1485  | 1021                            | 1925  |
| 1998          | 952      | 978   | 759             | 808 | 781     | 969   | 915   | 1784  | 1332     | 1341  | 209   | 1110                            | 1039  |
| 1999          | 1147     | 806   | 509             | 619 | 644     | 823   | 781   | 1363  | 2621     | 1826  | 749   | <b>9</b> 6                      | 1084  |
| 2000          | 1143     | 791   | 88              | 687 | 722     | 757   | 638   | 1916  | 1968     | 752   | 1220  | 861                             | 1026  |
| 2001          | 787      | 795   | 667             | 608 | 634     | 695   | 749   | 1125  | 768      | 801   | 1002  | 822                             | 789   |
| 2002          | 878      | 629   | <del>1</del> 60 | 443 | 452     | 573   | 747   | 444   | 455      | 558   | 385   | S<br>S<br>S<br>S<br>S<br>S<br>S | 533   |
| 2003          | 1.79     | 542   | 461             | 442 | 453     | 617   | 794   | 1296  | 1662     | 697   | 1376  | 956                             | 632   |
| 2004          | 842      | 696   | 573             | 521 | 531     | 814   | 702   | 590   | 494      | 787   | 1012  | 747                             | 693   |
| 2005          | 1161     | 711   | 531             | 523 | 492     | 529   | 785   | 1162  | 1506     | 627   | 911   | 794                             | 812   |
| AVERAGE:      | 918      | 747   | <b>6</b> 31     | 603 | 818     | 203   | 889   | 1,680 | 2,776    | 1,605 | 1,095 | 856                             | 1,095 |
| MINIMUM:      | 808      | 519   | 397             | 385 | <u></u> | 478   | 658   | 444   | 339      | 462   | 385   | 363                             | 533   |
| MAXIMUM:      | 1,499    | 1,118 | 971             | 905 | 924     | 997   | 2,190 | 5,989 | 11,067   | 6,411 | 2,585 | 1,533                           | 2,699 |

| e with the Eagle River                    |                            |
|-------------------------------------------|----------------------------|
| Confluence with                           | arnativo                   |
| vs at Colorado River Below the Confluence | Pronoed Artion Alternative |
| Simulated Flows at Colorad                | Ţ                          |
|                                           |                            |

Proposed Action Alternative

| WATER<br>YEAR | oct               | NON              | DEC    | JAN    | FEB     | MAR    | APR     | MAY     | NUL     | JUL     | AUG     | SEP     | TOTAL     |
|---------------|-------------------|------------------|--------|--------|---------|--------|---------|---------|---------|---------|---------|---------|-----------|
| 1950          | 59.012            | 35,557           | 24,707 | 23,526 | 26,680  | 31,826 | 51,972  | 55,200  | 112.814 | 52.022  | 67.788  | 42.782  | 583,886   |
| 1951          | 56,791            | 37,267           | 37,334 | 32,870 | 33,039  | 35,985 | 51,135  | 72.049  | 118.173 | 150.324 | 60.166  | 65.743  | 750.676   |
| 1952          | 68,543            | 47,600           | 43,136 | 41,513 | 37,146  | 40,492 | 49,912  | 181,134 | 413,954 | 120,880 | 70.332  | 89.322  | 1.203.964 |
| 1953          | 65,316            | 45,603           | 44,621 | 46,290 | 37,484  | 46,306 | 51,068  | 47,506  | 121,404 | 7,044   | 52.651  | 50.648  | 685.841   |
| 1954          | 50,746            | 43,618           | 39,830 | 44,407 | 29,788  | 38,064 | 48,161  | 29,739  | 27,900  | 54,780  | 45,802  | 29,340  | 482.175   |
| 1955          | 57,815            | 30,882           | 25,607 | 24,816 | 23,155  | 29,384 | 48,054  | 51,440  | 54,351  | 36,621  | 67,125  | 47,451  | 486,701   |
| 1956          | 49,037            | 36,271           | 36,399 | 31,527 | 27,700  | 38,715 | 48,822  | 80,063  | 103,422 | 45,966  | 73,948  | 38,803  | 609.673   |
| 1957          | 47,216            | 37,468           | 34,730 | 32,911 | 32,306  | 37,403 | 50,164  | 111,880 | 306,403 | 235,382 | 101,325 | 52,657  | 1.079.865 |
| 1958          | 54,616            | 52,831           | 49,636 | 41,607 | 41,369  | 47,236 | 50,787  | 186,040 | 263,671 | 49,358  | 73,536  | 42.215  | 953,122   |
| 1959          | 49,327            | 34,817           | 35,004 | 33,722 | 30,199  | 32,717 | 51,710  | 74,162  | 86,616  | 40,533  | 67,349  | 50.243  | 568.389   |
| 1060          | 70,211            | 50,170           | 40,589 | 33,288 | 32,956  | 55,335 | 54,664  | 81,814  | 120,187 | 53,094  | 65,296  | 41.069  | 698.553   |
| 1961          | 52,875            | 43,472           | 34,968 | 34,737 | 31,136  | 37,119 | 49,493  | 50,832  | 50,921  | 51,158  | 69,856  | 48,555  | 555.142   |
| 1962          | 66,813            | 54,285           | 42,347 | 39,320 | 40,580  | 52,297 | 130,297 | 256,079 | 364,880 | 183,447 | 54,222  | 58,862  | 1,343,389 |
| 1963          | 59,427            | 42,350           | 37,016 | 34,711 | 34,984  | 44,735 | 49,314  | 48,587  | 40,042  | 69,836  | 59.226  | 47,995  | 568.223   |
| 1964          | 50,801            | 33,374           | 24,382 | 25,447 | 22,200  | 29,448 | 51,163  | 58,837  | 65,173  | 28,380  | 63,744  | 37, 932 | 490,881   |
| 1905          | 43,311            | 34,868           | 33,872 | 32,267 | 27,908  | 31,629 | 51,395  | 82,744  | 150,388 | 94,131  | 97,497  | 58,758  | 738,796   |
| 1966          | 54,694            | 50,042           | 47,819 | 42,964 | 38,157  | 53,041 | 43,441  | 55,031  | 33,444  | 51,021  | 75,866  | 32,360  | 577,880   |
| 1967          | 42,599            | 32,822           | 27,981 | 27,615 | 25,482  | 44,159 | 39,189  | 44,549  | 71,303  | 39,259  | 73,836  | 55,884  | 524,858   |
| 1968          | 58,119            | 38,630           | 33,881 | 30,057 | 30,307  | 33,704 | 54,178  | 62,839  | 126,985 | 40,082  | 38,675  | 59,318  | 606.576   |
| 1969          | 65,695            | 47,042           | 39,315 | 40,406 | 34,347  | 38,368 | 45,438  | 96,258  | 116,265 | 98,342  | 84,676  | 55,074  | 741,226   |
| 0/81          | 48,536            | 53,327           | 43,168 | 44,947 | 39,496  | 45,669 | 52,810  | 191,595 | 299,979 | 141,451 | 69,739  | 48,406  | 1,079,123 |
| 1/81          | 58,169            | 52,730           | 45,849 | 44,698 | 40,770  | 50,720 | 55,705  | 140,105 | 337,878 | 168,968 | 56,715  | 62,192  | 1,112,299 |
| 7/8L          | 0/9/29            | 39,951           | 44,009 | 39,351 | 38,031  | 55,361 | 50,373  | 89,619  | 169,641 | 53,967  | 78,726  | 46,239  | 766,838   |
| E/AL          | 47,748<br>01 0 10 | 47,804           | 41,441 | 39,995 | 35,850  | 41,835 | 59,802  | 119,017 | 194,248 | 209,233 | 60,419  | 66,841  | 964,231   |
| 19/4          | 042,63            | 45,662           | 44,138 | 43,324 | 36,988  | 51,556 | 53,364  | 180,586 | 229,951 | 90,991  | 66,562  | 45,338  | 953,690   |
| G/RI          | 62,113<br>F0.000  | 44,127           | 41,103 | 41,069 | 41,184  | 41,821 | 47,315  | 77,908  | 148,547 | 156,706 | 60,375  | 84,390  | 826,658   |
|               | 297'RC            | 663,04           | 41 3/4 | 41,293 | 38,447  | 45,987 | 54,410  | 84,953  | 70,144  | 32,694  | 62,201  | 54,747  | 631,407   |
| 2/8L          | 8/0'82            | 37,506           | 31,545 | 27,455 | 27,569  | 31,586 | 55,566  | 39,460  | 20,191  | 71,063  | 58,070  | 23,110  | 488,177   |
| 8/81          | 8/9//6            | 35,628           | 34,388 | 30,237 | 27,445  | 37,865 | 49,546  | 91,405  | 152,083 | 62,029  | 60,912  | 49,945  | 689,161   |
| 8/8L          | 1/0.50            | 43,658           | 37,605 | 37,666 | 33, 183 | 40,314 | 54,260  | 149,615 | 162,935 | 124,537 | 57,816  | 46,616  | 841,282   |
| 0081          |                   | 44,636           | 42,847 | 47,475 | 39,688  | 42,232 | 49,664  | 122,503 | 236,868 | 125,590 | 72,372  | 51,718  | 927,329   |
| 1981          | 03,150            | 39,992           | 35,757 | 30,302 | 28,521  | 33,791 | 54,768  | 44,579  | 84,359  | 52,055  | 52,795  | 37,613  | 547,687   |
| 2061          | 500,50            | 10,043           | 31,197 | 32,171 | 27,128  | 34,951 | 49,215  | 72,885  | 114,624 | 61,148  | 49,957  | 48,456  | 612,628   |
| 1983          | 49,760            | 50,263           | 49,475 | 42,782 | 42,353  | 48,309 | 55,832  | 95,737  | 409,490 | 394,211 | 142,592 | 90,605  | 1,471,409 |
|               | 67,486            | 51,912           | 49,959 | 38,576 | 39,346  | 39,747 | 45,343  | 368,241 | 856,537 | 344,872 | 158,964 | 91,203  | 1,954,186 |
| 1985          | 92,159<br>24 24 4 | 66,555<br>20,255 | 59,688 | 55,670 | 47,987  | 58,770 | 74,811  | 217,163 | 341,209 | 138,639 | 49,703  | 51,846  | 1,254,080 |
| 0081          | 64,911            | 66,253           | 57,286 | 53,113 | 51,340  | 61,293 | 92,545  | 205,469 | 398,647 | 204,369 | 52,393  | 56,808  | 1,364,427 |
| 1961          | 64,102            | 26,95            | 50,077 | 45,634 | 42,737  | 50,284 | 58,600  | 91,806  | 82,773  | 44,204  | 54,434  | 74,274  | 717,858   |
| 9961          | 000 01            | 44,674           | 39,180 | 39,770 | 35,536  | 40,387 | 51,260  | 82,570  | 137,172 | 62,477  | 75,623  | 37,174  | 080,380   |
| 1969          | 48,368            | 43,504           | 34,820 | 36,559 | 32,790  | 52,668 | 42,430  | 78,026  | 53,810  | 45,645  | 66,513  | 35,891  | 570,024   |
| 1691          | 49,913            | 36,669           | 35,348 | 32,063 | 28,739  | 40,618 | 56,774  | 33,786  | 62,469  | 43,662  | 68,554  | 38,526  | 529,121   |
|               | 67C'/C            | 40,285           | 32,240 | 31,234 | 29,854  | 36,271 | 52,120  | 70,728  | 89,143  | 67,270  | 76,404  | 50,346  | 633,419   |
|               |                   |                  |        |        |         |        |         |         |         |         |         |         |           |

|               |        |        |        |        |        | (AF)   |         |         |         |         |         |         |           |
|---------------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|---------|-----------|
| WATER<br>YEAR | oct    | NOV    | DEC    | JAN    | FEB    | MAR    | APR     | MAY     | NUL     | JUL     | AUG     | SEP     | TOTAL     |
| 1992          | 53,209 | 46,178 | 36,901 | 33,317 | 33,042 | 43,800 | 41,408  | 59,684  | 40,653  | 39,499  | 63,098  | 37,841  | 528,628   |
| 1993          | 46,467 | 39,375 | 33,546 | 35,095 | 33,094 | 41,728 | 49,404  | 118,491 | 212,172 | 120,504 | 46,268  | 48,345  | 824,489   |
| 1994          | 55,767 | 51,330 | 41,396 | 37,610 | 35,783 | 53,109 | 47, 913 | 67,816  | 39,453  | 63,996  | 65,993  | 34,785  | 594,933   |
| 1995          | 37,360 | 36,969 | 32,190 | 30,231 | 30,416 | 41,543 | 53,149  | 55,712  | 249,726 | 294,739 | 82,496  | 55,163  | 999,714   |
| 1996          | 54,512 | 55,870 | 44,715 | 43,376 | 42,404 | 49,076 | 58,811  | 258,358 | 367,823 | 119,791 | 86,998  | 48,900  | 1,230,636 |
| 1997          | 49,841 | 48,417 | 45,721 | 40,914 | 42,715 | 53,402 | 46,617  | 255,184 | 492,928 | 166,147 | 91,297  | 60,729  | 1,393,912 |
| 1998          | 58,512 | 58,173 | 46,658 | 49,544 | 43,348 | 60,786 | 54,471  | 109,702 | 79,235  | 82,435  | 43,597  | 66,049  | 752,510   |
| 1999          | 70,553 | 47,969 | 31,276 | 38,061 | 35,790 | 50,614 | 46,490  | 83,811  | 155,975 | 112,249 | 48,074  | 51,429  | 770,291   |
| 2000          | 70,271 | 47,089 | 38,952 | 42,223 | 40,118 | 46,518 | 49,869  | 117,946 | 117,114 | 46,251  | 74,988  | 51,238  | 742,595   |
| 2001          | 48,366 | 47,297 | 41,000 | 37,414 | 35,189 | 42,728 | 44,559  | 69,182  | 45,679  | 49,240  | 61,602  | 48, 933 | 571,189   |
| 2002          | 53,966 | 38,036 | 28,291 | 27,228 | 25,117 | 35,255 | 44,430  | 27,327  | 27,069  | 34,215  | 23,668  | 21,598  | 386,220   |
| 2003          | 41,262 | 32,277 | 28,363 | 27,152 | 25,158 | 37,928 | 47,258  | 79,677  | 98,913  | 42,847  | 84,594  | 56,914  | 602,341   |
| 2004          | 51,804 | 41,541 | 35,211 | 32,035 | 29,475 | 50,053 | 41,771  | 36,270  | 29,406  | 47,184  | 62,228  | 44,457  | 501,435   |
| 2005          | 71,399 | 42,306 | 32,675 | 32,131 | 27,344 | 32,525 | 46,684  | 71,434  | 89,622  | 38,525  | 56,016  | 47,233  | 587,894   |
| AVERAGE:      | 56,463 | 44,449 | 38,771 | 37,052 | 34,300 | 43,197 | 52,886  | 103,306 | 165,195 | 98,662  | 67,350  | 50,909  | 792,540   |
| MINIMUM:      | 37,360 | 30,882 | 24,382 | 23,526 | 22,200 | 29,384 | 39,169  | 27,327  | 20,191  | 28,380  | 23,688  | 21,598  | 386,220   |
| MAXIMUM:      | 92,159 | 66,555 | 69,668 | 55,670 | 51,340 | 61,293 | 130,297 | 368,241 | 658,537 | 394,211 | 158,964 | 91.203  | 1.954,186 |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 Proposed Action Alternative (CFS)

| NOV         DEC         JAN         FEB         MAX         JUN         JUL         JUL <th>WATER</th> <th>100</th> <th>101</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>ſ</th> <th></th>                                | WATER | 100  | 101 |     |     |     |     |      |      |      |      |      | ſ    |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|-----|-----|-----|-----|------|------|------|------|------|------|------------|
| 911         434         346         306         410         446         521         1405         854         1099         708           1003         633         644         675         531         544         677         364         1093         703           773         555         551         553         553         553         553         553         577         1098         752         085           773         555         551         553         401         553         419         593         553         510         1446         773           773         550         553         551         553         419         553         510         1446         773           773         550         553         550         533         533         533         533         533         533         533         533         541         773           733         553         744         473         441         416         733         419         573         144           733         733         733         131         332         256         144         773         744         773                                                                                                                                                                                                                                                                   | YEAR  | 100  | NON | DEC | NAL | FEB | MAR | APR  | MAY  | NN   | JUL  | AUG  | SEP  | ANNUAL     |
| B77         530         507         480         483         504         675         577         1036         2250         675         1038           1021         688         680         581         644         673         844         752         855         1039         1468         1019         1468         752         855         752         753         753         753         753         753         753         754         457         753         753         753         754         457         753         753         753         753         753         753         753         753         754         457         753         753         754         457         753         753         754         757         753         754         757         753         754         757         753         754         757         753         754         757         753         754         757         753         754         757         703         755         754         757         703         755         754         757         753         754         757         753         754         757         753         754         757         756         7                                                                                                                                                                                            | 1950  | 911  | 494 | 348 | 326 | 410 | 446 | 624  | 531  | 1405 | 854  | 1099 | 708  | ANG<br>ABO |
| 1008         663         504         528         18.8         5610         18.6         510         14.8           773         773         755         551         510         523         534         138.4         137.8         752         665           773         773         755         551         510         523         749         743         743           773         773         773         749         473         461         553         551         510         523         749         557         855         857         855         857         856         857         856         857         856         857         856         857         856         857         856         857         856         857         856         857         856         857         857         856         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         857         8557         855         857         855                                                                                                                                                                                                            | 1951  | 877  | 530 | 507 | 480 | 483 | 504 | 675  | 577  | 1098 | 2250 | 875  | 1088 | 000<br>191 |
| 1021         668         665         520         561         644         677         384         1364         1178         752         665           778         757         746         510         475         440         723         557         748         573         748         567         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855         855 <th>1952</th> <th>1008</th> <th>683</th> <th>604</th> <th>596</th> <th>593</th> <th>584</th> <th>528</th> <th>1858</th> <th>5610</th> <th>1866</th> <th>1019</th> <th>1498</th> <th>1369</th> | 1952  | 1008 | 683 | 604 | 596 | 593 | 584 | 528  | 1858 | 5610 | 1866 | 1019 | 1498 | 1369       |
| 788         627         555         551         510         622         618         223         442         457           746         510         475         400         455         401         553         435         557         446           746         510         475         400         456         539         553         378         2117         773           754         779         703         461         517         679         1011         3505         3260         1441         773           754         773         459         514         451         653         530         3256         1011         3505         3260         1441         773           756         473         461         454         451         653         530         532         500         1411         773           756         451         444         456         733         1421         734         1044         650           755         610         533         530         533         512         1177         703           755         611         446         533         533         512         1174                                                                                                                                                                                                                                                         | 1953  | 1021 | 668 | 695 | 620 | 581 | 644 | 677  | 364  | 1364 | 1178 | 752  | 855  | 786        |
| 73         425         366         355         401         553         419         593         557         855         821           746         773         474         773         471         577         855         782         7117         703           758         763         775         440         451         451         454         463         782         7117         703           959         674         579         454         451         537         600         634         663         733         1421         794         1011         703           756         674         579         440         451         537         603         510         1011         703           755         673         510         616         315         385         755         1070         511         717         703           755         673         510         616         512         417         401         616         616         616         616         617         703           755         673         510         614         733         1011         517         1011         703                                                                                                                                                                                                                                                                   | 1954  | 768  | 627 | 555 | 551 | 510 | 622 | 618  | 223  | 432  | 923  | 748  | 467  | 580        |
| 746         510         475         440         426         539         532         374         1212         718         157           758         763         769         607         607         1011         355         3260         144         674           758         763         706         600         634         657         461         733         1421         733           754         477         673         514         654         653         3800         610         1011         733           756         674         551         539         500         514         654         653         3801         1011         733           756         431         433         535         509         570         401         512         174         916         751           755         747         533         405         570         401         512         413         600         671         762         950           755         744         444         440         405         570         401         512         413         916         751           755         744         845                                                                                                                                                                                                                                                                | 1955  | 873  | 425 | 363 | 356 | 355 | 401 | 553  | 419  | 593  | 557  | 855  | 821  | 549        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1956  | 746  | 510 | 475 | 440 | 426 | 539 | 532  | 374  | 1212 | 718  | 1146 | 674  | 650        |
| 758         763         705         600         634         663         677         3923         782         1177         703           754         773         705         600         634         663         677         3923         782         1177         703           756         674         597         775         516         539         559         679         513         395         775         1070         583           756         671         717         703         559         679         1335         2803         526         267         696           765         471         313         341         335         270         461         651         471         916         751           765         677         569         573         576         654         575         766         775         1070         580           775         677         589         565         577         580         575         566         775         1070         581           775         744         589         775         744         786         744         1178         775           775                                                                                                                                                                                                                                                              | 1957  | 713  | 527 | 494 | 473 | 481 | 517 | 679  | 1011 | 3505 | 3260 | 1441 | 273  | 1159       |
| 754         473         464         451         454         451         454         451         454         451         454         451         451         451         451         453         450         416         733         142         734         1044         650           736         673         516         539         490         510         533         580         573         747         787         1073         561           736         671         513         341         335         580         570         401         512         1174         916         751           736         641         444         400         536         570         401         512         177         916         751           722         678         546         570         401         512         671         616         751           722         678         557         566         511         710         875         666         71         616         751           733         736         651         571         593         415         773         974         526         916         677           <                                                                                                                                                                                                                                                  | 1958  | 758  | 763 | 705 | 600 | 634 | 663 | 678  | 1967 | 3923 | 782  | 1177 | 703  | 1112       |
| 959         674         597         479         514         664         416         733         1421         794         1044         690           873         747         598         553         590         570         401         512         177         916         561         757         1070         583           878         553         539         570         401         512         177         916         752           876         481         313         341         335         505         577         461         651         421         1018         616         753           876         678         640         570         401         512         1174         916         751           876         640         590         593         586         577         461         651         421         1018         616         773           873         776         640         735         776         647         1014         687         574         1020         896         1044         687           723         744         545         571         640         721         2474         802                                                                                                                                                                                                                                                    | 1959  | 754  | 479 | 484 | 454 | 451 | 454 | 692  | 603  | 980  | 610  | 1011 | 787  | 647        |
| 796         624         516         539         490         510         681         315         385         775         1070         583           873         747         598         553         559         679         1335         2803         575         1070         563           765         431         313         341         335         405         777         461         512         174         916         751           765         431         313         341         335         405         77         461         512         174         916         751           722         678         640         559         589         516         537         486         726         577         916         77         916         77         916         775         974         956         956         571         911         916         976         956         975         957         944         976         945         577         944         2735         544         577         944         976         945         957         944         976         945         957         944         976         945         956                                                                                                                                                                                                                              | 1960  | 959  | 674 | 597 | 479 | 514 | 694 | 416  | 733  | 1421 | 794  | 1044 | 690  | 753        |
| 873         747         586         553         559         679         1335         2803         5226         2676         782         950           818         511         411         431         341         335         405         707         461         651         4114         916         751           765         461         537         405         707         461         651         41174         916         751           785         461         540         599         588         728         516         537         469         839         1203         861           772         678         540         599         588         728         516         537         489         839         1203         861         751           753         736         671         611         571         811         876         847         946         771         843           753         736         671         611         571         811         876         847         954         946           753         736         671         611         571         8194         726         847         872                                                                                                                                                                                                                                                    | 1961  | 796  | 624 | 516 | 539 | 490 | 510 | 681  | 315  | 395  | 775  | 1070 | 583  | 609        |
| B18         512         477         493         522         606         570         401         512         1174         916         751           785         431         313         341         335         405         570         401         512         1174         916         751           785         461         444         440         599         588         708         541         529         1178         566           722         678         546         557         533         415         278         488         875           864         547         536         571         583         145         778         529         1178         575           864         557         526         511         410         875         1614         1792         571         945           573         736         571         611         571         1614         572         945         574         945         945           573         516         571         611         571         1202         519         977         945           573         546         574         793         4721                                                                                                                                                                                                                                                               | 1962  | 873  | 747 | 598 | 553 | 559 | 679 | 1335 | 2803 | 5226 | 2676 | 782  | 950  | 1483       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1963  | 818  | 512 | 477 | 493 | 522 | 606 | 570  | 401  | 512  | 1174 | 916  | 751  | 648        |
| 638         461         444         440         400         406         402         654         662         1488         1326         1439         861           722         678         640         539         588         728         516         537         489         833         1204         526           772         668         546         557         526         511         410         875         1614         1473         977         843           976         668         546         557         526         511         410         875         1614         945         945           753         736         617         611         571         611         571         1614         687         944         687           753         736         616         514         507         551         735         1037         2594         3139         906         1041           972         660         555         586         577         593         1037         2594         313         907         917           972         660         556         577         693         735         1435         2146 </th <th>1964</th> <th>765</th> <th>431</th> <th>313</th> <th>341</th> <th>335</th> <th>405</th> <th>707</th> <th>461</th> <th>651</th> <th>421</th> <th>1018</th> <th>616</th> <th>540</th>                                                 | 1964  | 765  | 431 | 313 | 341 | 335 | 405 | 707  | 461  | 651  | 421  | 1018 | 616  | 540        |
| 722         678         640         539         588         728         516         537         489         833         1204         526           617         444         389         367         377         593         415         278         708         529         1178         875           976         668         546         571         511         710         875         614         173         377         945           753         736         671         611         571         611         571         894         266         1014         687           952         566         575         507         551         735         577         894         278         806         1041           952         566         575         507         551         735         173         872         187         877           966         506         514         617         511         577         894         276         613         677           977         660         535         544         573         1037         2594         3139         806         1041           975         545                                                                                                                                                                                                                                                                | 1965  | 638  | 461 | 444 | 440 | 406 | 402 | 654  | 662  | 1488 | 1326 | 1439 | 861  | 044        |
| 617         444         389         367         377         593         415         278         708         529         1178         875           864         547         448         435         460         445         756         447         1202         519         504         945           875         566         571         611         577         647         947         945           573         736         577         571         611         577         1806         1014         687           553         566         575         507         551         735         577         894         2066         1014         687           972         660         565         589         507         593         1037         2594         3139         806         1041           972         660         565         589         507         593         32321         1304         976         693           977         648         506         573         574         1792         32321         1304         976         693           976         590         510         556         597         572 <th>1966</th> <th>722</th> <th>678</th> <th>640</th> <th>599</th> <th>588</th> <th>728</th> <th>516</th> <th>537</th> <th>489</th> <th>839</th> <th>1204</th> <th>526</th> <th>674</th>                                                               | 1966  | 722  | 678 | 640 | 599 | 588 | 728 | 516  | 537  | 489  | 839  | 1204 | 526  | 674        |
| 864         547         448         435         460         445         756         447         1202         519         504         945           976         668         546         557         526         511         410         875         1614         1473         977         843           753         736         671         611         571         661         571         834         4721         2474         822         944           753         736         616         514         501         498         506         733         972         843         677         843           972         660         565         589         506         733         1037         2278         890         1041         677           972         660         565         586         521         650         733         1037         5294         3139         806         1041           972         660         565         536         521         650         733         1037         5294         3139         806         1041           976         590         510         558         528         528         532 </th <th>1967</th> <th>617</th> <th>444</th> <th>389</th> <th>367</th> <th>377</th> <th>593</th> <th>415</th> <th>278</th> <th>708</th> <th>529</th> <th>1178</th> <th>875</th> <th>565</th>                                                 | 1967  | 617  | 444 | 389 | 367 | 377 | 593 | 415  | 278  | 708  | 529  | 1178 | 875  | 565        |
| 976         668         546         557         526         511         410         875         1614         1473         977         643           753         736         671         611         571         611         571         611         571         643         4721         2474         822         944           753         736         671         611         571         611         577         894         2066         1014         687           753         736         671         611         571         611         571         894         2066         1014         687           952         566         575         507         551         733         1037         2594         3139         806         1041           972         660         514         521         535         574         1792         3321         1304         975         693           976         590         510         456         592         543         776         945         833         1169         910         369           976         501         443         770         278         544         526         583 </th <th>1968</th> <th>864</th> <th>547</th> <th>448</th> <th>435</th> <th>460</th> <th>445</th> <th>756</th> <th>447</th> <th>1202</th> <th>519</th> <th>504</th> <th>945</th> <th>630</th>                                                 | 1968  | 864  | 547 | 448 | 435 | 460 | 445 | 756  | 447  | 1202 | 519  | 504  | 945  | 630        |
| 638         745         628         653         578         612         721         1806         4294         2066         1014         687           753         736         671         611         571         611         577         894         2066         1014         687           952         566         575         507         551         735         577         894         2056         1181         677           952         566         575         507         551         733         1037         2554         3139         806         1041           972         660         555         586         521         667         573         1037         2554         3139         806         1041           972         660         551         443         576         574         1792         3321         1304         975         693           946         510         443         357         544         526         597         776         776         774         945         833           877         501         443         1711         1749         840         752         775           76                                                                                                                                                                                                                                                    | 1969  | 976  | 668 | 546 | 557 | 526 | 511 | 410  | 875  | 1614 | 1473 | 677  | 843  | 833        |
| $ \begin{array}{ cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1970  | 638  | 745 | 628 | 653 | 578 | 612 | 721  | 1806 | 4294 | 2066 | 1014 | 687  | 1204       |
| 952         566         575         507         551         735         577         894         2278         802         1181         677           972         660         565         586         521         667         574         1792         3321         1304         975         693           972         660         565         586         521         667         574         1792         3321         1304         975         693           906         590         513         510         558         528         592         632         1435         2146         840         997           847         605         535         544         526         597         542         718         750         474         945         833           946         510         443         357         396         432         778         750         474         945         833           775         501         457         399         412         553         668         839         1407         819         959         802           761         599         555         631         543         1711         1749                                                                                                                                                                                                                                                 | 1281  | 753  | 736 | 671 | 611 | 571 | 611 | 597  | 1483 | 4721 | 2474 | 822  | 944  | 1250       |
| 589         616         514         501         498         506         739         1037         2594         3139         806         1041           972         660         565         586         521         667         574         1792         3321         1304         975         693           906         590         513         510         558         528         592         632         1435         2146         840         997           906         590         513         510         558         528         592         632         1435         2146         840         997           847         605         535         544         526         597         542         718         750         474         945         833           946         510         443         357         396         432         778         778         945         833         1169         910         369           877         501         453         572         668         839         1407         819         956         802         775           761         599         555         521         533         1241 <th>1972</th> <th>952</th> <th>566</th> <th>575</th> <th>507</th> <th>551</th> <th>735</th> <th>577</th> <th>894</th> <th>2278</th> <th>802</th> <th>1181</th> <th>677</th> <th>859</th>                                                       | 1972  | 952  | 566 | 575 | 507 | 551 | 735 | 577  | 894  | 2278 | 802  | 1181 | 677  | 859        |
| 972         660         565         586         521         667         574         1792         3321         1304         975         693           906         590         513         510         558         528         592         632         1435         2146         840         997           946         510         558         528         597         542         718         750         474         945         833           946         510         443         357         396         432         770         478         343         1169         910         369           877         501         457         399         412         525         608         839         1407         819         959         802           794         591         555         631         583         572         662         1651         1711         1749         880         752           761         599         555         631         583         572         1431         1711         1749         880         752           766         540         467         473         775         791         774         969                                                                                                                                                                                                                                                 | 1973  | 589  | 616 | 514 | 501 | 498 | 506 | 739  | 1037 | 2594 | 3139 | 806  | 1041 | 1051       |
| 906         590         513         510         558         528         592         632         1435         2146         840         997           847         605         535         544         526         597         542         718         750         474         945         833           946         510         443         357         396         432         797         478         343         1169         910         369           877         501         457         399         412         525         608         839         1407         819         959         802           794         591         563         575         521         530         615         1431         1711         1749         880         752           761         599         555         631         583         572         662         1054         3130         1921         1123         775           766         540         467         401         437         472         779         809         860         589           776         540         555         614         474         1140         709         693                                                                                                                                                                                                                                                  | 1974  | 972  | 660 | 565 | 586 | 521 | 667 | 574  | 1792 | 3321 | 1304 | 975  | 693  | 1054       |
| 847         605         535         544         526         597         542         718         750         474         945         833           946         510         443         357         396         432         797         478         343         1169         910         369           877         501         457         399         412         525         608         839         1407         819         959         802           794         591         563         575         521         530         615         1431         1711         1749         880         752           761         599         555         631         583         572         662         1054         3130         1921         1123         775           766         540         467         401         437         472         791         449         579         809         860         589           778         525         651         444         1140         709         860         589         705           664         688         701         597         6998         520         2113         1404                                                                                                                                                                                                                                                             | S/AL  | 906  | 590 | 513 | 510 | 558 | 528 | 592  | 632  | 1435 | 2146 | 840  | 266  | 856        |
| 946         510         443         357         396         432         797         478         343         1169         910         369           877         501         457         399         412         525         608         839         1407         819         959         802           794         591         563         575         521         530         615         1431         1711         1749         880         752           761         599         555         631         583         572         662         1054         3130         1921         1123         775           766         540         467         401         437         472         791         449         579         809         860         589           776         555         418         460         407         428         591         444         1140         709         693         705           654         658         701         597         651         444         1140         709         693         705           654         653         523         523         529         2363         705                                                                                                                                                                                                                                                              | 1976  | 847  | 605 | 535 | 544 | 526 | 597 | 542  | 718  | 750  | 474  | 945  | 833  | 660        |
| B77         501         457         399         412         525         608         839         1407         819         959         802           794         591         563         575         521         530         615         1431         1711         1749         880         752           761         599         555         631         583         572         662         1054         3130         1921         1123         775           786         540         467         401         437         472         791         449         579         809         860         589           776         555         418         460         407         428         591         444         1140         709         693         705           664         688         701         597         657         674         798         912         5478         6020         2113         1404           965         659         653         559         496         560         4927         9998         5229         2363         1294                                                                                                                                                                                                                                                                                                                                  | 1/BL  | 946  | 510 | 443 | 357 | 396 | 432 | 797  | 478  | 343  | 1169 | 910  | 369  | 598        |
| 794         591         563         575         521         530         615         1431         1711         1749         880         752           761         599         555         631         583         572         662         1054         3130         1921         1123         775           761         599         555         631         583         572         662         1054         3130         1921         1123         775           786         540         467         401         437         472         791         449         579         809         860         589           778         525         418         460         407         428         591         444         1140         709         693         705           664         688         701         597         657         674         798         912         5478         6020         2113         1404           965         659         653         559         496         560         4927         9998         5229         2363         1294                                                                                                                                                                                                                                                                                                                               | 1978  | 877  | 501 | 457 | 399 | 412 | 525 | 608  | 839  | 1407 | 819  | 959  | 802  | 718        |
| 761         599         555         631         583         572         662         1054         3130         1921         1123         775           786         540         467         401         437         472         791         449         579         809         860         589           778         525         418         460         407         428         591         444         1140         709         693         705           664         688         701         597         657         674         798         912         5478         6020         2113         1404           965         653         553         496         560         4927         9998         5229         2363         1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8/6L  | 794  | 591 | 563 | 575 | 521 | 530 | 615  | 1431 | 1711 | 1749 | 880  | 752  | 895        |
| 786         540         467         401         437         472         791         449         579         809         860         589           778         525         418         460         407         428         591         444         1140         709         693         705           664         688         701         597         657         674         798         912         5478         6020         2113         1404           965         653         559         496         560         4927         9998         5229         2363         1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1980  | 761  | 599 | 555 | 631 | 583 | 572 | 662  | 1054 | 3130 | 1921 | 1123 | 775  | 1031       |
| 778         525         418         460         407         428         591         444         1140         709         693         705           664         688         701         597         657         674         798         912         5478         6020         2113         1404           965         659         653         550         496         560         4927         9998         5229         2363         1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1981  | 786  | 540 | 467 | 401 | 437 | 472 | 167  | 449  | 579  | 609  | 860  | 589  | 599        |
| 664         688         701         597         657         674         798         912         5478         6020         2113         1404           965         659         653         553         559         496         560         4927         9998         5229         2363         1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1982  | 778  | 525 | 418 | 460 | 407 | 428 | 591  | 444  | 1140 | 209  | 693  | 705  | 608        |
| 965 659 653 523 559 496 560 4927 9998 5229 2363 1294                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1983  | 664  | 688 | 701 | 597 | 657 | 674 | 798  | 912  | 5478 | 6020 | 2113 | 1404 | 1730       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1984  | 965  | 659 | 653 | 523 | 559 | 496 | 560  | 4927 | 9666 | 5229 | 2363 | 1294 | 2358       |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 Proposed Action Alternative (CFS)

| WATER    |       |       |     |     |     |     |       |       |       |       |       |       |       |
|----------|-------|-------|-----|-----|-----|-----|-------|-------|-------|-------|-------|-------|-------|
| YEAR     | oct   | NON   | DEC | JAN | FEB | MAR | APR   | MAY   | NUL   | JUL   | AUG   | SEP   |       |
| 1985     | 1302  | 1051  | 881 | 677 | 700 | 785 | 814   | 2103  | 4764  | 2008  | 690   | 774   | 1388  |
| 1986     | 006   | 939   | 763 | 686 | 721 | 810 | 1081  | 2357  | 5705  | 3087  | 728   | 813   | 1550  |
| 1987     | 847   | 809   | 678 | 635 | 653 | 666 | 627   | 817   | 1177  | 687   | 845   | 1232  | 807   |
| 1988     | 636   | 577   | 506 | 486 | 489 | 531 | 648   | 864   | 1925  | 952   | 1169  | 543   | 8/1   |
| 1989     | 726   | 601   | 418 | 414 | 437 | 683 | 430   | 819   | 701   | 688   | 1044  | 578   | 630   |
| 1890     | 772   | 507   | 435 | 398 | 421 | 540 | 797   | 310   | 812   | 676   | 1109  | 613   | 616   |
| 1991     | 850   | 537   | 397 | 406 | 441 | 490 | 714   | 617   | 1066  | 1034  | 1207  | 806   | 715   |
| 1992     | 805   | 637   | 459 | 422 | 458 | 594 | 510   | 529   | 612   | 678   | 1013  | 634   | 614   |
| 1993     | 740   | 560   | 439 | 439 | 470 | 560 | 710   | 925   | 2574  | 1761  | 727   | 797   | 892   |
| 1994     | 830   | 755   | 611 | 579 | 595 | 784 | 612   | 720   | 567   | 1057  | 1072  | 573   | 732   |
| 1995     | 530   | 519   | 416 | 408 | 452 | 565 | 720   | 422   | 2925  | 4211  | 1178  | 826   | 1101  |
| 1996     | 742   | 738   | 590 | 620 | 629 | 617 | 605   | 3144  | 5553  | 1756  | 1342  | 707   | 1421  |
| 1997     | 684   | 658   | 633 | 537 | 634 | 882 | 449   | 2836  | 7208  | 2426  | 1280  | 852   | 1573  |
| 1998     | 764   | 793   | 672 | 695 | 667 | 828 | 607   | 936   | 872   | 1249  | 645   | 1087  | 819   |
| 1999     | 1040  | 648   | 402 | 449 | 510 | 712 | 565   | 792   | 1918  | 1606  | 660   | 801   | 843   |
| 2000     | 1038  | 652   | 555 | 613 | 616 | 652 | 634   | 1339  | 1753  | 772   | 1222  | 827   | 891   |
| 2001     | 740   | 685   | 596 | 562 | 555 | 597 | 582   | 536   | 593   | 845   | 1022  | 804   | 677   |
| 2002     | 839   | 525   | 416 | 417 | 427 | 513 | 613   | 323   | 540   | 621   | 421   | 375   | 503   |
| 2003     | 641   | 454   | 389 | 404 | 412 | 568 | 682   | 723   | 1131  | 745   | 1378  | 918   | 706   |
| 2004     | 813   | 569   | 453 | 422 | 461 | 698 | 559   | 254   | 375   | 805   | 1032  | 686   | 595   |
| 2005     | 1068  | 585   | 445 | 436 | 409 | 425 | 522   | 425   | 973   | 507   | 892   | 774   | 623   |
| AVERAGE: | 821   | 615   | 529 | 506 | 511 | 581 | 642   | 1,002 | 2,156 | 1,474 | 1,025 | 796   | 890   |
| MINIMUM: | 530   | 425   | 313 | 326 | 335 | 401 | 410   | 223   | 343   | 421   | 421   | 369   | 503   |
| MAXIMUM: | 1,302 | 1,051 | 881 | 779 | 721 | 828 | 1,335 | 4,927 | 9,998 | 6.020 | 2.363 | 1.498 | 2.358 |
|          |       |       |     |     |     |     |       |       |       |       |       |       |       |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 Proposed Action Alternative (AF)

| WATER<br>YEAR | ост               | VOV    | DEC    | NAU    | FEB    | MAR    | АРВ    | МАҮ     | NNC     | าบ<br>- | AUG             | SEP              | TOTAL               |
|---------------|-------------------|--------|--------|--------|--------|--------|--------|---------|---------|---------|-----------------|------------------|---------------------|
| 1950          | 56,021            | 29,373 | 21,422 | 20.053 | 22.754 | 27.426 | 37,138 | 32 632  | 83 576  | 50 535  | 67 587          | 10104            | 100 641             |
| 1851          | 53,906            | 31,526 | 31,153 | 29,503 | 26.816 | 31,000 | 40.181 | 35 508  | 65 300  | 138 336 | 200'-00         | 72,124<br>24 771 | 130,041<br>601 001  |
| 1952          | 61,971            | 40,648 | 37,119 | 36,641 | 32,922 | 35,907 | 31,440 | 114.260 | 333 832 | 114 751 | 50,02<br>62,620 | 80 118           | 001,004.<br>001,026 |
| 1953          | 62,764            | 39,750 | 42,740 | 38,142 | 32,279 | 39,599 | 40.306 | 22.397  | 81.176  | 72 425  | 46.237          | 50.003           | 568 718             |
| 1954          | 47,220            | 37,288 | 34,127 | 33,895 | 28,337 | 32,115 | 36,801 | 13,727  | 25.733  | 56.784  | 45,974          | 27,765           | 419 766             |
| 1955          | 53,693            | 25,283 | 22,331 | 21,886 | 19,710 | 24,677 | 32,927 | 25,738  | 35,286  | 34.277  | 52.558          | 48.876           | 397 242             |
| 1956          | 45,865            | 30,369 | 29,189 | 27,043 | 23,677 | 33,132 | 31,669 | 22,993  | 72.128  | 44.165  | 70.468          | 40.109           | 470 B07             |
| 1957          | 43,852            | 31,367 | 30,362 | 29,061 | 26,735 | 31,759 | 40,380 | 62,144  | 208,562 | 200.448 | 88.583          | 46.015           | 839 268             |
| 1958          | 46,601            | 45,407 | 43,368 | 36,912 | 35,236 | 40,743 | 40,370 | 120,963 | 233,458 | 48,105  | 72.380          | 41,808           | 805.351             |
| 1959          | 46,341            | 28,506 | 29,758 | 27,939 | 25,074 | 27,923 | 41,187 | 37,100  | 58,304  | 37.490  | 62.169          | 46.859           | 468 650             |
| 1960          | 58,950            | 40,092 | 36,692 | 29,462 | 28,560 | 42,676 | 24,781 | 45,073  | 84,575  | 48,804  | 64,197          | 41.036           | 544,898             |
| 1961          | 48,950            | 37,152 | 31,742 | 33,118 | 27,207 | 31,377 | 40,499 | 19,342  | 23,488  | 47,645  | 65,791          | 34,691           | 441,002             |
| 1902          | 53,700            | 44,439 | 36,763 | 34,031 | 31,054 | 41,720 | 79,451 | 172,327 | 310,978 | 164,570 | 48,113          | 56,548           | 1,073,694           |
| 1963          | 50,302            | 30,486 | 29,320 | 30,319 | 29,014 | 37,252 | 33,912 | 24,638  | 30,462  | 72,179  | 56,298          | 44,680           | 468,862             |
| 1964          | 47,028            | 25,622 | 19,270 | 20,979 | 18,620 | 24,924 | 42,045 | 28,369  | 38,716  | 25,895  | 62,572          | 36,662           | 390,702             |
| 0061          | 39,204            | 27,455 | 27,306 | 27,052 | 22,574 | 24,741 | 38,932 | 40,680  | 88,550  | 81,514  | 88,473          | 51,247           | 557.728             |
|               | 44,415<br>0= 00 : | 40,318 | 39,337 | 36,821 | 32,684 | 44,776 | 30,734 | 32,998  | 29,088  | 51,561  | 74,015          | 31,302           | 488,051             |
| 1000          | 37,924            | 26,422 | 23,930 | 22,580 | 20,939 | 36,457 | 24,697 | 17,071  | 42,115  | 32,552  | 72,460          | 52,043           | 409,190             |
| 1968          | 53,156            | 32,552 | 27,522 | 26,764 | 25,573 | 27,375 | 45,008 | 27,483  | 71,520  | 31,943  | 31,009          | 56,247           | 456,152             |
| 1969          | 60,015<br>20,222  | 39,760 | 33,568 | 34,238 | 29,238 | 31,391 | 24,409 | 53,802  | 96,057  | 90,601  | 60,064          | 50,185           | 603,328             |
| 0/81          | 39,207            | 44,321 | 38,633 | 40,166 | 32,088 | 37,656 | 42,903 | 111,074 | 255,493 | 127,058 | 62,337          | 40,908           | 871.844             |
| 1871          | 46,299            | 43,771 | 41,276 | 37,592 | 31,723 | 37,582 | 35,512 | 91,167  | 280,949 | 152,124 | 50,555          | 56,152           | 904.702             |
| 2781          | 58,545            | 33,655 | 35,330 | 31,153 | 30,614 | 45,204 | 34,345 | 54,982  | 135,563 | 49,292  | 72,602          | 40,283           | 621.568             |
| E/8L          | 36,207            | 36,681 | 31,576 | 30,795 | 27,677 | 31,104 | 43,976 | 63,741  | 154,371 | 193,009 | 49,537          | 61,937           | 760,611             |
| 1974          | 59,747            | 39,281 | 34,746 | 36,052 | 28,947 | 41,026 | 34,144 | 110,191 | 197,590 | 80,203  | 59,947          | 41,229           | 763,103             |
| 5/8L          | 55,735            | 35,125 | 31,521 | 31,383 | 30,970 | 32,463 | 35,230 | 38,832  | 85,366  | 131,968 | 51,671          | 59,341           | 619,605             |
| 1976          | 52,061            | 35,998 | 32,907 | 33,445 | 29,211 | 36,727 | 32,260 | 44,138  | 44,623  | 29,130  | 58,082          | 49,563           | 478.145             |
| 1781          | 58,181            | 30,320 | 27,216 | 21,979 | 21,991 | 26,549 | 47,416 | 29,385  | 20,431  | 71,868  | 55,960          | 21,981           | 433,277             |
| 1978          | 53,911            | 29,800 | 28,126 | 24,542 | 22,901 | 32,305 | 36,191 | 51,592  | 83,718  | 60,355  | 58,950          | 47,712           | 520,103             |
| 6781<br>522   | 48,799            | 35,193 | 34,842 | 35,357 | 28,926 | 32,564 | 36,578 | 87,974  | 101,820 | 107,547 | 54,097          | 44,766           | 648,263             |
| 1980          | 46,792            | 35,631 | 34,107 | 36,788 | 32,391 | 35,195 | 39,368 | 64,820  | 186,264 | 118,122 | 69,068          | 46,128           | 746.674             |
| 1981          | 48,360            | 32,137 | 28,697 | 24,631 | 24,297 | 29,026 | 47,079 | 27,622  | 34,447  | 49,725  | 52,868          | 35,068           | 433.957             |
| 1982          | 47,832            | 31,252 | 25,688 | 28,305 | 22,628 | 26,302 | 35,159 | 27,297  | 67,844  | 43,617  | 42,582          | 41,976           | 440.482             |
| 1983          | 40,833            | 40,920 | 43,112 | 36,687 | 36,508 | 41,420 | 47,469 | 56,092  | 325,951 | 370,183 | 129,906         | 83,534           | 1.252.615           |
| 1984          | 59.321            | 39,189 | 40,141 | 32,164 | 31.020 | 30,481 | 33,298 | 302,924 | 594,902 | 321,528 | 145,327         | 77,023           | 1,707,318           |
|               |                   |        |        |        |        |        |        |         |         |         |                 |                  |                     |

Simulated Flows at Colorado River near Kremmling at USGS Gage 09058000 **Proposed Action Alternative** 

(AF)

| 123,470       42,440       46,066       1         189,786       44,765       48,374       1         42,245       51,932       73,299       5         58,541       71,872       32,320       5         42,280       64,175       34,381       4         41,557       68,186       36,461       6         41,696       62,317       37,710       47,413         63,575       74,244       47,964       5         64,983       65,885       34,61       6         64,983       65,885       34,087       6         64,983       65,885       34,087       6         64,983       65,885       34,087       6         64,983       65,885       34,087       6         107,988       82,509       42,052       1         107,988       82,509       42,052       1         107,988       82,509       42,653       4         76,780       30,654       64,676       6         98,773       40,586       47,674       6         76,780       71,65       44,676       6         76,780       74,244       49,230       6 </th <th>WATER<br/>YEAR</th> <th>ост</th> <th>NOV</th> <th>DEC</th> <th>JAN</th> <th>FEB</th> <th>MAR</th> <th>APR</th> <th>MAY</th> <th>NUL</th> <th>luL</th> <th>AUG</th> <th>SEP</th> <th>TOTAL</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WATER<br>YEAR | ост    | NOV    | DEC    | JAN    | FEB    | MAR    | APR    | MAY     | NUL     | luL     | AUG     | SEP    | TOTAL     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|---------|--------|-----------|
| 55,367         55,884         46,932         42,310         40,045         49,786         64,329         144,910         339,464         189,786         44,765         48,374           52,074         55,884         41,773         39,033         36,246         42,207         37,309         56,11         50,344         41,753         51,932         73,299           32,559         34,355         25,728         25,448         27,173         32,653         37,311         44,755         74,244         47,964           47,445         30,153         26,738         24,452         23,3510         47,418         19,032         48,157         74,244         47,964           52,283         31,966         24,441         24,951         37,917         63,416         63,575         74,244         47,964           45,633         31,958         24,445         30,120         42,483         37,917         63,416         63,575         74,244         47,964           52,283         31,966         34,741         27,423         43,157         64,175         34,387           51,960         44,966         37,579         36,816         62,317         37,110         74,413         74,42         46,177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1985          | 80,046 | 62,519 | 54,159 | 47,898 | 38,860 | 48,245 | 48,413 | 129,308 | 283,498 | 123,470 | 42.440  | 46.066 | 1.004.922 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1886          | 55,367 | 55,894 | 46,932 | 42,310 | 40,045 | 49,785 | 64,329 | 144,910 | 339,464 | 189,786 | 44.765  | 48,374 | 1.121.961 |
| 39,259         34,362         31,033         29,874         27,173         32,658         53,104         114,540         56,541         71,872         32,320           47,665         35,775         25,728         25,448         24,455         36,511         50,344         41,758         86,166         36,461           47,665         35,775         25,728         25,448         32,210         47,418         19,032         44,557         68,166         36,461           27,031         37,091         28,273         25,920         25,423         36,451         47,413         19,032         44,710         47,413           45,493         37,091         28,2729         25,423         36,451         53,164         47,413         37,917         64,983         56,865         34,710         47,413           51,060         44,906         37,64         48,233         36,451         47,208         36,461         47,413           45,646         36,614         48,231         36,435         34,710         47,413         47,413         47,413         47,413         47,413         47,413         47,413         47,413         47,413         47,413         47,413         47,416         66,851         44,710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1987          | 52,074 | 48,119 | 41,713 | 39,039 | 36,246 | 42,207 | 37,309 | 50,253  | 70,031  | 42.245  | 51.932  | 73.299 | 584.467   |
| 44,665 $35,755$ $25,748$ $24,260$ $25,611$ $50,344$ $41,738$ $42,280$ $64,175$ $34,381$ $47,445$ $30,153$ $26,738$ $24,452$ $23,3210$ $47,418$ $19,032$ $48,294$ $41,557$ $68,186$ $56,461$ $37,710$ $47,455$ $37,801$ $24,495$ $30,120$ $42,228$ $36,415$ $47,964$ $47,964$ $49,519$ $37,301$ $26,987$ $27,021$ $25,423$ $36,510$ $37,721$ $47,100$ $47,101$ $47,710$ $49,519$ $37,579$ $35,600$ $30,3228$ $32,5160$ $42,7234$ $41,736$ $41,933$ $47,710$ $47,413$ $51,060$ $37,579$ $36,436$ $33,041$ $42,228$ $56,693$ $40,71$ $47,413$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$ $47,710$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1988          | 39,259 | 34,362 | 31,093 | 29,874 | 27,173 | 32,658 | 38,569 | 53,104  | 114,540 | 58,541  | 71.872  | 32.320 | 563.365   |
| 47,445         30,153         26,758         24,452         23,358         33,210         47,418         19,032         48,294         41,557         68,186         36,461           52,283         31,9958         24,441         24,965         30,120         42,483         37,917         63,416         63,575         68,186         37,710           49,519         37,891         28,202         25,920         25,4455         30,120         42,234         56,815         15,1696         53,713         37,917           51,660         37,579         36,861         37,413         36,427         42,234         56,815         34,710         47,113           51,660         37,579         36,603         37,419         36,755         54,413         37,714           32,573         30,906         25,609         25,003         34,749         32,754         54,823         34,711           45,614         43,933         36,755         37,413         36,755         74,244         47,165           32,573         30,906         25,609         37,439         36,755         14,202         76,780         56,888         34,071           45,614         47,385         37,414         37,331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1969          | 44,665 | 35,755 | 25,728 | 25,448 | 24,260 | 42,009 | 25,611 | 50,344  | 41,738  | 42,280  | 64.175  | 34,381 | 456.394   |
| 52,283         31,958         24,441         24,969         24,495         30,120         42,483         37,917         63,416         63,575         74,244         47,964           49,519         37,891         28,223         25,920         25,423         36,500         30,3228         32,5163         108,283         44,710         47,413         37,710           45,519         37,891         28,202         25,423         36,500         30,3228         32,528         36,415         41,606         62,317         37,710           45,493         33,313         26,987         37,679         34,427         42,234         56,851         153,163         108,283         44,710         47,413           51,060         44,906         37,579         35,041         48,273         36,415         49,173           45,5161         43,933         36,703         34,911         37,413         47,103         82,509         42,052           45,5161         43,933         36,717         34,911         37,912         76,590         36,686           46,986         47,215         41,356         42,8333         149,196         76,690         50,688           46,986         47,715         41,357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1990          | 47,445 | 30,153 | 26,738 | 24,452 | 23,358 | 33,210 | 47,418 | 19,032  | 48,294  | 41,557  | 68.186  | 36.461 | 446.304   |
| 49,519         37,891         28,223         25,920         25,423         36,500         30,328         32,528         36,415         41,696         62,317         37,710           45,493         33,313         26,987         27,021         26,079         34,427         42,234         56,851         153,163         108,283         44,710         47,413           51,060         44,906         37,579         35,606         33,041         48,231         36,435         44,293         33,764         64,983         65,885         34,087           32,573         30,906         25,609         25,072         25,130         34,749         42,873         33,764         64,983         65,885         34,071           45,614         43,939         36,580         33,041         48,287         25,919         174,026         258,903         72,442         49,173           45,614         33,0133         36,786         37,054         50,003         36,093         36,656         64,656           45,614         43,515         37,054         50,619         37,656         64,676         64,988         76,666         64,656           46,986         47,215         41,351         47,7136         258,933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1991          | 52,283 | 31,958 | 24,441 | 24,969 | 24,495 | 30,120 | 42,483 | 37,917  | 63,416  | 63,575  | 74.244  | 47.964 | 517,865   |
| 45,493         33,313         26,987         27,021         26,079         34,427         42,234         56,851         153,163         108,283         44,710         47,413           51,060         44,906         37,579         35,606         33,041         48,231         36,435         44,293         33,764         64,983         65,885         34,087           32,573         30,906         25,609         25,072         25,130         34,749         42,872         25,919         174,026         256,903         72,442         49,173           45,614         43,939         36,280         38,121         34,911         37,918         36,029         193,302         330,403         107,968         82,509         42,052           45,614         43,939         36,280         35,227         41,959         26,705         174,376         428,933         149,196         78,690         50,688           42,042         39,133         38,754         43,757         33,614         48,719         114,139         98,773         40,586         47,674           63,933         34,133         36,764         57,618         23,737         34,7485         75,148         45,670         46,676           63,933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1992          | 49,519 | 37,891 | 28,223 | 25,920 | 25,423 | 36,500 | 30,328 | 32,528  | 36,415  | 41,696  | 62,317  | 37.710 | 444.468   |
| $            51,060  44,906  37,579  35,606  33,041  48,231  36,435  44,293  33,764  64,983  65,885  34,087 \\ 32,573  30,906  25,609  25,072  25,130  34,749  42,872  25,919  174,026  258,903  72,442  49,173 \\ 45,614  43,939  36,280  38,121  37,918  36,029  193,302  330,403  107,968  82,509  42,052 \\ 42,042  39,133  38,936  32,993  35,227  41,959  26,705  174,376  428,933  149,196  78,690  50,688 \\ 47,674  43,939  36,281  37,514  37,516  51,912  76,780  39,654  64,676 \\ 63,934  38,733  24,694  27,618  28,307  43,757  33,614  48,719  114,139  98,773  40,586  47,674 \\ 63,334  38,753  24,694  27,618  28,307  43,757  33,614  48,719  114,139  98,773  40,586  64,676 \\ 63,334  38,753  24,694  27,618  28,307  43,757  33,614  48,719  114,139  98,773  40,586  64,676 \\ 63,334  38,753  24,694  27,618  28,307  43,757  33,614  48,719  114,139  98,773  40,586  64,676 \\ 63,334  38,753  24,694  27,618  28,307  33,614  48,719  114,139  98,773  40,586  64,676 \\ 63,334  33,737  24,615  33,617  34,615  32,961  35,306  51,917  34,615  32,914  31,204  52,829  47,657 \\ 54,653  53,454  42,916  33,292  15,627  22,294  42,916  53,261  42,916  53,261  42,916  53,261  42,916  53,261  22,394  42,916  53,261  22,391  46,604 \\ 50,601  36,575  32,525  31,142  28,401  35,742  32,214  61,622  28,83  21,981  46,604 \\ 50,601  36,575  32,525  31,142  28,401  35,742  33,292  15,624  52,893  90,616  63,038  47,360 \\ 50,601  36,575  32,583  19,277  20,053  18,620  24,677  24,409  13,272  20,431  24,630  24,677  24,409  30,516  54,630  24,677  24,409  30,516  54,630  24,677  24,409  30,516  54,630  24,677  24,409  31,272  20,318  91,616  63,030  47,630  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,649  46,6$ | 1993          | 45,493 | 33,313 | 26,987 | 27,021 | 26,079 | 34,427 | 42,234 | 56,851  | 153,163 | 108,283 | 44,710  | 47,413 | 645,974   |
| 32.573 $30.906$ $25,609$ $25,072$ $25,130$ $34,749$ $42,872$ $25,919$ $174,026$ $258,903$ $72,442$ $49,173$ $45,614$ $43,933$ $36,280$ $38,121$ $34,911$ $37,918$ $36,029$ $193,302$ $330,403$ $107,968$ $82,509$ $42,052$ $45,614$ $43,933$ $36,280$ $38,121$ $34,911$ $37,918$ $56,029$ $56,705$ $174,376$ $428,933$ $149,196$ $78,690$ $50,688$ $42,042$ $39,133$ $38,936$ $32,993$ $35,227$ $41,959$ $26,705$ $174,376$ $428,933$ $149,196$ $78,690$ $50,688$ $46,986$ $47,215$ $41,351$ $42,764$ $37,054$ $50,900$ $36,094$ $57,561$ $51,912$ $76,780$ $30,654$ $64,676$ $63,3934$ $38,533$ $24,694$ $27,618$ $28,307$ $43,757$ $33,614$ $48,719$ $114,139$ $98,773$ $40,586$ $47,674$ $63,813$ $38,785$ $34,726$ $47,766$ $36,773$ $40,586$ $57,619$ $23,709$ $31,654$ $22,307$ $45,487$ $40,756$ $36,673$ $34,528$ $30,798$ $36,777$ $32,961$ $35,306$ $51,961$ $62,822$ $22,317$ $36,713$ $31,237$ $25,597$ $25,619$ $23,709$ $31,647$ $35,306$ $51,961$ $62,822$ $24,677$ $51,613$ $31,237$ $25,892$ $23,777$ $36,477$ $19,862$ $32,147$ $38,182$ $23,454$ $40,9616$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1994          | 51,060 | 44,906 | 37,579 | 35,606 | 33,041 | 48,231 | 36,435 | 44,293  | 33,764  | 64,983  | 65,885  | 34,087 | 529.870   |
| 45,614         43,939         36,280         38,121         34,911         37,918         36,029         193,302         330,403         107,968         82,509         42,052           42,042         39,133         38,936         32,993         35,227         41,959         26,705         174,376         428,933         149,196         78,690         50,688           46,986         47,215         41,351         42,764         37,054         50,900         36,094         57,561         51,912         76,780         39,654         64,676           46,986         47,215         41,351         42,763         36,094         57,561         51,912         76,780         39,654         64,676           63,934         36,533         24,694         27,618         28,307         43,753         36,043         114,139         98,773         40,586         47,674           63,813         36,785         37,614         49,230         36,684         64,676         56,689         57,688         47,674           63,813         36,785         37,317         84,153         40,432         67,297         40,586         46,676           51,613         31,237         25,619         42,326         34,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1995          | 32,573 | 30,906 | 25,609 | 25,072 | 25,130 | 34,749 | 42,872 | 25,919  | 174,026 | 258,903 | 72,442  | 49,173 | 797.374   |
| 42,042         39,133         38,936         32,993         35,227         41,959         26,705         174,376         428,933         149,196         78,690         50,688           46,986         47,215         41,351         42,764         37,054         50,900         36,094         57,561         51,912         76,780         39,654         64,676           63,934         38,533         24,694         27,618         28,307         43,757         33,614         48,719         114,139         98,773         40,586         47,674           63,934         38,785         34,138         37,681         37,092         37,737         82,334         104,334         47,673         64,676           63,913         38,785         34,138         37,681         37,651         37,737         82,334         104,334         47,485         75,148         49,230           45,487         40,756         36,673         34,528         30,717         34,615         32,961         35,566         47,674           63,413         27,045         24,816         22,519         24,432         67,297         45,794         84,716         54,653           51,616         22,5619         24,623         33,292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1996          | 45,614 | 43,939 | 36,280 | 38,121 | 34,911 | 37,918 | 36,029 | 193,302 | 330,403 | 107,968 | 82.509  | 42.052 | 1.029.046 |
| 46,986         47,215         41,351         42,764         37,054         50,900         36,094         57,561         51,912         76,780         39,654         64,676           63,934         38,533         24,694         27,618         28,307         43,757         33,614         48,719         114,139         98,773         40,586         47,674           63,813         38,785         34,136         37,681         34,726         40,092         37,737         82,334         104,334         47,485         75,148         49,230           63,813         38,785         34,136         37,681         34,226         40,092         37,737         82,334         104,334         47,485         75,148         49,236           65,813         34,528         30,798         36,717         34,615         32,961         35,306         51,961         62,829         47,857           51,613         31,237         25,597         25,619         23,709         31,545         36,477         38,182         25,882         22,317           39,413         27,045         24,816         22,604         42,916         33,292         15,624         22,296         49,502         63,463         40,804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1997          | 42,042 | 39,133 | 38,936 | 32,993 | 35,227 | 41,959 | 26,705 | 174,376 | 428,933 | 149,196 | 78,690  | 50.688 | 1.138.878 |
| 63,934         38,533         24,694         27,618         28,307         43,757         33,614         48,719         114,139         98,773         40,586         47,674           63,813         36,785         34,136         37,681         34,526         40,092         37,737         82,334         104,334         47,485         75,148         49,230           45,487         40,756         36,673         34,528         30,798         36,717         34,615         32,961         35,306         51,961         62,829         47,857           51,613         31,237         25,597         25,619         23,709         31,545         36,477         19,862         32,147         38,182         26,829         47,857           51,613         31,237         25,597         23,709         31,545         36,477         19,862         32,147         38,182         26,829         47,857           51,613         31,237         25,597         23,709         31,545         36,457         40,586         37,653           51,613         31,237         25,619         27,898         40,567         44,432         67,297         45,794         84,716         54,653           50,008         33,840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1998          | 46,986 | 47,215 | 41,351 | 42,764 | 37,054 | 50,900 | 36,094 | 57,561  | 51,912  | 76.780  | 39.654  | 64.676 | 592.947   |
| 63,813         38,785         34,136         37,681         34,226         40,092         37,737         82,334         104,334         47,485         75,148         49,230           45,487         40,756         36,873         34,528         30,798         36,717         34,615         32,961         35,306         51,961         62,829         47,857           51,613         31,237         25,597         25,619         23,709         31,545         36,477         19,862         32,147         38,182         25,882         22,317           39,413         27,045         24,561         23,709         31,545         36,477         19,862         32,147         38,182         25,882         23,317           39,413         27,045         24,816         23,709         31,545         40,567         44,432         67,297         45,794         84,716         54,653           50,008         33,840         27,848         25,926         49,502         63,464         40,804           50,601         33,840         27,363         26,167         33,292         15,624         22,296         49,502         63,464         40,804           50,501         36,577         38,104         54,409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1999          | 63,934 | 38,533 | 24,694 | 27,618 | 28,307 | 43,757 | 33,614 | 48,719  | 114,139 | 98.773  | 40.586  | 47,674 | 610.348   |
| 45,487         40,756         36,673         34,528         30,798         36,717         34,615         32,961         35,306         51,961         62,829         47,857           51,613         31,237         25,597         25,619         23,709         31,545         36,477         19,862         32,147         38,182         25,882         22,317           39,413         27,045         24,561         24,816         22,855         34,898         40,567         44,432         67,297         45,794         84,716         54,653           39,413         27,045         24,561         24,816         22,855         34,898         40,567         44,432         67,297         45,794         84,716         54,653           50,008         33,840         27,848         25,921         25,6147         31,045         26,136         57,881         31,204         54,870         46,049           50,501         36,575         32,525         31,142         28,214         61,622         128,308         90,616         63,038         47,360           50,501         36,575         32,525         31,142         28,214         61,622         128,308         90,616         63,038         47,390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000          | 63,813 | 36,785 | 34,138 | 37,681 | 34,226 | 40,092 | 37,737 | 82,334  | 104,334 | 47.485  | 75.148  | 49.230 | 645,003   |
| 51,613         31,237         25,597         25,619         23,709         31,545         36,477         19,862         32,147         38,182         25,882         22,317           39,413         27,045         24,561         24,816         22,855         34,898         40,567         44,432         67,297         45,794         84,716         54,653           39,413         27,045         24,561         24,816         22,855         34,898         40,567         44,432         67,297         45,794         84,716         54,653           50,008         33,840         27,848         25,921         25,604         42,916         33,292         15,624         22,296         49,502         63,454         40,804           65,663         34,834         27,363         26,147         31,045         26,136         57,881         31,204         54,870         46,049           50,501         36,575         32,525         31,142         28,401         35,742         38,214         61,622         128,308         90,616         63,038         47,390           50,501         36,575         32,525         31,142         28,464         40,804         32,727         20,431         25,895         26,804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2001          | 45,487 | 40,756 | 36,673 | 34,528 | 30,798 | 36,717 | 34,615 | 32,961  | 35,306  | 51,961  | 62,829  | 47,857 | 490.488   |
| 39,413         27,045         24,561         24,816         22,855         34,898         40,567         44,432         67,297         45,794         84,716         54,653           50,008         33,840         27,848         25,921         25,604         42,916         33,292         15,624         22,296         49,502         63,454         40,804           50,008         33,840         27,363         26,825         22,732         26,147         31,045         26,136         57,881         31,204         54,870         46,049           65,663         34,834         27,363         26,147         31,045         26,136         57,881         31,204         54,870         46,049           50,501         36,575         32,525         31,142         28,401         35,742         38,214         61,622         128,308         90,616         63,038         47,390           32,573         25,283         19,270         20,651         32,727         20,431         25,895         25,882         21,981           32,573         25,283         19,270         20,651         24,409         13,727         20,431         25,895         26,982         21,981           32,573         54,159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2002          | 51,613 | 31,237 | 25,597 | 25,619 | 23,709 | 31,545 | 36,477 | 19,862  | 32,147  | 38,182  | 25,882  | 22,317 | 364,187   |
| 50,008         33,840         27,848         25,921         25,604         42,916         33,292         15,624         22,296         49,502         63,454         40,804         2           65,663         34,834         27,363         26,825         22,732         26,147         31,045         26,136         57,881         31,204         54,870         46,049         4           50,501         36,575         32,555         31,142         28,401         35,742         38,214         61,622         128,308         90,616         63,038         47,390         4           50,501         36,575         32,525         31,142         28,401         35,742         38,214         61,622         128,308         90,616         63,038         47,390         4           32,573         25,283         19,270         20,053         18,6220         24,677         24,409         13,727         20,431         25,882         21,981         3           32,5529         54,159         47,898         40,045         50,900         79,451         302,924         594,902         37,981         31,16         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2003          | 39,413 | 27,045 | 24,561 | 24,816 | 22,855 | 34,898 | 40,567 | 44,432  | 67.297  | 45.794  | 84,716  | 54,653 | 511 047   |
| 65,663         34,834         27,363         26,825         22,732         26,147         31,045         26,136         57,881         31,204         54,870         46,049         4           50,501         36,575         32,525         31,142         28,401         35,742         38,214         61,622         128,308         90,616         63,038         47,390         4           32,573         25,283         19,270         20,053         18,620         24,677         24,409         13,727         20,431         25,895         25,882         21,981         3           32,573         25,219         54,159         47,898         40,045         50,900         79,451         302,924         594,902         370,183         145,327         89,116         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2004          | 50,008 | 33,840 | 27,848 | 25,921 | 25,604 | 42,916 | 33,292 | 15,624  | 22,296  | 49.502  | 63.454  | 40,804 | 431,109   |
| 50,501 36,575 32,525 31,142 28,401 35,742 38,214 61,622 128,308 90,616 63,038 47,390 6<br>32,573 25,283 19,270 20,053 18,620 24,677 24,409 13,727 20,431 25,895 25,882 21,981 8<br>80,046 62,519 54,159 47,898 40,045 50,900 79,451 302,924 594,902 370,183 145,327 89,116 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2005          | 65,663 | 34,834 | 27,363 | 26,825 | 22,732 | 26,147 | 31,045 | 26,136  | 57,881  | 31,204  | 54.870  | 46.049 | 450.749   |
| 32,573 25,283 19,270 20,053 18,620 24,677 24,409 13,727 20,431 25,895 25,882 21,981 28,00,046 62,519 54,159 47,898 40,045 50,900 79,451 302,924 594,902 370,183 145,327 89,116 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVERAGE:      | 50,501 | 36,575 | 32,525 | 31,142 | 28,401 | 35,742 | 38,214 | 61,622  | 128,308 | 90,616  | 63.038  | 47.390 | 644.074   |
| 80,046 62,519 54,159 47,898 40,045 50,900 79,451 302,924 594,902 370,183 145,327 89,116 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MINIMUM:      | 32,573 | 25,283 | 19,270 | 20,053 | 18,620 | 24,677 | 24,409 | 13,727  | 20,431  | 25,895  | 25.882  | 21.981 | 364,187   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAXIMUM:      | 80,046 | 62,519 | 54,159 | 47,898 | 40,045 | 50,900 | 79,451 | 302,924 | 594,902 | 370,183 | 145.327 | 89.116 | 1.707.318 |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River Proposed Action Alternative (CFS)

| (950         251         206         137         119         126         143         227         181         389         169         470           1957         325         254         266         137         119         126         137         557         375         557         339           1955         454         190         224         170         213         148         215         315         517         344         175         344           1955         454         190         207         202         178         256         366         466         476         346         417         344         175         344         174         206         305         154         177         344         176         346         476         476         446         447         446         447         246         446         447         446         447         446         447         446         447         446         446         447         446         447         446         447         446         447         446         447         446         447         446         447         446         447         446         447                                                                                                                             | WATEH<br>YEAR | ост | NON | DEC | JAN | FEB | MAR | APR | МАУ  | JUN        | יור  | AUG | SEP | ANNUAL |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|-----|-----|-----|-----|-----|-----|------|------------|------|-----|-----|--------|
| 224         228         158         154         191         361         315         375         557           257         266         224         209         220         182         515         515         517           257         266         224         209         220         182         555         555         555         575         577           201         157         167         150         170         201         174         174           211         213         203         186         153         203         186         153         203         191           211         213         203         186         153         203         124         174           211         213         203         186         153         203         126         173           211         213         203         186         153         226         136         174           214         174         174         174         174         174         174           211         213         203         166         153         226         246         174           216         173 <th></th> <th>251</th> <th>206</th> <th>137</th> <th>119</th> <th>126</th> <th>148</th> <th>227</th> <th>181</th> <th>389</th> <th>169</th> <th>420</th> <th>282</th> <th>222</th>        |               | 251 | 206 | 137 | 119 | 126 | 148 | 227 | 181  | 389        | 169  | 420 | 282 | 222    |
| 254         246         224         209         220         182         555         2559         466           270         157         167         157         167         157         167         157         167         157         167         156         217         140         154         122           270         267         190         207         156         177         208         215         140         154         122           271         199         163         161         174         208         234         1231         191           271         239         161         173         203         166         153         234         123         131         190           271         213         163         163         153         261         153         203         131         190           282         210         173         288         166         175         212         244         175           286         193         176         244         157         140         157         140         172           211         212         244         167         212                                                                                                                                                                                 |               | 235 | 224 | 228 | 158 | 154 | 191 | 361 | 315  | 375        | 557  | 339 | 482 | 302    |
| 252         190         234         171         206         305         135         315         217           270         267         190         147         206         247         140         154         222           271         157         167         150         717         266         384         174           270         267         190         207         202         173         1563         174           271         139         163         161         174         268         237         1553         1215           271         213         203         186         174         268         237         1553         192           281         237         167         212         249         168         139         192           282         210         224         176         176         275         148         177           282         211         212         147         280         301         1351         190           282         216         184         139         182         275         148         174           282         216         176         1                                                                                                                                                                                        |               | 382 | 254 | 246 | 224 | 209 | 220 | 182 | 555  | 2559       | 486  | 408 | 409 | 510    |
| 225         215         191         147         206         247         140         154         222           210         167         160         160         170         213         114         174           211         190         160         170         213         153         151         174         223           211         190         160         174         288         237         1553         1215           211         213         203         166         173         203         193         192           211         213         203         166         153         224         123         136         175           288         237         167         144         138         232         246           287         210         224         217         240         143         175           286         193         176         167         244         172         246           191         260         174         168         246         171         191         263           286         179         163         176         246         161         177         192<                                                                                                                                                                                        |               | 264 | 252 | 190 | 234 | 171 | 206 | 305 | 135  | 315        | 217  | 344 | 232 | 239    |
| 201         157         167         150         170         214         174           270         267         190         207         156         175         175           211         199         161         174         268         237         1553         1215           254         277         229         213         203         186         153         234         1231         1311         190           288         237         167         212         249         168         153         203         192           288         237         165         212         249         168         133         203         1349           292         210         224         217         240         1351         2590         1349           293         210         212         175         246         161         165         177           293         216         174         166         174         166         279         1349           293         210         212         176         246         161         155         143           193         176         273         166         <                                                                                                                                                                                    |               | 189 | 225 | 215 | 191 | 147 | 206 | 247 | 140  | 154        | 222  | 248 | 230 | 202    |
| 270         267         190         207         202         178         256         364         175           211         199         163         161         174         268         237         1553         1215           254         237         167         212         229         213         203         186         153         329         190           211         213         203         186         153         206         237         1553         190           288         237         167         212         249         166         183         232         246           282         230         184         139         182         275         138         232         246           292         210         124         176         167         212         249         172           191         210         174         168         175         246         161         172           203         211         212         146         156         149         172           203         216         173         216         176         279         146         172           203                                                                                                                                                                                        |               | 454 | 201 | 157 | 167 | 150 | 170 | 213 | 148  | 214        | 174  | 298 | 240 | 216    |
| 211         199         163         161         174         268         237         1553         1215           254         277         229         213         203         161         174         268         234         1311         190           211         213         203         166         153         226         1351         233         203           286         230         213         198         167         212         249         168         1351         2590         1346           286         308         213         198         203         301         1351         2590         1346           195         126         145         163         244         152         249         177           193         276         145         166         176         279         188         177         251           191         212         214         153         144         155         144         172           183         1760         174         169         156         249         170         214           286         199         174         166         176         214                                                                                                                                                                                  |               | 187 | 270 | 267 | 190 | 207 | 202 | 178 | 256  | 364<br>264 | 175  | 415 | 138 | 238    |
| 254         277         229         213         228         234         1231         1311         190           211         213         203         166         153         203         166         153         329         192           288         237         167         212         249         168         153         203         192         203           282         230         214         139         182         275         145         153         232         246           282         210         224         217         240         244         155         170         217           295         126         145         163         240         177         240         241         155         143         177           203         211         212         176         246         161         185         279         177           213         179         166         176         246         161         185         143           216         174         190         267         246         141         251         250         143           2161         176         246         1                                                                                                                                                                                |               | 154 | 211 | 199 | 163 | 161 | 174 | 268 | 237  | 1553       | 1215 | 468 | 233 | 420    |
| 211         213         203         186         153         261         153         329         192           288         237         167         212         249         166         184         139         203         246           286         308         213         198         280         301         1351         2590         1349           295         128         155         145         166         184         176         217         240         217         240         177           295         128         155         145         166         176         216         148         177           203         211         212         176         176         279         185         167         217           203         211         212         176         176         279         186         177           203         211         212         176         168         161         185         204           213         179         168         174         189         206         204           214         188         217         246         161         186         216         2                                                                                                                                                                                |               | 350 | 254 | 277 | 229 | 213 | 228 | 234 | 1231 | 1311       | 190  | 364 | 251 | 429    |
| 288         237         167         212         249         168         189         573         203           331         160         184         139         182         275         138         232         246           262         308         213         198         280         301         1351         2590         1349           292         210         224         175         240         275         145         165         249         172           191         210         174         176         176         278         156         249         172           203         211         212         175         246         161         185         147           218         179         168         176         178         226         204           286         199         174         189         176         148         226         204           281         275         245         174         189         176         133         161         161           286         273         233         216         262         246         161         161         161           281                                                                                                                                                                                        |               | 172 | 211 | 213 | 203 | 186 | 153 | 261 | 153  | 329        | 192  | 246 | 298 | 218    |
| 331         160         184         139         182         275         138         232         246           282         308         213         198         280         301         1351         2590         1349           292         210         224         217         240         244         155         145         163         259         170         217           195         128         155         145         163         279         185         163         172           191         260         193         176         275         246         161         185         143           183         179         168         174         169         257         246         141         256           243         175         245         178         202         303         191         172           285         265         273         237         216         163         233         407           213         212         216         174         166         135         203         161           286         265         273         281         160         273         203         1                                                                                                                                                                                |               | 268 | 288 | 237 | 167 | 212 | 249 | 168 | 189  | 573        | 203  | 295 | 201 | 254    |
| 262         308         213         198         280         301         1351         2590         1349           292         210         224         217         240         244         152         170         217           195         128         155         145         163         288         156         249         172           203         211         212         176         176         279         185         163         172           191         260         193         179         257         246         161         185         204         275           286         199         174         189         190         276         265         204         373           281         188         210         174         166         357         205         963         407           285         265         273         237         251         215         600         2439         1256           213         212         209         333         216         161         166         135         793         185           213         212         216         135         216 <td< th=""><th></th><td>187</td><td>331</td><td>160</td><td>184</td><td>139</td><td>182</td><td>275</td><td>138</td><td>232</td><td>246</td><td>403</td><td>391</td><td>239</td></td<> |               | 187 | 331 | 160 | 184 | 139 | 182 | 275 | 138  | 232        | 246  | 403 | 391 | 239    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 463 | 262 | 308 | 213 | 198 | 280 | 301 | 1351 | 2590       | 1349 | 334 | 147 | 651    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 244 | 292 | 210 | 224 | 217 | 240 | 244 | 152  | 170        | 217  | 229 | 431 | 239    |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 344 | 195 | 128 | 155 | 145 | 163 | 288 | 156  | 249        | 172  | 171 | 220 | 199    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 142 | 203 | 211 | 212 | 176 | 176 | 279 | 185  | 405        | 251  | 296 | 152 | 224    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 160 | 191 | 260 | 193 | 179 | 257 | 246 | 161  | 185        | 143  | 374 | 180 | 211    |
| 266         199         174         189         190         287         140         393         191           281         188         210         174         166         135         205         963         407           285         265         273         237         251         215         600         2439         1256           285         265         273         237         251         215         600         2439         1256           213         212         209         207         313         216         163         793         185           213         212         209         207         313         216         163         793         185           213         212         209         207         313         216         163         793         185           213         2147         190         243         230         650         1383         440           288         231         247         190         243         233         566           213         192         213         175         264         140         303         566           233                                                                                                                                                                                                 |               | 287 | 183 | 179 | 168 | 161 | 262 | 136 | 148  | 226        | 204  | 293 | 277 | 211    |
| 281         188         210         174         166         135         205         963         407           243         175         245         178         202         308         665         1300         519           285         265         273         237         251         216         600         2439         1256           213         212         209         207         313         216         163         793         185           213         212         209         207         313         216         163         793         185           213         212         209         207         313         216         163         793         185           213         192         191         213         175         264         140         303         566           213         192         191         213         175         264         140         303         566           239         156         146         201         149         201         149         201           230         161         177         192         264         140         303         566                                                                                                                                                                                          |               | 284 | 266 | 199 | 174 | 189 | 190 | 287 | 140  | 393        | 191  | 143 | 375 | 235    |
| 243       175       245       178       202       308       665       1300       519         285       265       273       237       251       215       600       2439       1256         213       212       209       207       313       216       163       793       185         215       182       188       176       313       216       163       793       185         215       182       188       176       184       240       198       1611       1606         286       231       247       190       243       230       650       1383       440         286       231       176       182       176       149       298       201         233       156       145       213       177       192       203       566         233       156       145       224       149       303       566       201         233       156       146       224       177       192       494         255       230       161       224       177       192       201         256       230       156                                                                                                                                                                                                                                                                                           |               | 282 | 281 | 188 | 210 | 174 | 166 | 135 | 205  | 963        | 407  | 213 | 294 | 293    |
| 285         265         273         237         251         215         600         2439         1256           213         212         209         207         313         216         163         733         185           213         212         209         207         313         216         163         733         185           215         182         188         176         184         240         198         1611         1606           288         231         247         190         243         230         650         1383         440           288         231         247         190         243         230         650         1383         440           280         231         192         161         213         175         264         140         303         566           239         156         145         135         264         177         192         494           255         230         161         272         202         149         298         201           255         233         161         177         192         374         227                                                                                                                                                                                                   |               | 137 | 243 | 175 | 245 | 178 | 202 | 308 | 665  | 1300       | 519  | 225 | 226 | 368    |
| 213       212       209       207       313       216       163       793       185         215       182       188       176       184       240       198       1611       1606         288       231       247       190       243       230       650       1383       440         288       231       247       190       243       230       650       1383       440         280       231       247       190       243       230       650       1383       440         213       192       191       213       175       264       140       303       566         239       156       145       135       161       224       177       192       201         233       156       145       172       202       154       192       374       227         241       197       232       159       199       216       226       355       243         210       200       266       191       186       2154       192       374       227         210       200       202       154       192       226                                                                                                                                                                                                                                                                                   |               | 271 | 285 | 265 | 273 | 237 | 251 | 215 | 600  | 2439       | 1256 | 369 | 286 | 562    |
| 215       182       188       176       184       240       198       1611       1606         288       231       247       190       243       230       650       1383       440         286       231       247       190       243       230       650       1383       440         213       192       191       213       175       264       140       303       566         226       170       202       161       275       201       149       298       201         233       156       145       135       161       224       177       192       494         233       156       145       172       202       154       192       374       227         241       197       232       159       199       212       156       520       355         210       200       266       191       186       266       520       355         210       200       266       199       216       224       177       192       374       227         210       200       266       199       216       266       <                                                                                                                                                                                                                                                                             |               | 327 | 213 | 212 | 209 | 207 | 313 | 216 | 163  | 793        | 185  | 405 | 201 | 287    |
| 288         231         247         190         243         230         650         1383         440           213         192         191         213         175         264         140         303         566           226         170         202         163         202         201         149         298         201           239         156         145         135         161         224         177         192         494           239         156         145         135         161         224         177         192         494           255         230         161         172         202         154         192         374         227           241         197         232         159         199         212         260         520         355           210         200         266         191         186         272         260         520         355           210         200         266         191         160         186         272         224         273         265         243           210         200         266         199         272         224                                                                                                                                                                                |               | 169 | 215 | 182 | 188 | 176 | 184 | 240 | 198  | 1611       | 1606 | 342 | 272 | 449    |
| 213       192       191       213       175       264       140       303       566         226       170       202       163       202       201       149       298       201         239       156       145       135       161       224       177       192       494         255       230       161       172       202       154       192       374       227         241       197       232       159       199       212       260       520       355         210       200       266       191       186       212       260       520       355         210       200       266       191       186       272       260       520       355         213       175       127       125       168       272       224       295       243         240       169       191       160       186       198       174       347       282                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 568 | 288 | 231 | 247 | 190 | 243 | 230 | 650  | 1383       | 440  | 381 | 221 | 398    |
| 226       170       202       163       202       201       149       298       201         239       156       145       135       161       224       177       192       494         255       230       161       172       202       154       192       374       227         241       197       232       159       199       212       260       520       355         210       200       266       191       186       212       260       520       355         210       200       266       191       186       272       260       520       355         213       175       127       125       168       272       224       295       243         240       169       191       160       186       198       174       347       282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 278 | 213 | 192 | 191 | 213 | 175 | 264 | 140  | 303        | 566  | 296 | 245 | 257    |
| 239       156       145       135       161       224       177       192       494         255       230       161       172       202       154       192       374       227         241       197       232       159       199       212       260       520       355         210       200       266       191       186       266       195       1238       671         213       175       127       125       168       272       224       295       243         213       175       127       125       168       272       224       295       243         240       169       191       160       186       198       174       347       282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 207 | 226 | 170 | 202 | 163 | 202 | 201 | 149  | 298        | 201  | 284 | 291 | 216    |
| 255       230       161       172       202       154       192       374       227         241       197       232       159       199       212       260       520       355         210       200       266       191       186       266       195       1238       671         213       175       127       125       168       272       224       295       243         240       169       191       160       186       198       174       347       282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 282 | 239 | 156 | 145 | 135 | 161 | 224 | 17   | 192        | 494  | 502 | 172 | 241    |
| 241         197         232         159         199         212         260         520         355           210         200         266         191         186         266         193         671           210         200         266         191         186         266         195         1238         671           213         175         127         125         168         272         224         295         243           240         169         191         160         186         198         174         347         282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 317 | 255 | 230 | 161 | 172 | 202 | 154 | 192  | 374        | 227  | 195 | 228 | 226    |
| 210         200         266         191         186         266         195         1238         671           213         175         127         125         168         272         224         295         243           240         169         191         160         186         198         174         347         282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 160 | 241 | 197 | 232 | 159 | 199 | 212 | 260  | 520        | 355  | 282 | 202 | 252    |
| 213 175 127 125 168 272 224 295 243<br>240 169 191 160 186 198 174 347 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _             | 175 | 210 | 200 | 266 | 191 | 186 | 266 | 195  | 1238       | 671  | 226 | 292 | 342    |
| 240 169 191 160 186 198 174 347 282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 196 | 213 | 175 | 127 | 125 | 168 | 272 | 224  | 295        | 243  | 403 | 302 | 229    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 229 | 240 | 169 | 191 | 160 | 186 | 198 | 174  | 347        | 282  | 258 | 136 | 214    |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River Proposed Action Alternative (CFS)

| WATER    |     |      |     |     |     |     |     |       |            |       |            |          |          |
|----------|-----|------|-----|-----|-----|-----|-----|-------|------------|-------|------------|----------|----------|
| YEAR     | ο   | NOV  | DEC | JAN | FEB | MAR | APR | MAY   | NUL        | JUL   | AUG        | SEP      | ANNUAL   |
| 1983     | 159 | 214  | 285 | 195 | 237 | 188 | 303 | 150   | 1984       | 2075  | 057        | Noc      | AVG      |
| 1984     | 332 | 290  | 325 | 224 | 243 | 221 | 286 | LCVC  | EDEF       |       | 500        |          | ,0-07    |
| 1985     | 446 | 364  | 280 | 277 | 237 | 261 | 145 | 736   |            | 2222  | 000        | n n<br>n | 5/01     |
| 1986     | 295 | 399  | 282 | 252 | 182 | 135 | 256 | 200   | 0000       |       | 714        | 200      | 000      |
| 1987     | 321 | 278  | 241 | 233 | 216 | 217 | 125 |       |            | 500   | - 70       | 5        | 200      |
| 1988     | 192 | 261  | BUC | 200 |     |     | 3 5 |       | 000        | 8/1   | 797        | 162      | 233      |
| 1080     | 101 |      |     | 3   | 2 3 | 213 | 501 | 197   | 1001       | 303   | 485        | 203      | 304      |
|          |     | 007  | 185 | 168 | 198 | 259 | 135 | 196   | 275        | 275   | 215        | 249      | 215      |
| 1994     | 9/1 | /12  | 195 | 160 | 178 | 251 | 257 | 137   | 418        | 178   | 485        | 314      | 247      |
| 1991     | 545 | 270  | 172 | 167 | 157 | 210 | 271 | 171   | 345        | 187   | 217        | 211      | 228      |
| 2861     | 209 | 606  | 209 | 190 | 197 | 271 | 220 | 247   | 222        | 230   | 664        | 328      | 275      |
| 1993     | 328 | 301  | 187 | 168 | 172 | 208 | 283 | 266   | 555        | 267   | 255        | 340      | 212      |
| 5661     | 395 | 325  | 238 | 223 | 214 | 289 | 239 | 222   | 232        | 267   | 315        | 267      | 280      |
| 1995     | 255 | 256  | 179 | 170 | 200 | 243 | 301 | 138   | 902        | 1167  | 461        | 373      | 388      |
| 1996     | 309 | 303  | 235 | 291 | 267 | 258 | 156 | 1233  | 1891       | 587   | 238        | 304      | 515<br>0 |
| 1997     | 346 | 308  | 291 | 240 | 366 | 231 | 205 | 1254  | 2571       | 1022  | 20g        | 252      |          |
| 1998     | 283 | 305  | 255 | 274 | 228 | 264 | 234 | 142   | 218        | 303   | 080        | 306      | 040      |
| 1999     | 396 | 353  | 192 | 232 | 229 | 331 | 245 | 156   | 571        | 280   | 970<br>970 | 111      |          |
| 2000     | 313 | 246  | 204 | 251 | 253 | 263 | 258 | 720   | 215<br>215 | 160   |            | - 6      | 000      |
| 2001     | 239 | 256  | 260 | 213 | 223 | 254 | 203 | 231   | 246        | 305   |            | 0.00     | 223      |
| 2002     | 257 | 221  | 176 | 168 | 152 | 185 | 156 | 151   | 100        |       |            | 4 1      |          |
| 2003     | 165 | 212  | 161 |     |     |     | -   |       | 2          | 107   | 201        | /11      | 1/6      |
| VUUC     | 240 | 1 00 |     |     | 501 | 202 | 155 | 537   | 778        | 309   | 453        | 442      | 327      |
| 1002     | 241 | 523  | RSZ | 220 | 229 | 367 | 270 | 160   | 198        | 243   | 614        | 379      | 291      |
| 2002     | 516 | EEE  | 219 | 217 | 178 | 183 | 207 | 214   | 461        | 287   | 265        | 245      | 277      |
| AVEHAGE: | 268 | 259  | 214 | 203 | 192 | 219 | 234 | 372   | 870        | 502   | 357        | 274      | 331      |
|          | 137 | 183  | 128 | 119 | 125 | 135 | 135 | 135   | 136        | 143   | 102        | 117      | 176      |
| MAXIMUM: | 516 | 399  | 325 | 291 | 366 | 367 | 361 | 2,427 | 5,055      | 2,975 | 957        | 482      | 1.073    |
|          |     |      |     |     |     |     |     |       |            |       |            |          | 2.21.    |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River Proposed Action Alternative (AF)

| WATER<br>YEAR                                                                                      | ост    | NON    | DEC    | JAN    | FEB    | MAR    | APR    | MAY    | NUL                | ากเ    | AUG    | SEP    | TOTAL   |
|----------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------------------|--------|--------|--------|---------|
| 1950                                                                                               | 15,425 | 12,265 | 8,395  | 7,328  | 7,004  | 9,100  | 13,537 | 11.145 | 23.144             | 10.410 | 25.817 | 16,809 | 160 379 |
| 1951                                                                                               | 14,451 | 13,352 | 14,007 | 9,699  | 8,561  | 11,734 | 21,476 | 19,392 | 22 344             | 34,238 | 20,833 | 28.688 | 218 775 |
| 1952                                                                                               | 23,506 | 15,086 | 15,117 | 13,785 | 11,594 | 13,500 | 10,843 | 34,120 | 152,248            | 29,908 | 25,101 | 24.310 | 369,118 |
| 1953                                                                                               | 16,227 | 15,022 | 11,679 | 14,405 | 9,478  | 12,665 | 18,130 | 8,310  | 18,743             | 13,355 | 21,165 | 13.790 | 172.969 |
| 1954                                                                                               | 11,629 | 13,402 | 13,250 | 11,721 | 8,165  | 12,646 | 14,695 | 8,618  | 9,187              | 13,677 | 15,227 | 13,713 | 145.930 |
| 1955                                                                                               | 27,896 | 11,984 | 9,647  | 10,258 | 8,339  | 10,479 | 12,682 | 6,097  | 12,737             | 10,719 | 16,347 | 14,300 | 156,485 |
| 1956                                                                                               | 11,487 | 16,040 | 16,439 | 11,653 | 11,487 | 12,402 | 10,578 | 15,724 | 21,643             | 10,770 | 25,511 | 8,212  | 171,946 |
| 1957                                                                                               | 9,463  | 12,582 | 12,219 | 10,028 | 8,950  | 10,700 | 15,954 | 14,571 | 92,394             | 74,707 | 28,756 | 13,878 | 304,202 |
| 1958                                                                                               | 21,511 | 15,124 | 17,046 | 14,102 | 11,844 | 14,037 | 13,923 | 75,688 | 77,996             | 11,673 | 22,394 | 14,927 | 310,265 |
| 1959                                                                                               | 10,589 | 12,529 | 13,118 | 12,482 | 10,330 | 9'386  | 15,511 | 9,420  | 19,572             | 11,782 | 15,108 | 17,748 | 157,575 |
|                                                                                                    | 16,456 | 17,111 | 14,579 | 10,249 | 11,765 | 15,285 | 9,982  | 11,607 | 34,077             | 12,496 | 18,113 | 11,958 | 183,678 |
| 1961                                                                                               | 11,521 | 19,701 | 9,826  | 11,314 | 7,732  | 11,208 | 16,353 | 8,490  | 13,790             | 15,136 | 24,775 | 23,291 | 173,137 |
| 1962                                                                                               | 28,443 | 15,599 | 18,926 | 13,070 | 11,020 | 17,219 | 17,930 | 83,065 | 154,138            | 82,969 | 20,512 | 8,770  | 471,661 |
| 206                                                                                                | 14,976 | 17,352 | 12,921 | 13,795 | 12,072 | 14,744 | 14,544 | 9,329  | 10,124             | 13,349 | 14,051 | 25,644 | 172,901 |
| 506<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 21,175 | 11,581 | 7,866  | 9,519  | 8,030  | 10,010 | 17,134 | 9,585  | 14,841             | 10,569 | 10,521 | 13,116 | 143,947 |
| 1965                                                                                               | 8,739  | 12,080 | 12,958 | 13,022 | 9,785  | 10,839 | 16,609 | 11,373 | 24,092             | 15,425 | 18,208 | 9,054  | 162,184 |
| 1966                                                                                               | 9,862  | 11,383 | 15,980 | 11,878 | 9,950  | 15,800 | 14,642 | 9,898  | 10,979             | 8,796  | 23,012 | 10.721 | 152.901 |
| 1967                                                                                               | 17,618 | 10,892 | 11,026 | 10,347 | 8,926  | 16,132 | 8,105  | 9,126  | 13,454             | 12,534 | 18,040 | 16,481 | 152,681 |
| 1968                                                                                               | 17,454 | 15,830 | 12,209 | 10,705 | 10,504 | 11,680 | 17,090 | 8,578  | 23,374             | 11,723 | 8,767  | 22,337 | 170,251 |
| 1969                                                                                               | 17,367 | 16,711 | 11,579 | 12,887 | 9,645  | 10,230 | 8,033  | 12,575 | 57,320             | 25,016 | 13,127 | 17.523 | 212,013 |
| 1970                                                                                               | 8,394  | 14,434 | 10,750 | 15,045 | 9,865  | 12,427 | 18,333 | 40,874 | 77,367             | 31,918 | 13,840 | 13,477 | 266,724 |
| 1261                                                                                               | 16,684 | 16,933 | 16,316 | 16,759 | 13,185 | 15,414 | 12,765 | 36,921 | 145,108            | 77,205 | 22,704 | 17,032 | 407,026 |
| 1972                                                                                               | 20,081 | 12,680 | 13,047 | 12,874 | 11,521 | 19,243 | 12,870 | 10,048 | 47,170             | 11,364 | 24,920 | 11,964 | 207,782 |
| 6/6L                                                                                               | 10,396 | 12,819 | 11,193 | 11,541 | 9,776  | 11,314 | 14,266 | 12,170 | 95,835             | 677,86 | 21,039 | 16,193 | 325,321 |
| 1974                                                                                               | 16,501 | 17,143 | 14,228 | 15,160 | 10,559 | 14,960 | 13,688 | 39,943 | 82,281             | 27,063 | 23,444 | 13,177 | 288,147 |
| 9/61                                                                                               | 17,071 | 12,672 | 11,779 | 11,749 | 11,832 | 10,775 | 15,691 | 8,621  | 18,009             | 34,827 | 18,171 | 14,600 | 185,797 |
| 1976                                                                                               | 12,737 | 13,424 | 10,472 | 12,429 | 9,055  | 12,407 | 11,945 | 9,133  | 17,711             | 12,336 | 17,482 | 17,303 | 156,434 |
| 197                                                                                                | 17,354 | 14,245 | 9,620  | 8,887  | 7,509  | 9,887  | 13,328 | 10,864 | 11,440             | 30,368 | 30,882 | 10,259 | 174,643 |
| 1978                                                                                               | 19,492 | 15,201 | 14,124 | 9,887  | 9,569  | 12,419 | 9,173  | 11,816 | 22 <sub>2</sub> 84 | 13,984 | 11,960 | 13,595 | 163,504 |
| 6/61                                                                                               | 9,852  | 14,355 | 12,115 | 14,291 | 8,834  | 12,252 | 12,612 | 15,986 | 30,959             | 21,804 | 17,335 | 11,999 | 182,394 |
| 1980                                                                                               | 10,747 | 12,488 | 12,301 | 16,327 | 10,632 | 11,443 | 15,853 | 12,011 | 73,653             | 41,229 | 13,879 | 17,375 | 247,938 |
| 1981                                                                                               | 12,047 | 12,701 | 10,786 | 7,805  | 6,959  | 10,310 | 16,197 | 13,790 | 17,574             | 14,958 | 24,772 | 17,957 | 165,856 |
| 7948L                                                                                              | 14,103 | 14,272 | 10,408 | 11,725 | 8,893  | 11,442 | 11,770 | 10,676 | 20,637             | 17,338 | 15,853 | 8,112  | 155,229 |

Simulated Flows at Colorado River below the Confluence with the Williams Fork River Proposed Action Alternative (AF)

| WATTER   |        |        |        |        |        |        |        |         |         |         |        | ſ      |         |
|----------|--------|--------|--------|--------|--------|--------|--------|---------|---------|---------|--------|--------|---------|
| YEAR     | 007    | NON    | DEC    | JAN    | FEB    | MAR    | АРЯ    | MAY     | NNr     | JUL     | AUG    | SEP    | TOTAL   |
| 1983     | 9.756  | 12,711 | 17,547 | 11,962 | 13,168 | 11,576 | 18,044 | 9,196   | 118.060 | 182.933 | 58.875 | 17.474 | 481.302 |
| 1984     | 20,416 | 17,277 | 19,961 | 13,803 | 13,481 | 13,610 | 16,999 | 149.208 | 300,792 | 142.838 | 49.474 | 18.749 | 776,608 |
| 1985     | 27,431 | 21,651 | 17,229 | 17,035 | 13,149 | 16,025 | 8,600  | 45,262  | 122.041 | 41.056  | 16.826 | 15.331 | 361.636 |
| 1986     | 18,159 | 23,762 | 17,368 | 15,508 | 10,090 | 8,301  | 15,225 | 61,183  | 190,395 | 83,539  | 19,714 | 18,187 | 481.431 |
| 1987     | 19,752 | 16,540 | 14,806 | 14,322 | 12,004 | 13,327 | 8,033  | 11,929  | 21,205  | 10,935  | 16,429 | 9,655  | 168,937 |
| 1988     | 11,795 | 15,529 | 12,800 | 13,621 | 12,139 | 13,101 | 9,096  | 12,093  | 59,565  | 18,648  | 29,807 | 12.107 | 220,301 |
| 1989     | 10,282 | 15,217 | 11,445 | 10,306 | 11,023 | 15,913 | 8,033  | 12,048  | 16,345  | 16,893  | 13.231 | 14.789 | 155,525 |
| 1990     | 10,831 | 12,920 | 11,963 | 9,813  | 9,866  | 15,428 | 15,276 | 8,433   | 24,856  | 10,928  | 29,807 | 18,695 | 178,816 |
| 1991     | 21,436 | 16,055 | 10,563 | 10,255 | 8,714  | 12,919 | 16,110 | 10,869  | 20,538  | 11,507  | 13,363 | 12,537 | 164,866 |
| 1992     | 12,876 | 18,381 | 12,828 | 11,675 | 10,962 | 16,675 | 13,107 | 15,160  | 13,226  | 14,161  | 40,857 | 19,500 | 199,408 |
| 1993     | 20,149 | 17,923 | 11,511 | 10,304 | 9,538  | 12,790 | 16,852 | 16.342  | 33,022  | 16,405  | 15,660 | 20,221 | 200,717 |
| 1994     | 24,302 | 19,323 | 14,618 | 13,733 | 11,898 | 17,748 | 14,209 | 13,664  | 13,780  | 16,392  | 19,348 | 15,859 | 194,874 |
| 1995     | 15,674 | 15,239 | 11,004 | 10,453 | 11,093 | 14,929 | 17,884 | 8,457   | 53,676  | 71,770  | 28,355 | 22,216 | 280.750 |
| 1996     | 18,991 | 18,052 | 14,453 | 17,911 | 14,854 | 15,853 | 9,280  | 75,832  | 118,503 | 36,078  | 14,660 | 19.274 | 373.741 |
| 1997     | 21,298 | 18,312 | 17,887 | 14,749 | 20,351 | 14,188 | 12,172 | 77,129  | 152,997 | 62,870  | 36,850 | 14,969 | 463.572 |
| 1998     | 17,395 | 18,172 | 15,681 | 16,828 | 12,681 | 16,238 | 13,942 | 8,713   | 12,986  | 18,649  | 14,243 | 17,598 | 183,126 |
| 1999     | 24,331 | 21,034 | 11,834 | 14,288 | 12,718 | 20,355 | 14,604 | 9,586   | 33,986  | 17,755  | 16,747 | 24,479 | 221,717 |
| 2000     | 19,267 | 14,648 | 12,572 | 15,447 | 14,070 | 16,199 | 15,325 | 44,267  | 18,747  | 9,949   | 30,956 | 22,576 | 234,023 |
| 2001     | 14,704 | 15,207 | 15,990 | 13,073 | 12,397 | 15,589 | 13,272 | 14,196  | 14,640  | 12,647  | 33,420 | 18,682 | 193.817 |
| 2002     | 15,820 | 13,128 | 10,806 | 10,319 | 8,435  | 11,375 | 9,294  | 9,258   | 8,110   | 17,305  | 6,264  | 6.979  | 127.093 |
| 2003     | 10,151 | 12,610 | 9,875  | 9,253  | 9,065  | 12,800 | 20,270 | 33,017  | 46,319  | 18,983  | 27,874 | 26.294 | 236.511 |
| 2004     | 15,165 | 19,209 | 14,610 | 13,501 | 12,708 | 22,581 | 16,051 | 9,812   | 11,788  | 14,961  | 37,783 | 22,523 | 210,692 |
| 2005     | 31,721 | 19,842 | 13,456 | 13,337 | 9,868  | 11,281 | 12,290 | 13,156  | 27,434  | 17,629  | 16,264 | 14,593 | 200,871 |
| AVERAGE: | 16,481 | 15,388 | 13,156 | 12,468 | 10,672 | 13,444 | 13,932 | 22,882  | 51,772  | 30,844  | 21,969 | 16,279 | 239,288 |
|          | 8,394  | 10,892 | 7,866  | 7,328  | 6,959  | 8,301  | 8,033  | 8,310   | 8,110   | 8,796   | 6,264  | 6,979  | 127,093 |
| MAXIMUM: | 31,721 | 23,762 | 19,961 | 17,911 | 20,351 | 22,581 | 21,476 | 149,208 | 300,792 | 182,933 | 58,875 | 28,688 | 776,608 |

Simulated Flows at Middle Fork South Platte River below Montgomery Reservoir Proposed Action Alternative (CFS)

| 1950       3       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YEAR | ост          | NON | DEC | JAN | FEB | MAR | APR | MAY      | Nnr                                                                                              | nr        | AUG      | SEP       |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|-----|-----|-----|-----|-----|-----|----------|--------------------------------------------------------------------------------------------------|-----------|----------|-----------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1950 | 3            | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 95        | at<br>At | 0         | AVG |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1951 | ო            | 0   | 0   | 0   | C   | c   | • • | <u> </u> | 2 5                                                                                              | 86        | 0 4      | თი        | - ; |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1952 | ო            | 0   | 0   | 0   | 0   | 00  | • • | 0        | e e                                                                                              | 000       | 0 4      | ה כ       | = ; |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1953 | ო            | 0   | 0   | 0   | 0   |     | • • | 0 0      | 2 5                                                                                              | 500       | 0 4      | ΣC        | = ; |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1954 | ო            | 0   | 0   | 0   | 00  | 00  |     | 0        | 7 q                                                                                              | 20        | <u> </u> | סמ        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1955 | ო            | 0   | 0   | 0   | 0   | 00  |     | 6        | 54                                                                                               |           | ţά       | ה מ       | Ω • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1956 | ю            | 0   | 0   | 0   | 0   | 0   | •   | 61       | 5 <del>6</del> 4                                                                                 | 50        | 5 ¥      | b C       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1957 | ო            | 0   | 0   | 0   | 0   | 0   | •   | 61       | 4<br>5<br>7                                                                                      | 88        | <u>5</u> | סמ        | = ; |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1958 | ო            | 0   | 0   | 0   | 0   | 0   | -   | 19       | 2<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 88        | <u></u>  | סמ        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1959 | ო            | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 9 66<br>9 | 16       | 5 0       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1960 | ო -          | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | 0         | ; ; |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1961 | ი -          | 0   | 0   | 0   | 0   | 0   | -   | 19       | <del>6</del> 4                                                                                   | 39        | 21       | თ         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1962 | <b>с</b> о   | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | თ         | : = |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202  | m (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | £                                                                                                | 39        | 55       | 0         | 14  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 505  | ლ (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | 6         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 365  | ი (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | <b>£</b>                                                                                         | 39        | 16       | 0         | ÷   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | m (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | £ <del>3</del>                                                                                   | 39        | 21       | 6         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /95  | m (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | £                                                                                                | 39        | 16       | 6         | ÷   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | m (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | £ <del>3</del>                                                                                   | 39        | 16       | o         | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 696  | m (          |     | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | o         | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 970  | <b>с</b> о ( | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | 6         | : = |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | <b>с</b> о   | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | б         | ÷   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 216  | m (          | 0   | 0   | 0   | 0   | 0   |     | 19       | 43                                                                                               | 39        | 16       | 0         | ÷   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 973  | ი ი          | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | 6         | =   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 974  | ი ი          | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | в         | =   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/5  | m            | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | ი         | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 976  | ი 1          | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | 6         | ÷   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/6  | m (          | 0   | 0   | 0   | 0   | 0   |     | 19       | 43                                                                                               | 39        | 30       | <u></u> б | 12  |
| $\begin{array}{c} & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & &$ | 9/8  |              | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | 6         | 11  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/6  | ი ი          | 0   | 0   | o   | 0   | 0   | -   | 19       | 43                                                                                               | 30        | 16       | б         | ŧ   |
| 3         0         0         0         19         43         39           3         0         0         0         0         0         43         39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 980  | ი ი          | 0   | 0   | 0   | 0   | 0   | -   | 19       | £                                                                                                | 39        | 16       | თ         | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | m (          | 0   | 0   | 0   | 0   | 0   | -   | 19       | £ <del>3</del>                                                                                   | 39        | 43       | თ         | 13  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 982  | ო            | 0   | 0   | 0   | 0   | 0   | -   | 19       | 43                                                                                               | 39        | 16       | o         | ÷   |

Simulated Flows at Middle Fork South Platte River below Montgomery Reservoir Proposed Action Alternative (CFS)

| YEAR<br>1983<br>1985<br>1985 |          |     |     | TAN      |            |            |          |            |     |           |            | -   | <b>ANNI A</b> |
|------------------------------|----------|-----|-----|----------|------------|------------|----------|------------|-----|-----------|------------|-----|---------------|
| 1983<br>1984<br>1985         |          |     | מבר | NAL      | 155        | MAH        | APR      | MAY        | NUL | JUL       | AUG        | SEP |               |
| 1984<br>1985<br>1986         | ო        | 0   | 0   | 0        | 0          | 0          | <br>     | 19         | 43  | 30        | 18         |     | Per -         |
| 1985<br>1986                 | <b>с</b> | 0   | 0   | C        | c          |            | •        | 2 -        | Ş   | 8         | 2 4        | המ  | = ;           |
| 1986                         | e?       | c   |     |          | o (        | 0 0        | - ,      | <u>מ</u>   | ŋ ( | 20        | 91         | 5)  |               |
|                              |          | 5 0 | > ( | 5        | 5          | 5          | -        | 19         | 43  | 39        | 16         | 6   | ÷             |
|                              | ומ       | 0   | 0   | 0        | 0          | 0          | -        | 19         | 43  | <u> 3</u> | 16         | 6   | Ŧ             |
| 1881                         | n        | 0   | 0   | 0        | 0          | 0          | -        | 19         | 43  | 39        | 16         | α   | ÷             |
| 1988                         | ო        | 0   | 0   | 0        | 0          | 0          | -        | 19         | 43  | 08        | 9.1        | 0   |               |
| 1989                         | ო        | 0   | 0   | 0        | 0          | 0          | ÷        | 19         | 43  | 200       | 9 F        | 0   | : :           |
| 1990                         | 2        | 0   | 0   | 0        | C          | c          | c        | P1         | 76  | 8         |            | 1 6 |               |
| 1991                         | 4        | C   | С   | c        | o c        | ) c        |          | <u>r</u> 4 |     | 8 8       | <u>+</u> ( | - ( | 2             |
| 1000                         | -        | Ċ   | o c | <b>.</b> | <b>)</b> ( | 5 0        | <b>.</b> | 2          | 43  | 3/        | /1         | 5   |               |
|                              | - c      | 5 0 | 5 0 | 5        | 0          | 0          | -        | 26         | 37  | 81        | 17         | 7   | 14            |
| 5661                         | N        | 0   | 0   | 0        | 0          | 0          | 0        | 19         | 57  | 57        | 24         | 80  | 14            |
| 1994                         | ß        | 0   | 0   | 0        | 0          | 0          | 2        | 25         | 47  | 15        | 11         | 6   | σ             |
| 1995                         | വ        | 0   | 0   | 0        | 0          | 0          | 0        | ო          | 50  | 83        | 32         | 14  | 16            |
| 9661                         | 2        | 0   | 0   | 0        | 0          | 0          | 16       | 23         | 62  | 36        | 13         | 00  | 14            |
| 1997                         | ო        | 0   | 0   | 0        | 0          | 0          | 0        | 23         | 49  | 39        | 25         | 16  | : ç           |
| 1998                         | 9        | 0   | 0   | 0        | 0          | 0          | 0        | ~          | 20  | 40        | } 0        | 2 - | <u></u>       |
| 1999                         | 4        | -   | 0   | 0        | 0          | 0          | 0        | 14         | 43  | 50        | 25         | ÷   | <u>ې</u> د    |
| 2000                         | 4        | 0   | 0   | 0        | 0          | 0          | 0        | 31         | 42  | 26        | 16         | 10  | 1 5           |
| 2001                         | 0        | 0   | 0   | 0        | 0          | 0          | 0        | 8          | 52  | 2 8       | e t        | 1α  | 2 ç           |
| 2002                         | 2        | 0   | 0   | 0        | 0          | 0          | c        | 0<br>1     | 5 C | } u       | 2 6        |     | <u>v</u> a    |
| 2003                         | 0        | 0   | 0   | C        | С          | c          |          | 35         | - 4 | 0 0       | 5          | ‡   | 0             |
| 2004                         | Ċ        |     | • c | ) C      | 0 0        | <b>)</b> ( | 5 0      | Ç İ        | 00  | 5         | 13         | 5   | 11            |
| 2005                         |          | > ( | 5 ( | 5        | 5          | 0          | 0        | 17         | 25  | 21        | 23         | 4   | œ             |
|                              | _        | 0   | 0   | 0        | 0          | 0          | 0        | 15         | 23  | 37        | 13         | 7   | 60            |
|                              |          | 0   | 0   | 0        | 0          | 0          | ٢        | 19         | 43  | 88        | 19         | 6   | 1             |
|                              | 0        | 0   | 0   | 0        | 0          | 0          | 0        | ო          | 13  | 5<br>2    | 6          | 2   | 9             |
| MAXIMUM:                     | 9        | -   | 0   | 0        | 0          | 0          | 16       | 31         | 76  | ß         | 55         | 16  | 16            |

## WATER QUALITY

- Appendix C-1 Regulation No. 33 Upper Colorado River Basin
- Appendix C-2 Regulation No. 38 South Platte River Basin

Appendix C-1 Regulation No. 33 Upper Colorado River Basin

|                                                                                                                                                                                                                                                                                                                                                         | Desig        | Classifications                                                 | 19 Clessifications NUMERIC STA                                                                         |                                                                                                    | NUMER                                                                                              | NUMERIC STANDARDS                                                                                                                  |                                                                                                                       |                                                                                                                    | TEMPORARY<br>MODIFICATIONS                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| orosin. Upper courred ruver<br>Stream Segment Description                                                                                                                                                                                                                                                                                               |              |                                                                 | PHYSICAL<br>and<br>BIOLOGICAL                                                                          | INORGANIC                                                                                          | NIC                                                                                                |                                                                                                                                    | METALS                                                                                                                |                                                                                                                    | QUALIFIERS                                       |
| <ol> <li>Mainstein of the Colorado River, including all tributaries, wetlands,<br/>lates and readinger, within Rocky Mountain National Park, 9: which<br/>flow Into Rocky Mountain Nagarel Park.</li> </ol>                                                                                                                                             | MO           | An Life Cold 1<br>Recreation 1s<br>Water Supply<br>Agriculture  | D.O. = 8.0 mg/<br>D.O. (sp)=7.0 mg/<br>pH = 6.5-0.0<br>F.Col=126/100ml<br>E.Col=126/100ml              | NH <sub>3</sub> (aoth)=TVS<br>C <sub>2</sub> (aot=0.019<br>C <sub>2</sub> (ch)=0.011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Co(ac)=TVS(tr)<br>Co(ch)=TVS<br>Co(ch)=TVS<br>Con((ac)=TVS<br>Con((ac)=1)=TVS<br>Cov((ac)=1)=TVS                | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trac)<br>Pb(ac(ch)=TVS<br>Mn(ch)=TVS<br>Mn(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ac(ch)=TVS    | M((actd))=TVS<br>Se(actd))=TVS<br>Ag(d)=TVS<br>Ag(d)=TVS<br>Zh(actd)=TVS                                           |                                                  |
| <ol> <li>Mainstein, of two Colorando River, Instante all stabulaties, weilands,<br/>lates, sind reservation within, of forwing into Araphone National<br/>Recretation Area, including Grand Lake, Shefor, Mourtain Lake and<br/>Leke Grandy.</li> </ol>                                                                                                 | L            | Ad Life Cold 1<br>Recreation 18<br>Vealer Supply<br>Agriculture | D.O. = 8.0 frag/<br>D.O. (sp)=7.0 mg/<br>pH = 8.5-9.0<br>F.Coll=200100m3<br>F.Coll=1201100m3           | NH <sub>3</sub> (acum)=TVS<br>CL <sub>2</sub> (ac)=0,019<br>CL <sub>2</sub> (an)=0,011<br>CN=0,005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(at)=TVS<br>Cd(at)=TVS<br>Cd(ac(at)=TVS<br>Cd(ac(at)=TVS<br>Cu(ac(at)=TVS                   | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ch)=VVS<br>Mn(ch)=TVS<br>Mn(ch)=0.01(bol)                  | M(autoh)=TVS<br>Se(actoh)=TVS<br>Act ==TVS<br>Ag(ch)=TVS(tr)<br>Zn(actoh)=TVS                                      |                                                  |
| <ol> <li>Maintainen of the Colorado River from the outlet of Lake Granby to<br/>the confluence with Roaring Fork River.</li> </ol>                                                                                                                                                                                                                      |              | Ag Life Culd 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.0. = 6.0 mg/<br>D.0. (sp)= 7.0 mg/<br>pH = 8.5-9.0<br>F. Coll=201/100mi<br>E. Coll=126/100mi         | NH_3(ac/ch)=TVS<br>CL2(4c)=0.019<br>CL2(ch)=0.011<br>CL=0.005                                      | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C1=260<br>SO <sub>4</sub> =WS | Asi ac)=50(Tinc)<br>Cd(ac)=TVS(tr)<br>Cd(ch)=TVS<br>Cr(thac)=50(Trac)<br>Cr(tac)<br>Cr(tac)=TVS<br>Cu(accth)=TVS                   | Fe(dn)=WS(dis)<br>Fe(dh)=1000(Trac)<br>Ph(sc(dh)=TVS<br>Mn(dn)=VVS<br>Mn(ac)=NVS<br>Mn(ac(dh)=TVS<br>Hg(dh)=0.01(tot) | Ni((ao'ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(b)<br>Zn(ac/ch)=TVS                                    |                                                  |
| 4. All structures to the Colorado River, including all writiands, from the usate of Lands Granty to the companies within the Reaming Frank River, which are on Nutrianal Forest lands, except for those includes in Rivers, Inducted in Segmental s, 9 and sheath, lattice of Segmental s, 9 and 10.                                                    |              | At Life Cold 1<br>Retreation 1a<br>Water Supply<br>Agriculture  | D.0.=6.0 mg/<br>D.0.(sp=7.0 mg/<br>pH=5.56.0<br>F.Coli=200/00mi<br>F.Coli=26/100mi<br>E.Coli=126/100mi | NH <sub>3</sub> (ackt)=1VS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Calit(ac)=50(Trec)<br>Calit(ac)=50(Trec)<br>Calit(ac(ct)=TVS<br>Calitac(ct)=TVS | Fe(ch)=VS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(secch)=TVS<br>Mr(ch)=VS<br>Mr(ch)=VS<br>Hg(ch)=0.01(Lot)                    | NI(auch)=TVS<br>Se(eolar)=TVS<br>Agrice=TVS<br>Agrice=TVS<br>Agrice=TVS<br>Zn(auch)=TVS                            |                                                  |
| <ol> <li>All lakes and reservoirs tributary to the Cokrado River trom the<br/>boundary of Rocky Natural in Natural Park and Arganese Statismak<br/>Researchen Arga to a point termisdianty trainwith confluence with<br/>the Roadrey Fold River which are not on National Forest lands,<br/>except for specific listing in Segments 1 and 9.</li> </ol> | í            | An Life Celd 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.O.=5.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=5.5.9.0<br>F.Coll 200100mi<br>E.Coll 128.100mi                  | NH1, (addh=TVS<br>C42(cc)=0.019<br>C12(cc)=0.011<br>CN=0.005                                       | S=0.002<br>B=0.75<br>NO <sub>3</sub> =0.05<br>Cn=250<br>SO <sub>4</sub> =WS                        | Astac/=50(Trac)<br>Collac/=TVS(tr)<br>Collac/=TVS<br>Collac/=TVS<br>Conflactch)=TVS<br>Cutactch)=TVS                               | Fe(ch)=VVS(dis)<br>Fe(ch)=T000(Trec)<br>Ptgecch)=TVS<br>Mn(ch)=VVS<br>Mn(ac/ch)=TVS<br>Hn(ac/ch)=TVS<br>Hn(ac/ch)=TVS | Ni(addh)=TVS<br>Se(actch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac(ch)=TVS                                     |                                                  |
|                                                                                                                                                                                                                                                                                                                                                         |              | Aq Life Cold 1<br>Reconsion 2<br>Water Supply<br>Agreetium      | D.0.=8.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5-0.0<br>F.Coll=2000100ml<br>E.Coll=6301100ml                 | NH <sub>3</sub> (8000)=TVS<br>Ct_2(60)=0.019<br>Ct_2(60)=0.011<br>CN=0.005                         | S=0.002<br>NO <sub>2</sub> =0.05<br>B=0.75<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Acrach=50(Trec)<br>Cot(ac)=TVS(tr)<br>Cot(ac)=TVS<br>Criti(ac)=50(Trec)<br>Criti(ac)=1VS<br>Criti(acten)=TVS<br>Criti(acten)=TVS   | Cuelecth = TVS<br>Felcth = TVS<br>Felcth = VS(dis)<br>Felcth = TVS<br>Mai(ch) = TVS<br>Mai(ch) = TVS)                 | Hordh = 0.01 (let<br>Niedoth = TVS<br>Sv(aoddh) = TVS<br>Ag(aoth = TVS(tr)<br>Zv(aodh) = TVS(tr)<br>Zv(aodh) = TVS |                                                  |
| Bb. Matrixiem of un-nerned trautary from the headwarkers (Sec 32, T3N,<br>R76(M) to Willow. Creek Reservolr Road (Section 8, T2N, R76(M)).                                                                                                                                                                                                              | <del>4</del> | Ad Life Cold 2<br>Recreation 2<br>Agriculture                   | D.O.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=2000/100m/<br>E.Coli=630/100m/                | CX=0.2                                                                                             | 5=0.002<br>8=0.75<br>MC <sub>2</sub> =0.05<br>NO <sub>3</sub> =10                                  | As(ac)=100<br>Cd(ch)=10<br>Critich)=100<br>Critich)=100<br>Crivi(ch)=100                                                           | Cu(ac)=200<br>Pb(ch)=100<br>Mn(ch)=200<br>Nijac/ch)=200                                                               | Se(ch)=20<br>2n(ch)=2000                                                                                           | All metals are<br>Trec unisss<br>otherwise noted |

## Appendix C-1 1

| REGION:12                                                                                                                                                                                                                                                                                                                                                                                        | Desig | Classifications                                                | A LIUNS AND T                                                                           | SIKEAM CLASSIFICATIONS AND WATEK QUALTT STANDARDS                                                    | NUMERIC                                                                                            | AMUAKUS<br>NUMERIC STANDARDS                                                                                            |                                                                                                                       |                                                                                          | TEMPORARY                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| BASIN: Upper Colorado River                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                |                                                                                         |                                                                                                      |                                                                                                    |                                                                                                                         |                                                                                                                       |                                                                                          | MUDIFICATIONS                                                               |
| Stream Segment Description                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                | PHYSICAL<br>and<br>BIOLOGICAL                                                           | INORGANIC<br>righ                                                                                    | 2                                                                                                  |                                                                                                                         | METALS<br>ugi                                                                                                         |                                                                                          | QUALIFIERS                                                                  |
| <ol> <li>Mainstein of un-named tribulary to Willow Creek from the Willow<br/>Creek Reservoir Ra (Sec. 8, T2N, R76W) to the confluence<br/>Willow Creek (Sec. 17, T2N, R76W).</li> </ol>                                                                                                                                                                                                          | đ     | Aq Life Cold 2<br>Recreation 2<br>Agriculture                  | D. O.=8.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5-8.0<br>F.CoH=2000100ml<br>E.CoH=600100ml    | NH <sub>3</sub> (ac/dh)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (dh)=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                         | As(ch)=100(Trac)<br>Cc(ac)=1VS(tr)<br>Cc(ch)=1VS<br>Cc(h)(ac(ch)=1VS<br>Cr(la(cch)=1VS<br>Cr(lac(ch)=1VS                | Cu(acth)=TVS<br>Fe(ch)=1000(frec)<br>Pb(acth)=TVS<br>Mn(acth)=TVS<br>Hg(ch)=0.01(tot)                                 | Na(arddh)=TVS<br>Se(arddh)=TVS<br>Ag(ac)=TVS<br>Ag(dh)=TVS(tr)<br>Zh(arddh)=TVS(tr)      |                                                                             |
| 7a. All tributations to the Colorsado River, including all wellands, from a point immediately between the confluences with the River for a River, which are not on National Forest lands, except for specific Bathys in Segment 7b and in the Blue River, Eagle River, and Roaring Fock River basins.                                                                                            |       | Aq Life Cold 1<br>Recreation 2<br>Water Supply<br>Agriculture  | D.O. =6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pt=6.5-9.0<br>F.Cot=2000/100mi<br>F.Cot=530/100mi  | NH <sub>3</sub> (actoh)=TVS<br>C1 <sub>2</sub> (actoh 018<br>C1 <sub>2</sub> (ch)=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> =WS  | Astac)=50(Trac)<br>Co(ac)=7VS(tr)<br>Co(at)=7VS<br>Co(at)=7VS<br>Co(at)=7VS<br>Co(ac(at)=7VS<br>Co(ac(at)=7VS           | Fe(ch)=WS(dis)<br>Fe(ch)=1000(frec)<br>Pb(acich)=TVS<br>Mn(ch)=WS<br>Mn(acich)=TVS<br>Hg(ch)=0.01(tot)                | Ni(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS{b<br>Zn(ac/ch)=TVS            |                                                                             |
| 7b. Mainteniem of Muddy Creek, including all inbudarkes, from the outlet<br>of Worlder Mountain Research, to the conductors with the<br>cubinatio Rhen; mainteners of Rock Creek. Deep Creek.<br>Streephom Creek. Swrentwater Creek and the Phiny Rhee;<br>Including all trautarkes, from their sources to their confluences<br>with the Colorado River, which are not on National Forest lands. |       | Aq Life Cold 1<br>Recreation 1a<br>Watar Supply<br>Agriculture | D.O.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=126/100ml<br>E.Coli=126/100ml  | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (dh)=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =VS | As(ac)=50(Trec)<br>Cd(ac)=TVS(ar)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd((ac/ch)=TVS<br>Cu((ac/ch)=TVS<br>Cu(ac/ch)=TVS      | Fa(ch)=WS(dis)<br>Fa(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ch)=WS(dis)<br>Mn(ac(ch)=TVS<br>Hg(ch)=0.01(tot)           | N4(ec/ch)=TVS<br>Se(ec/ch)=TVS<br>Ag(ec)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ec/ch)=TVS          |                                                                             |
| <ol> <li>Mainstern of the Williams Fork River, Including all tributaries and<br/>wedenids from the source to the confidence with the Cobrado<br/>River, accept for those tributartes listed in segment 9.</li> </ol>                                                                                                                                                                             |       | Aq Life Cold 1<br>Recreation 1a<br>Water Suppry<br>Agriculture | D.O.+6.0 mg/l<br>D.O.(sp)=7.0 mg/l<br>pH=6.5.9.0<br>F.Coli=2001100ml<br>E.Coli=1261100m | NH <sub>3</sub> (actrch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(b)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trac)<br>Ch1((ac)=50(Trac)<br>Ch1((acd)=TVS<br>Cu(acd)=TVS  | Fe(ch)=WS(dis)<br>Fe(ch)=VS(dis)<br>Pb(ac/ch)=TVS<br>Mn(ch)=VS<br>Mn(ac(ch)=TVS<br>Hg(ch)=D(01(tot))                  | Né(acich)=TVS<br>Se(acich)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(t)<br>Zn(acich)=TVS           | Polent of<br>compliance for Fa<br>and Min et Aspen<br>Canyon Ranch<br>well. |
| <ol> <li>All shifting the Colorado and Freser Rivers, Including all<br/>wellands, lates and reservoirs, within the Never Summer. Indian<br/>Paulss, Byers, Eagles Ness and Flat Tops Wittemmars Arrest.</li> </ol>                                                                                                                                                                               | ð     | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | 0.0.=8.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=8.5.9.0<br>F.Col=200100ml<br>E.Col=126/100ml     | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (ch)=0.015<br>CN=0.005  | s=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> =WS  | As(ac)=50(frec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac(ch)=TVS<br>Cu(ac(ch)=TVS<br>Cu(ac(ch)=TVS        | Fe(ch)=WS(cts)<br>Fe(ch)=1000(Trec)<br>Pt(ac/ch)=TVS<br>Mn(ct)]=TVS<br>Mn(ac/ch)=TVS<br>Mg(ch)=0.01((cd)              | NKextch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS<br>Zn(ac/ch)=TVS |                                                                             |
| <ol> <li>Mainstern of the Frases River, including all tributantes and<br/>wetlands from the source to the confinence with the Colorado<br/>River. except for those tributarties included in Segment 9.</li> </ol>                                                                                                                                                                                |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | 0.0.=6.0 mg/<br>D.0.(ep)=7.0 mg/<br>pH=6.5-9.0<br>F.Coll=220/100ml<br>E.Coll=126/100ml  | NH <sub>3</sub> (ac/ch)=TVS<br>Ct_2(ch)=0.018<br>Ct_2(ch)=0.011<br>CN=0.005                          | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>CAV([ac0dh)=TVS<br>Cu(ac0dh)=TVS<br>Cu(ac0dh)=TVS | Fe(ch)=WS(cfs)<br>Fe(ch)=1000(Trac)<br>Pb(ac/ch)=TVS<br>Mn(ch)=TVS<br>Mn(ac/ch)=TVS<br>Mn(ch)=TVS<br>Hg(ch)=0.01((cd) | Ni(sc/ch)=TVS<br>Se(sc/ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS(th)<br>Zn(sc/ch)=TVS          |                                                                             |

REGULATION NO. 33 UPPER COLORADO RIVER BASIN (continued)

Appendix C-1

Appendix C-1 2

| REGION:12                                                                                                                                                                                                                                                            | Desig | Classifications                                                 | Classifications NUMERIC STANDARD                                                                      |                                                                                                     | NUMERIC                                                                                            | NUMERIC STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                           |                                                                                                                                                  | TEMPORARY<br>MODIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN: Blue River<br>Stream Segment Description                                                                                                                                                                                                                      |       |                                                                 | PHYSICAL<br>and<br>BIOLOGICAL                                                                         | INORGANIC                                                                                           | MIC                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METALS<br>ugh                                                                                                             |                                                                                                                                                  | AND<br>QUALIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>Maintenie of the Blue River from the source to Dillon Reservok.<br/>except for specific listing in Segments 2a and 2b.</li> </ol>                                                                                                                           |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.O.=6.0 mp/<br>D.O.(sp)=7.0 mp/<br>p/t=6.5-9.0<br>F.Cod=126/100m/<br>E.Cod=126/100m/                 | NH3(ac/ch)=TVS<br>Ch2(ac)=0.019<br>Cl2(ch)=0.011<br>CN=0.005                                        | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ao)=TV5(tr)<br>Cd(ch)=TV5<br>Cn(tac)=50(Trec)<br>Cn(tac(ch)=TV5<br>Cu(tac(ch)=TV5<br>Cu(ac(ch)=TV5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(ch)=VVS(dis)<br>Fe(ch)=1000(Trac)<br>Pb(ac/ch)=TVS<br>Mn(ch)=VVS<br>Mn(ac/ch)=TVS<br>Mn(ac/ch)=TVS                     | Nijedch)=TVS<br>Se(acch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zr(edch)=TVS                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2a. Merrenter of the Blue River from the confluence with French Guilch<br>to a point one half mile below Summit Country Road 3.                                                                                                                                      | 4     | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.O46.0 mg/<br>D.O.(4p)=7.0 mg/<br>pit-46.5.9.0<br>F.Coll=200100ml<br>E.Coll=126/100ml                | NH <sub>3</sub> (ac/cn)⊨TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac/ch)=4<br>Cd(ac/ch)=50(Trec)<br>Cd(a(ch)=50<br>Cd(ac/ch)=TVS<br>Cu(ac/ch)=TVS<br>Cu(ac/ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe(ch)=WS(d8)<br>Fe(ch)=1000(Trec)<br>Pb(ach)=TVS<br>Mn(cch)=TVS<br>Mn(ecch)=TVS<br>Hg(ch)=0.01((ot))                     | NK(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Zn(ac(ch)=e <sup>(1</sup> .25<br>(kharohat)=e)(1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Mainstern of the Blue River from a point one haif mise below<br/>Summit County Road 3 to the confluence with the Swan River.</li> </ol>                                                                                                                     |       | Aq Life Cold 1<br>Recreation 1s<br>Water Supply<br>Agriculture  | D.0.=8.0 mg/l<br>D.0.(sp)=7.0 mg/l<br>pH=6.5-9.0<br>F.Coli=200/100ml<br>E.Coli=126/100ml              | NH <sub>3</sub> (au/ch)=TVS<br>Cl <sub>2</sub> (ch)=0.018<br>Cl <sub>2</sub> (ch)=0.065<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)dh=1/2m <sup>1</sup> (10te<br>(x0tec)=3 1101<br>Cdf((ac)=50(Trec)<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50<br>Cdf((ac)=50)<br>Cdf((ac)=50<br>Cdf((ac)=50)<br>Cdf((ac)=50<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=50)<br>Cdf((ac)=5 | Fe(ch)=WS(dia)<br>Fa(ch)=1000(Trec)<br>Pb(ec/ch)=TVS<br>Mn(ch)=WS<br>Mn(cch)=TVS<br>Hg(ch)=0.01(bu)                       | Nel ac/dt)=TVS<br>Se(ac/dt)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(t)<br>Zn(ac/dt)=e <sup>(0.9805</sup><br>In(ac/dt)=e <sup>(0.9805</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Dworn Reservoir, Including an direct tributariess and all influtances,<br/>weatances, where and reservoirs in the Blue Rover dramage above<br/>Blaon Reservoir. succept for specific tistings in Segments 1, 2, 5, 5,<br/>10, 11, 12, 13 and 14.</li> </ol> |       | Aq Life Cold 1<br>Recretion 1a<br>Water Supply<br>Apriculture   | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>PH=6.5.9.0<br>F.Cot=22011100mi<br>F.Coti=126/100mi                | NH <sub>3</sub> (ac(a))=TVS<br>Cl <sub>2</sub> (ac)=0.013<br>Cl <sub>2</sub> (d)=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Tirac)<br>Ccl(ac)=TVS(tr)<br>Ccl(ac)=TVS<br>Ccl(tac)=56(Tirac)<br>Ccl(tac/ct)=TVS<br>Ccl(tac/ct)=TVS<br>Cu(ac/ct)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe(ch)=WS(cfb)<br>Fo(ch)=1000(Trac)<br>Pb(actch)=TVS<br>Mn(ch)=WS<br>Mn(ch)=WS<br>Mn(acch)=TVS<br>Mn(acch)=TVS            | Né(actch)≓TVS<br>Se(actch)≓TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(b)<br>Zn(actch)=TVS(b)                                                                | Special standards for<br>the Research only: Total<br>Phosphorus as P=0.0074<br>mg/ in the lop 15 melers<br>morths of July, August<br>September & October.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4. Defeted.                                                                                                                                                                                                                                                          |       |                                                                 |                                                                                                       |                                                                                                     |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Meansteam of Socia Creek, from this source to Dillion Reservoir.</li> </ol>                                                                                                                                                                                 |       | Aq Life Cold 1<br>Recreation 1a<br>Agriculture<br>Water Supply  | 0.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=8.0.0 0<br>F.Coll=126/100m/<br>E.Coll=126/100m/                | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> =WS  | As(ch)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ch)=TVS<br>Cr(t(ac)=50(Trac)<br>Cr(t(ac)=51VS<br>Cu(ac)ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe(ch)=WS(ds)<br>Fe(ch)=1000(Trec)<br>Pb(acd)=YS<br>Mn(ch)=WS<br>Mn(acdh)=TVS<br>Mg(ch)=0.01(w()                          | NI(mo/ch)=TVS<br>Se(ac(ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS<br>Zn(ac(ch)=TVS                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ol> <li>Meanwarn of the Strake River, Including all unburgations and wetdands<br/>from the exurce to Ditkon Reservols, accords for specific listings in<br/>Segments 7, 8 and 9.</li> </ol>                                                                         | 9     | Ag Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agrioutibute | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5-8.0<br>F.Coll=2004100ml<br>E.Coll=1264100ml                | NH <sub>3</sub> (actub)=TVS<br>Cl <sub>2</sub> (dc)=0.019<br>Cl <sub>2</sub> (dc)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C1=250<br>SO <sub>4</sub> =¥S | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>Cnti(ac)=50(Trec)<br>Cnti(ac)=1VS<br>Cu(ac)=1VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe(ch)=WS(cls)<br>Fe(ch)=1000(frec)<br>Pb(ac/ch)=TVS<br>Mar(c))=WS<br>Mar(ac/ch)=YVS<br>Mar(ac/ch)=TVS<br>Hg(ch)=01((tot) | Nitacich)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac/r)=TVS<br>Ag(ac/r)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS                                                | Tamporary modifications:<br>Type III<br>Cultah=12<br>Cultah=17<br>no Zn(ac)<br>Zn(ac)=554<br>Effective until 2/28/09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Mainstein of Paru Creek, including all moutanies and wettands<br/>from the source to the confluences with the Snake River, except for<br/>specific listing in Segment 3.</li> </ol>                                                                         | 5     | Aq Life Cold 1<br>Recreation 2                                  | D.O. =6.0 mg/<br>D.O. (spin* 0 mg/<br>pine6.5 spin 0 mg/<br>F. Colin:2000/100ml<br>E. Colin:630/100ml | MH <sub>3</sub> (ac/ch ⊨TVS<br>Cb <sub>2</sub> (ac)=0.019<br>Cb <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>NO <sub>2</sub> =0.05                                                                   | As(ch)= 100(Treo)<br>Colon= TVS(tr)<br>Colon= TVS<br>Colon= TVS<br>Colon= TVS<br>Colon= TVS<br>Colon= TVS<br>Colon= TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe(ch)=1000(frec)<br>Pb(ardch)=TVS<br>Mn(ardch)=TVS<br>Hg(ch)=0.01((al)                                                   | N((ac/ch)=TVS<br>Se(ac/b)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS<br>Zn((ac/ch)=TVS                                                        | Temporary modifications:<br>no Cu(er)<br>Cu(er)=52<br>Cu(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>Ph(er)=53<br>P |

## Appendíx C-1 3

| REG      | REGIONAT2<br>BAEN- Rive Phone                                                                                                                                                                                                                                                                                                                                                                             | Desk | Classifications                                                | Classifications UMERIC STAT                                                              |                                                                                                     | NUMER                                                                                              | NUMERIC STANDARDS                                                                                                                         |                                                                                                                  |                                                                                                               | TEMPORARY<br>MODIFICATIONS                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Stree    | Stream Segment Description                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                | PHYSICAL<br>and<br>BIOLOGICAL                                                            | INDRGANIC                                                                                           |                                                                                                    |                                                                                                                                           | MÊTALS<br>ug <sup>4</sup>                                                                                        |                                                                                                               | OUAUFIERS                                                                                     |
| œ        | Mainstein of Keystone Celeh, Inducing all Intrustries and weitands<br>from the sources to the combanes with the Shale Kiver. Mainstein<br>of Chihumbura Ceerth including all inductions, and weitands from the<br>source to the combance with Peru Cieet. Maintern of the North<br>Fock of the Shale Rowr, including all tributance and weitands from<br>the source to the combance with the Shake Rover. |      | Ag Life Cold 1<br>Recreation 18<br>Water Supply<br>Agriculture | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=200/100ml<br>E.Coli=126/100ml   | NH <sub>3</sub> (8045)=TVS<br>CL <sub>2</sub> (80=0.019<br>CL <sub>2</sub> (41)=0.011<br>CH=0.005   | S=0.002<br>B=075<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>Cd=250<br>SO <sub>4</sub> =₩S  | Astach=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(d)=TVS<br>Cd(d)=TVS<br>Cont(ac)=50(Trec)<br>Cont(ac(ch)=TVS<br>Cont(ac(ch)=TVS<br>Cu(ac(ch)=TVS   | Fe(ct)=VS(dis)<br>Fs(ct)=1000(Trec)<br>Pb(ac(ct)=TVS<br>Mn(ct)=TVS<br>Mn(ct)=TVS<br>Hg(ct)=0.01(mt)              | NI(addr)=TVS<br>Set(addr)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(dr)=TVS(tr)<br>Zn(addr)=TVS                   |                                                                                               |
| a.       | Mainsteim of Deer Creek, including all infoutatios and wedlands<br>from the source to the confiuence with the Shake River.                                                                                                                                                                                                                                                                                |      | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coll=200/100ml<br>E.Coll=128/100ml   | NH <sub>3</sub> (82/ch)=TVS<br>CL <sub>2</sub> (8c)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> =WS  | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>Criti(ac)=50(Trec)<br>Criti(ac)=TVS<br>Cu(ac(a)=TVS                 | Fa(ch)=WS(dia)<br>Fa(ch)=1000(Trac)<br>Pb(ac(ch)=TVS<br>Mn(ch)=TVS<br>Mn(ac(ch)=TVS<br>Hg(ch)=0.01(tol)          | N((eutch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Zn(ac(ch)=TVS                     |                                                                                               |
| 10.      | Matholem of French Guidch Inclusing all Influences and weltlands<br>from the source to a polint 1.5 million below Lincoln.                                                                                                                                                                                                                                                                                |      | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5.9.0<br>F.Coli=7.00ml<br>F.Coli=7.261100ml     | NH <sub>3</sub> (ac/ch)=TVS<br>CL <sub>2</sub> (ac)=0.018<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> ±WS  | Astact=50(Trec)<br>Codiact=TVS(tr)<br>Codiact=TVS<br>Codiact=SQTrec)<br>Contract=SQTrec)<br>Contract=SQTrec)<br>Contract=SQTrec)          | Fe(ch)=VS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(actch)=TVS<br>Mn(ch)=VVS<br>Mn(actch)=TVS<br>Hg(ch)=0.01(tax)          | Ni(actch)=TVS<br>Se(actch)=TVS<br>Agiac)=TVS<br>Agiac)=TVS<br>Agich)=TVS[IV]<br>Zn(actch)=TVS                 |                                                                                               |
| <b>1</b> |                                                                                                                                                                                                                                                                                                                                                                                                           | đ    | Aq Lile Cold 1<br>Recrestion 15<br>Agnouture                   | D.O. =6.0 mgf<br>D.O.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coll=225100mi<br>E.Coll=205100mi    | NH<br>3(ac/ch)=TVS<br>CL <sub>2</sub> (ac)=0.011<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005          | S=1.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                         | Ac(ch)=100(Trec)<br>Collecton)=existing<br>guality<br>Crill(acidn)=TVS<br>Crill(acidn)=TVS<br>Cutlacten)=TVS<br>Cutlacten)=TVS            | Ou(ch)=TVS<br>Fe(ch)=1000(Trec)<br>Pb(ac/ch)=existing<br>quality<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(cot)            | NI(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ac(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(tr)<br>Zn(ac/ch)=extsting<br>quality |                                                                                               |
| 12       | Mainsteim of Illinois Guich and Fredonia Guich from Ibeir source to<br>Ibeir confilience with the Blue River.                                                                                                                                                                                                                                                                                             | 告    | Aq Life Cold 2<br>Recreasion 1b<br>Water Supply<br>Agriculture | D.O.=8.0 mgf<br>D.O.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=205/100ml<br>E.Coli=205/100ml   | NH <sub>3</sub> (acidh)=TVS<br>Ci <sub>2</sub> (ac)=0.019<br>Ci <sub>2</sub> (dh)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Autect=sol(free)<br>Collact=TVS(tr)<br>Collact=TVS<br>Collact=TVS<br>Collact=SC(free)<br>Collact=SC(free)<br>Collact=TVS<br>Cu(aucth)=TVS | Fetcn)=WS(dis)<br>Fe(cn)=1000(Trac)<br>Pt(acch)=1VS<br>Mn(cn)=VS<br>Mn(adcn)=1VS<br>Hg(cn)=0.01(cn)              | Ne(ac(ch)=TVS<br>Se(ec(ch)=TVS<br>Aq(ec)=TVS<br>Aq(ec)=TVS<br>Aq(ec)=TVS(tr)<br>Zn(ac(ch)=TVS                 | Temporary<br>Madification:<br>Zn(ch)=650<br>Effective until<br>2/28/05 for liftings<br>Gulden |
| 55<br>15 | Maintainen of Tenmis Creek from the Climas Pershall Flums to a<br>point immediately above the confluence of West Tenmis Creek<br>and all thibutancis and wellands from the source at Tenmis Creek<br>to a paint immediately above the confluence with West Tenmis<br>Creek, except for the specific listing in Segment 15.                                                                                |      | Aq Life Cold 1<br>Recreation 1b<br>Agriculture                 | D.O.=6.0 mg/l<br>D.O.(sp)=7.0 mg/l<br>pH=6.6.9.0<br>F.Coli=325/100ml<br>E.Coli=205/100ml | NH <sub>3</sub> (ac/ch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (dh)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                         | As(ch)=100(Trec)<br>Cd(ac)=TVS(n)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ach)=TVS<br>Cd(acch)=TVS<br>CAV((accch)=TVS<br>CAV((accch)=TVS        | Cu(ackth)=TVS<br>Fa(dh)=1000(Trac)<br>Pb(acth)=TVS<br>Mn(acth)=TVS<br>Ma(dh)=0.01(00)                            | Nk(au/ch)=TVS<br>Se(au/ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS(b')<br>Zn(au/ch)=TVS(b')                           |                                                                                               |
| 14.      |                                                                                                                                                                                                                                                                                                                                                                                                           |      | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | 0.0.=6.0 mg/<br>0.0.4sp)=7.0 mg/<br>0.4sb)=5.8.0<br>F.Col=12501100ml<br>E.Col=1251100ml  | NH <sub>3</sub> (ac/ch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Astach=S0(Trac)<br>Cd(ach=TVS(tr)<br>Cd(ah)=TVS<br>Cd(ah)=TVS<br>Cd(ach=TVS<br>Cu(ac(ch)=TVS<br>Cu(ac(ch)=TVS                             | Fe(ch)=WS(dls)<br>Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>MA(ch)=WS<br>MA(ch)=TVS<br>MA(ch)=0.01(tat)              | NI(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ec/ch)=TVS                               |                                                                                               |
| 15.      | Methodem of Calvion Creek from the source to the confluence with<br>Tennile Creek                                                                                                                                                                                                                                                                                                                         |      | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.59.0<br>F.Coli=20010ml<br>E.Coli=126100ml       | NH-3(acten)=TVS<br>CI2(acten)=0.019<br>CU2(ch)=0.011<br>CN=0.005                                    | S=0.002<br>B=0.75<br>NO <sub>3</sub> =10<br>NO <sub>3</sub> =10<br>SO <sub>4</sub> =WS             | As(ac)=50(Trac)<br>Co(ac)=1VS(tr)<br>Co(d)=1VS(tr)<br>Co(d)=1VS<br>Co(d)=1VS<br>Co((ac)=1VS<br>Co((ac)=1VS                                | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ch)=VS<br>Mn(ch)=VS<br>Mn(cch)=VS<br>He(ch)=Q.01((ot) | Mi(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS(tr)<br>Zn(ac/ch)=TVS          |                                                                                               |

## REGULATION NO. 33 UPPER COLORADO RIVER BASIN (continued) STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

Appendix C-1 4

| Design<br>International<br>and Network in the net                                                                                                                                                                                                                                                                                                                                                                                                                        | TEMPORARY<br>MODIFICATIONS<br>AND | QUALIFIERS                    | N(acida)=TVS<br>Sequecta)=TVS<br>Aqtac=TVS<br>Aqtac=TVS<br>Zn(acida)=TVS                                                                        | N((acidh)=TVS<br>Selaacha=TVS<br>Selaacha=TVS<br>Selaacha=TVS<br>Agidoh=TVS<br>Zr((acidh)=TVS           | N([addh)=TVS<br>Seladdh=TVS<br>Seladdh=TVS<br>Seladt=TVS<br>Ag((add)=TVS<br>Zn(addh)=TVS                                                                                                | NI(actch)=TVS<br>Selecth)=TVS<br>Agec+TVS<br>Agen>=TVS<br>Agen>=TVS<br>Zn(actch)=TVS                                                                                                                 | N(acidh)=TVS<br>Se(acidh)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(tr)                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design         Classification         PHYSICAL         MORGANIC           an River, Including all weldbreds, Jakes and<br>angle intern the audies of Clinn Reservoir to the<br>angle intern the audies of Clinn Reservoir to the<br>Approximation of Revealence, Techer Schort and<br>Approximation of Approximation of Approximation of Approxim                                                                                                                                                                                                                                                                                                                                                              |                                   | METALS<br>ugu                 |                                                                                                                                                 |                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                        |
| Desig         Classification         PhYSICAL         MORGANIC           an River, Including all wildonch, Usios and<br>aughan water and PEDMagen Poak Widemess         Do 56 0 mg/l<br>and the control of the codet 1         DO 66 0 mg/l<br>be constructed and 20 (construction)         MM (acchi)= 0.00<br>(construction)         Second<br>Colorability of the codet 1         DO 66 0 mg/l<br>be constructed and 1         MM (acchi)= 0.01<br>(construction)         Second<br>Colorability of the codet 1         DO 66 0 mg/l<br>be constructed and 1         MM (acchi)= 0.01<br>(construction)         Second<br>Colorability of the codet 1         DO 66 0 mg/l<br>be constructed and 1         MM (acchi)= 0.01<br>(construction)         Second<br>Colorability of the codet 1         Second<br>Colorability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RIC STANDARDS                     |                               | As(ac)=50(Trec)<br>Cd(ac)=7VS(tr)<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cn((ac)=50(Trec)<br>Cn((ac)=50(Trec)<br>Cn((ac)=1)VS             | As(ac)=50(frec)<br>cd(ac)=TVS(tr)<br>cd(at)=TVS<br>cd(at)=TVS<br>cd(at)=TVS<br>cd(at)=TVS<br>cd(at)=TVS | As(ac)=S0(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS                                                                                 | Asiac=50(Trec)<br>Cutitac=TVS(tu)<br>Cutitac=50(Trec)<br>Cutitac=50(Trec)<br>Cuvitaceh=TVS<br>Cuvitaceh=TVS                                                                                          | As(ac)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cdill[ac]=50(Trec)                                                                    |
| Des<br>and River, Instanting all wildonds, lakes and<br>agene Nest and Plantingan Poak Widemess<br>Widemess<br>Widemess<br>River, Inducting all wellands, how to<br>the widemess<br>River, Inducting all wellands, how the<br>search in Careen Mauritain Reservoir to the<br>wellands, how the<br>River, inducting all wellands, how the<br>search in Segment 20.<br>Each and Spruse Creat. Inducting all Intuitaites<br>Each and Spruse Creat. Inducting all Intuitaites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NUME                              | U<br>Z                        | \$=0.002<br>1=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS                                             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CT=250<br>SO <sub>4</sub> =WS      | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =₩S                                                                                      | S=0.002<br>B=0.75<br>NO <sub>3</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS                                                                                                   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                                                                             |
| Des<br>and River, Instanting all wildonds, lakes and<br>agene Nest and Plantingan Poak Widemess<br>Widemess<br>Widemess<br>River, Inducting all wellands, how to<br>the widemess<br>River, Inducting all wellands, how the<br>search in Careen Mauritain Reservoir to the<br>wellands, how the<br>River, inducting all wellands, how the<br>search in Segment 20.<br>Each and Spruse Creat. Inducting all Intuitaites<br>Each and Spruse Creat. Inducting all Intuitaites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | INORGA<br>mg/                 | NH <sub>3</sub> (acch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (ar)=0.011<br>CN=0.005                                              | NH <sub>3</sub> (ac/ch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005     | NH <sub>3</sub> (ac/dh)=TVS<br>Cl <sub>2</sub> (de)=0.019<br>Cl <sub>2</sub> (dh)=0.011<br>CN=0.005                                                                                     | NH <sub>3</sub> (ac/ch=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005                                                                                                   | NH <sub>3</sub> (ac/ch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011                                                                |
| Des<br>River, Including all withinds, lakes and<br>agree Neet and Plarmagan Poak Widemess<br>Widemess<br>Widemess<br>River, Including all weilands, lakes and<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemes |                                   | PHYSICAL<br>and<br>BIOLOGICAL | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Col=2001100mi<br>E.Coli=128/100mi                                                           | D.O.=8.0 mg/<br>0.O.(sp)=7.0 mg/<br>pH=8.5-9.0<br>F.Col=1201100ml<br>E.Col=1201100ml                    | 0.0. =6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coi=2001100ml<br>E.Coil=1261100ml                                                                                                  | D.O. #6.0 mg/<br>D.O.(sp)=7.0 mg/<br>PH=8.6=0.0<br>F.Coll=2000/100m/<br>E.Coll=130/100m/                                                                                                             | C.O.=6.0 mg/<br>D.O.(5p)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=2000/100mi                                                                                    |
| Des<br>River, Including all withinds, lakes and<br>agree Neet and Plarmagan Poak Widemess<br>Widemess<br>Widemess<br>River, Including all weilands, lakes and<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemess<br>Widemes | Classifications                   |                               | An Lile Coat 1<br>Reveation 1a<br>Water Supply<br>Agrouture                                                                                     | Arg Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture                                         | Aq Life Cold 1<br>Recreation 1a<br>Vater Supply<br>Apriculture                                                                                                                          | Ag Life Cold 1<br>Recreation 2<br>Water Supply<br>Agrouture                                                                                                                                          | Aq Life Cold 1<br>Recreation 2<br>Water Supply<br>Agricuture                                                                                           |
| River<br>arr Description<br>arrest to the Blaue River, including all welfonds, lakes and<br>an within the Blaue River, including all welfamigan Pools Wademess<br>and with the Colorado River, including all welfamily Reserved to The<br>scele with the Colorado River, including all welfamily Reserved to The<br>cell with the Colorado River, including all welfamily Reserved to The<br>cell with the Colorado River, including all welfamily Reserved to The<br>cell with the Colorado River, including all welfamily Reserved<br>for the specific same River, including all welfamily Reserved<br>for the specific same River, including all welfamily from the<br>former Annun Reserved to the comfutencia with the Blaue<br>tense, from their sources to the comfutencia with the Blaue<br>tense, from their Rourdes Creek Indiading all Inteulantee<br>tense, from their Rourdes to the comfutence with the Blaue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Desig                             |                               | ۵.                                                                                                                                              |                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                        |
| REGION:12<br>BASIN: Blue<br>I6. Kall hlue<br>Areas.<br>Areas.<br>Areas.<br>Areas.<br>17 Hadhate<br>Areas.<br>19. All thou<br>oudel o<br>excella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REGION:12<br>BASIN: Blue River    | Stream Segment Description    | Au Alputarres to the Blue River, Including all weldends, leaves and<br>reservoins. Within 1'A Eagles Nest and Playmagan Pook Wademess<br>Areas. | Mathistem of the Duke Rever from the outles of Dillon Reservoir to the colorado Rovet.                  | All informations to the Blue River, Including all weakends, from the outble of Ditton Reserved, in the outble of Green Mauritain Reserved, except for the specific semigrin Sagmant 16. | All influctions to the Blain River, including all writiands, from the<br>outlet of Green Mountain Reservoir to the combines with the<br>Coldredo River, Accelet for specific listings in Segment 20. | Mainstamme of Elliot Creek and Spruce Creek inducting all tribuilaries<br>and registeries, from their sources to the semiaunce with the Blue<br>River. |

|                                                                                                                                                                                                                                             | 3 I KEAN                                | I CLASSIFICA                                                                            | THOME SHOLLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS                                                                                 | T STANDA                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                               |                                                                                                                            |                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REGION:12                                                                                                                                                                                                                                   | Dessig                                  | Classifications                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | NUMERI                                                                                             | NUMERIC STANDARDS                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |                                                                                                                            | TEMPORARY<br>MODIFICAT(ONS                                                                                                                                                              |
| BASIN: Eagle Kuver<br>Stream Segment Description                                                                                                                                                                                            |                                         |                                                                                         | PHYSICAL<br>and<br>BIOLOGICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INORGANIC                                                                                                                          | U<br>Vi                                                                                            |                                                                                                                                                                                                                                                                                                                                                             | METALS<br>Ug1                                                                                                                 |                                                                                                                            | CUALFIERS                                                                                                                                                                               |
| <ol> <li>At tributaries and wedands to the Eagle River system within the<br/>Gore Range - Eagles Neel, Wilkenness Area and Hely Cross<br/>Wademass Area.</li> </ol>                                                                         | owi                                     | Ag Life Cold 1<br>Recreminon 1a<br>Wimor Suppry<br>Agriculture                          | 0.0.=6.0 mgA<br>0.0.(sp)=7.0 mgA<br>pH=8.5-9.0<br>F.Col=2001100ml<br>E.Coli=126/100ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NH <sub>3</sub> (ectah)=TVS<br>Cl <sub>2</sub> (ectah)=TVS<br>Cl <sub>2</sub> (ch)=0.018<br>CH <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=9.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> =WS  | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(acth)=TVS<br>Cu(acth)=TVS<br>Cu(acth)=TVS                                                                                                                                                                                                                                               | Fe(ch)=WS(dis)<br>Fe(ch)=1009(Trec)<br>Potazch)=TVS<br>Mn(ch)=WS<br>Mn(ch)=VVS<br>Mn(acch)=TVS<br>Hng(ch)=0.01(Rot)           | NK(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ch)=TVS(tr)<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS                                        |                                                                                                                                                                                         |
| <ol> <li>Mainstam of The Eagle River from the source to the comprostor<br/>house bridge of Balden.</li> </ol>                                                                                                                               | <sup>1</sup> Consistent with            | the provisions of sec<br>Aq uife Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | Add Life provisions of section 25-8-104 C.R.S. the OW designation that not apply with<br>Add Life Cont 1         D.O.=6.0 mol<br>D.O.=6.0 mol<br>D.O.(197)         NH <sub>3</sub> (eCch)=TVS         S=0.002           Reacond that cont 1         D.O.=6.0 mol<br>D.O.(197)         NH <sub>3</sub> (eCch)=TVS         S=0.002         S=0.75           Reacond table         ND         D.O.(100)         NO         NO         NO         NO           Agriculture         E.Codi=128/100m         CN=0.005         E.Codi=128/100m         CN=0.005         SO         SO           Agriculture         E.Codi=128/100m         CN=0.005         SO         SO <td>e OW designation the<br/>NH<sub>3</sub>(ec:dn)=TVS<br/>DI<sub>2</sub>(ac;p0.019<br/>CI<sub>2</sub>(dh)=0.011<br/>CN=0.005</td> <td></td> <td>respect to the Homestake Water Project of the Officer and Colorado Springs.<br/>As(ac)=50(Trec) Fe(d)=WS(6as) Ni(ac/dn)=TVS<br/>Colora=TVS(h) Fe(d)=TVS Ni(ac/dn)=TVS<br/>Colora=TVS<br/>Colora=TVS Potechia=TVS Ag(an)=TVS(h)<br/>Colora=TVS Min(ac/dn)=TVS Ag(an)=TVS(h)<br/>Colora=TVS Min(ac/dn)=TVS Ag(an)=TVS(h)<br/>Colora=TVS Min(ac/dn)=TVS Ag(an)=TVS(h)</td> <td>a Water Project of the<br/>Fe(ch)=WS(des)<br/>Fe(ch)=100(Trec)<br/>Pb(acdch)=TVS<br/>Mn(ch)=WS<br/>Mn(ch)=WS<br/>Hg(ch)=0.0 (ftol)</td> <td>All and Autora and (<br/>Ni(acth)=TVS<br/>Se(acth)=TVS<br/>Ag(ac)=TVS<br/>Ag(ac)=TVS(t)<br/>Zn(acth)=TVS</td> <td>olorado Springs.</td> | e OW designation the<br>NH <sub>3</sub> (ec:dn)=TVS<br>DI <sub>2</sub> (ac;p0.019<br>CI <sub>2</sub> (dh)=0.011<br>CN=0.005        |                                                                                                    | respect to the Homestake Water Project of the Officer and Colorado Springs.<br>As(ac)=50(Trec) Fe(d)=WS(6as) Ni(ac/dn)=TVS<br>Colora=TVS(h) Fe(d)=TVS Ni(ac/dn)=TVS<br>Colora=TVS<br>Colora=TVS Potechia=TVS Ag(an)=TVS(h)<br>Colora=TVS Min(ac/dn)=TVS Ag(an)=TVS(h)<br>Colora=TVS Min(ac/dn)=TVS Ag(an)=TVS(h)<br>Colora=TVS Min(ac/dn)=TVS Ag(an)=TVS(h) | a Water Project of the<br>Fe(ch)=WS(des)<br>Fe(ch)=100(Trec)<br>Pb(acdch)=TVS<br>Mn(ch)=WS<br>Mn(ch)=WS<br>Hg(ch)=0.0 (ftol)  | All and Autora and (<br>Ni(acth)=TVS<br>Se(acth)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(t)<br>Zn(acth)=TVS                        | olorado Springs.                                                                                                                                                                        |
| <ol> <li>All Infortation to the Eagle River, including writings, from the<br/>source to the compressor house problem the definit, earlied for the<br/>specific listing in Segment 4 and these votiens included in Segment<br/>1.</li> </ol> |                                         | Aq Life Cold 1<br>Racreetion 1a<br>Weter Supply<br>Agriculture                          | D.O.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>PH=6.5=9.0<br>F.Col=200100ml<br>E.Coll=126/100ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN =0.005<br>CN =0.005                  | S=0.002<br>B=0.75<br>NO <sub>3</sub> =1.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trac)<br>Cd(ac)=TVS(a)<br>Cd(at)=TVS<br>Cd(at)=TVS<br>Cd(at)=50(Trac)<br>CrVI(ac(bt)=TVS<br>Cu(ad(at)=TVS                                                                                                                                                                                                                                         | Fe(ch)=WS(db)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ch)=VS<br>Mn(ac(ch)=VS<br>Mn(ac(ch)=TVS<br>Hg(ch)=01(te()           | Ni(acich)⊨TVS<br>Se(acich)⊨TVS<br>Ag(ac)⊨TVS<br>Ag(ch)⊨TVS<br>Zn(acich)⊨TVS<br>Zn(acich)⊨TVS                               |                                                                                                                                                                                         |
| <ol> <li>Mainstem of Homestake Orenek from the confinencies of the East Fork<br/>to the confileence with the Eagle River.</li> </ol>                                                                                                        |                                         | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture                          | D.O.==6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5.9.0<br>F.Coll=200/100ml<br>E.Coll=126/100ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NH <sub>3</sub> (scch)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (a)=0.011<br>CN=0.005                                  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CP2560<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>CVII(ac)=50(Trec)<br>CVII(ac)=tr)TVS<br>CUI(ac)=tr)=TVS                                                                                                                                                                                                                               | Fe(ch)=WS(dis)<br>Fe(ch)=T000(Trec)<br>Pb(acdx)=TVS<br>Mn(ch)=WS<br>Mn(cd)=WS<br>Mn(acdc)=TVS<br>Hn(acdc)=TVS<br>Hn(acdc)=TVS | Ni(acich)=TVS<br>Se(acich)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(r)<br>Zn(acich)=TVS                                             |                                                                                                                                                                                         |
| Sa Mainstern of the Broom River from a point immediately above<br>compressor hermen cirking at Rudolpt to a point immediately above<br>the Hitpinery 24 Bhuen near 1 gmon Road.                                                             | 9 (c)(too<br>Baseline doen<br>net apply | Aq Life Celd *<br>Nation 18<br>Water Supply<br>Agriculture                              | 0.0.=6.0 mg/<br>b1-0.1951=7.0 mg/<br>b1-36.501=7001 n0mi<br>E.Codi=17811001 n0mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NH-3(acton)=TVS<br>CL2(act=0.019<br>CN=0,005<br>CN=0,005                                                                           | S=0.002<br>B=0.76<br>No.2=0.005<br>No.2=10<br>S0.4=WS<br>S0.4=WS                                   | As(ch)=50(Trec)<br>Cd(ch)=TVS(tr)<br>Cd(ch)=TVS(tr)<br>Cd(ch)=TVS(trec)<br>Cd(th)=TVS<br>CnNiacch)=TVS<br>Cu(indth)=TVS                                                                                                                                                                                                                                     | Fe(ch)=WS(dis)<br>Fe(ch)=100(Trec)<br>Fe(ch)=1VS<br>Mn(ch)=VVS<br>Mn(ch)=VVS<br>Mn(acch)=TVS                                  | Hg(dr)=0.01(01)<br>Hg(dr)=0.01(01)<br>Se(exch)=TVS<br>Se(exch)=TVS<br>Ag(ex)=TVS<br>Ag(ex)=TVS<br>Ag(ex)=106<br>Zn(ch)=106 | Semantical Temporary<br>Muchicalions<br>effective through<br>11/1/09.<br>Zallep-472<br>Zallep-472<br>Zallep-412<br>Zallep-412<br>Zaller-178<br>Zaller-178<br>Zaller-1518<br>Zaller-1518 |
| 50. Malimment of the Eagle RMs from a point monthling above the<br>high way 24 Bridge near Tigh was Road to a point immediately above<br>the confluence with Martin Creak.                                                                  | 6/20/00<br>Baseline does<br>not epply   | Aq Life Cold 1<br>Recretion 1a<br>Water Supply<br>Adminibura                            | 0.0.46.0 mg/<br>0.0.45.97 0 mg/<br>0.0.45.97 00 mg/<br>F.Cole-1251100ml<br>E.Cole-1251100ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MH3/Bacter)=TVS<br>Ct_2/Bach=0.018<br>Ct=0.005<br>CH=0.005                                                                         | S=0.002<br>B=0.75<br>No <sub>2</sub> =0.05<br>No <sub>3</sub> =10<br>SO <sub>4</sub> =WS           | As(ch)=50(Trec)<br>Col(ce)=TVS(tr)<br>Col(ce)=TVS(trec)<br>Col(ce)=50(Trec)<br>Col(ce)=50(Trec)<br>Col(ce)=1VS                                                                                                                                                                                                                                              | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trac)<br>Placush=TVS<br>Mn(ch)=VVS<br>Mn(cc/ch)=TVS                                             | Hg(d)=0.01(bt)<br>M(au(d))=TVS<br>Secreth)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(t)<br>Zn(ac)=TVS                  | Seesonal Tamponery<br>Modifications<br>Medifications<br>March 1 through April<br>20(ac)=332<br>20(ac)=332<br>20(ac)=332<br>20(ac)=33<br>20(ac)=123<br>20(ac)=123                        |

| REGULATION NO. 33 U<br>STREAM CLASSIFICATION |
|----------------------------------------------|
|----------------------------------------------|

| REG        | REGION:12                                                                                                                                                                                                                               | Desig                                 | Classifications                                                 | g Cassifications NUMERIC STAN                                                            |                                                                                                    | NUMERIC                                                                                                       | NUMERIC STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                       | TEMPORARY                                                                                                                                                                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAS        | BASIN: Eagle River                                                                                                                                                                                                                      |                                       |                                                                 |                                                                                          |                                                                                                    |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               |                                                                                                                       | MODIFICATIONS<br>AND                                                                                                                                                                                                |
| Stree      | Stream Segment Description                                                                                                                                                                                                              |                                       | ,                                                               | PHYSICAL<br>and<br>BIOLOGICAL                                                            | INORGANIC                                                                                          | <u>D</u>                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METALS<br>ugJ                                                                                                 |                                                                                                                       | QUALIFIERS                                                                                                                                                                                                          |
| છે         | Mainstern of the Eagle River from a point immediately above Martin<br>Creek to a point immediately above the contraintnos with Gore<br>Creek.                                                                                           | Branno<br>Basenine chas<br>Foit apply | Aq Life Cold 1<br>Recreation 1a<br>Whiter Supply<br>Agriculture | D.O.=6.0 mg/<br>D.O.=6.0 mg/<br>D.O.(esp)=7.0 mg/<br>F.Coli=200100ml<br>E.Coli=128/100ml | NH3(acth)=TVS<br>G2(ac)=0.019<br>C2(ch)=0.011<br>CN=0.005                                          | S=0.002<br>B=0.15<br>NO <sub>3</sub> =10<br>NO <sub>3</sub> =10<br>SO <sub>4</sub> =WS<br>SO <sub>4</sub> =WS | As(ch)=50(Trec)<br>cd(ac)=TVS(tr)<br>cd(ac)=TVS(tr)<br>cd((ac)=TVS<br>cd((ac)=1VS<br>cv((ac)=1VS<br>cu(ac)=1VS<br>cu(ac)=1VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fe(ch)=WS(dis)<br>Fe(ch)=1000(frec)<br>Mat(ch)=TVS<br>Mn(acdh)=TVS<br>Mn(acdh)=TVS                            | Hg(ch)=0.01 (tox)<br>Hg(ch)=0.01 (tox)<br>N(=ccd)=17VS<br>N(=cc)=17VS<br>Ag(ch)=17VS(tr)<br>Zn(=cc)=106<br>Zn(=c)=106 | Seasonal Temporary<br>Modifications<br>type il<br>altective through<br>1/1/09.<br>March 1 through<br>Ant 30<br>Zn(4)=275<br>Zn(4)=275<br>Zn(4)=275<br>Zn(4)=275<br>Zn(4)=275<br>Zn(4)=705<br>Zn(4)=705<br>Zn(4)=705 |
| <b>v</b> j | All tributaries to the Eagle River, tributing all weithinds, from the<br>compression buyes bridge at Bocken to a point trimmulately below<br>the comfusions with Laise Creak, except for the specific leange in<br>Segments 1, 7 and 6. |                                       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pi+e6.5.9.0<br>F.Coll=200/100ml<br>F.Coll=200/100ml  | NH<br>3(8C/ch)=TVS<br>Cl <sub>2</sub> (8c)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005         | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C1=250<br>SO <sub>4</sub> =WS            | Autor | Fe(ch)=VS(du)<br>Fe(ch)=1000(Trac)<br>Pb(ardh)=TVS<br>Mn(cd)=VYS<br>Mn(acdh)=TVS<br>Hg(ch)=0.01(lun)          | NI(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(h')<br>Zn(ac/ch)=TVS(h')                                   |                                                                                                                                                                                                                     |
| 78.        |                                                                                                                                                                                                                                         |                                       | As Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.0.=6.0 mgf<br>0.0.(sp)=7.0 mgf<br>pH=6 5-8.0<br>F.Coll=2001100ml<br>F.Coll=1201100ml   | NH3(8001)=1VS<br>C2_(c01=0.019<br>C2_(c01=0.011<br>CN=0.005                                        | S=0.002<br>8=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C =250<br>SO <sub>4</sub> =WS            | As(ac)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(dn)=TVS<br>Cd(dn)=TVS<br>CrV((acdn)=TVS<br>Cu(acdn)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Ph(acdh)=TVS<br>Mn(ch)=WS<br>Mn(ch)=WS<br>Hg(ch)=0.01(tot)             | NI(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS(tr}<br>Zn(ac/ch)=TVS                         |                                                                                                                                                                                                                     |
| Ŕ          | Maintrism of Cross Creek from a point immediately below the<br>Mentum Middle School to the confuence with the Eagle River,<br>except for those vulters included in Segment 1.                                                           | 9,20,000<br>Baseline dos<br>not apply | Aq Life Cold 1<br>Recruition 1a<br>Recruition 2<br>Agricultura  | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>H=6.55.0<br>F.Coll=200100ml<br>E.Coll=1281100ml      | NH <sub>3</sub> (acta)=TVS<br>C2 <sub>2</sub> (ac)=0.018<br>C2 <sub>2</sub> (a1)=0.011<br>CN=0.005 | S=0.002<br>N=0.75<br>N=0.75<br>N=0.05<br>N=10<br>S=10<br>SO4=WS<br>SO4=WS                                     | As(ac)=50(Trec)<br>colact=TVS(tr)<br>colacit=TVS(tr)<br>contilac)=50(Trec)<br>contilac)=50(Trec)<br>contilac)=1VS<br>cutactch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fe(ch)=WS(dis)<br>Fe(ch)=100(Troc)<br>Mn(ch)=VS<br>Mn(ch)=VS<br>Mn(ch)=VS<br>Mn(acch)=TVS<br>Hg(ch)=0.01(tot) | Milacichi=TVS<br>Selecthi=TVS<br>SelectTVS<br>Agichi=TVS(tr)<br>Zri(secoh=TVS                                         | Sessonal Temporary<br>Modifications<br>Modifications<br>Figuration for an<br>March 1 through April<br>20(ch)=193<br>Zn(ch)=193<br>Mary 1 through<br>Figuras) 29<br>Zn(ch)=118<br>Zn(ch)=118                         |

| REG   | REGION:12                                                                                                                                                                                                                                                                 | Desig | Classifications                                                 |                                                                                         |                                                                                                     | NUM                                                                                                | NUMERIC STANDARDS                                                                                                                         |                                                                                                                        |                                                                                               | TEMPORARY |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------|
| BAS   | BASIN: Eagle River                                                                                                                                                                                                                                                        |       |                                                                 |                                                                                         |                                                                                                     |                                                                                                    |                                                                                                                                           |                                                                                                                        |                                                                                               | AND       |
| Stree | Sutuam Sequenti Description                                                                                                                                                                                                                                               |       |                                                                 | PHYSICAL<br>and<br>BIOLOGICAL                                                           | INORGANIC<br>mg/                                                                                    | NC                                                                                                 |                                                                                                                                           | METALS<br>uG1                                                                                                          |                                                                                               | QUALFIERS |
| co    | Mahalem of Sone Creek from the confluence with Black Gore<br>Creek to the Sonfluence with the Eagle River.                                                                                                                                                                |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.O. =6.0 mg/<br>D.O.(sp)=7.0 mg/<br>PH=6.5-9.0<br>F.Coll=726/100m/<br>E.Coll=126/100m/ | NH <sub>3</sub> (ac/d))=TVS<br>Ct <sub>2</sub> (ac)=0.019<br>Ct <sub>2</sub> (dh)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ch)=TVS<br>Cd(th)=TVS<br>Cd(th)=TVS<br>Cut(ac(th)=TVS<br>Cut(ac(th)=TVS                           | Fe(ch)=VS(dis)<br>Fe(ch)=1000(fTrac)<br>Pb(acch)=TVS<br>Mn(ch)=TVS<br>Mn(acch)=TVS<br>He(ch)=0.01(au)                  | Nifecdh)⊨TVS<br>Se[acth)=TVS<br>Ag(ac⊨TVS<br>Ag(ac⊨TVS<br>Ag(ah)=TVS(t)<br>Zn(acth)=TVS       |           |
| ci    | Methodian of the Eagle River from Core Creek to the certificence with the Colorado River.                                                                                                                                                                                 |       | An Life Cold 1<br>Riotranition 18<br>Wahr Supply<br>Agriculture | D.O. +6.0 mg/<br>D.O. (sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coll=250100ml<br>F.Coll=1261100ml | NH <sub>3</sub> (acch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>HO <sub>2</sub> =0.05<br>NG <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Astac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>Cn1l((ac)=50(Trec)<br>Cn1l((ac)=TVS<br>Cu((acd))=TVS<br>Cu(acd)=TVS | Fe(ch)=WS(dfs)<br>Fe(ch)=1000(Trec)<br>Pb(sc/ch)=TVS<br>Mn(ch)=WS<br>Mn(cc)=WS<br>Mn(cc/ch)=TVS<br>Hg(ch)=0.01(bul)    | NI(ac(ch)=TVS<br>Se(ac(ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(v)<br>Zn(ac(ch))=TVS               |           |
| 10.   | All Infludinties to the Eagle River, Including all weisands, from a point<br>immediately below the confluence with Jake Creek to the<br>confluence with the Colorado River, except for specific lettings in<br>Segments 11 and 12, and these walks included in Segment 1. |       | Ag Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.O.=6.0 mg/<br>D.O.(sp=7.0 mg/<br>PH=6.5-9.0<br>F.Coli=200100ml<br>E.Coli=126100ml     | NH-3(80(31)=TVS<br>CL2(30)=0.019<br>CL2(33)=0.011<br>CL=0.011<br>CN=0.005                           | S=0.002<br>B=0.75<br>NO2=0.05<br>NO3=10<br>C=250<br>SO4=WS                                         | As(ac)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=FVS<br>Cd(ac)=FVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS                               | Feych)=WS(dls)<br>Feych)=1000(Trec)<br>Pb(actch)=TVS<br>Mn(actch)=TVS<br>Mn(actch)=TVS<br>Hg(ch)=0.01(nt)              | NN BCCAD)=TVS<br>Secarch=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS(u)<br>Zn(ac/ch)=TVS    |           |
| 1     | Mainstein of A&mil Creek from the source to the confluence with the<br>Eagle River, mainstream of Milk Creek from the source to the<br>confluence with the Eagle River.                                                                                                   | Ę     | Aq Life Cold 2<br>Recreation 1b<br>Agriculturs                  | D.O.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5-8.0<br>F.Coll=205/100ml<br>E.Coll=205/100ml  | CN(ac)=0.2<br>NO <sub>2</sub> (ac)=10<br>NO <sub>3</sub> (ac)=100                                   | B=0.75<br>C1=250                                                                                   | As(ch)=100(Trec)<br>Be(ch)=100(Trec)<br>Cd(ch)=10(Trec)<br>Crili(ch)=100(Trec)                                                            | CrVI(ch)=100(f1ec)<br>Cu(ch)=200(f1ec)<br>Pb(ch)=100(f1ec)<br>Mn(ch)=200(f1ec)                                         | NI(ch)=200(Trec)<br>Se(actch)=TVS<br>Zn(ch)=2000(Trec)                                        |           |
| 12    | Mainstein of Brush Creek, from the source to the confluence with the Eagle River, including the East and West Forks.                                                                                                                                                      |       | Aq Lifle Cold 1<br>Recreation 1a<br>Waw Suppy<br>Agriculture    | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=126/100mi<br>E.Coli=126/100mi  | NH_(act)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005<br>CN=0.005    | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Aslac)=50(Trev)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(frec)<br>Cd(ac)=TVS<br>Cd(acd)=TVS<br>Cu(acdch)=TVS                                 | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Ptyse/ch)=TVS<br>Mn(ch)=VS<br>Mn(cc/ch)=TVS<br>Mn(cc/ch)=VS<br>Hg(ch)=0.01(Lof) | N"acth)=TVS<br>S (80:ch)=TVS<br>A (80:FTVS<br>A (60)=TVS(V)<br>A (61)=TVS(V)<br>D (80:ch)=TVS |           |

| REG    | REGION:12                                                                                                                                                                                                                                                                                           | Desig | Classifications                                                 |                                                                                                               |                                                                                                                 | NUMER                                                                                                      | NUMERIC STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                 |                                                                                     | TEMPORARY<br>MODIFICATIONS |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|
| BAS    | BASIN: Roarting Fork River                                                                                                                                                                                                                                                                          |       |                                                                 | ,                                                                                                             |                                                                                                                 |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                 |                                                                                     | AND                        |
| STer   | Stream Segment Description                                                                                                                                                                                                                                                                          |       |                                                                 | PHYSICAL<br>and<br>BIOLOGICAL                                                                                 | INORGANIC                                                                                                       | NIC.                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ugu<br>Ligu                                                                                                                     |                                                                                     | QUALIFIERS                 |
| +-     | All tributaries to the Roarting Foxh River system, Including all<br>wethords, paires and reservoirt, within the Matroon Belts/Snewmass,<br>Workmess, Raggeds, Collegiane Poetis, and the Hunterffryfregnen<br>Withdrimess Areas                                                                     | Mo    | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agrouture    | D.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Col=126/100ml<br>E.Col=126/100ml                          | NH <sub>3</sub> (8:2ch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (ch)=1.011<br>CN=0.006             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>G=250<br>SO <sub>4</sub> ≢WS          | Asjac)=St(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Phylacidh)=TVS<br>Mn(ch)=WS<br>Mn(cc/ch)=TVS<br>Hg(ch)=0.01(ted)                         | N((actch)=TVS<br>Se(_ctch)=TVS<br>Act = TVS<br>Act ch)=TVS(tr)<br>Zn(ac(ch)=TVS     |                            |
| 6      | Mainstem of the Roaring Fork River, including all Influtances and<br>weltends, from the source to a point immedialety befow the<br>confluence with Hunter Creek, ancept for those influtanes included in<br>Segment 1.                                                                              |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>0.0.(sp)=7.0 mg/<br>F.Coll=5.90<br>F.Coll=128/100ml                       | NH <sub>3</sub> (BCCh)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ac)=0.011<br>CN=0.005              | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI⊭250<br>SO <sub>4</sub> =WS         | As(ec)=50(Trec)<br>co(ae)=TVS(tr)<br>co(ae)=TVS(tr)<br>cort(ae)=60(Trec)<br>cort(ae)=60(Trec)<br>cort(ae)=TVS<br>cu(ac(ct)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe(ct)=WS(dis)<br>Fe(ct)=TOW(rec)<br>Pt(sc(ct)=TVS<br>Mn(ct)=WS<br>Mn(sc(ct)=TVS<br>Hg(ct)=C01(tot)                             | Ni(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Aq(ac)=TVS<br>Aq(ac)=TVS(tt)<br>Zn(ac/ch)=TVS     |                            |
| Ŕ      | Mahelem of the Rosting Fork River, including all influtianless and<br>wetlines, iron a parel immediately beken who combused with Humbr<br>Creek, to the confluence with the Colorado River except for those<br>influtaries included in Segment 1 and specific listings in Segmenta<br>36 Prough 10. |       | Ad Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.6.9.0<br>P.Coll=200/100m/<br>E.Coll=128/100m/                        | NH <sub>3</sub> (nc(ch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> ≠10<br>CI≈260<br>CI≈260                      | As(ac)=50(Trec)<br>cd(ac)=TVS(tr)<br>Cd(ac)=57S<br>cd(ac)=50(Trec)<br>crit((acde)=TVS<br>Cu(acde)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fe(ch)=WS(dis)<br>Fe(ch)=1200(Trec)<br>PX(ac(ch)=TNS<br>Mn(ch)=WS<br>Mn(acch)=TVS<br>Hg(ch)=0.01(tot)                           | NI(acidn)=TVS<br>Se(acidn)=TVS<br>Ag(ach=TVS<br>Ag(dn)=TVS(tr)<br>Zn(acidn)=TVS(tr) |                            |
| Ŕ      | Mainsteim of Red Campon and all brountries and wellands from the<br>source to the comfluence with the Roaming Fort River, except for<br>Landis Greek from its source to the Hoppins Ditch Olyestein.                                                                                                | ġ.    | Ag Life Cold 2<br>Recreation 2<br>Water Supply<br>Agriculture   | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Co4=2001100ml<br>E.Co4=1284100ml                          | NH <sub>3</sub> (acych)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (an)=0.011<br>CN=0.005             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=260<br>C=260<br>SO <sub>4</sub> =WS | As(ac)=50(Treo)<br>Co(nc)=TVS(tr)<br>Co(nc)=TVS<br>Co(nc)=TVS<br>Co(nc)=TVS<br>Co(nc)=TVS<br>Co(ac(ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe(ch)=W3(dis)<br>Fe(ch)=100(Trac)<br>Pb(ac)ch)=TVS<br>Ma(ch)=VS<br>Ma(ac)=VS<br>Ma(ach)=TVS<br>Mg(ch)=0.01(tot)                | N((acich)=TVS<br>Se(acich)=TVS<br>Ad((c)=TVS<br>Ad(c)=TVS(t)<br>Zn(acich)=TVS       |                            |
| 4      | Mainstein of Brush Creek from the source to the commence with the<br>Roading Fork River.                                                                                                                                                                                                            | Ъ     | Aq Life Cold 1<br>Recreation 1a<br>Agriculture                  | D.O.=6.0 mg/<br>D.O.(40)=7.0 mg/<br>PH=6.5-9.0<br>F.Coll=200/100ml<br>E.Coll=128/100ml                        | NH-3(ac/ch)=TVS<br>CL2(ac)=0.019<br>CL2(ch)=0.011<br>CN=0.005                                                   | S=0.007<br>B=0.75<br>NO2=0.05                                                                              | As(ch)=100(Trec)<br>Cd(cc)=TVS(tr)<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Criti(ac/ch)=TVS<br>Cv(ac/ch)=TVS<br>Cu(ac/ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>M=(ac/ch)=TVS<br>H2(ch)=01((ct)<br>Ni(ac/ch)=TVS                                          | Se(acth)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(h)<br>Zn(ac(ch)=TVS                        |                            |
| d)     | Mainteam of the Fryingpan River from the source to the combusince<br>with the North Fork.                                                                                                                                                                                                           |       | Aq Life Cold 1<br>Recreation 1a<br>Watter Supphy<br>Agriculture | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pt+6.5-80.0<br>F.Cca=2001100m/<br>F.Ccal=126/100m/<br>E.Coll=126/100m/    | NH <sub>3</sub> (ac/ch)=TVS<br>Ct <sub>2</sub> (ac)=0.019<br>Ct <sub>2</sub> (ch)=0.011<br>CN=0.005             | S=0.007<br>B=0.76<br>NO <sub>3</sub> =10<br>CI≈250<br>SO <sub>4</sub> =WS                                  | As(ac)=50(Trac)<br>Cd(ac)=TVS(u)<br>Cd(ac)=TVS<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)<br>Cd(f(ac)=50(Trac)) | Fe(ch)≃WS(dis)<br>Fe(ch)=100(frec)<br>Pb(acch)=1VS<br>MM(cch)=TVS<br>MM(acch)=TVS<br>Mg(ch)=0.01((ul)                           | Nu(acidh)=TVS<br>Se(acidh)=TVS<br>Ag(ac)=TVS<br>Ag(dh)=TVS(tr)<br>Zn(acidh)=TVS     |                            |
| ю́     | Wainstein of the Frystiggen River from the confluence with the North Fork to the confluence with the Rearing Fork River.                                                                                                                                                                            |       | Aq Life Cold 1<br>Recreation 16<br>Writer Supphy<br>Agriculture | 0.0.=6.0 mg <sup>4</sup><br>0.0.(sp)=7.0 mg <sup>4</sup><br>pH=8.5.9.0<br>F.Coll=200100ml<br>F.Coll=126/100ml | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005             | S=0.002<br>B=0.75<br>NO_2=0.05<br>NO_3=10<br>C=250<br>SO_4=WS                                              | As(ac)=50(frec)<br>Color)=TVS(tr)<br>Col(tr)=TVS<br>Col(frec)=50(frec)<br>Col(frec)=50(frec)<br>Col(frec)=TVS<br>Col(frec)th=TVS<br>Col(rec)th=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trac)<br>Pb(ac/ch)=TVS<br>Man(ac/ch)=TVS<br>Man(ac/ch)=TVS<br>Man(ac/ch)=TVS<br>Man(ac/ch)=1V(ca) | N(actch)=TVS<br>Se(actch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(actch)=TVS      |                            |
| ,<br>, | All Inbutaries to the Fryingpain River system, knoluoling all weblands,<br>except for those influtianties inducted in Segment 1.                                                                                                                                                                    |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | 0.0.=8.0 mg/<br>0.0.(sp=7.0 mg/<br>pH=6.201-500100ml<br>F.Coll=128/100ml                                      | NH <sub>3</sub> (8c/ch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS         | As(ac)=50(Trec)<br>Co(ac)=TVS(b)<br>Co(ac)=TVS(b)<br>Co(fil(ac)=50(Trec)<br>Cofil(ac)=1VS<br>Co(ac(ch)=TVS<br>Co(ac(ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>bb(arcch)=TVS<br>Min(ch)=WS<br>Min(cdr)=TVS<br>Hig(ch)=0.01((u))                         | Nk(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS     |                            |

| REG      | REGION:12                                                                                                                                                                                         | . Deską | Classifications NUMERIC STA                                    |                                                                                             |                                                                                                                         | NUMER                                                                                              | NUMERIC STANDARDS                                                                                                         |                                                                                                                            |                                                                                            | TEMPORARY  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|
| BASI     | BASIN: Roaring Fort River                                                                                                                                                                         |         |                                                                |                                                                                             |                                                                                                                         |                                                                                                    |                                                                                                                           |                                                                                                                            |                                                                                            |            |
| Sirea    | Stream Segment Description                                                                                                                                                                        |         |                                                                | PHYSICAL<br>and<br>BLDLOGICAL                                                               | INORGANIC<br>mg/l                                                                                                       | ANIC                                                                                               |                                                                                                                           | METALS<br>ugi                                                                                                              |                                                                                            | QUALIFIERS |
| æ        | Mainstem of the Crystal Rherr, inducing all tributaries and wetlands,<br>from the source to the comfusence with the Roaming Fork River,<br>eucept for specific facilings in Segments 1, 9 and 10. |         | Aq Life Cold 1<br>Recreation 18<br>Water Supply<br>Agriculture | D.O.=8.0 mg/<br>D.O.(sp)=7.0 mg/<br>PH=6.29.0<br>F.Coli=126/100ml<br>E.Coli=126/100ml       | NH3(ac(d)=TVS<br>Cl2(ac)=0.019<br>Cl2(d)=0.011<br>CN=0.005                                                              | S=0.002<br>B=0.76<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C=250<br>SO <sub>4</sub> =WS  | As(ac)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Crit(ac)=TVS<br>Crit(ac(ch)=TVS<br>Cu(ac(ch)=TVS         | Fe(ch)=WS(dis)<br>Fe(ch)=1000((Trec)<br>Pb(auCh)=17VS<br>Mrt(ch)=17VS<br>Mrt(ch)=17VS<br>Mrt(ch)=17VS<br>Hg(ch)=0.01([bu)] | NI(actch)=TVS<br>Set(acdch)=TVS<br>Ac(ac)=TVS<br>Ac(ac)=TVS<br>2r(ac(ch)=TVS               |            |
| œ        | Mainstein of Coal Creek Including all intruisiries and wetlands from<br>the source to the confluence with the Crystal River.                                                                      |         | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | D. O. =6.0 mg/<br>D. O. (sp)=7.0 mg/<br>PH=6.5-8.0<br>F. Coll=200(100m)<br>F. Coll=126/100m | NH <sub>3</sub> (&2cth=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005                      | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CH250<br>SO <sub>4</sub> =WS  | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac(ac)=TVS<br>Cd(ac(ac)=TVS             | Fe(ch)=WS(dis)<br>Fe(ch)=1000(frec)<br>Pb(ac(ch)=TVS<br>Mn(cc))=WS<br>Mn(cc)=VS<br>Hg(ch)=0.01((ot)                        | N(ac/ch)=TVS<br>(ac/ch)=TVS<br>(ac/ch)=TVS<br>Ac(ac)=TVS<br>Ac(ch)=TVS(b)<br>Zn(ac/ch)=TVS |            |
| <u>.</u> | Mainstam of Thompson Creek including all urbutanies and wetlands from the source to the confilmence with the Crystal River.                                                                       |         | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | 0.0.=6.0 mg/<br>0.0.(sp=7.0 mg/<br>pH=6.5-9.0<br>F.Col=200/100rd<br>E.Col=128/100rd         | NH <sub>3</sub> (adch)=TVS<br>Cl <sub>2</sub> (acp=0.019<br>Cl <sub>2</sub> (ch <i>j</i> =0.011<br>CN=0.005<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C1=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS | Fe(ch)=WS(dbs)<br>Fe(ch)=VS(dbs)<br>Po(acd)>=TVS<br>Mn(ca))=VS<br>Mn(ca))=VS<br>Mn(ca)=0.01((ce)<br>Hg(ch)=0.01((ce)       | Nk(ao/ch)=TVS<br>Se(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS         |            |

| REG | REGION:12                                                                                                                                                                                                       | Desto |                                                                  | cations 1                                                                                                            |                                                                                                                       |                                                                                                                  | NIMERIC STANDARDS                                                                                                                                |                                                                                                                    |                                                                                                      | TEMPORARY                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------|
| BAS | BASIN: North Platta River                                                                                                                                                                                       | 5     |                                                                  |                                                                                                                      |                                                                                                                       |                                                                                                                  |                                                                                                                                                  |                                                                                                                    |                                                                                                      | MODIFICATIONS                 |
| Sle | Siteam Segment Description                                                                                                                                                                                      |       |                                                                  | PHYSICAL<br>and<br>BIOLOGICAL                                                                                        | (NORGANIC<br>mg/                                                                                                      | אוכ                                                                                                              |                                                                                                                                                  | METALS<br>ugʻi                                                                                                     |                                                                                                      | QUAUFIERS                     |
| ÷   | All intrustice to the North Platte and Encampment Rivers, Including<br>all wellands, lettes and reservoirs, within the Manu Zirkal, the Never<br>Summer, and the Platte River Wildemass Aveas.                  | MO    | Aq Life Cold 1<br>Recreation 1a<br>Vitiair Supply<br>Agriculture | D.D.=6.0 mg/l<br>D.D.(se)=7.0 mg/l<br>pH=6.5-9.0<br>F.Col=200/100ml<br>E.Col=126/100ml                               | NH <sub>3</sub> (ac/ch)=TVS<br>Ch <sub>2</sub> (ac)=0.019<br>Ch <sub>2</sub> (ch)=0.011<br>CN=0.005                   |                                                                                                                  | As(ac)=S0(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cm((ac)=FVS<br>Cu(ac)d)=TVS<br>Cu(ac)d)=TVS                                     | Fe(cn)=VS(dis)<br>Fe(cn)=1000(Trec)<br>PN(ex(cn)=TVS<br>Mn(ac(cn)=TVS<br>Mn(ac(cn)=TVS<br>Hg(cn)=0.01(ou)          | Ni(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac/=TVS<br>Ag(ac/=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS        |                               |
| £¥  | Midfinition of the Enternyment Rhver, including all vibulantes,<br>websing, takes and reservoirs from the source to the<br>Commition/yonning border, except for those tributaries included in<br>Segment 1.     |       | Aq Life Cold 1<br>Recreation 15<br>Water Supply<br>Agriculture   | D.D.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=5.5-9.0<br>F.Cofi=3254100mf<br>F.Cofi=2054100mf                               | NH3(aCch FT/IS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch F-0.011<br>CN=0.005                               | 2 4                                                                                                              | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cvt((ac)ch)=TVS<br>Cut(ac)ch)=TVS                                 | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pe(sech)=TVS<br>Mn(sech)=TVS<br>Mn(sech)=TVS<br>Mn(sech)=TVS                | Ni(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ch)=TVS(tr)<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS |                               |
| ri  | Maintestian of this North Platte River fram the confuences of Grizzly<br>Creek and Little Grizzly Creek to the Colorado/Myonung border.                                                                         |       | Aq Life Cold 1<br>Recreation 1a<br>Viriain Supphy<br>Agriculture | 0.0.50.=6.0 mg/t<br>0.0.635=7.0 mg/t<br>hH=6.5=9.0<br>F. Coli=200/100ml<br>E. Coli=128/100ml                         | NH <sub>3</sub> (ສc/ch)=TVS<br>ຕູ <sub>2</sub> (ch)=0.019<br>ຕູ <sub>2</sub> (ch)=0.011<br>ເປ <sub>2</sub> (ch)=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>NO <sub>3</sub> =10<br>SO <sub>4</sub> =1/S | As(ac)=56(Trec)<br>Co(ac)=7VS(tr)<br>Cd(ac)=7VS<br>Cd(ac)=56(Trec)<br>Coni(ac)=56(Trec)<br>Coni(acden)=TVS<br>Cu(acden)=TVS                      | Fe(ch)='WS(dis)<br>Fe(ch)='1000(Trec)<br>Po(ec/ch)='TVS<br>Mn(ca)='VS<br>Mn(aHg(ch)=0.01(1ot)                      | Ne(ac(ch)=TVS<br>Se(ac(ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac(ch)=TVS        |                               |
| 4   | All tributaries ki, the Notth Pelala River synatem, including all wellands,<br>lakes and reservoin, accept for those included in<br>before it, and specific listings in Sagments 5. ft and 7.                   |       | Aq Lite CMd 1<br>Recreation 19<br>Water Supply<br>Agriculture    | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.6.9.0<br>9.Coli=200/100ml<br>6.Coli=120/100ml                               | NH <sub>3</sub> (ac/ah=TVS<br>Ct <sub>2</sub> (ac)=0.019<br>Ct <sub>2</sub> (dh=0.011<br>CN=0.005                     | S=0.002<br>B=0.75<br>MO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI≈250<br>SO4±W3                            | As(ch)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=50(Trec)<br>Cd(l(ac)=TVS<br>Cd(l(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS | F&(ch)=VS(dis)<br>Fe(ch)=1000(Trec)<br>Mri(ch)=VS<br>Mri(ch)=VS<br>Pb(acich)=TVS<br>Hg(ch)=0.01(tot)               | Ni(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Agiac)=TVS<br>Agich)=TVS<br>Agich)=TVS<br>Zn(ac/ch)=TVS            |                               |
| \$  | Maintainen ol fun Michigan River from the source to the Colorado<br>State Forest boundary.                                                                                                                      |       | Aq Life Cald 1<br>Recreation 1a<br>Water Supphy<br>Agriculture   | D.O.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5.9.0<br>H=6.5.9.0<br>F.Col=200/100m/<br>F.Col=126/100m/<br>F.Col=126/100m/ | NH <sub>3</sub> (ละมีนำ)=TVS<br>Ch <sub>2</sub> (ac)=0.019<br>Ch <sub>2</sub> (ch)=0.011<br>CN=0.005                  | S=0.002<br>B=0.75<br>NO2=0.05<br>NO3=10<br>CE 250<br>SO4=WS                                                      |                                                                                                                                                  | Cu(ac/ch)=TVS<br>Fe(ch)=WS(dis)<br>Fe(ch)= t000(Trec)<br>Mn(ch)=WS<br>Mn(soch)=TVS<br>Pb(ac/ch)=TVS                | Hg(ch)=0.01(bot)<br>N(sc/ch)=TVS<br>Selectorp=TVS<br>Ag(ch)=TVS(b)<br>Ag(ch)=TVS(b)<br>Zu(acch)=TVS  |                               |
| \$  | Mainslett of the Michigan River from the Coorseo State Forest<br>boundets; to the confluence with the Nociji Platte River.                                                                                      |       | Asy Life Cold 1<br>Reconstition 2<br>Water Supphy<br>Agriculture | 0.0.=6.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=8.5-9.0<br>F.Coll=2004/100ml<br>E.Coll=530/100ml                              | NH <sub>3</sub> (ac/ch)=TVS<br>Ch <sub>2</sub> (ac)=0.019<br>Ch <sub>2</sub> (ch)=0.011<br>CN=0.005                   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>CI=250                            | As(ch)=50(Trec)<br>Coffsc)=TVS(tr)<br>Coffsc)=TVS<br>Coffsc)=TVS<br>Coff(trec)<br>Coff(trec)<br>Coff(sc)=TVS<br>Coff(sc)ch)=TVS                  | Cu(sctch)=TVS<br>Fe(ch)=WS(05)<br>Fe(ch)=WS(05)<br>Mn(ch)=WS<br>Mn(sctch)=TVS<br>Pb(sctch)=TVS<br>Hg(ch)=0.01(tol) | Ni(ac/ch)=TVS<br>Se(ac(ch)=TVS<br>Ag(ch)=TVS<br>Ag(ch)=TVS(fr)<br>Zn(ac(ch)=TVS<br>Zn(ac(ch)=TVS     |                               |
| vi  | Mainstein of Pinkram Creek trum ປອ Routh National Forest<br>boundary to the confluence with the North Plate River.                                                                                              |       | Aq Life Cold 1<br>Recreation 2<br>Agriculture                    | D.0.=5.0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5.00<br>F.Coli=2000 100mi<br>E.Coli=630/100mi                               | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005                   | S=0.002<br>B=0.75<br>NO_2=0.05<br>NO_3=100                                                                       | As(ch)= 100(Trec)<br>Colac)=TVS(u)<br>Colac)=TVS(u)<br>Coll(a=Ch=TVS<br>Coll(a=Cch)=TVS<br>Cu(a=Cch)=TVS<br>Cu(a=Cch)=TVS                        | Fe(ch)≡1000(Trec)<br>Pbkac/dh)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=01(tol)<br>N((ac/ch)=TVS                             | Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(r)<br>Zn(ac/ch)=TVS                                        |                               |
| ~   | Mainsiam of Government, Check from the oxumpany of the Colorado<br>State Forest to the confluence with the Cenedian River. Mainsteam of<br>Spiring Creek from the scarce to the confluence with Illinois River. | d'    | Aq L/h Cold 2<br>Recreation 2<br>Agriculture                     | 0.0.=5.0 mg/l<br>D.O.(sp)=7.0 mg/l<br>PH=6.5-9.0<br>F.Coll=630110ml<br>E.Coll=630110ml                               | NH <sub>3</sub> (8c/dh)=TVS<br>Cl <sub>2</sub> (8c)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.065                   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =100                                               | As(ch)= 100(Trac)<br>Cd(sc)=TVS(r)<br>Cd(ch)=TVS<br>Cd(iac(ch)=TVS<br>Cd(iac(ch)=TVS<br>Cd(iac(ch)=TVS<br>Cu(iac(ch)=TVS                         | Fe(ch)≂1000(Trec)<br>Pb(ac/ch)=TVS<br>Pb(ac/ch)=TVS<br>Hg(ch=0.01(tod)<br>Nf(ac/ch)=TVS                            | Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zri(ec/ch)=TVS                                      | Water + Fish<br>organics spch |

| REGION:12                                                                                                       |                                                                                                                                                                                                                                                                                                                      | Desig | Clessifications                                                  | 2 Clessifications NUMERIC STA                                                              |                                                                                                                   | NUMER                                                                                               | NUMERIC STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                          |                                                                                                      | TEMPORARY<br>MODIFICATIONS                        |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| BASIN: Yampa River                                                                                              |                                                                                                                                                                                                                                                                                                                      |       |                                                                  | PHYSICAL                                                                                   | INORGANIC                                                                                                         | NIC                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METALS                                                                                                                   |                                                                                                      | AND<br>OLALIFIERS                                 |
| Stream Segment Description                                                                                      | scription                                                                                                                                                                                                                                                                                                            |       |                                                                  | BIOLOGICAL                                                                                 | h                                                                                                                 |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h                                                                                                                        |                                                                                                      |                                                   |
| 1. Au trabutantes to the Yamm<br>reservoins, which are with<br>Creek Wildbriness Areas.                         | All tributaries to the Yampa River, including all weitends, lakes and<br>reservoirs, which are within the Mount Zirkal, Flat Tops and Sarvis<br>Creek Wilderness Areas.                                                                                                                                              | 3     | Aq Lile Cold 1<br>Recreation 1a<br>Wahar Supply<br>Agriculture   | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coll=2001100ml<br>E.Coll=1261100ml     | NH <sub>3</sub> (action)=TVS<br>Cr <sub>2</sub> (act)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CH=250<br>SO <sub>4</sub> =1WS | As we = 50(Tree)<br>Cd we = TVS(tr)<br>Cd we = TVS(tr)<br>Cd we = 50(Tree)<br>Cd we = 50(Tree)<br>Cd we = 50(Tree)<br>Cd we = TVS<br>Cd we = TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ch)=VS<br>Mn(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Hg(ch)=0.01(tot)  | Ni(acich)=TVS<br>Se(acich)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(acich)=TVS(tr)<br>Zn(acich)=TVS |                                                   |
| 2a Meinstern of the<br>Creek to the co                                                                          | Meinstern of the Yampa River from the confluence with Wheeler<br>Creek to the confluence with Elikhead Creek, except for segment 25                                                                                                                                                                                  |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture   | D. 0.=6.0 mg/<br>D. 0.(sp)=7.0 mg/<br>p11=6.5-9.0<br>F.coll=126/100ml<br>E.Coll=126/100ml  | NH <sub>3</sub> (ac/ch)=TVS -<br>Ch <sub>2</sub> (ac)=0.018<br>Ch <sub>2</sub> (ch)=0.011<br>CN=0.005<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS  | As(ac)=50(Trac)<br>Cd(ac)=TVS(tt)<br>Cd(ac)=TVS(tt)<br>Cd(ac)=50(Trac)<br>Chtil(acc)=50(Trac)<br>Chtil(acch)=TVS<br>Cu(acch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mn(ch)=WS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(μw)                    | N(4c/ch)=TVS<br>Se(sc/ch)=TVS<br>Ag(sc)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(8c/ch)=TVS                       |                                                   |
| 2b. All lates and n<br>source to the co<br>in Segment 1.<br>from the source                                     | All fakes and reservoirs inbutary to the Yampa River from the<br>source of the confluence with Eitherad Creek, accept for those listed<br>source it                                                                                                                                                                  |       | Ag Life Cots 1<br>Recreation 1a<br>Water Supply<br>Agriculture   | D.O.=6.0 mg/l<br>D.O.(sp)=7.0 mg/l<br>pt+e5.5.9.0<br>F.Coli=200100ml<br>E.Coli=126100ml    | NH <sub>3</sub> (ac/ch)=TVS<br>Ct <sub>2</sub> (ac)=0.019<br>Ct <sub>2</sub> (ch)=0.011<br>CN=0.005               | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS  | Astac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ah=TVS<br>Cd(ah=TVS<br>Cd(ah=TVS<br>Cd(acdh)=TVS<br>Cu(acdh)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fe(ch)=/VS(ds)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mm(ch)=VS<br>Mm(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Hg(ch)=0.01((cd)) | NI(ac(ch)=TVS<br>Se(ac(ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(r)<br>Zn(ac(ch)=TVS                       |                                                   |
| <ol> <li>All tributanties to<br/>secure to the co<br/>segments 1, 4,<br/>including<br/>Tops Wildomet</li> </ol> | All rebutanties to the Yempia Rover, including all welfands, incom the source to the contributions with the Rover, social for specific fairings in second that all all the source to the source for the Rover to the confluence with the Yampa Rover. Topic Wildoffness Area to the confluence with the Yampa Rover. |       | Aq Life Cold 1<br>Recretion 18<br>Were Supply<br>Agriculture     | 0.0.+6.0 mg/<br>D.0.(sp)=7.0 mg/<br>PH=5.5-9.0<br>F.Col=200100ml<br>E.Col=126100ml         | NH <sub>3</sub> (addh)=TVS<br>CL <sub>2</sub> (ab=0.019<br>CL <sub>2</sub> (dh)=0.011<br>CN=0.005                 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C1=250<br>SO <sub>4</sub> =WS  | As(sc)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cd(ch)=TVS<br>Cd(ac)=50(Trac)<br>CAV(ac)=1TVS<br>Cu(ac)=1TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fe(ch)=WS(dfs)<br>Fe(ch)=1000(frec)<br>Pb(e:c(ch)=TVS<br>Mn(ch)=WS<br>Mn(ac(ch)=TVS<br>Hg(ch)=0.01(nd)                   | N(ac(ch)⊨TVS<br>Se(ac(ch)=TVS<br>Agiac;=TVS<br>Agich⊨TVS(r)<br>Zn(ac(ch)⊨TVS                         |                                                   |
| 4, Maihnstern of Ll<br>confluence with                                                                          | Mainstein of Lidle White Snake Creek from the source to the<br>confluence with the Yampe River.                                                                                                                                                                                                                      | e.    | Aq Life Cold 2<br>Recreation 2<br>Water Supply<br>Apriculture    | D.0.450)=5.0 mg/<br>D.0.450)=7.0 mg/<br>PH=6.5-9.0<br>F.Coli=830/100ml<br>E.Coli=830/100ml | CN=0.005<br>S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                            | NO3=10<br>CI=250<br>SO4=WS                                                                          | As(ac)=50<br>Cd{ac)=50<br>Cn1(ac)=50<br>Cn1(ac)=50<br>Cu(ch)=200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe(ch)=WS(GB)<br>Pb(ac)=50<br>Mn(ch)=WS<br>Mn(ac(ch)=TVS<br>Ho(ac)=20                                                    | Ni(ch)=100<br>Se(ch)=20<br>Ag(ac)=100<br>Zn(ac/ch)=2000                                              | All metals are<br>Trec unless<br>otherwise noted: |
| <ol> <li>Mathettern of Cl<br/>which are not c<br/>confluence with</li> </ol>                                    | Matretiam of Chismay Creek, including eli tributaries and wetlands,<br>which are not on National Forest tands, from the source to the<br>continence with the Yampe River.                                                                                                                                            |       | Aq Life Cold 1<br>Recreation 1b<br>Agriculture                   | D.O. =8.0 mg/<br>D.O. (sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Co#=225100ml<br>E.Co#=205400ml       | NH <sub>3</sub> (actch)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005               | S=0.002<br>B=0.75<br>NO2=0.05                                                                       | As(ch)=100(Trac)<br>Od(ac)=TVS(tr)<br>Cd(ch)=TVS<br>Critit(ac/ch)=TVS<br>Critit(ac/ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cu(acch)⊨TVS<br>Fe(ch)=1000(Trec)<br>Pb(actch)⊨TVS<br>Mm(actch)⊨TVS<br>Mm(actch)⊨TVS                                     | Ni(ac/ch/=TVS<br>Se(xo/ch/=TVS<br>Ag(ac)=TVS<br>Ag(ch/=TVS(h)<br>Zn(ac/ch/=TVS(h)                    |                                                   |
| <ol> <li>Mainstem of Oa<br/>the source to the<br/>theatmost plant.</li> </ol>                                   | Mainsteim of Oak Creek, Induding wit influidarles and vestiands, from<br>the nource to the point of discharge of the Oak Creek westimmater<br>treatment plant.                                                                                                                                                       |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture   | D.0.=6.0 mg/<br>D.0.(sp=7.0 mg/<br>pH=6.5-9.0<br>F.Col=200100m/<br>E.Col=126/100m/         | NH <sub>3</sub> (audh)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (dh)=0.011<br>CN=0.005                | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CH250<br>SO <sub>4</sub> =WS   | As(ac)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ta)=TVS<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=50(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac)<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70(Trac))<br>Cd((ac)=70 | Fe(dn)=WS(dis)<br>Fe(dn)=T00(Trec)<br>Pb(addn)=TVS<br>Mn(dn)=VS<br>Mn(addn)=TVS<br>Mn(addn)=TVS<br>Hg(dn)=0.01(tad)      | Ni(actch)=TVS<br>Set ectch)=TVS<br>Agtac)=TVS<br>Agtac)=TVS<br>Agtac)=TVS<br>Zn(actch)=TVS           |                                                   |
| 7. Maintenn of 10<br>the point of dis<br>to the confinen                                                        | Maintent of Dak Creek, Including all tributaries and wetlands, from the point of discharge of the Dak Creek wastewater breatment plant to the confinence with this Yampa River.                                                                                                                                      |       | Agriculture Agriculture                                          | D.O.=5.0 mg/<br>D.O.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Cod=2254100ml<br>E.Coll=2054100ml      | NH3(acch)=TVS<br>Cl <sub>2</sub> (ac)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.005                             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                          | As(ch)= 100(Trec)<br>Cd(ac)= TVS(tr)<br>Cd(ch)= TVS<br>Crtil(setch)= TVS<br>Crtil(setch)= TVS<br>CrVI(setch)= TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cu(acich)⊨TVS<br>Fe(ch)⊨1000(Trac)<br>Pb(acich)=TVS<br>Mn(acich)⊨TVS<br>Mn(acich)=TVS                                    | Ni(ac/dh)=TVS<br>Se(ac/dh)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/dh)=TVS                      |                                                   |
| <ol> <li>Alternation of the<br/>local three source<br/>those tributarie</li> </ol>                              | Mainstein of the Elk River including, all tribularies and wottands,<br>from the source to the confilerinos with the Yampa Rives, eucrept for<br>those Inbutaties included in Segment 1.                                                                                                                              |       | Aq Life Celt 1<br>Recreation 'te<br>Wrater Supply<br>Agriculture | D.0.=6.0 mg/<br>0.0.0(sp)=7.0 mg/<br>pH=6.5.0.0<br>F.Coll=260/100ml<br>E.Coll=126/100ml    | NH <sub>3</sub> (aoch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (dh)=0.011<br>CN=0.005                | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS  | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>CVI(acdot)=TVS<br>Cu(acdot)=TVS<br>Cu(acdot)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe(ch)=WS(0b)<br>Fe(ch)= 1000(frec)<br>Pb(acth)=TV3<br>Mn(ch)=VS<br>Mn(ch)=TVS<br>Ha(ch)=TVS<br>Hg(ch)=0.01((ot)         | Ni(actch)=TVS<br>Setecch)TVS<br>Ag(en)=TVS<br>Ag(ch)=TVS(r)<br>Zn(actch)=TVS                         |                                                   |
| 9. Deleted.<br>10. Deleted                                                                                      |                                                                                                                                                                                                                                                                                                                      |       |                                                                  |                                                                                            |                                                                                                                   |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                                                                      |                                                   |
| 11                                                                                                              |                                                                                                                                                                                                                                                                                                                      |       |                                                                  |                                                                                            |                                                                                                                   |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                          |                                                                                                      |                                                   |

| REGULATION NO. 33 UPPER COLORADO RIVER BASIN (continued) | STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS |
|----------------------------------------------------------|----------------------------------------------------|
| REGULATION NO. 33 UF                                     | STREAM CLASSIFICATIONS                             |

| BECKON-15         | N-12                                                                                                                                                                                                                                                                                                                                                                                                      | Decis       | Classifications                                                                |                                                                                         |                                                                                                     | AFTLED                                                                                             | NHUEDIC STANDADDS                                                                                                                                                                     |                                                                                                                      |                                                                                                                     | TEMPORARY                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| BASIN             | BASIN: Yampa River                                                                                                                                                                                                                                                                                                                                                                                        | P<br>5<br>1 |                                                                                |                                                                                         |                                                                                                     |                                                                                                    |                                                                                                                                                                                       |                                                                                                                      |                                                                                                                     | MODIFICATIONS                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                                                                | DUVENU                                                                                  | Chryodow                                                                                            |                                                                                                    |                                                                                                                                                                                       | ALCTAL C                                                                                                             |                                                                                                                     |                                                                                                               |
| STEED             | Stream Segment Description                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                | BIOLOGICAL                                                                              | 10m                                                                                                 | )                                                                                                  |                                                                                                                                                                                       | ng)<br>ng                                                                                                            |                                                                                                                     |                                                                                                               |
| 12                | All tributaries to the Yampa River, including all wellands, from<br>the confluence with the E& River to the confluence with<br>Eliferent Creek, which are not on National Forest lands,<br>eliferent for specific listings in Segments 13a, 13b, 13c, 13d<br>and 13a.                                                                                                                                     | 9           | Au Life Cold 2<br>Recrements<br>Agriculture                                    | D 0.=6.0 mc1<br>D.0 (sp)=7.0 mp1<br>pH=6.5-8.0<br>F.Coi=2000100ml<br>E.Coi=530100ml     | CN(ac)=0.2                                                                                          | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =100                                 | As(ac)= 100<br>Co(ch)= 100<br>Crill(ch)= 100<br>Crill(ch)= 100<br>Cu(ac)= 200                                                                                                         | Pb(ch)=100<br>Mar(ch)=200<br>Ma(ch)=200                                                                              | Se(ch)=20<br>Zn(ch)=2000                                                                                            | All metals are Trec<br>unless oftenwise<br>noted.                                                             |
| 134               | Mainstein of Trout Creak, Including all bibutaries and<br>wellands, from the nounce to the confluence with the Yampa<br>Rwar, which are not on National Forest lands, except for<br>specific Methogs in Segments 13b and 13c.                                                                                                                                                                             |             | Aq Life Cold 3<br>Recreation 1a<br>Water Supply<br>Agriculture                 | 0.0. =6.0 mg/<br>0.0.(so)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=200/100ml<br>E.Coli=126/100ml | NH <sub>3</sub> (actch)=TVS<br>CL <sub>2</sub> (ac)=0.019<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trac)<br>Cd(ac)=TVS(a)<br>Cd(ac)=TVS(a)<br>Cd((ac)=TVS<br>Cd((ac)=TVS<br>Cd((acd))=TVS<br>Cd((acd))=TVS                                                                     | Fe(ch)=WS(cfs)<br>Fe(ch)=100(Trec)<br>Pb(=cch)=1VS<br>Pb(=cch)=1VS<br>Mn(ch)=WS<br>Mn(=cch)=TVS<br>Hg(ch)=0.01(bu)   | NI(seden)=TVS<br>Se(seden)=TVS<br>Agien)=TVS<br>Agien)=TVS(b)<br>Zn(seden)=TVS                                      | Temporery<br>modification.<br>NH <sub>3</sub> (actor)=TVS(old)<br>(Type I). Expiration<br>date of 12/31/2011. |
| 13b.              | Mainstein of Foldsi Creek, including all hibutaries and welfands. Maintenne Find Creek, including all hibutaries from county Road 27 downstream to the confluence with Trout Creek. Middle Creek and all tributaries, including Creek. Middle Creek and all tributaries, including downstream to the confluence with Trout Creek.                                                                         |             | Ard Life Cold 1<br>Recression 1a<br>Agriculture                                | D.O.=6.0 mg/<br>D.O.(sp)=7.0 mg/<br>pHe6.5-9.0<br>F.Coll=128/100m/<br>E.Coll=128/100m/  | NH <sub>3</sub> (ac/at)=TVS<br>Cl <sub>2</sub> (at)=0.018<br>Cl <sub>2</sub> (at)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                         | As(ch)=100(Trec)<br>Cd(ac)=TVS(h)<br>Cd(ch)=TVS<br>Cd(at)=TVS<br>Cd((ac(ch)=TVS<br>Cu((ac(ch)=TVS<br>Cu((ac(ch)=TVS                                                                   | Fe(ch)=100(Trec)<br>Fe(ch)=160(Trec)<br>Fe(ch)=160(Trec)<br>Forden Creek and<br>Middle Creek<br>Pb(ec/ch)=TVS        | Mn/mc/m=TVS<br>Hg(d)=0.01((m)<br>N(acd)=TVS<br>Se(acd)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Zn(acd)=TVS |                                                                                                               |
| <u>8</u>          | Mainstant of Trout Creek from headgate of Sprune Hill Ditch<br>copportingation 2,500 team north: of where County Road 27<br>(approximately 2,500 team from the headgate of Spruce Hill<br>inbudaries to Trout Creek, from the headgate of Spruce Hill<br>Ditch (approximately 2,500 feet north of where County Road<br>27 crosses Treat Creek) to County Road 179 accept for<br>speedle, faitings in 130. |             | Aq Life Cold 1<br>Recreation 1a<br>Agriculture<br>June through<br>Veder Supply | 0.0.45 0 mg/<br>0.0.049 7.0 mg/<br>F.Cat=200/100mi<br>E.Cot=126/100mi                   | NH <sub>3</sub> (ac/a)=TVS<br>Cl_2(ac)=0.018<br>Cl_2(a)=0.011<br>CN=0.005                           | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>Uurre<br>through<br>C⊨250<br>SO <sub>4</sub> =WS     | As(ch)=100(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Criti(ac(ch)=TVS<br>Criti(ac(ch)=TVS<br>Cu(ac(ch)=TVS<br>Cu(ac(ch)=TVS<br>As(ac)=20(Trac)<br>Criti(ac)=50(Trac) | Fe(dh)=1000(Trec)<br>Pt(acdd)=TVS<br>Mqacdh)=TVS<br>Mqacdh)=0.01(tot)<br>June through<br>Fe(dh)=WS(dis)<br>Mn(dh)=WS | M(acch)=TVS<br>Aclarch)=TVS<br>Aclarch=TVS<br>Aclarch=TVS<br>Aclarh=TVS(tt)<br>Zn(acch)=TVS                         |                                                                                                               |
| 13d.              | Mainstern of Dry Creek, including all tributariles and wetlands, from the source to the confluence with the Yampa River.                                                                                                                                                                                                                                                                                  | đ           | Aq Lile Warm 2<br>Recreation 1a<br>Agriculture                                 | 0.0.=5.0 mg/<br>pH=0.5-9.0<br>F.Coli=200100ml<br>E.Coli=126/100ml                       | NH <sub>3</sub> (ac/ch)=TVS<br>Cl <sub>2</sub> (ac)=0.018<br>Cl <sub>2</sub> (ch)=0.011<br>Ch=0.005 | S=0.002<br>B=0 75<br>NO <sub>2</sub> =0.05                                                         | As(ac)=100(Trac)<br>Cd(ac/ch)=TVS<br>Criti(ac/ch)=TVS<br>Criti(ac/ch)=TVS<br>Cu(ac/ch)=TVS                                                                                            | Fe(ch)=1000(Trec)<br>Po(ac/ch)=TVS<br>Mr(ac/ch)=TVS<br>Hg(ch)=0.01(ml)<br>Ni(ac/ch)=TVS                              | Se(ac/ch)≓TVS<br>Ag(ac/ch)≓TVS<br>Zn(ac/ch)≓TVS                                                                     |                                                                                                               |
| 13 <del>0</del> . | Mainsterns of Sage Creek and Grassy Creek, including all<br>urbuturies and weitands, from their sources to the confluence<br>with the Yampa River.                                                                                                                                                                                                                                                        | ЧÚ          | Aq Life Warm 2<br>Recremican 2<br>Agriculture                                  | 0.0.=5.0 mg/<br>pH=6.5-9.0<br>F.Coli=2000100mi<br>E.Coli=500100mi                       | NH <sub>3</sub> (8-'ch=TVS<br>Cl <sub>2</sub> (8c) 0.018<br>Cl <sub>2</sub> (ch=0.011<br>CN=0.005   | S=0 002<br>B=0.75<br>NO <sub>2</sub> =0.05                                                         | As(ac)=100(Trec)<br>Cd(ac/ch)=TVS<br>Criti(ac/ch)=TVS<br>CV1(ac/ch)=TVS<br>Cu(ac/ch)=TVS                                                                                              | Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mm(actch)=TVS<br>Hng(ch)=0.01(tot)<br>Mqactch)=TVS                             | Se(ad⊄h)≕TVS<br>Ag(ad⊄h)≕TVS<br>Zn(ad⊄h)≓TVS                                                                        |                                                                                                               |
| <u> </u>          | Mainstein of Ethneed Creek, Including all trikintines and<br>wellands, from the boundary of the National Forest lands, to<br>the confluence with the Yampa River.                                                                                                                                                                                                                                         |             | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture                 | 0.0.=8.0 mg/<br>D.0.(sp)=7.0 mg/<br>PH=6.5-9.0<br>F.Col=2001100ml<br>E.Col=1261100ml    | NH <sub>3</sub> (ac/ch)=TVS<br>Ch <sub>1</sub> (ac)=0.019<br>Ch <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>CE=250<br>CE=250<br>SO <sub>4</sub> =WS              | As(ac)=50(Trec)<br>cd(ac)=TVS(tr)<br>cd(ac)=TVS<br>cd(ac)=TVS<br>cd((ac)=TVS<br>cvV((ac(ch)=TVS<br>cu(ac(ch)=TVS                                                                      | Fe(ch)=WS(dis)<br>Fe(ch)=DOC(Trec)<br>Pb(acdn)=TVS<br>Mn(ch)=VS<br>Mn(acdn)=TVS<br>Mn(acdn)=TVS<br>Mn(acdn)=101(tot) | M(acch)=TVS<br>Se(acch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(t)<br>Zn(acch)=TVS                                          |                                                                                                               |
| . <b>1</b> 5.     | Deleted.                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                |                                                                                         |                                                                                                     |                                                                                                    |                                                                                                                                                                                       |                                                                                                                      |                                                                                                                     |                                                                                                               |
| 18                | Deteited                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                |                                                                                         |                                                                                                     |                                                                                                    |                                                                                                                                                                                       |                                                                                                                      |                                                                                                                     |                                                                                                               |
| 17.               | Deleted.                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                                                                |                                                                                         |                                                                                                     |                                                                                                    |                                                                                                                                                                                       |                                                                                                                      |                                                                                                                     |                                                                                                               |

| BEGION-12                                                                                                                                                                          | Decko   | Classifications                                                |                                                                                        |                                                                                                      | V O LANDA                                                                                          | NUMERIC STANDARDS                                                                                                                                |                                                                                                                    |                                                                                     | TEMPORARY     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|
| BASIN: Yampa River                                                                                                                                                                 | fiercon |                                                                |                                                                                        |                                                                                                      |                                                                                                    |                                                                                                                                                  |                                                                                                                    |                                                                                     | MODIFICATIONS |
| Stream Segment Description                                                                                                                                                         |         |                                                                | PHYSICAL<br>BIOLOGICAL                                                                 | INORGANIC                                                                                            | 22                                                                                                 |                                                                                                                                                  | NETALS<br>Ug <sup>A</sup>                                                                                          |                                                                                     | QUAL FIERS    |
| <ol> <li>Matheliem of the Little Snake River, including all induciatives and<br/>weatands, from the Rourt Hastenial Forest boundary to the<br/>ColonadoWytoming border.</li> </ol> |         | Ad Life Cold 1<br>Recreation 1a<br>Wake Supply<br>Agriculture  | 0.0.46,0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coli=200/100ml<br>F.Coli=126/100ml | NH3(ac/d)=1VS<br>CL2(ac)=0.018<br>CL2(d)=9.011<br>CL2(d)=9.011<br>CN=0.005                           | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>Cd=250<br>SO <sub>4</sub> =WS | Asinc)=50(Trec)<br>Col(ac)=TVS(t')<br>Col(ac)=TVS(t')<br>Col(ac)=TVS<br>Col(ac)=TVS<br>Col(ac)=TVS<br>Col(ac)=TVS                                | Fe(ch)=VS(de)<br>Fe(ch)=1000(Trac)<br>Pb(acch)=TVS<br>Mn(ch)=VS<br>Mn(acch)=TVS<br>Mn(acch)=TVS<br>Hg(ch)=0.01(lm) | NK(ac/ch)=1VS<br>Se(ac/ch)=1VS<br>Ag(ac)=1VS<br>Ag(ch)=1VS(tr)<br>Zn(ac/ch)=1VS(tr) |               |
| <ol> <li>All tripulariner to the Utbe Snake River, Including all wellands, lakes<br/>and reservoirs, which are an National Forest lands in Routh County.</li> </ol>                |         | Aq Lifs Cold f<br>Recreation 18<br>Water Supply<br>Agriculture | D.0.=6 0 mg/<br>D.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Cof=200100ml<br>E.Col=120/100ml    | NH <sub>3</sub> (ecch)=TVS ·<br>CL <sub>2</sub> (ac)=0.018<br>CL <sub>2</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>Ci≠250<br>SO <sub>4</sub> =WS | As(Bc)=50(frec)<br>Cd(ac)=1VS(tr)<br>Cd(ac)=1VS<br>Cd(ac)=50(frec)<br>Criti(ac)=50(frec)<br>Criti(ac)=50(frec)<br>Cu(ac(dh)=1VS<br>Cu(ac(dh)=1VS | Fe(ch)=WS(dis)<br>Fe(ch)= 1000(Trec)<br>Pb(castch)=TVS<br>Mm(cch)=TVS<br>Mm(cch)=TVS<br>Hg(ch)=0.01(tot)           | Ni(ac/ch)=TVS<br>Se(ac/ch)<br>Ag(ch)=TVS(h)<br>Zn(ac/ch)=TVS(h)<br>Zn(ac/ch)=TVS    |               |
| 20. All tributaries to the Yampa River, Induding wellands, above the confluence with Elbread Creek that are within National Forest boundaries.                                     |         | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F.Cole=2001100mi<br>E.Cole=126/100mi | NH <sub>3</sub> (80:ch)=TVS<br>Cl <sub>2</sub> (8c)=0.019<br>Cl <sub>2</sub> (ch)=0.011<br>CN=0.065  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>C1=250<br>SO <sub>4</sub> =WS | As(ac)=50(frec)<br>Cd(ac)=7VS(tr)<br>Cd(ac)=7VS<br>Cd(fac)=50(frec)<br>Cd(fac)=50(frec)<br>Cd(fac)=7VS<br>Cu(acdn)=TVS<br>Cu(acdn)=TVS           | Fə(ch)=WS(dts)<br>Fe(ch)=100(Trac)<br>Pr(a⊲ch)=TVS<br>Mn(cch=WS<br>Mn(act)=TVS<br>H8(ch)=0.01(เผ)                  | NK(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zr(ac/ch)=TVS     |               |

Appendix C-2 Regulation No. 38 South Platte River Basin

| REGION 3 AND 4                                                                                                                                                                                                                                                                                            | DESIG | CLASSFICATIONS                                                 |                                                                                                |                                                                             | NUMERIC                                                                                            | NUMERIC STANDARDS                                                                                                              |                                                                                                                                  |                                                                                             | TEMPORARY                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| BASIN UPPER SOUTH PLATTE RIVER                                                                                                                                                                                                                                                                            |       |                                                                | PHYSICAL                                                                                       | NORGANIC                                                                    | NIC                                                                                                |                                                                                                                                | METALS                                                                                                                           |                                                                                             | MUDIFICATIONS<br>AND<br>OUALFIERS                                                                                       |
| Stream Segment Description                                                                                                                                                                                                                                                                                |       |                                                                | BIOLOGICAL                                                                                     | цвш                                                                         |                                                                                                    | 1                                                                                                                              | ugil                                                                                                                             |                                                                                             |                                                                                                                         |
| 13 Manufalem of the Sevent Plane Rever from the<br>source of the South and Middle Forks to a point<br>immediately above thin confluence with the Month<br>Fork of the South Plana River including all<br>mainteem reservors.                                                                              |       | Ald Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agroubure  | D.O. = 6.0 mg/<br>D.O. = 6.0 mg/<br>pH = 6.5 - 5.0<br>F. Coli= 2501100m/<br>E. Coli= 2501100m/ | NH5jacra)= TVS<br>Cl_(ac)=0 019<br>Cl_(ch)=0 011<br>CN=0 005                | 5+0.002<br>B=0.75<br>NO <sub>2</sub> =5 05<br>NO <sub>2</sub> +10<br>CI=250<br>SO4=V/5             | Astach SOffrech<br>Collab.=TVS(In<br>Collah=TVS<br>Collah=TVS<br>Collah=TVS<br>Collab.=TVS<br>Collab.=TVS<br>Collab.=TVS       | Ee(ch)=V/S(dis)<br>Fe(cn)=1000(Trac)<br>Pc(ac/ch)=TVS<br>Mr(ac/ch)=TVS<br>Mr(ch)=V/S(dis)<br>Mr(ch)=0.01(Foc)                    | Ny soldmervs<br>Sei acidhervs<br>Agraciervs<br>Agraciervs<br>Zni acidhervs                  |                                                                                                                         |
| 10 All trautaives to the South Platte Rover including<br>sales reservors and vertands within the Lost<br>Creek and Mr. Evers Widemess Areas                                                                                                                                                               | мо    | Aq Life Cold 1<br>Recreation La<br>Water Supply<br>Agnauture   | 0.0 - 6.0 mg/<br>0.0 (sp)=7.0 mg/<br>pH = 6.5-5.0<br>F.Cot = 200100ml<br>E.Coti=126/100ml      | NH4/86/04/#TVS<br>05/80/=0 019<br>03/80/=0 015<br>03/80/=0 015              | S=0 002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>S0 <sub>4</sub> =WS | A=(ac)=50(Trec)<br>Cd(ac)=TVS(b)<br>Cd(ac)=TVS<br>Crit(dac)=50(Trec)<br>Crit(ac)=50(Trec)<br>Crit(ac)=50(Trec)                 | Fe(cn)=V/S(dis)<br>Fe(cn)=1000(Trac)<br>Po(ac(cn)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=VVS(dis)<br>Hg(ch)=001(Tot)                     | Nijac/ch)=TV5<br>Se(ac/ch)=TV5<br>Aglac)=TV5<br>Aglac)=TV5(it)<br>ZN(ac/ch)=TV5(it)         |                                                                                                                         |
| Za Au mbudang all and south Plaje River system<br>inducting all takes, reservoirs and wellands from<br>the head waters of the South and Model Flores to<br>a pour immecately the South and Model Flores to<br>a pour immecately the specific listings in<br>Segment 15, 2b and c.                         |       | Ao Life Colo 1<br>Recreation 1a<br>Water Supply<br>Agnouture   | D.0. = 6.0 mgl<br>D.0. (sp)=7.0 mgf<br>PH = 6.5-9.0<br>F. Coli=200/100ml<br>E. Colie-126/100ml | NH3/8001=0019<br>CUxech=0019<br>CUxech=0011<br>CN=0006                      | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>C3=250<br>S0,=WS              | Astacts5017rec)<br>Colaci=TVS(tr)<br>Colcmi=TVS<br>Colcmi=TVS<br>Colfacthi=TVS<br>Colfacthi=TVS<br>Cultacthi=TVS               | Ee(cn/=WS(dis)<br>Fe(ch)=1000[Trec]<br>Pb(ac(ch)=1VS<br>Mh(ac(ch)=VS<br>Mn(ch)=WS(dis)<br>Hg(ch)=0.01(Tot)                       | M(action)=TVS<br>Selacion)=TVS<br>Agraci=TVS<br>Agrich=TVS(tr)<br>Zn(action)=TVS            |                                                                                                                         |
| 2b Marratem of Mosquito Creek from the confluence<br>with South Masquita Creek to as confluence with<br>the Mode Fork of the South Plane River                                                                                                                                                            | đ     | Aq tire Cold 1<br>Recession 1a<br>Water Supply<br>Agnouture    | D 0. = 5 0 mg/<br>0.0. (5pi=7 0 mg/<br>pH = 6.5-9.0<br>F Coi=200/106ml<br>E. Coii=125/100ml    | NHylac(ch)+TVS<br>Clyac(+0.019<br>Clyac(+0.019<br>CN=0.005                  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>S0 <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=50(Trec)<br>Collk(ac)=50(Trec)<br>CrVI(ac/dh)=TVS<br>Cui (ac/ch)=TVS | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>P0(ac(ch)=TVS<br>Mn(,ac(ch)=TVS<br>Mn(ch)=WS(dic)<br>Hp(ch)=0.01(Tot)                     | N(aclett)= TVS<br>Se(actor)=TVS<br>Ag(act=TVS<br>Ag(act=TVS<br>Ag(ch)=TVS(P1)<br>Zn(ch)=220 | Temporary mod/canon<br>Zh(ch)= 283,g1 (dot) based on<br>uncertanty Expression data<br>2/2807                            |
| 3c. South Moscyulo Querk teek we course to<br>confluence with Moscyulo Creek and No Name<br>Creek from the source to the confluence with<br>South Moscyulo Creek.                                                                                                                                         | 5     | Ag Life Cold 1<br>Recretion 18<br>Water Supply<br>Agriculture  | D 0 = 6.0 mg/<br>D 0 (spi=7.0 mg)<br>D 1 = 6.5-5 0<br>F Col=200/100m<br>E Col=126/100m         | NH5/ac/ch)=TVS<br>Clyac)=0 019<br>Clych)=0 011<br>CN=0 005                  | \$=0.002<br>B=0.75<br>NO_=0.05<br>NO_= 10<br>CI+250<br>S0_=WS                                      | As(ac)=50(Trec)<br>Cd(cr)=TVS<br>Crititac)=50(Trec)<br>Crititac)=50(Trec)<br>Crititac(cr)=TVS<br>Culac(cr)=TVS                 | Fe(ch)=WS(0x)<br>Fe(ch)=1000(Trec)<br>Pbladch)=TVS<br>Mm(ch)=TVS<br>Mm(ch)=VVS(0i)<br>Hq(ch)=VVS(0i)                             | N(actor)=TVS<br>Selacion)=TVS<br>Ag(act=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ch)=280                 | Temporary modifications<br>Celich)=3 up/ (dis)<br>Zn(ch)=400 up/ (dis) based on<br>uncortanty<br>Exerction derk 2/28/07 |
| 3 All traductor to here Sputh Prene River including<br>all lakes reservous and wellands from a point<br>mimedialish polowither confluence with Tanyali<br>Creek to a point immediately across the<br>confluence with the North FoX of the South Plane<br>River Except for specific futings in Segment 1b. |       | Ag Life Cold 1<br>Recression 1a<br>Water Supply<br>Agriculture | D.0 = 6.0 mg/<br>D.0 (sp)=7.0 mg/<br>pH = 6.5.9 0<br>F.Col=200/100ml<br>E. Col=126/100ml       | NHJAC(A)= TVS<br>Cl3aC)=0.019<br>Cl3(ch)=0.011<br>Cl3(ch)=0.011<br>CN=0.005 | S=0 002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH250<br>SO <sub>6</sub> *MS  | Asisci=50(Trec)<br>Cq(ac)=TVS(tr)<br>Cq(ac)=TVS<br>Cd(ac)=50(Trec)<br>Cr(II(ac)=50(Trec)<br>Cr((ac/dr)=TVS                     | Fe(ch)=VS(0x)<br>Fe(ch)=V000(T/ec)<br>Pb(auch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=VS(0x)<br>Hg(ch)=0(01(Tok)                         | Nyackhij=TVS<br>Sejackhj=TVS<br>Ag(ac)=TVS<br>Ag(chj=TVS(tr)<br>Znjackhj=TVS                |                                                                                                                         |
| A Maxetian wir wer North Fock of the South Parte<br>River including all inforcatives, lakes reservoirs<br>and weitunds from the source to the confusience<br>with the South Plette River is straight for specific<br>likelings in Segments 1b 5a 5b, and 5c.                                              |       | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agmouture   | 0.0 = 6.0 mg/l<br>0.0 1631+7.0 mg/l<br>PH + 6.5-9.0<br>F.Cole-2001100ml<br>E.Cole1251100ml     | NH4(ac/ch)+TVS<br>Claids)=0.019<br>Claidh]=0.011<br>CN=0.005                | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0 05<br>NO <sub>2</sub> =10<br>CI=250<br>SIQaWS              | Asjack50(Trec)<br>ColocisTV5(N)<br>ColociaTV5(N)<br>ColociaTV5<br>Collinaton=TV5<br>Collinaton=TV5<br>Cullatoton=TV5           | Fe(ch)=VVS(dis)<br>Fe(ch)=T000(Trec)<br>Pot(cc)n)=TVS<br>Min(accch)=TVS<br>Min(accch)=TVS<br>Min(ch)=VVS(gis)<br>Hg(ch)=VVS(gis) | Niadon)=TVS<br>Setacion=TVS<br>Agtac)=TVS<br>Agton)=TVS<br>ZNaddh)=TVS                      |                                                                                                                         |
| .5 Marsham of Oprieva Creek from the source to the confluence with Sold Gomer Criek.                                                                                                                                                                                                                      |       | Aq Life Cold 1<br>Recreation 14<br>Agnoutture                  | D.0 = 6.0 mg/<br>D.0 (sp)=1 0 mg/<br>pH = 3 5-9 0<br>F Goli=200/100ml<br>E. Coli=126/100ml     | NH,4800h Jan 105<br>Cl4801=D 019<br>Cl4601=0 011<br>CH-0.005                | \$=0.002<br>NO <sub>2</sub> =0.05                                                                  | Archi=100(Trec)<br>Cdim)=2<br>Criticn)=2<br>Criticn)=25<br>Criticn)=25<br>Cuict)=15(dis)                                       | F.n(ch)=1200<br>Pb(ch)=4<br>Mhr[ch]=5302dis)<br>Hg(ch)=50<br>Ni(ch)=50                                                           | Se(ch)=4 6<br>Ag(ch)=1<br>Zn(ch)=190(des                                                    | All Retails Trec unless<br>otherwise noted                                                                              |

| REGION AND A                                                                                                                                                                                                                                                                                                              | DESIG | CLASSIFICATIONS                                                 |                                                                                                  |                                                                                             | NUMER                                                                                              | NUMERIC STANDARDS                                                                                                                                    |                                                                                                                           |                                                                                               | TEMPORARY<br>MODIFICATIONS                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RASIN NORE SOUTH IN ATTE DIVED                                                                                                                                                                                                                                                                                            |       |                                                                 |                                                                                                  |                                                                                             |                                                                                                    |                                                                                                                                                      | A LOT BALL                                                                                                                |                                                                                               | AND                                                                                                                                                                                                                  |
| prisin, under suburn rucht is witzen<br>öfesen Segment besotption                                                                                                                                                                                                                                                         |       |                                                                 | PM SICAL<br>and<br>BIOLOGICAL                                                                    | morcanec                                                                                    | 3                                                                                                  |                                                                                                                                                      | METALS<br>ugl                                                                                                             |                                                                                               | CHALFERS                                                                                                                                                                                                             |
| 35. Manresem of General Creati from the confituencer with<br>Scott Coheriel Create to the confusions with the Night<br>Fork of the Scots Platte Rivers, all Inducating of<br>Generative Create including lakes, reservation and<br>exclands from sources to confituence with the North<br>Fork of the South Platte Rivers |       | Aq Lrie Cold 1<br>Recression 1a<br>Vealer Supply<br>Agroutise   | D.O. = 6.0 mg/l<br>D.O. (spin=7.0 mg/l<br>pH = 6.5-9.0<br>F. Coli=126/100ml<br>E. Coli=126/100ml | NH4 action = 7VS<br>04(act=0.019<br>04(ch)=0.011                                            | CN=0 005<br>S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>CD=250<br>SO <sub>4</sub> =VIS             | As(ec)=50(Tree)<br>SVT=(10)=100<br>(ce)(ac)=50(Tree)<br>CVI(ac)=50(Tree)<br>CVI(ac)=100<br>(ac)(ac)=100<br>(ac)(ac)(ac)(ac)(ac)(ac)(ac)(ac)(ac)(ac)  | Feicht=WS(dis)<br>Feicht=D00(Treat)<br>Pb(acth=TVS<br>Mn(acth=TVS<br>Mn(ch)=WS(dis)<br>Hg(ch)=D1(Tes)<br>Miaddh=TVS       | Setautohis TVS<br>AglaciseTVS<br>AglobiseTVS(II)<br>Zh(e00th)=TVS                             |                                                                                                                                                                                                                      |
| 5c. Manniten ol Goosepery Guidh and Inputanes<br>prom source to confluence with EW Creek                                                                                                                                                                                                                                  | 5     | Aq Like Celes 2<br>Recreation 1a<br>Water Supply<br>Agnoutbure  | D.0 46 0 460<br>PH=6 5-8 0<br>F.Cole=200100ml<br>E. Cole=126/100ml                               | NH_(ac/ch)=TVS<br>Clyaci=0.019<br>Clycn=0.019<br>CN=0.005                                   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>S0 <sub>2</sub> =WS | Astach=50(Trac)<br>Colach=TVS(tr1<br>Col(cn)=TVS<br>Cr81(act)=50(Trec)<br>Cr81(actr1)=TVS<br>Curactr1)=TVS<br>Curactr1)=TVS                          | Felch)=VS(dis)<br>Felcn)=1000(Trec)<br>Pbiac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=01(Tot)<br>Hig(ch)=01(Tot)                | N(addh)=TVS<br>Seladdh>TVS<br>Agldh)=TVS<br>Agldh)=TVS(tr)<br>Zh(addh)=TVS                    | Temporary modification:<br>NH-JacUh)=Ensterg<br>Quality(Type w) Expiration<br>dale of 12/31/2010.                                                                                                                    |
| Fig. Mandom where south Plana Diver from a point<br>ennershately above the confluence with the Marth<br>Fork of the South Plane River to the intel of Chartels<br>Reservor                                                                                                                                                |       | Ag Life Cold 1<br>Recreation 1a<br>Whater Supply<br>Agriculture | D.O. = 6 0 mg/l<br>D.O. (50)=7.0 mg/l<br>PH = 8.5.9.0<br>F.Cole=254100ml<br>E.Cole=254100ml      | NH,4a04h1=TVS<br>Cl_4601=0 019<br>Cl_4601=0 011<br>CN=0.005                                 | S=0.002<br>B=0.75<br>NO2=0.05<br>NO2=0.05<br>CM=250<br>S04=1WS                                     | As(ac)=50(Trec)<br>Cd(ac)=TVS(v)<br>Cd(cn)=TVS<br>Cr(B(ac)=50(Trec)<br>Cr(B(ac)=50(Trec)<br>Cr(Hac)ch)=TVS<br>Cu(ac)ch)=TVS                          | Fe(ch)=V(S(dis)<br>Fe(ch)=1000(Trac)<br>Poi ac(ch)=TVS<br>Mn(ad(b)=TVS<br>Mn(ad(b)=VS(dia)<br>Hg(ch)=0(1(dia)             | N((addrt)=TVS<br>Se(addr))=TVS<br>Agiac)=TVS<br>Agiac)=TVS(r/)<br>Zr(addr)=TVS                |                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                           |       | Ad Life Cold 1<br>Recreation 1a<br>Vraiar Supply<br>Agriculture | D 0 ± 6.0 mg/<br>D 0 160×7.0 mg/<br>pH = 6.5-9.0<br>F Col=203/100m/<br>E. Col=203/100m/          | NH (Jackm)=TVS<br>Cl_(Hac)=0.019<br>Cl_(ch)=0.011<br>CN=0.005                               | S+0.002<br>B+0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =105<br>CH250<br>S0 <sub>2</sub> =WS | Astact=50Trec?<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Criti(ac)=50(Trec)<br>Criti(ac)=50(Trec)<br>Criti(ac)=50(Trec)<br>Critiacidh)=TVS<br>Cuiscidh)=TVS | Fe(ch)=WS(cm)<br>Fe(ch)=1000(Trac)<br>Pb)ac(ch)=TVS<br>Mn(ac(ch)=VVS(chc)<br>Mn(ac(h)=VVS(chc)<br>Hg(ch)=0.01(Tac)        | N(addh=TVS<br>Seladd)=TVS<br>Aglacr=TVS<br>Aglach=TVS(tr)<br>Zn(aodd)=TVS                     | Mean total phosphorous P=1).027<br>mpll, measured throughout the<br>water column in Chatfield<br>Reserver only for months of Juhy.<br>Rugust and Seotember                                                           |
| bis Manazam of the South matter River from the qualist of<br>Chartelia Reservoir to Bowes Avenue:                                                                                                                                                                                                                         |       | Ag Life Cold 1<br>Recreation 1a<br>Mater Supply<br>Agrouthure   | P 0 = 6.0 mpl<br>D 0 Jsp:7.0 mpl<br>PH = 6.5.4.0<br>F.Col-200100ml<br>E. Cole=1262100ml          | NH-4ac(m)=TVS<br>Cl_(ac)=0.019<br>Cl_(d)=0.011<br>CN=0.005                                  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>CI=250<br>SQ_=WS    | As(ac)=50(Trec)<br>Col(ac)=TVS(tr)<br>Col(ac)=TVS<br>Col(ac)=50(Trec)<br>Crili(ac)=50(Trec)<br>Crili(ac)=50(Trec)<br>Cui acidh)=TVS                  | Fe/ch)=WS(dis)<br>Fe/ch]= 1000(Trec)<br>Pb addn)=TVS<br>Mn(ec)=TVS<br>Mn(ec)=20.97(dia)<br>Hg(ch)=0.01(Tor)               | Net actor)=TVS<br>Se(actor)=TVS<br>Ag(act)=TVS<br>Ag(act)=TVS(tr)<br>Zn(actor)=TVS(tr)        | Cu (actor) = TVS *2 7 below<br>the confuence with Maccy<br>Guidh to Bowles Avenue                                                                                                                                    |
| All Vibularies to the South Plattle River including all<br>lakes man reservoirs and wellshold from a point<br>minequalety below the confluence winn the Month Fork<br>of the South Plattle River to the puddle of Charfelld<br>Reservor exception specific listings in Sogniterits &<br>0.10, 11, 12, and 13.             | đ     | Aq Life Cold 2<br>Recreption 13<br>Agriculture                  | D 0 = 6.0 mg/<br>D 0 160)=7.0 mg/<br>F 201=203/100m<br>E Coli=203/100m                           | NHylao(ch)=TVS<br>Clyac)=0.019<br>CLycn)=0.011<br>CN=0.005                                  | S=0 002<br>8=0 75<br>NO <sub>2</sub> =0 05                                                         | Asjehj=100/Trec/<br>Celarcj=TVS(m)<br>Celehj=TVS<br>Critilaci=TVS<br>Critilaci=TVS<br>Cujacichj=TVS                                                  | Fe(ch)=1000(Trec)<br>Pb(autor)=TVS<br>Mn(ac(ch)=TVS<br>Hg(ch)=01(Toc)                                                     | Nrt.acront=TVS<br>Setac/cth=TVS<br>Ag(act=TVS<br>Ag(dth=TVS(th)<br>Zn(acroth)=TVS             |                                                                                                                                                                                                                      |
| R Mansteins of East and West Phart Create from the<br>source to the boundary of Najkowal Forest lands<br>including all induktieves. Marks reservoirs and<br>wettands which the Plant Creak digmage which are<br>on National Forest Lands except for the specific<br>instruging in Segments 3 and 10b.                     |       | Ad Life Cold 1<br>Recrution 1a<br>Water Supply<br>Agroutione    | 0 0 == 0 == 0<br>0 0 styl= 7 0 mg/<br>pH-6.5 2<br>F Cat=200/100m<br>E Cot=126/100m               | NH4/800019<br>ClydacJ=0 019<br>CH(cm)=0 011<br>CN=0.005                                     | S=0 002<br>B=0 75<br>NO <sub>2</sub> =0 05<br>NO <sub>2</sub> =10<br>CI=250<br>S0 <sub>4</sub> =WS | As/act=50[fiec]<br>collan=TVS(fr)<br>Collan=TVS<br>Crifik(act=50[frec]<br>Crifik(act=50[frec]<br>Cutactch=TVS                                        | Fe(cn)=WS(de)<br>Fe(cn)=VS(de)<br>Pb(actor)=TVS<br>Mn(actor)=TVS<br>Mn(actor)=VS(de)<br>Mn(cn)=VS(de)<br>Hg(cn)=0.01(Tot) | Ni(ac/dh)=TVS<br>Secarbl=TVS<br>Ag(ac)=TVS<br>Ag(dh)=TVS(tr)<br>Zn(ac/dh)=TVS(tr)             |                                                                                                                                                                                                                      |
| A Mansteim in Bear Orges mindling at hibudares<br>kerst and recevors and valiateds from the severe<br>fill the tree of Party Party, Reseivoir (Douglas County)                                                                                                                                                            |       | An USe Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture   | 0 0 -6.0 mg/<br>0.0 (spi=7.0 mg/<br>sH=5.5.9.0<br>7. Coli=200/100m/<br>7. Coli=200/100m/         | NH-gadiente TVS<br>Clyladied 019<br>Clylathe 0.011<br>CN=0.005                              | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =WS | As(ac)=50(Trec)<br>Colac)=TVS(tr)<br>Colac)=TVS<br>Colac)=TVS<br>Criti(ac)=50(Trec)<br>Criti(ac)=50(Trec)<br>Criti(ac)=50(Trec)<br>Culac(ch)=TVS     | Fe(chi=WS(cas)<br>Fe(chi=1000)(frec)<br>Pbiad(ch)=TVS<br>Mhr(ac(chi=WS(cas)<br>Mhr(chi=WS(cas)<br>Hg(chi=0 01(Tot)        | Mitacich1=TVS<br>Setactch1=TVS<br>Agtac1=TVS<br>Agtac1=TVS<br>Agtac1=TVS(tr)<br>Zn(acch1)=TVS |                                                                                                                                                                                                                      |
| Tog. Manstern of East and Vitest Plum Cress and Plum<br>Creat from the boundary of Nanonal Forest large to<br>Chartelo Reservorr except for specific lustings in<br>Segment 10p                                                                                                                                           | đ     | As Lee Warm 1<br>Recreation ta<br>Ware Supply<br>Agnounting     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                            | NH4 acroth FTVS<br>C(2)(acroth 011<br>C(2)(acr)=0 011<br>C(2)(acr)=0 011<br>C(2)(acr)=0 005 | S=0.002<br>8=0.75<br>ND <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>S0 <sub>4</sub> =WS  | Asjac)=50(Trec)<br>CollarschirtVS<br>Colligation=50/Trec)<br>Colligation=10VS<br>Culasion=TVS                                                        | Fe(dh)=WS(dis)<br>Fe(ch)=WO(Tec)<br>P((acch)=TWS<br>Mn(dc(b)=TWS<br>Mn(dh)=WS(dis)                                        | Hg(ch)=01(T5)<br>Nijacch)=TVS<br>Setactoh=TVS<br>Agiacch)=TVS<br>Zn(ac/ch)=TVS                | Cu (acrch) = TVS 'Z'A on East<br>Phun Creek and Phun Creek<br>beyw the Phun Creek<br>Wastewater Authorhy<br>Mastewater Authorhy<br>Mastewater Authorhy<br>Magachie TVS (old)(1/09-1)<br>Expension date of 12/31/2011 |

| REGION 2344                                                                                                                                                                                       | DESIG     | CLASSFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          |                                                                           | NUME                                                                                                            | NUMERIC STANDARDS                                                                                                                       |                                                                                                                 |                                                                                        | TEMPORARY<br>MODIFICATIONS                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN UPPER SOUTH PLATTE AWER                                                                                                                                                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PHYSICAL                                                                                 | NORGANIC                                                                  | 9                                                                                                               |                                                                                                                                         | METALS                                                                                                          |                                                                                        | AND<br>DUALIFIERS                                                                                                                                                                                                                                                                |
| Stream Segment Description                                                                                                                                                                        |           | Contraction of the local distribution of the | BIOLOGICAL                                                                               | 10m                                                                       |                                                                                                                 |                                                                                                                                         | 101                                                                                                             |                                                                                        |                                                                                                                                                                                                                                                                                  |
| 10b. Manstein of West Plum Creek including all inbusines<br>lakes reservors and wellands from its source to Party<br>Plake Dand                                                                   |           | Ag Life Cold 1<br>Recreation 19<br>What Supply<br>Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D.0.=6 D mgf<br>0.0.(tepl=7 0 mg/<br>pH=6.5-0.0<br>F Coli-200/100ml<br>F Coli-200/100ml  | NH4(actch)=TVS<br>Cl4(ac)=0.019<br>Cl4(ch)=0.011<br>CN=0.005              | 5-0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CD=250<br>S0 <sub>4</sub> =WS              | Astac)=56(Trec)<br>Cotenj=TVS(tr)<br>Cotenj=TVS<br>Cotiti;acj=56(Trec)<br>Cotiti;acj=56(Trec)<br>Cotitied=56                            | Fe(ch)=VVS(das)<br>Fe(ch)=1000(Tresc)<br>Pb(ac/dh)=TVS<br>Mm(ac)=VVS(das)<br>Mm(ac)=VVS(das)<br>Holor)=VVS(das) | Nijac/dn)=TVS<br>Seladdh)=TVS<br>Aglac)=TVS<br>Aglch)=TVS(n)<br>Zn(actch)=TVS          |                                                                                                                                                                                                                                                                                  |
| 11a All fraudaties to the East Plum Creek system including<br>all takes reservors and wedands which are not on<br>nauged forest lands.                                                            | <u>\$</u> | Ag Life Watm 2<br>Recreation 1a<br>Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 0 = 5.0 mg/<br>pH+6 5-9 0<br>F Col=200/100ml<br>E Col=126/100ml                        | NHJJB/GNJFTVS<br>CljLBcJ=0.019<br>CljLChJ=0.011<br>CN=0.005               | S=0.002<br>B=0.75<br>NO <sub>3</sub> =0.5                                                                       | As(ch)=100(176c)<br>Cot(ac(ch)=TVS<br>Critt(ac(ch)=TVS<br>Critt(ac(ch)=TVS<br>Cur ac(ch)=TVS                                            | Felch1=1000ffec)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=01(fet)<br>Niac(ch)=TVS                            | Seladch)=TVS<br>Agladch)=TVS<br>Zh(edch)=TVS                                           |                                                                                                                                                                                                                                                                                  |
| 11. All inforctaries to the Viets Plum Creek system including<br>all larges reservors and welfands which are not on<br>manoral longit tards, except for specific setrings in<br>Segments 9 and 12 | 3         | Ag Life Warn 2<br>Recreation 1a<br>Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D.0 = 5 0 mg/l<br>pH=6 5-0 0<br>F Coh=200/100ml<br>E Coh=126/100ml                       | NHJIacleh)=TVS<br>Chiac)=0.019<br>Chich)=0.011<br>CN=0.005                | S +0 002<br>B =0 75<br>NO <sub>2</sub> +0.5                                                                     | As(on)=100(Trec)<br>Co(ac(dn)=TVS<br>Crititac(dn)=TVS<br>Crititac(dn)=TVS<br>Crititac(dn)=TVS<br>Culee(dn)=TVS                          | Feichi-1000/Trect<br>Pbiacchi=TVS<br>Mm(ac/m)=TVS<br>Hg(chi=0.01/Tat)<br>N(actriti=TVS                          | Se(acich)= TVS<br>Ag(acich)= TVS<br>Zniacich)= TVS                                     | Temporary modification<br>NHJ actrib=TVS(old)<br>(Type i) Expiration date of<br>12/31/2011                                                                                                                                                                                       |
| <ol> <li>Manslem of Garber Creek and Jackson Creek trem the<br/>occuratery of National Forest lands to the confluence with<br/>West Plum Creek.</li> </ol>                                        |           | Ag Life Cold *<br>Recreation 1a<br>Water Supply<br>Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D 0. <6 0 mg/l<br>D 0.(sp)=7 0 mg/l<br>pH=6.55.9<br>F Cole=2001100m/<br>E Cole=1267100ml | NH-Jac/ch)=TVS<br>Clyac)=0 019<br>Clych)=0 011<br>CN=0 005                | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CP=250<br>S0 <sub>4</sub> =WS              | Asiac)=50(Trec)<br>Cotac)=TVS(tr)<br>Cotac)=TVS<br>Cotityac)=50(Trec)<br>Crititac)=50(Trec)<br>Crititac)=50(Trec)                       | Fe(ch)=VNS(d4s)<br>Fe(ch)=1000(Trec)<br>PN(ac(ch)=TVS<br>Mm(an)=Ch)=TVS<br>Mm(an)=VNS(d4s)<br>He(ch)=0.01(Ter)  | NijackonjertvS<br>Sejacichi-TvS<br>Agiaci=TvS<br>Agiaci=TvS(v)<br>ZvlaodonjertvS       |                                                                                                                                                                                                                                                                                  |
| 13 Manutar of Deer Creek including the North and South<br>Forks From the source to Charteld Reservoir                                                                                             |           | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0.=6.0.mg/<br>0.0.1xp]=7.0.mg/<br>pH=6.5-9.0<br>F.Coli=2001100m1<br>E.Coli=1267100m1   | NH5/80/019<br>Cl2/861=0.019<br>Cl2/801=0.011<br>Cl2/801=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>CI=250<br>S0 <sub>4</sub> =WS                                       | Autisci=50(Trec)<br>Coteci=TVS(tr)<br>Coteci=TVS<br>Coteci=TVS<br>Coteci=S0Trec)<br>Coteci=S0Trec)<br>Coteci=S0Trec)                    | Fe(ch)=WS(de)<br>Fe(ch)=1000(Trec)<br>Pb(acton)=TVS<br>Mn(acton)=TVS<br>Mn(ch)=WS(de)<br>Hg(ch)=WS(de)          | N4actorie TVS<br>Selector) = TVS<br>Ag(ac) = TVS<br>Ag(ch) = TVS(r)<br>Zn(actor) = TVS |                                                                                                                                                                                                                                                                                  |
| La Mainsiem of the South Platte River from Bowles Avenue<br>in Littlepon Colorado, to the Burlington Ditch diversion in<br>Deriver Colorado.                                                      |           | Ag Life Warm 1<br>Recreation 1a<br>Water Supply<br>Agrouture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D 0.=5.0 mg/t<br>pH=6.5-9.0<br>F Coli=1267100m1<br>E. Coli=1267100m1                     | NH5(ac(cn)=TVS<br>Ch(ac)=0.019<br>Ch(cn)=0.011<br>CN=0.005                | 5+0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>C/=250<br>S0 <sub>4</sub> =WS               | Astach=50(Trec)<br>Co(actch)=TVS<br>Critt(rec)=50(Trec)<br>Critt(rec)=50(Trec)<br>Critt(rec)=TVS<br>Cu(actch)=TVS 2 8<br>Fe(ch)=WS(dis) | Fe(dr)=1000Trect<br>Pb(actdr)=TVS<br>Mn(dr)=190(ds)<br>Mn(acto)=TVS<br>Hg(dr)=001[741)<br>N(acdr)=TVS           | Se(add)=TVS<br>Ag(add)=TVS<br>Zn(add)=TVS                                              | Tamporary modification<br>NH3/Boldh=TVS(olid)<br>(Type I) Expiration date of<br>12/01/2011                                                                                                                                                                                       |
| 15 Mansien of the South Plate River from the Builington<br>Ditor diversion in Derver. Colorado, to a point<br>mmediatry below the confuence with Big Dry Greek                                    | 5         | Aq Lea Viaim 2<br>Recreation 1a<br>Water Supply<br>Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 - 559.0 - 614-200450ml<br>F. Cole:200450ml<br>E. Cole:126100ml                       | NH-1-ac(tr)= TVS<br>Clytect=0.019<br>Clytent=0.011<br>Clytent=0.006       | S=0.002<br>B+0.75<br>NO <sub>2</sub> =1.0<br>NO <sub>2</sub> =10<br>CNo <sub>2</sub> =WS<br>S0 <sub>4</sub> =WS | Asjac)=50(Tee)<br>Collactor)=TVS<br>Collactor)=TVS<br>Collactor)=TVS<br>Collactor)=TVS 2.3<br>Fe(cn)=WS(dis)                            | Fatchis 1000(Trec)<br>Plyardolean<br>Minjaoodhis TVS<br>Minjaoodhis TVS<br>Hgranis 2 4(dis)<br>Hgranis 2 4(dis) | N(acton)= TVS<br>Setacton=TVS<br>Ag(acton)=TVS<br>Zn(acton)=TVS<br>Zn(acton)=TVS       | See attached table for site-<br>approfic Dissolution Oxygen<br>appl Ammona standauds.<br>"9H=6.0-9.0 from 6.4" Ave<br>"9H=6.0-9.0 from 6.4" Ave<br>"9H=6.0-9.0 from 6.4" Ave<br>Temporary modifications<br>NH <sub>4</sub> accon=TVS(00)<br>TVP+1 Expandin date of<br>TV3+1,2019 |
| Tisi. Maratem of Sans Creek from the confluence of Marphy<br>and Coal Creek in Araganes Courty to the confluence<br>with the South Plans River                                                    | р<br>Д    | Aq Le Warn 2<br>Recreation 1a<br>Agrouture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0 =5.0 mpA<br>F Celar-2601 00m1<br>F Celar-2601 00m1<br>E Celar-1261 100m1             | MH4/ac(sn)=TVS<br>C5(c9)=0.011<br>C5(c9)=0.011<br>CN=0.005                | S=0 002<br>B=0 75<br>NO_e0.5                                                                                    | As(ch)=100[Trec]<br>cditacton=TVS<br>cditacton=TVS<br>cvNiacton=TVS<br>curadon)=TVS*                                                    | Felchy=1000Trect<br>Polyachy=TVS<br>Mn(acchy=TVS<br>Mn(acchy=TVS<br>Nn(acchy=TVS                                | Selar:hTVS<br>Selar:hTVS<br>AglacthraTVS<br>Zn(acth)=TVS<br>Zn(acth)=TVS               | Temporary modifications<br>Se(n)=19.3 hg/l<br>Se(a)=no socie stardard<br>type iii = 2/28/10.<br>RH-Jacobh-TVS(sold)(Type i)<br>Expresion date of 2/28/10.<br>Ty2/1/2011<br>'2/21/2011 - TVS *26 below<br>the Sand Cleh) = TVS *26 below<br>the Sand Cleh) = TVS *26 below        |

| REGION 2384                                                                                                                                                                                                                                                                                                                                             | DESIG | CLASSIFICATIONS                                             |                                                                                             |                                                                           | NUMER                                                                        | NUMERIC STANDARDS                                                                                                            |                                                                                                             |                                                                                 | TEMPORARY<br>MODIFICATIONS                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASM UPPER SOUTH PLATE RIVER                                                                                                                                                                                                                                                                                                                            |       |                                                             | PHY SICAL<br>and<br>BIOLOGICAL                                                              | NORGANIC                                                                  | Dia                                                                          |                                                                                                                              | METALS                                                                                                      |                                                                                 | AND<br>QUALIFIERS                                                                                                                                                                                                                                                                                                                                                                   |
| 16b. Aufora Reservor                                                                                                                                                                                                                                                                                                                                    |       | Aquite Warm 1<br>Recretion 1 a<br>Water Supply<br>Agrouture | D 0 =5 0 mg/<br>D 0 (se)=7.0 mg/<br>PH=6.5-9.0<br>F Coi=200/100m<br>F Coi=200/100m          | MHJ(accr)=TV5<br>CI_(act)=0.015<br>CI_(an)=0.011<br>CU_(an)=0.005         | 5+0.002<br>B+0.75<br>NO_5=0.05<br>NO_5=0.05<br>NO_5=10<br>CI+250<br>SO_5=005 | Astract=50(Trec)<br>Cotact=7VS(tr)<br>Cot(cht=TVS<br>Cot(cht=TVS<br>Cot(cht=TVS<br>Cot(cht=TVS<br>Cot(cht=TVS<br>Cot(cht=TVS | Fe(cn)=VS(dis)<br>Fe(cn)=1000(Tree)<br>PB(ce/ch)=TVS<br>Mn(ac/ch)=TVS<br>Mn(cn)=0107(di)<br>Harch1=0107(di) | Ni(acich)=TVS<br>Se(acich)=TVS<br>Agrac)=TVS<br>Agrch)=TVS[tri<br>Znjacich]=TVS |                                                                                                                                                                                                                                                                                                                                                                                     |
| Ho. All would resit to the Soluth Plane River including all<br>laws' reservors and wellands' non-me builded of<br>Challeng Reservors on a sonnis mendautely below the<br>confluence and Big Diry Creek except for specific<br>transps in the subbasins of the South Platte River and<br>in Segments rida, 15h. 15k. 15e. 15t. 15g. 13a. 17b<br>and 17c. | 3     | Aq Lile Warm 2<br>Receation 1a<br>Agroutione                | D 0 -5.0 mg/<br>PH=6 5.9 c<br>F Cole-200100ml<br>E Cole-126/100ml                           | NH5(8c(ch) = TVS<br>C)4sc=0.019<br>C)4ch=0.011<br>C(4=0.005               | 5 0=201<br>5 0=20<br>5 0=8                                                   | Asidhi=100/Trac)<br>Cdiacdmi=TVS<br>CV(liacdmi=TVS<br>CV(liacdmi=TVS<br>Cutacichi=TVS<br>Cutacichi=TVS                       | Fe(ch)=1000(Trec)<br>Pb(adch)=TVS<br>M(actoh)=TVS<br>Hg(ch)=01(Tel)<br>N(ac(ch)=TVS                         | Selac(th)=TVS<br>Aglac(th)=TVS<br>Zh(ac(th)=TVS                                 | Fish Ingestion Organica<br>Temporary modifications.<br>Temporary modifications.<br>East & West Toll Gate<br>Creeks. Toll Gate<br>Creeks. Toll Gate<br>Creeks. Toll Gate<br>Selcht=TBug/Ilds;<br>Selcht=TBug/Ilds;<br>Selcht=TBug/Ilds;<br>Selcht=TBug/Ilds;<br>Selcht=TBug/Ilds;<br>NHy/ac/bht=TVS(old)/Type<br>(NHy/ac/bht)=TVS(old)/Type<br>(Second cate of tage of<br>22/31/2011 |
| Yeld Second Draws hom the studies to the D Britain Canal                                                                                                                                                                                                                                                                                                | 3     | Ad U/A Warm 2<br>Recreation 1a<br>Agriculture               | D.O. (ch)=3.3 mg/<br>pH=6 5-9 0<br>F Coli=200/100ml<br>E Coli=126/100ml                     | NH-JackharVS<br>CL_act=0.019<br>CL_act=0.019<br>CL_act=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                    | As(cn)=100(Trec)<br>Cd(ac(cn), TVS<br>Cr(II(ac(ch) = TVS<br>CrVII(ac(ch) = TVS<br>Cruiac(ch) = TVS                           | Fe(ch)=1000(Trac)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Hg(ch)=0.01(Tou)<br>Ni(ac(ch)=TVS                    | Se(actor)=TVS<br>Agradict)=TVS<br>Zrgadict)=TVS                                 | 15 percentia of D O<br>massirements collected<br>periweer 6.30 a m and 6.30<br>p.m.                                                                                                                                                                                                                                                                                                 |
| 164 Titred Circlek from the source to the O Brain Carlat                                                                                                                                                                                                                                                                                                | a     | Ag Life Warm 2<br>Rigoreation 1a<br>Agrouture               | 0.0. (ch)=4.0 mg/<br>cH=6.5-9.0<br>F. Col=200/100ml<br>E. Col=126/100ml                     | NH4Jackh1=TVS<br>CL(ac)=0.019<br>CL(ac)=0.011<br>CL(ac)=0.011<br>CN=0.005 | 5=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                    | Asjch)=100.Treci<br>Colacidh)=TVS<br>Critijacidh)=TVS<br>Crutijacidh]=TVS<br>Crutacidh]=TVS                                  | Fe(ch)=1000(Trec)<br>Pbjacch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(Tot)<br>N(ac/ch)=TVS                      | Selacion)= TVS<br>Ag(acich)= TVS<br>Zn(acich)= TVS                              | 15 percentile of 0.0<br>massurgments collected<br>between 6.30 a m and 6.30<br>p.m                                                                                                                                                                                                                                                                                                  |
| 151 Bair Lake Tributator from the pource to the Deriver<br>Hudson Cenal                                                                                                                                                                                                                                                                                 | d0    | Aq Life Warm 2<br>Recreation La<br>Agriculture              | D.O. (ch)=<br>pH=6.5-9.0<br>F.Col=3-00100ml<br>E.Col=1267103ml                              | NH 486/ch=7VS<br>Cl (acl=0.019<br>Cl (ch=0.011<br>Cl (ch=0.011            | \$=0.002<br>8=0.75<br>NO <sub>2</sub> =0.5                                   | Asjch)=1001Trec)<br>Cotacionj=TVS<br>Critiliaotenj=TVS<br>Critiliaotenj=TVS<br>Curiaotenj=TVS                                | Fe(ch)=1000(Trac)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(Tet)<br>Ni(ac/ch)=TVS                    | Selacion)+ TVS<br>Accadeh)= TVS<br>Zn(acidh)= TVS                               | 1<br>When water is preserve<br>D 0, concentrations shall be<br>maniatived at lievels that<br>protect classefied uses                                                                                                                                                                                                                                                                |
| ISo Marcy Guich from including all lakes reservoirs and<br>wetlands from the source to the confluence with the<br>Soum Plane                                                                                                                                                                                                                            | 4     | All Life Warm 2<br>Recreation 1.a<br>Agnouhure              | 0.0 = 5.0 mp/<br>pH=5.5-9.0<br>F.Col=526/100ml<br>E. Col=526/100ml                          | NH Jackmi-TVS<br>CHacimo 019<br>CHAch=0 019<br>CN=0.005                   | S=0.002<br>B=0.75<br>NOy=0.5                                                 | As(ch)=100(Trec)<br>Cd(ac/ch)=TVS<br>Cd(ac/ch)=TVS<br>Cd(ac/ch)=TVS<br>Cu(ac/ch)=TVS                                         | Fe(cn)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Hg(ch)=D01(Tot)<br>M(ac(ch)=TVS                      | Setabbh)=TVS<br>Ag(apth)=TVS<br>Zn(apth)=TVS                                    | Cu (ac/ch) = TVS 24 below<br>ere Conternal Wastewater<br>Treatment Facuer outfall<br>Treatment Facuer outfall<br>Temporary modification<br>Networks of the of<br>Expiration date of<br>Expiration date of                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                         | aIJ   | Ag Life Warm 1<br>Recreation 1a<br>Agrouture                | D 0 =5.0 mg/l<br>ptt=6.5-9.0<br>F.Cat=200/100ml<br>E.Cat=126/100ml                          | NHJ(actor)=TVS<br>CHacin0 019<br>CL(chir 0 011<br>CN=0 005                | S=0.002<br>8=0.75<br>NO <sub>2</sub> =0.5                                    | As(ch)=100(Trec)<br>Cd(ac/ch)=TVS<br>Cr(1(ac/ch)=TVS<br>Cr(1(ac/ch)=TVS<br>Cr(1(ac/ch)=TVS                                   | Felch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0 01(T cr)<br>Ni(ac/ch)=TVS                   | Selectrin)= TVS<br>Ag(actm)= TVS<br>Zn(actm)=TVS                                |                                                                                                                                                                                                                                                                                                                                                                                     |
| 16/2                                                                                                                                                                                                                                                                                                                                                    |       | Ad Life Warm 1<br>Recreation 1a<br>Agriculture              | 0.0 =5 0 mg/l<br>pH=6.5-9 0<br>F Col+ 200/100ml<br>E Col= 126/100ml                         | NH Jackshitz TVS<br>Clyac=0.019<br>Clycm=0.011<br>CN=0.005                | 8=0.002<br>B=0.75<br>NO <sub>1</sub> =0.5                                    | Aa(ch)=100(Trec)<br>Cdtacch)=TVS<br>Crtitiac(ch)=TVS<br>C/V((actch)=TVS<br>Cutac(ch)=TVS                                     | Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(Tot)<br>Ne(ac/ch)=TVS                    | Selection=TVS<br>Aglaction=TVS<br>Zn(action)=TVS                                |                                                                                                                                                                                                                                                                                                                                                                                     |
| 176. Bipeles Lake a k.a. Patrick Reserved of Box Mar<br>Lake                                                                                                                                                                                                                                                                                            |       | Ad Life Warm 1<br>Recreation 1s<br>Agrouture                | D. 0. +5.0 mg/<br>D. 0. (spi=7.0 mg/<br>pH=6.5.8.0<br>F. Cole 200100mt<br>E. Cole 1264100mt | NH-480401=TVS<br>CH480-0.019<br>CH401=0.011<br>CN=0.005                   | S=0.007<br>B=0.75<br>NO3+0.6                                                 | Al, ac/ch)= TVS<br>As(ch)=100(Trac)<br>Cd(ac/th)= TVS<br>Critiliac(ch)= TVS<br>Critiliac(ch)= TVS<br>Criviliac(ch)= TVS      | Fe(cn)=1000,Trec)<br>Pb(acton)=TVS<br>Mm(acton)=TVS<br>Mg(cn)=0.01(fot)<br>M(acton)=TVS                     | Setadon=TVS<br>Agraphe TVS<br>Zn(acton)=TVS                                     |                                                                                                                                                                                                                                                                                                                                                                                     |

## UPPER SOUTH PLATTE RIVER SEGMENT 15

### Site-Specific Minimum Dissolved Oxygen and Ammonia Standards

## UNDERLYING STANDARDS

Dissolved Oxygen

Early Life Stage Protection Period (April 1 through July 31)1-Day1,5,63.0 mg/L (acute)7-Day Average 1,2,45.0 mg/LOlder Life Stage Protection Period (August 1 through March 31)1-Day 1,52.0 mg/L (acute)7-Day Mean of Minimums1,32.5 mg/L30-Day Average 1,24.5 mg/L

## TEMPORARY MODIFICATION

During the period until October 31, 2001, the Segment 15 dissolved oxygen standards from 88<sup>th</sup> Avenue north to the end of the Segment shall be the currently existing ambient conditions as monitored in 1992, 1993, and 1994 by the Division and by the Metro District. Beginning November 1, 2001, the standards shall apply to all sections of Segment 15 south of the Brighton Ditch diversion. The standards north of the Brighton Ditch diversion shall continue to be the ambient conditions existing in 1992, 1993, and 1994. Beginning November 1, 2004, the standards shall apply to all sections of Segment 15.

## Footnotes

For the purposes of determining compliance with the standards, dissolved oxygen measurements shall only be taken in the flowing portion of the stream at mid-depth, and at least six inches above the bottom of the channel. All sampling protocols and test procedures shall be in accordance with procedures and protocols approved by the Division.

- <sup>2</sup> A minimum of four independent daily means must be used to calculate the average for the 7-Day Average standard. A minimum of eight independent daily means must be used to calculate the average for the 30-Day Average standard. The four days and the eight days must be representative of the 7-Day and the 30-Day periods respectively. The daily means shall be the mean of the daily high and low values. In calculating the mean values, the dissolved oxygen saturation value shall be used in place of any dissolved oxygen measurements which exceed saturation.
- <sup>3</sup> The 7-Day Mean minimum is the average of the daily minimums measured at the location on each day during any 7-Day period.
- North of the Lupton Bottoms Ditch diversion, the ELS 7-Day average standards for the period July 1 – June 31 shall be 4.6 mg/L.
- <sup>5</sup> During a 24 hour day dissolved oxygen levels are likely to be lower during the nighttime when there is no photosynthesis. The dissolved oxygen levels should not drop below the acute standard (ELS acute standard of 3.0 mg/L or the OLS standards of 2.0 mg/L). However, if during the ELS period multiple measurements are below 3.0 mg/L during the same nighttime period, the multiple measurements shall be considered a single exceedance of the acute standard. For measurements below 2.0 mg/L during either the ELS or the OLS periods, each hourly measurement below 2.0 mg/L shall be considered an exceedance of the acute standards.
- <sup>6</sup> In July, the dissolved oxygen level in Segment 15 may be lower than the 3.0 mg/L acute standards for up to 14 exceedances in any one year and up to a total of 21 exceedances in three years before there is a determination that the acute dissolved oxygen standards is not being met. Exceedances shall be counted as described in Footnote 5.

Ammonia:

Ammonia Warm Water = (mg/l as N)Total  $acute = \frac{0.411}{1+10^{-7.204} - pH} + \frac{58.4}{1+10^{-pH} - 7.204}$   $chronic (Apr1 - July31) = \left(\frac{0.0577}{1+10^{-7.688} - pH} + \frac{2.487}{1+10^{-pH} - 7.688}\right) + M/N \left(2.85.1.45 + 10^{-0.028(25-7)}\right)$   $chronic (Aug1 - Mar 31) = \left(\frac{0.0577}{1+10^{-7.688} - pH} + \frac{2.487}{1+10^{-pH} - 7.688}\right) + 1.45 + 10^{-0.028(25-MAX(T, 7))}$ 

Early Life Stage Protection Period (April 1 through July 31)

 $NH_3 = old TVS$  Warm Water Acute = 0.62/FT/FPH/2<sup>(4 old)</sup> in mg/ (N)

| REGION 3 AND 4                                                                                                                                                                                                                                          | DESIG | DESIG CLASSIFICATIONS                                           |                                                                                                                                                                                                                                                      |                                                                         | NUMER                                                                                             | NUMERIC STANDARDS                                                                                                                    |                                                                                                                         |                                                          | TEMPORARY                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------|
| BASIN CHERRY CREEK                                                                                                                                                                                                                                      |       |                                                                 | PHYSICAL                                                                                                                                                                                                                                             | INORGANIC                                                               | NIC                                                                                               |                                                                                                                                      | METALS                                                                                                                  |                                                          | AND AND<br>AND                                                                            |
| Siteam Segment Description                                                                                                                                                                                                                              |       |                                                                 | BIOLOGICAL.                                                                                                                                                                                                                                          | Nom.                                                                    |                                                                                                   |                                                                                                                                      | 100                                                                                                                     |                                                          | CHRISTING .                                                                               |
| Manutan of Cherry Drenk from the excrete of East<br>and Werr Cherry Dreak to the inter of Cherry Dreek<br>Reservoir                                                                                                                                     | qu    | Aq Life Warm 2<br>Rencreation 18<br>Water Supply<br>Agriculture | D.0.45.0 mg/l<br>pitels 5.9.0<br>F.Coler 2001100mi<br>E.Coler 1201100mi                                                                                                                                                                              | NH-JJ80407)=TVS<br>Clyac:=0 019<br>Clych=0 011<br>CN=0 005              | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(act=50,Trec)<br>Cd(actor)=TVS<br>Cd(actor)=TVS<br>Cv((actor)=TVS<br>Cu(actor)=TVS<br>Fe(cn)=VVS                                   | Fe(ch)=1000[Trec]<br>Pb[ac(ch)=TVS<br>Mn(ch)=WS(ab)<br>Mn(ch)=WS(ab)<br>H(gab)=0.01[Ton)<br>M(ac(ch)=TVS                | Selauch)= TVS<br>Agiauch)= TVS<br>Za(acich)= TVS         |                                                                                           |
| Z Cherry Ersek Reservou                                                                                                                                                                                                                                 |       | As Life Warm 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | 0.0.45.0 mg/l<br>pH-6.5.4.0<br>PH-6.5.4.0<br>F-0.4.260100ml<br>F-0.44.126100ml<br>Season mean<br>orderasured in<br>upd measured in<br>upd measured in<br>upd measured in<br>upd measured in<br>the upder three<br>months of Joy<br>through Septembar | NH4/ac/ch/=TVS<br>C(4,60=0.019<br>C(4,61=0.011<br>C(4=0.005<br>CN=0.005 | SM#*0S<br>052=10<br>91#CNN<br>9:01#CNN<br>9:01#CNN<br>9:01#CN                                     | Aajacy=Sol Trec)<br>Colacton)=TVS<br>Colacton)=TVS<br>Colacton)=TVS<br>Colacton)=TVS                                                 | Fetch)+WSIdes)<br>Fetch)+1000,Irec)<br>Fetch)=TVS<br>Mr(acch)=TVS<br>Mr(acch)=VS<br>Mr(ch)=01(frec)<br>Hg(ch)=001(frec) | Niacon=TVS<br>Selecton=TVS<br>Zniacon=TVS<br>Zniacon=TVS |                                                                                           |
| 3 Mainteem of Energy crook from the bullet of Energy<br>Creek Reservant to the confluence with the South<br>Platte River.                                                                                                                               | an    | Aq Life Warm 2<br>Recreation 1.5<br>Water Supply<br>Agnoutane   | D.0 =5 0 mg/<br>pH=5 5-9.0<br>F 7.c4=300/100ml<br>E Cala=126/100m                                                                                                                                                                                    | NHJ/ac/cm/=TVS<br>Cl_Jac/cm/=9<br>Cl_(ch)=0.011<br>CN=0.005             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Cd(ac)on)= TVS<br>Cd(ac)=50(Trec)<br>CAN(ac)=50(Trec)<br>CAN(ac)=50(Trec)<br>CAN(ac)=50(Trec)<br>CAN(ac)=50(Trec) | Fe(ch)=1000(Trec)<br>Pb(actor)=TVS<br>Mn(ch)=WS(cas)<br>Mn(ch)=WS(cas)<br>Hg(ch)=0.01(Tot)<br>M(actor)=TVS              | Setao/ch)=TVS<br>Agtac/ch)=TVS<br>Zn(ac/ch)=TVS          | Temporary modification<br>MHA,acichisTVS(old)<br>(Type 4) Expresion date of<br>12/31/2011 |
| <ul> <li>Ant Insurfaries to Cherry Creek, including all lakes<br/>reservers and weltansk from the source of East and<br/>West Cherry Creeks to the carifluence with the Source<br/>Platte River exception (or specific histings in Seaman) 2</li> </ul> | đ     | Aq Life Warm 2<br>Recression 1a<br>Aprouhme                     | 0.0 =5 0 mgl<br>pH=6 5-9.0<br>F Coli=200/100m1<br>E.Coli=1201/100m1                                                                                                                                                                                  | NH, (actor)=TVS<br>Clyable0=0.019<br>Clyable0 011<br>CN=0.005           | 5=0 002<br>B=0 75<br>NO <sub>2</sub> =0 5                                                         | Ax(chi=100(Trec)<br>Ca(ac/ch)=TVS<br>CAll(ac(ch)=TVS<br>CAll(ac(ch)=TVS<br>Ca(ac(ch)=TVS                                             | Fa(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01[101)<br>Ni(ac/ch)=TVS                                | Sejacichi=TVS<br>Agiacichi=TVS<br>Zn(acich)=TVS          | Temporary modification<br>MNI/sacion=TUS(060<br>(Type N. Expiration date of<br>TZ/31/2011 |

| REGION 3                                                                                                                                                                                                                                                     | DE 51G | <b>CLASSIFICATIONS</b>                                         |                                                                                                    |                                                                                  | NUME                                                                                                | NUMERIC STANDARDS                                                                                                                |                                                                                                                       |                                                                                              | TEMPORARY                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| RASIN BEAR ORGEN                                                                                                                                                                                                                                             |        |                                                                | PHASICAL                                                                                           | INDRGANIC                                                                        | lic                                                                                                 |                                                                                                                                  | METALS                                                                                                                |                                                                                              | MODIFICATIONS<br>AND                                                                                                 |
| Straim Segment Description                                                                                                                                                                                                                                   |        |                                                                | BIOLDGICAL                                                                                         | mgil                                                                             |                                                                                                     |                                                                                                                                  | ligin                                                                                                                 |                                                                                              | C ALIFICAS                                                                                                           |
| <ol> <li>Mainstein of Bear Creek from the source to Maritman<br/>Drive, including all manatern reservoire.</li> </ol>                                                                                                                                        |        | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | D 0 = 5 0 mg/l<br>D 0 (sp)=7 0 mg/l<br>prt=6.5-9 0<br>F Cali=200/100ml<br>E Cali=200/100ml         | NH,Jac(en)=TVS<br>Cl_(dc)=0.019<br>Cl_(dc)=0.011<br>CN=0.005                     | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS  | Asiac)=50(Trec)<br>Colaci=TVS(tr)<br>Colcin=TVS<br>Crititac)=50(Trec)<br>Crititac)=50(Trec)<br>Crititactich=TVS<br>Curactich=TVS | Fa(zh)=VN5(des)<br>Fe(zh)=1000(Trec)<br>Poiacún)=TVS<br>Mn(ap(zn)=TVS<br>Mn(ah)=VN5(des)<br>Hex(ah)=VN5(des)          | Ni(acidn)=TVS<br>Setac(th)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS<br>Zn(acidh)=TVS<br>Zn(acidh)=TVS |                                                                                                                      |
| To Mannstein of Beer Creek from Hairman Diton to the<br>milet of Bear Creek Reservor                                                                                                                                                                         | đ      | Au Life Cold 2<br>Recreation 1a<br>Water Supply<br>Agrouture   | D 0.=5.0 mg/<br>0.0.(sp)=7.0 mg/<br>0.4=5.5.9.0<br>F Col=200,100ml<br>E Cole=220,100ml             | NH // aciente FVS<br>Chiacter.0.019<br>Chiacter.0.019<br>Chiel 0.011<br>CN=0.005 | 5=0.002<br>B=0.75<br>NOy=10<br>CI=250<br>SOJ=WS                                                     | Axioc)=50(Trec)<br>Cotchi=TVS(tr)<br>Cotchi=TVS<br>Cotchi=TVS<br>Cotchi=TVS<br>Cotchi=TVS<br>Cotcochi=TVS<br>Cotcocchi=TVS       | Feichi=W5(dis)<br>Fei(chi=1000(Trec)<br>Philacichi=TVS<br>Mn(aci0h)=TVS<br>Mn(chi=W5(dis)<br>Holchi=W5(dis)           | Nijacicnj=TVS<br>Seiac/cnj=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(fr)<br>Zrijac(cn)=TVS             | Water + Fish Organics                                                                                                |
| 1c #aar Dreek Restrication and Socia Lakes                                                                                                                                                                                                                   |        | Aq L/e Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D 0 =6 0 mg <sup>1</sup><br>0 0.14p1=7.0 mg/<br>pH=6 5-9 0<br>F Cole=200/100m1<br>E Cole=200/100m1 | NHy, actions TVS<br>Chylacheo 019<br>Chylacheo 019<br>CN=0.005<br>CN=0.005       | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>3</sub> =10<br>CI=250<br>SO <sub>2</sub> =WS  | At(ac)=50(Treo)<br>Color)=TVS(tr)<br>Color)=TVS<br>Collkac(=F0Treo)<br>Collkac(=T)=TVS<br>Collkac(=T)=TVS<br>Curac(=T)=TVS       | FeldPTWS(das)<br>FeldP1=1000(Trec)<br>Pbtactch)=TVS<br>Mn(cdr)=VVS<br>Mn(ch)=VVS(das)<br>Hotdh)=001(Tpt)              | Nijacičnj=TVS<br>Se(acičn)=TVS<br>Agićn)=TVS(U)<br>Znječnj=TVS(U)                            | See namative photophotus<br>standard below                                                                           |
| <ol> <li>Mainfillinin of Bear Chask from the outled of Bear<br/>Creek Reservoir to the confluence with the South<br/>Platte Ryser</li> </ol>                                                                                                                 | 5      | Aq Life Warm 1<br>Recreation 1a<br>Water Supphy<br>Agnouture   | D 0 =5.0 mg/<br>pH =6.5-9.0<br>F Coli= 2004100ml<br>E Coli= 1261100ml                              | NH Justicinia TVS<br>ChildCie 0.019<br>ChildCie 0.011<br>CN=0.005                | 5=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CD=250<br>SO <sub>4</sub> =WS   | Astach=50(Triec)<br>Cotac(ch)=TVS<br>Crititact=50(Trec)<br>Crititact=50(Trec)<br>Crititact=1VS<br>Culactch)=TVS                  | Feld")WS(des)<br>Feld")WS(des)<br>Polaciden=TVS<br>Mn(aciden)=TVS<br>Mn(cb)=VVS<br>Mn(cb)=VVS(des)<br>Hg(cb)=001(Tes) | Ngadchja TVS<br>Sejaudchja TVS<br>Agladchja TVS<br>Znjadchja TVS                             |                                                                                                                      |
| All tributaries to Bear Creek including at lakes<br>reservoirs and wellands from the source to a point<br>immediately below the confluence with Cub Creek<br>Essept to specific listings in Begment 7                                                        |        | Ag Life Cold *<br>Recreation 1a<br>Water Supply<br>Agriculture | D 0 =5.0 mg/l<br>D 0.(sp)=7.0 mg/l<br>pH=6.52-9.0<br>E Coll= 52-9.0<br>E Coll= 126/100ml           | NHyjadoni=TVS<br>Clydehe0 019<br>Clydehe0 011<br>CN=0.005                        | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CP=250<br>SO <sub>4</sub> =WS  | Asjac)=50(Trec)<br>Cd(act=TVS(tr)<br>Cd(act=TVS<br>Cd(act=TVS<br>Cd(actor)=TVS<br>Cd(actor)=TVS<br>Cd(actor)=TVS                 | Fe(ch)wS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(auch)=TVS<br>Mn(actm)=TVS<br>Mn(ch)=0 P1(50)                                 | Neadon=TVS<br>Secardhi=TVS<br>Agraci=TVS<br>Agracim=TVS(III)<br>Zreadon=TVS                  |                                                                                                                      |
| 43 All Inturusines to Beak Creek, including plisaks,<br>reservers and velocitor from a point intreductly<br>polow the confluence with Club Creek to Pro-<br>confluence with the South Plate Avie: except for<br>specific holing in Segments db. 4c. 5 and 5. | Ъ      | Aut/reWarm 2<br>Recreation 1a<br>Water Supply<br>Agroutiure    | D 0.=5 6 mg1<br>pH=6.5-9.0<br>F Col=200190ml<br>E Col=126/100ml                                    | NH (320km)=TVS<br>Cbj6c(=0.019<br>Cbjch)=0.011<br>CN=0.006                       | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10.5<br>CI=250<br>SD <sub>4</sub> =WS | Asi ac)+50(Trec)<br>Cd(ac/ch)=TV5<br>Cn(i)ac/ch)=TV5<br>Crvi((ac/ch)=TVS<br>Cu(ac/ch)=TV5                                        | Fa(ch)=WS(ds)<br>Fe(ch)=1000(Trec)<br>Pb(auton)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=WS(ds)<br>HS(ch)=WS(ds)                | N(actoh)=TVS<br>Selactoh)=TVS<br>Agradithi=TVS<br>Zn(actoh)=TVS<br>Zn(actoh)=TVS             | Water + Fran Organios<br>Temporary modification<br>NHL/acidnj=TVS(sidi)<br>[Type I) Exploration date of<br>12/3/2011 |
| ib Swede Guton molecting all pondis lakes' reservors<br>and vertance from its headwatchs is its confluence<br>with Ker Guton.                                                                                                                                |        | Ag Lrie Colo 2<br>Recreason 1a<br>Water Supply<br>Agriculture  | 2.0 =5.0 mg1<br>0.0 (sp)-7.0 mg1<br>pH=6.5-8.0<br>F Cole=2007100mi<br>E Cole=128/100mi             | NH/Hexton)= TVS<br>CULARIAD 019<br>CULARIAD 0019<br>CM=0 005                     | 5=0,002<br>B=0.75<br>NOy=10<br>CI=250<br>SD_WS                                                      | Asjac)=S0(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS(tr)<br>Cd(tac)=TVS<br>Cd(tac)=TVS<br>Cd(tac)=TVS<br>Cd(tac)=TVS<br>Cd(tac)=TVS   | Fe(ch)=WS(da)<br>Fe(ch)=1000(Trec)<br>P(lauth)=TVS<br>Mn(ac/ch)=VVS(da)<br>Mn(ch)=VS(da)                              | Nijac/chi=TVS<br>Se(sc/ch)=TVS<br>Ag(ch)=TVS(s)<br>Ag(ch)=TVS(s)<br>ZN(sc/ch)=TVS            | Water + Fish Organics                                                                                                |

Warrisve Prosporus Standard for Segmen 19 di Bear Creek Concentrations of total prosphorus in Bear Creek. Reservas shall be timited some extern recessary to prevent sumulation of adjust growth the protection description of adjust growth the surveat and gravity of the surveat and gravity for the surveat and gravity of 
| REGION L                                                                                                                                                                                                                              | DESIG | DESIG CLASSIFICATIONS                                           |                                                                                            |                                                                | NUMER                                                                                               | NUMERIC STANDARDS                                                                                                                                      |                                                                                                                                      |                                                                                             | MODIFICATIONS          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|
| BASIN BEAR CREEK<br>Sirean Segment Description                                                                                                                                                                                        |       |                                                                 | BIOLOGICAL<br>BIOLOGICAL                                                                   | INORGANIC                                                      | NIC                                                                                                 |                                                                                                                                                        | METALS                                                                                                                               |                                                                                             | QUALIFIERS             |
| 4c Swede Guidth including all ponds lakes, reservoirs and<br>weblands from its confluence with Kein Guidth to its<br>confluence with Bear Greek.                                                                                      |       | Aq Life Cold 2<br>Recretion ta<br>Water Supply<br>Apriculture   | 0.0 =6.0 mg/<br>0.0 1661=7.0 mg/<br>pH=6.5=9.0<br>F.Cok=200100ml<br>E.Cok=126100ml         | NHyac/crizTVS<br>Clyaci=0.019<br>Clyan=0.011<br>CN=0.005       | S=0.002<br>B=0.75<br>N0_j=0.05<br>N0_j=10<br>CI=250<br>SO_s=WS                                      | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(th)=TVS<br>Cnll(ac)=50(Trec)<br>Cv/(ac/ch)=TVS<br>Curacich=TVS                                   | Feich/#WS(dis)<br>Feich/#TVS<br>Miniac(D)=1000[Trac)<br>Miniac(D)=TVS<br>Miniac(D)=VS<br>Miniac(D)=VS(dis)<br>Higid)=WS(dis)         | Nijacichi = TVS<br>Seljacichi = TVS<br>Aglacic= TVS<br>Aglchi = TVS(tr)<br>Znijacichi = TVS | Waller + Fish Organics |
| 5 Savmit Troublesome and Cold Springs Guidners and<br>mannation of Lukey Creek including all trobutanes lakes<br>reservors and wetlands from the source to the confluence<br>with Bear Creek except for spectric tisting in Segment 6 | đ     | Aq, Life Cold 2<br>Recreation 1a<br>Water Supply<br>Agriculture | D. 0 =6 0 mg/<br>D. 0.(sp)=7.0 mg/<br>pH=6.5-9.0<br>F. Cale=200/100mi<br>E. Cale=126/100mi | NHylacich)=TVS<br>Clylach=0.019<br>Clylach=0.011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH=250<br>SO <sub>2</sub> =WS  | Ast act = 501 Trec)<br>Col(act = TVS;tr )<br>Col(act = TVS<br>Crititiac) = 501 Trec)<br>Crititiac) = 501 Trec)<br>Crititiac(h) = TVS<br>Cutadoh) = TVS | Fe(ch)=WS(ds)<br>Fe(ch)=1000(Trec)<br>Pb(auch)=TVS<br>Mn(acton)=TVS<br>Mn(ch)=TVS<br>Mn(ch)=WS(ds)<br>Hq(ch)=001[ds]                 | N(ac/cn)=TVS<br>Sa(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS(tr)          | Water + Fish Organics  |
| 6 Manstern of North Turkey Creek. from the source to the<br>conthaence with Turkey Creek.                                                                                                                                             |       | Ao Lifé Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D. 0 +6 D mg/<br>D. 0 (sp)=7 0 mg/<br>pH=6 5-9 0<br>F Cole=126/100m/<br>E. Cole=126/100m/  | NHylactent=TVS<br>Divise = 0.019<br>Divise = 0.011<br>CN=0.005 | 5+0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =VIS | Asjac)+50(Trec)<br>Co(so)=TVS(t)<br>Co(ch)=TVS<br>Coligac)=50(Trec)<br>Coligacias=50(Trec)<br>Coligacias=TVS<br>Coligacias=TVS                         | Fatch)=WS(dis)<br>Fetch)=1000(Trec)<br>Pt(actch)=TVS<br>Mn(actch)=TVS<br>Mn(act))=TVS<br>Mn(act)=WS(dis)<br>Hg(ch)=cu 0h(fin)        | Niacich)=TVS<br>Se(acich)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Zn(acich)=TVS                  |                        |
| 7 All troutimes to Blair Creak, including lakes, reservoirs and<br>wettands, writin the Mr. Evans Wildemess Area.                                                                                                                     | MO    | An Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agnouture    | 0.0.=6.0 mph<br>D.0.(sp)=7.0 mph<br>pH=6.5-9.0<br>F Coli=200/100ml<br>E Coli+126/100ml     | NH4/6001=TVS<br>Cl6/801=0.019<br>Cl6/801=0.011<br>CN=0.005     | S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS    | Asjac)=50(Trec)<br>Co(rec)=TVS(tr)<br>Co(re)=TVS<br>Coffil(ac)=50(Trec)<br>CrVI(acCe)=TVS<br>Cu(acCe)=TVS                                              | Felcht=WS(drs)<br>Felcht=TVS<br>Pt(exicht=TVS<br>Mn(acicht=TVS<br>Mn(ctht=TVS<br>Mn(ctht=US)<br>Hn(cth=0.01(fet)<br>Hg(cht=0.01(fet) | Madenj=TVS<br>Selacen)=TVS<br>Aglac)=TVS<br>Aglab)=TVS<br>(n)=TVS<br>Zn(ac/ch)=TVS          |                        |

| REGION 1                                                                                                                                                                                                          | DESIG | CLASSIFICATIONS                                                  |                                                                                             |                                                                         | NUMER                                                                                              | NUMERIC STANDARDS                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                | TEMPORARY                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN CLEAR CREEK<br>Stream Semman Date Anon                                                                                                                                                                      |       |                                                                  | PHYSICAL                                                                                    | INDRGANIC                                                               | NIC                                                                                                |                                                                                                                                                                                           | METALS                                                                                                                                                                                                                                                                                                                                             |                                                                                                | MODFILM FROMS<br>AND<br>OUALIFIERS                                                                                                           |
|                                                                                                                                                                                                                   |       |                                                                  | BIOLOGICAL                                                                                  | ngn                                                                     |                                                                                                    |                                                                                                                                                                                           | hgu                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                                                              |
| Manestern of Clear Creek, including all trabutaries lakes<br>reservoirs and wetlandsr frain the source to the I-10 bridge<br>above Silver Paine.                                                                  |       | Ag Life Cold 1<br>Reveation 1a<br>Water Supply<br>Agrouture      | D 0 =6 0 mg/<br>D.0 (45)=7.0 mg/<br>pt+e6.5.9.0<br>F Cole=2001100m1<br>E Cole=1261100m1     | NHy/addn/=TVS<br>Cljac)=0.019<br>Cljdn/=0.011<br>CN=0.005               | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0 05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Colon=TVS(h)<br>Colon=TVS<br>Critiliac)=50(Trec)<br>Critiliac)=50(Trec)<br>Critiliac)=50(Trec)<br>Critiliac)=50(Trec)                                                  | Fe(ch)=V/S(ds)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ac(ch)=VS<br>Mn(ac(ch)=VS)<br>Mn(ch)=01(Tb()                                                                                                                                                                                                                           | Ni(ac/dh)=TVS<br>Se(ac/dh)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS[u]<br>Zr(ac/dh)=TVS                 |                                                                                                                                              |
| 2 Manasem of Desk Creek, including all tributanes, lakes<br>reservers and wetands from the 1-10 broage above Silver<br>Plume to the Arge Tunnel discharge alcopit for specific<br>wrings in Segments 3 through 10 |       | Alq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | 0.0 =6.0 mg/<br>0.0 (sp)=7.0 mg/<br>PH=6.5-9.0<br>F.Coli=200/100ml<br>E.Coli=26/100ml       | NH4.80(b)=TVS<br>CR480=0.019<br>CM401=0.011<br>CM40.005                 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>SO <sub>4</sub> =WS<br>NO <sub>5</sub> =10<br>CI=250 | As(ac)=5b(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ac)=TVS<br>Cd(ac)=1VS<br>Cd(ac)=TVS<br>Cd(ac)=1VS<br>Cd(ac)=1VS                                                                                   | Fe(ch)=V/S(dis)<br>Fe(ch)=1000(Trec)<br>Pb(addh)=TVS<br>Mn(ch)=V/S(dis)<br>Hg(ch)=01(Tot)<br>Ni(addh)=TVS<br>Se(addh)=TVS                                                                                                                                                                                                                          | Agiac)=TVS<br>Agich)=TVS(tr)<br>Zn(ac)=TVS<br>Zn(ch)=200                                       | Temporary modifications<br>Cuichies 1, up/1 (ds).<br>Mn(cn)=105 up/1 (ds).<br>Zn(cn)=257 up/1 (ds).<br>type 4:<br>Expression date of 2/01/09 |
| 39 Manchen of Sputh Chear Creek, Including all trausaries,<br>takes, reservoirs and wellands from the source to the<br>confinence with Clear Creak, except for the specific terrig in<br>Se and 19.               |       | Ag Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture   | 0.0.1401=7.0 mg/<br>0.0.1401=7.0 mg/<br>pH=5.5-8.0<br>F.Cot=200/100m1<br>E.Cot=200/100m1    | NH, 46/01) - TVS<br>Cl-(46)=0.019<br>Cl-(47)=0.011<br>CN=0,005          | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH-250<br>SO <sub>4</sub> =WS | Astac)=50(Trec)<br>Cot(ac)=TVS(tr)<br>Cot(ch)=TVS<br>Cot(i)=TVS<br>Cot(i)=TVS<br>Cot(i)=Cot(Trec)<br>Cot(i)=TVS<br>Cot(acion)=TVS                                                         | Fe(ch)=V/S(dis)<br>Fe(ch)=1000(Trec)<br>Potacich)=TVS<br>Mn(ac(ch)=VS<br>Mn(ch)=VS(dis)                                                                                                                                                                                                                                                            | Ng(ch)=0.01,1 or<br>N(acton)=TVS<br>Selacich)=TVS<br>Ag(ac)=TVS<br>Ag(ac)=TVS<br>Zvyacich)=TVS | Temporary modification<br>Zh(ch)=100 µg/l (dis)<br>type ==<br>E spiration date of 7/01/09                                                    |
| 36 Maintatian Di Lealwerkworth Creek from source to confluence<br>with South Creat Creek.                                                                                                                         |       | Ag Lrie Cold 2<br>Recreation 1a<br>Water Supply<br>Agriculture   | D. 0 +6 0 mg/<br>D.0 (48)=7 0 mg/<br>pH=6 5-9 0<br>F Cole - 2001 00m/<br>E Cole - 1261 00m/ | NH # ackb)=TVS<br>Cl_act=0.019<br>Cl_ach=0.011<br>CN=0.005              | S=0.002<br>B=0.75<br>NO <sub>3</sub> =0.05<br>NO <sub>3</sub> =10<br>CJ=250<br>SO <sub>4</sub> *WS | As(sec)=50(Trac)<br>Cd(ac)=TVS(tr)<br>Cd(ch=TVS<br>Cd(th)=TVS<br>Cd(th=TVS<br>Cd(thac)=50(Trac)<br>Cd(thac)=1TVS<br>Cd(thac)=1TVS                                                         | Fe(ch)=WS(ds)<br>Fe(ch)=1000(Trec)<br>Poi acidn)=TVS<br>Mn(ch)=VVS(dis)<br>Mn(ch)=VVS(dis)<br>Hig(ch)=001(fet)                                                                                                                                                                                                                                     | N(ackh)=TVS<br>Sejac(m)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac(m)=TVS                    | Temporary modifications<br>Pb(ch)=47 ug/l (dis),<br>ZN(ch)=220 ug/l (dis),<br>Expression date of 2/28(10)                                    |
| <ul> <li>Mannsiem of West Cleak Creek from the source to the<br/>confluence with Woods Creek</li> </ul>                                                                                                           |       | Aq Life Cold 1<br>Recreation 1s<br>Water Supply<br>Agriculture   | D.0. +6.0 mg/l<br>D.0. (4p)=7.0 mg/l<br>pH=6.5-3.0<br>F. Cot=200100mi<br>E. Cot=126/100mi   | NH (ac/ch)=TVS<br>Cl(ac)=0.019<br>Cl(ch)=0.011<br>CN+0.005              | S=0 002<br>B=0 75<br>NO <sub>1</sub> =0 75<br>NO <sub>1</sub> =10<br>CP=250<br>SO <sub>4</sub> =WS | Asi aci = 50(Trec)<br>Colaci = TVS(F)<br>Colchi = TVS<br>Colchi = TVS<br>Collisaci = 50(Trec)<br>Collisaci = TVS<br>Colebch) = TVS                                                        | Fetch)=WS(dis)<br>Fetch)=1000(Trac)<br>Pbiaccoh=TVS<br>Mn(abt=WS(dis)<br>Mn(abt=WS(dis)<br>Hatch=0.51(Tot)                                                                                                                                                                                                                                         | N((ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS                |                                                                                                                                              |
| <ol> <li>Manatiam of West Diese Dreek from the confluence with<br/>Woods Creek to the confluence with Clease Creek</li> </ol>                                                                                     | 5     | Aq Life Celd *<br>Research 1a<br>Agrisshure                      | 0.0.46.0 mg/<br>0.0.1597 0 mg/<br>H=6.5.9 0<br>F. Doine 200100ml<br>E. Colie 128/100ml      | NH-s/actor)= TVS<br>CI-stach=0.019<br>CI-stach=0.011<br>CN=0.005        | S=0.002<br>B=0.75<br>NO3#0.05                                                                      | Asich)=100[frec]<br>Colast)=1VS(tr)<br>Colast)=1VS<br>Colact=1VS<br>Colacterh=TVS<br>Colacterh=TVS                                                                                        | Falchi=1000(Fred) Selado<br>Poladoh)=TVS Agrad<br>Moradoh=TVS Agrad<br>Moradoh=TVS Agrad<br>Moradoh=TVS Agrad<br>Nuadoh=TVS<br>Zh(acree)=01110(1<br>Zh(acree)=040(hnamonal)=1372<br>Zh(acree)=040(hnamonal)=1372                                                                                                                                   | Selacich=TVS<br>Ag(ch)=TVS(c)<br>Ag(ch)=TVS(c)<br>assil=1 \$127<br>assil=1 \$127               |                                                                                                                                              |
| 6 At transmise to West Clear Creak, including all lakes,<br>reservoirs and wetlands from the source to the confluence<br>with Clear Creak, except for spectra listings in Segments 7<br>and 9.                    |       | Aq Life Cold 1<br>Recreation 1a<br>Vitater Supply<br>Agriculture | D.O ~6.0 mp/<br>D.O (spi=7.0 mp/<br>pH=6.5-9.0<br>F.Coi=200100ml<br>E.Coie 126/100ml        | NH <sub>4</sub> Iac/ch)=TVS<br>Clyac)=0.019<br>ClyIch=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Col(ac)=TVS(tr)<br>Col(ac)=TVS<br>Crit(ac)=50(Trec)<br>Crit(ac)=50(Trec)<br>Crit(ac)=TVS<br>Cu(ac(ab)=TVS                                                              | Felich)=WS(dis)<br>Felicini=1000(Trec)<br>Pt(actor)=TVS<br>Mnt(actor)=TVS<br>Mnt(actor)=TVS<br>Mnt(actor)=105                                                                                                                                                                                                                                      | Netac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zh(ac/ch)=TVS(tr)            | Temporery modification<br>Zrych)=38 µg/ (dis)<br>type w<br>Experation date of 1/01/09                                                        |
| 7 Marratem of Woods Creek from the outlet of Upber Urad<br>Reservour to the confluence with West Cleak Creek.                                                                                                     | €     | Ag Life Cold 2<br>Recreation 2                                   | D 0 =5 0 mg/<br>0.0159/r7.0 mg/<br>PH=6 0.9.0<br>F Cot=2000/100m/<br>E Cot=2001/100m/       | NH Jarche TVS<br>Cl_jac)=0.019<br>Cl_sch)=0.011<br>CN=0.005             | S=0.002<br>ND_1=0.05                                                                               | WIQSvc = KQvc * Quecc) X WQSvccr.<br>WIQSvc * Verset Querk, Standards for W<br>Ourc = Flow for Wrods Creek<br>Ource = Flow for West Fork Clear Clear Creek<br>Water Outling Standards for | WOSker = ROue = Ouscel X WOSker - FOrece X Ouecci/Wow<br>DSker = Marker Outliny Standards for Woods Creek<br>Oue = Flow for Weast Creek Standards for Woods Creek<br>Ouece = Flow for Weast Fork Clear Creek<br>Ouece = Flow for Weast Fork Standards for West Fork Clear Creek<br>Creek Ambeind Contentration in West Fork Clear Creek<br>Curc S. | ecc X Cwecc)MOwc<br>S Creek<br>St Fork Clear Creek<br>Clear Creek                              | Standards shall be applied<br>using the Segment 7<br>equation                                                                                |
| <ol> <li>Manziern of Linn Creek from the searce to the confluence<br/>w/m West Creek. Creek.</li> </ol>                                                                                                           | 5     | Ag Lee Cold 2<br>Recreation 1a                                   | D 0 = 6 0 mg4<br>D.0 (sp)+7 0 mg4<br>D+1 = 3.0-9 0<br>F.Col=200/100m4<br>E.Col=126/100m1    |                                                                         |                                                                                                    |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |                                                                                                                                              |

| region J                                                                                                                                                                                                                                                                                                                                      | DESIG | CLASSIFICATIONS                                                     |                                                                                              |                                                                                       | NUME                                                                                               | NUMERIC STANDARDS                                                                                                                                       |                                                                                                                                   |                                                                                                | TEMPORARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN CLEAR OREEK                                                                                                                                                                                                                                                                                                                             |       |                                                                     | PHASICHT                                                                                     | NORGANIC                                                                              | AIC.                                                                                               |                                                                                                                                                         | METALS                                                                                                                            |                                                                                                | NODIFICATIONS<br>AND<br>DUALIFIERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Skoen Segment Description                                                                                                                                                                                                                                                                                                                     |       | 11                                                                  | BIOLOGICAL                                                                                   | ligm                                                                                  |                                                                                                    |                                                                                                                                                         | 1/0/1                                                                                                                             |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 54 Markstein Ib thir Fael Kheir including all imputanes lakes<br>reservoirs and wetdinkds, from this shurds to the confluence<br>with Claier Greek                                                                                                                                                                                            |       | Aq Life Cold F<br>Recreation 1.a<br>Waier Supply<br>Agriculture     | D.O. = 6.D mg/<br>D.O. (sp)=7.0 mg/<br>pH = 6.5-3.0<br>F Cole=200100ml<br>E Cole=200100ml    | NH 482011 TVS<br>Cl <sub>3</sub> (ac)=0 019<br>Cl <sub>3</sub> (ch)=0 011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>1</sub> =0.05<br>NO <sub>1</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS | As(act+50(Trec)<br>Cd(act=TVS(r)<br>Cd(act=TVS<br>Cd(act=TVS<br>Crititact=FVS<br>Crititact=FVS<br>Curactart=TVS                                         | Fetch1=V00[Trec)<br>Fe(ch)=1000[Trec)<br>Pb(actn)=TV5<br>Mn(actn)=TV5<br>Mn(ch)=V8(the)<br>Hq(ch)=0.21(the)                       | N(addh)=TVS<br>Selsotch1=TVS<br>Agiac)=TVS<br>Agich1=TVS(tr)<br>Zn(addh)=TVS                   | Fernporary modificator<br>Cuton)=11 µgh (dis)<br>type ill<br>701/09<br>701/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| do Manstern of Trai Creak including all Providence, lakes<br>reservers, and wellands from the source to the confluence<br>with Clear Creak                                                                                                                                                                                                    |       | Aq Life Cold 1<br>Receasion 1a<br>Mater Suply<br>Agrophue           | D.0 =5.0 mg/<br>D.0.0epr3.0 mg/<br>pH=0.5.9 d<br>F.Cou=200100ml<br>E.Col=126/100ml           | MH-Jac(m)=TVS<br>CJJach20019<br>CJJah20011<br>CN=0035                                 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>SO_2=WS<br>NO <sub>3</sub> =10<br>CI=250             | Astach=50(Trec)<br>classTVSstrt<br>cdiant=TVSstrt<br>cdiffiad)=50(Trec]<br>criftijad)=50(Trec]<br>criftijad)=50(Trec]<br>cuitaddh]=TVS<br>Cuitaddh]=TVS | Fe(ch)=WS(04)<br>Fe(ch)=000(Trec)<br>Poladon)=TVS<br>Marich)=TVS<br>Marich)=WS(04)<br>Marich)=TVS<br>Se(adoh)=TVS<br>Se(adoh)=TVS | Agiaci=TVS<br>Agiaci=TVS(Ir)<br>Zrigos=TVS<br>Zrigos=TVS<br>Zrigos=200                         | Temporary<br>modrations<br>Calcon-4.6 up01<br>Culcon-4.6 up01<br>Culcon-7.48 up01<br>Discrimine 7.6 up01<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=548<br>MMCD)=5488<br>MMCD)=5488<br>MMCD)=5488<br>MMCD)=5488<br>MMCD)=5488<br>M |
| Tit Mainstein of Chicago Creek, including all inductaves, lakes<br>with constraints and wellands from the sound; to be confluence<br>with Clear Creek, exception Schedic halmgs in Segment<br>19                                                                                                                                              |       | Aq Life Cold 1<br>Recreation 1,<br>Water Supply<br>Agriculture      | 0.0 * 5.0 mg/l<br>D.0. (spl=? 0 mg/l<br>PH = 6.5-9 0<br>F Col=200*00ml<br>E Col=178/100ml    | MH_(ADICH)=TVS<br>Cly(ach=0.019<br>Cly(ch)=0.011<br>CN=0.005                          | S=0 002<br>B=0 75<br>NO <sub>2</sub> =0 05<br>NO <sub>3</sub> =10<br>CI+250<br>SO <sub>4</sub> *WS | As(ac)=50(Trec)<br>Cd(ac)=TUS(tr)<br>Cd(ac)=TUS<br>Cd(Rec)=50(Trec)<br>CVR(ac)=50(Trec)<br>CVR(ac)=50(Trec)<br>CVR(ac)=50(Trec)                         | Fe(cn)+WS(dis:)<br>Fe(cn)+T000(Trec)<br>Pb(addn)=TVS<br>Mn(cn)=VS(dis)<br>Mn(cn)=VS(dis)<br>Hg(cn)=0 (n1 fac)                     | Nraofchir TVS<br>Selabibhir TVS<br>Aglac I TVS<br>Aglahir TVS(II)<br>Zniadbhir TVS             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11 Mansien of Clear Creek from the Argo Funnel discribite<br>to the Farmans Highline Canal diversion in Golden<br>Colorada                                                                                                                                                                                                                    | В     | Ang Lrife Colid *<br>Reacteatron 1.a<br>Water Supply<br>Agriculture | 0.0 % 6 0 mgf<br>D.0 (sti=7 0 mgf<br>pH = 6 55 0<br>F Cole=200'00ml<br>E Cole=126'00ml       | NHJACON TVS<br>Class=0019<br>Class=0011<br>CN=0001                                    | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>CI=250<br>SO_4WS    | As(ac)=50(Trac)<br>Collacion)=TVS<br>Coll(ac)=50(Trac)<br>CrvI(ac(ch)=TVS<br>Col(ch)=77                                                                 | Fe(ch)=WS(drs)<br>Fe(ch)=1000/Trec)<br>Pb(ac(ch)=TVS<br>Mn(ch)=WS(drs)<br>Hg(ch)=01(Trec)                                         | N(actor)=TVS<br>Se(actor)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tt)<br>Zn(ch)=300                    | Temporary modification<br>Zn(ch)=339 µgli (nis)<br>Mn(ch)=861 µgli (ds),<br>type ii<br>Expresion date of<br>7/01/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 12 All including to Clear Creek including all takes reservoirs<br>and webands, from the Argo Turnel discretege to the<br>Farmors Hophes Canal divorsion in Golden Colorada<br>except for specific listings in Segments 15a and 13b.                                                                                                           | 8     | Ag Life Cold 2<br>Recreation 1a<br>Waan Supply<br>Agrouture         | D.O. = 6.0 mg/<br>D.O. (180)=7.0 mg/<br>PH = 6.5 % 0<br>F.Cole=1269100ml<br>E.Cole=1269100ml | NH4.40(ch)=TVS<br>Clgac)=0.019<br>Clgch)=0.011<br>CN=0.005                            |                                                                                                    | Asi ac)=50(Trec)<br>Colon=TVS(P)<br>Colon=TVS<br>Critikac)=50[Trec]<br>Critikac)=50[Trec]<br>Critikach=TVS                                              | Fe(ch)=WS(cds)<br>Fe(ch)=1000(Trac)<br>Pb(ac/ch)=1VS<br>We(ac/ch)=TVS<br>Me(ch)=WS(cds)<br>Mg(ch)=001(Tot)                        | Nu acidhi = TVS<br>Sei scidhi = TVS<br>Agiaci = TVS<br>Agidhi = TVS(U)<br>Zhiacidhi = TVS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13a Manistern of North Lieae Create and Flour Mate Quich<br>including a unburaneel takes instancio: ano wellandu<br>hom thorir sourcest to the bowast water supply intake<br>increated in each stream and Chase Guidh nothodng all<br>infortances takes reservoirs and wellands from its source<br>forths confluence with North Clear Cleark. |       | Aq Life Cold 1<br>Recreation 13<br>Water Supple<br>Agrouthure       | D 0 + 6.0 mg/<br>D 0 (spi=? 0 mg/<br>pH = 6 590<br>F Cole 200100ml<br>E Col=126/100ml        | NH-Jauchy=TVS<br>Cl(ac)=0.019<br>Cl(ch)=0.011<br>CN=0.001                             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SD <sub>4</sub> =WS | Asiach=50(Trec)<br>Colach=TVS(II)<br>Col(ch)=TVS<br>Col(ch)=TVS<br>Col(act=1)=TVS<br>Col(actch)=TVS                                                     | Cuiadeni=TVS<br>Fetchi=WS(als)<br>Fetchi=WS(als)<br>Pbjactoni=TVS<br>Mniadchi=TVS<br>Mniadchi=TVS<br>Mniadchi=TVS<br>Mniadchi=TVS | New Construction In VS<br>Set acconstruction<br>Agriculture<br>Agriculture<br>ZhilacochilarTVS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 130 Maintern of Norm Clear Creek melvaling al Inductanes<br>auss: reservoirs and wellands from the source to the<br>confluence with Clear, accert and the specific<br>fistings in segment 138.                                                                                                                                                | 9     | Aq Life Cold 2<br>Recreation 1a<br>Agriculture                      | D.0 = 6.0 mg/l<br>D.0 (spi=7.0 mg/l<br>PH = 6.5-9.0<br>F Cole=726/100ml<br>E Cole=126/100ml  | NevJac/chi=TVS<br>Cigacj=0.018<br>Cigacj=0.011<br>CN=0.005                            | S 002<br>2000<br>2001                                                                              | Astiact=100Htec)<br>Collect=1VS(rt)<br>Collect=1VS(rt)<br>Coll(col=50(rt)ec)<br>CrV(lac(ch)=TVS                                                         | Eulch)=54<br>Exich=5400(Trec)<br>Ph(acta)=TVS<br>Mn(acta)=TVS<br>Hig(ch)=0.0.(Tot)                                                | Nyactohi=TVS<br>Sejacchi=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ch)=T40                                   | Temporary<br>modr calciens<br>Cq(di)=6,0 ugil (dis)<br>Mer(di)=5,283 ugil (dis)<br>Ze(cn)=1,864 ugil (dis)<br>type i<br>Expression date of<br>701/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                               | 93    | Aq Life Waim 7<br>Receistion 2<br>Water Supply<br>Agriculture       | D.0 = 5 0 mg/<br>pH = 5 5-5 0<br>F Col~2003/100ml<br>E Col=63000ml                           | NH4 acton=TVS<br>Cl_stact=0.019<br>Cl_steh)=0.011<br>CN=0.005                         | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =WS  | Asiaci=50(Trec)<br>Collac/2h)=TVS<br>Crillaci=50(Trec)<br>Crillacich)=TVS<br>Culac(ch)=TVSX3<br>55                                                      | Felch)=V/S(ds)<br>Fe(ch)=1000(Trec)<br>Potecton)=TVS<br>Mm(ch)=500<br>Hg(ch=0.0100)<br>N(ac/ch)=TVS                               | Selacion)=TVS<br>Aglacion)=TVS<br>Zolacion)=TVSX<br>1.57                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *Als. Manavery of Clear Creati Namine Dervey Water conduit<br>#15 Drossing to Youngriefid Street in Wheat Rube.<br>Colorado:                                                                                                                                                                                                                  | B)    | Aq Life Warm 2<br>Recreation 1s<br>Water Supply<br>Agriculture      | Dr D = 5 0 mg/<br>pH = 6 5-9.0<br>F Cole-2201100mu<br>E.Cole-126/100mu                       | NH4Jac/cnj=TVS<br>Cl4ac)=0 019<br>CL4ch+0.011<br>CN+0.005                             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =V0  | Asjac,=50,Trec)<br>Colaotch)=TVS<br>Crittant=50(Trec)<br>Crittant=TVS<br>Colaotch]=TVSX3<br>68                                                          | Fe(ch)=VS(gts)<br>Fe(ch)=1000(Trec)<br>Pb(acdh)=TVS<br>Mh(ch)=500<br>Hg(ch)=D01(001<br>Naacm)=TVS                                 | Selactori=TVS<br>Aglactori=TVS<br>Zhiactori)=TVSX<br>1.57*                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| REGION 3                                                                                                                                                                                                                                 | DESIG | CLASSIFICATIONS                                                 |                                                                                                                                                     |                                                                                                                                   | NUME                                                                                               | NUMERIC STANDARDS                                                                                                                    |                                                                                                                                             | 2                                                                                | TEMPORARY                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| BASIN CLEAR CREEK                                                                                                                                                                                                                        |       |                                                                 | PHASICAL                                                                                                                                            | INORGANIC                                                                                                                         | NHC                                                                                                |                                                                                                                                      | METALS                                                                                                                                      |                                                                                  | MODIFICATIONS<br>AND<br>AND                                                                                                         |
| Stream Segment Description                                                                                                                                                                                                               |       |                                                                 | BFOLOGICAL                                                                                                                                          | ugm                                                                                                                               |                                                                                                    |                                                                                                                                      | Ngu                                                                                                                                         |                                                                                  | CUALIFIENS                                                                                                                          |
| *5 Marratem of Clear Creek from Youngriate Streer in<br>Whiteat Riage Crossado to the confluence with the<br>South Platfe River.                                                                                                         | 5     | Aq Life Warm *<br>Recreasion ta<br>Water Supply<br>Agriculture  | D.0 =5.0 mg/<br>PM = 6.5-5.0<br>F. Col=200100mf<br>E. Col=1.26/100mf                                                                                | NH4(ecta)= TVS<br>Cly(act=0.019<br>CLy(act=0.019<br>CN=0.005                                                                      | S=0.002<br>B=0.75<br>NO:=0.5<br>NO:=10<br>CI=250<br>SO:=WS                                         | Asiaci+50(Trec)<br>Coladon=TVS<br>Crititac=50(Tvac)<br>Crititac=50(Tvac)<br>Crutitac=50(Tv3c)<br>Crutitac=100                        | Fetchj=WS(dis)<br>Fejchj=WS(dis)<br>Fejcadchj=TVS<br>Mnjaddhj=TVS<br>Mnjaddhj=TVS<br>Mnjaddhj=TVS<br>Mnjaddhj=TVS                           | Niacich)=TVS<br>Ssiacich)=TVS<br>Agiacich)=TVS<br>Znacich)=TVSx1<br>57*          | Aquatic life warm 1<br>goal qualifier<br>Temporary<br>modification<br>MH/(secth) Expranon<br>(Type I) Expranon<br>date of 1231/2011 |
| 15a Marristem of Larva Guildh triching all moutaries, lakes<br>reservers and vertaints from its source to the outlet of<br>Majole Grove Reservor                                                                                         | 3     | Aq Life Waim 2<br>Repression 1a<br>Water Supply<br>Agriculture  | D 0 =5 0 mg/<br>pH=6 5-9.0<br>F. Cal= 7200:100ml<br>E. Cal= 126/100ml                                                                               | NH4/acch2=TVS<br>CH4ac3=0 019<br>CH4ac3=0 019<br>CH4ch2=0 011<br>CN=0.005                                                         | S=0 002<br>B=0.75<br>NO <sub>2</sub> =0 05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =WS | Asi act=50(Traci<br>Cd(ac)=TVS<br>Cd(h)=TVS<br>Cd(h)=TVS<br>Cd(h)=C0(Traci<br>Cd(h)=TVS<br>Cd(acb)=TVS                               | Fe(ch)=V/S(des)<br>Fe(ch)=1000[Trac]<br>Pb(actch)=TVS<br>Minactch)=TVS<br>Minactch)=TVS<br>Min(ch)=VS(das)<br>Hg(ch)=001(Tal)               | Nyacidhi=TVS<br>Sel ad/chi=TVS<br>Ag(ad/dh)=TVS<br>Zn(ad/dh)=TVS                 |                                                                                                                                     |
| Stir All Intrudicies to Clear Creak from the Farmers Highline<br>Canal diversion in Goldien Coldinate Lando to the cardiugnice<br>with this South Patiela River extract for specific listings<br>in Segments that 17.4.17.6.188 and 180. | G.    | Aq Life Warm 2<br>Recreation 2<br>Agnouture                     | D O =5.0 mg/l<br>pH=6.5-8.0<br>F Cot=700W100mf<br>E Cot=630100mf                                                                                    | NH (Jac/ch)=7VS<br>CL(ac)~0.019<br>Cl(dh)=0.011<br>CN=0.005                                                                       | S-0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                          | Astchje100,Trec)<br>Cd(actu)=TVS<br>Cd((actu)=TVS<br>Cd((acton)=TVS<br>Cu(acton)=TVS                                                 | Feich)=1030[Trac]<br>Pelacrich=TVS<br>Mn(acidy)=TVS<br>Hgich)=0.0117 et/                                                                    | M(actch)=TVS<br>Selac(ch)=TVS<br>Ag(actch)=TVS<br>Zn(actch)=TVS<br>Zn(actch)=TVS |                                                                                                                                     |
| 17 a Arvada Reservo.                                                                                                                                                                                                                     | 5     | Ag L/le Cold 2<br>Recreation 2<br>Water Supply<br>Agroutture    | D 0 =6 0 mg/l<br>D.D.4sp1=7,0 mg/l<br>pH=5 5-9.0<br>F. Col=200/100ml<br>E. Col=120/100ml                                                            | NH+(3000)=1VS<br>C5(36)=0.019<br>C5(36)=0.011<br>C5(36)=0.011<br>CN=0.005                                                         | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> *WS | As(ac)=50(Trec)<br>Cd(ac)=TVS(tr)<br>Cd(ar)=TVS<br>Cd(ar)=TVS<br>Cd(ar)=TVS<br>Cr(t)=ac)=50(Trec)<br>Cr(t)=ac(b)=TVS<br>Cu(addh)=TVS | Fe(ch)=WS(da)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=VS(das)<br>Hg(ch)=001(Tal)                                   | Ny(addh)=TVS<br>Se(addh)=TVS<br>Ag(addh)=TVS<br>Zh(addh)=TVS<br>Zh(addh)=TVS     | Water + Fath Organize                                                                                                               |
| 17b Mainstein of Ralition Creek Iron the pounde to the inkis<br>of Arvada Reservoir Including Ratston Reservoir and<br>Upper Long Lake                                                                                                   | 9     | Aq Like Cold 2<br>Recreation 1a<br>Water Supply<br>Agriculture  | <ul> <li>D. O. =6.0 mg/t</li> <li>D. 0. 400=7.0 mg/t</li> <li>D. 0. 400=7.0 mg/t</li> <li>F. Coli=1261(00ml)</li> <li>E. Coli=1261(00ml)</li> </ul> | NHJacton)=TVS<br>Cbjach=0.019<br>Cljcm=0.01*<br>CN=0.005                                                                          | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> *WS | Astach=50/Treet<br>Cdiach=TVS(tr)<br>Cdich)=TVS<br>Cdich)=TVS<br>Critt(act)=50/Trect<br>Critt(act)=50/Trect<br>Cuitadch)=TVS         | Feich=WS(dis)<br>Feich=1000(Tec)<br>Pbjackh=TVS<br>Mn(actch=TVS<br>Mn(actch=TVS<br>Mn(ch)=0.01[Tal]                                         | N(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                  | Water + FISH Organiza                                                                                                               |
| Namitism of Relation Creek, including all takes and<br>reservors. From the oxidist of Arriada Reservor to the<br>confluence with Clear Creek.                                                                                            | đ     | Aq Life Warin 2<br>Recreation 1a<br>Water Supply<br>Agriculture | D.0 = 5.0 mg/<br>pH = 6.5-9.0<br>F Col=200/100m/<br>E Col=126/100m/                                                                                 | NHulacith)=TVS<br>Clyacit0:019<br>Clyich:=0.011<br>CN=0.005                                                                       | 5=0.002<br>8+0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =WS  | As(ac)=50,Trec)<br>Cd(ac(ch)=TVS<br>Cr(i)ac(ch)=TVS<br>Cr(i)ac(ch)=TVS<br>Cu(ac(ch)=TVS                                              | Fe(ch)=WS(dis)<br>Fe(ch)=1VS<br>Polac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Mn(ch)=WS(dis)<br>Hg(ch)=D01(Tot)                                         | N(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                  |                                                                                                                                     |
| •IB Maintiger of Leyden Creek and Van Bitbier Creek from<br>their source to ther confileence with Ralston Creek<br>Mainteence with Clear Creek from its source to its<br>confilience with Clear Creek.                                   | ÷     | Aq Life Warm 2<br>Recreation 2<br>Water Supply<br>Agriculture   | D 0. =\$ 0 mg/<br>pH=5 5-8.0<br>F.Cel=2030100ml<br>E.Col=530100ml                                                                                   | NH_JIACICHI=TVS<br>CL_JIAC)=0 019<br>CL_JIAN)=0.011<br>CN=0 005                                                                   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> *WS  | Asiac)=50(Trec)<br>cdiacth)=TVS<br>Cdiacth)=TVS<br>Cdiacth=FVS<br>Curacth=TVS                                                        | Feichi=WS(dis)<br>Feichi=10000Trect<br>Pbi-acchi=TVS<br>Mn(acch)=TVS<br>Mn(acch)=TVS<br>Mn(acch)=TVS<br>Mn(ach)=VS(dis)<br>Hg(di)=0.01(Tot) | N(acich)=TVS<br>Se(acich)=TVS<br>Ag(acich)=TVS<br>Zn(acich)=TVS                  |                                                                                                                                     |
| 19 All tradutaries to Clear Creek including lakes, reservors<br>and wellands, within the Mill Evans Whiteness Area                                                                                                                       | OW    | And Life Cold A<br>Recreation 14<br>Water Supply<br>Agriculture | D.0.=6.0.mg/<br>D.0.ispl=7.0.mg/<br>pH=5.5-9.0<br>F.Coli=226/100m/<br>E.Coli=126/100m/                                                              | NH <sub>3</sub>  softh =TVS<br>Cl <sub>3</sub> (sc)=0.019<br>Cl <sub>3</sub> (ch)=0.011<br>Cl <sub>3</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>504=250             | Astac)=50(Trec)<br>Cotach=TVS(tr)<br>Cot(ch=TVS)<br>Cot(ch=TVS)<br>Cr(t)(cac)=50(Trec)<br>Cr(t)(cac)=50(Trec)<br>Cr(cac)ch]=TVS      | Fe(ch)=WS(det)<br>Fe(ch)=1000(Tec)<br>Pb(actor)=TVS<br>Mn(ch)=VS(det)<br>Mn(ch)=VS(det)<br>Hg(ch)=0.01(Tec)                                 | Ni(addh)=TVS<br>Setacion)=TVS<br>Agtaci=TVS<br>Agtan)=TVS(tr)<br>Zniaddh)=TVS    |                                                                                                                                     |

TVS x thmes) the FWER (final water effect ratio) = site-specific standard

|                                                                                                                                                                                                                                                                                      | DESIG | CLASSIFICATIONS                                               |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NUMERI                                                                                            | NUMERIC STANDARDS                                                                                                |                                                                                                              |                                                                                                                                                                             | TEMPORARY                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HASIN HRADRY CREEK                                                                                                                                                                                                                                                                   |       |                                                               | PHYSICAL                                                              | NORGANIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RC<br>RC                                                                                          |                                                                                                                  | WETALS                                                                                                       |                                                                                                                                                                             | MUDIFICATIONS<br>AND<br>QUALIFIERS                                                                                                                                   |
| Singan Segment Descriptor.                                                                                                                                                                                                                                                           |       |                                                               | BIOLOGICAL                                                            | mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                  | 1,Con                                                                                                        |                                                                                                                                                                             |                                                                                                                                                                      |
| Mannstein of Big Dry Creek including all tripungries<br>lates theservoir and writings from the Source to the<br>confutures with the South Patria River's scent for<br>special hyling in Segment 2, 3, 4,8,8,5 and 5                                                                  | đ     | Aq Life Warm 2<br>Recreation 1b<br>Agrouture                  | 0.0 =5.0 mg/<br>INH = 6.0 mg/<br>F Coli=235/100ml<br>E Coli=235/100ml | NH4,acrch)=TVS<br>C15,ecu1019<br>C15,ecu1019<br>CN=0 005<br>CN=0 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S=0.002<br>B=0.75<br>NO <sub>2</sub> =4.5                                                         | Aviati= 100/Tec)<br>Be(ch)=100<br>Cdta=ch)=TVS<br>Cdtta=ch)=TVS<br>Cdtta=ch)=TVS<br>CMtaelch)=TVS                | Curacion = TVS<br>Felicitaria allon franci<br>Pelicacion = TVS<br>Miniacion = TVS<br>Higidahia TVS           | N((add))=TVS<br>Ag(add))=TVS<br>ZY(add))=TVS<br>ZY(add)=TVS<br>Sy(ad)=TVS<br>Sy(ad)=1.4<br>Sy(ad)=1.4<br>Sy(ad)=1.5<br>Sy(ad)=1.5<br>Sy(ad)=1.5<br>Sy(ad)=1.5<br>Sy(ad)=1.5 | Temporary modifications<br>ML datcol=TVS(ob)(Type<br>II Expression date of<br>12(5)(2011)                                                                            |
| Slandley Lake                                                                                                                                                                                                                                                                        |       | Ag Life Warm 1<br>Recreation 1a<br>Water Supphy<br>Agnounture | D. 0. =5.0 mg/<br>pH=6.5=9.0<br>F. Col=250/100ml<br>E. Col=126/100ml  | NHylacidhj=TVS<br>Chlac)=0 019<br>Chjch)=0 011<br>Chjch)=0 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S=0.002<br>B+0.75<br>N0_20 5<br>N0_210<br>CI+250<br>S0_2WS                                        | As(ac)=50(Trec)<br>Co(acidn)=TVS<br>Crtit(ac)=50(Trec)<br>Crvit(acidn)=TVS<br>Cu(acidn)=TVS                      | Fe(cn)=WS(dis)<br>Fe(cn)=1000(1 frec)<br>Pb((addn)=TVS<br>Mn((actch)=TVS<br>Mn(ch)=VS(dis)<br>Hg(ch)=VS(dis) | N(addh)=TVS<br>Sejac(d)=TVS<br>Ag(add)=TVS<br>Zn(add)=TVS<br>Be(d1)=4                                                                                                       | See attached Table 2 for<br>additional standards for<br>segment 2 See "for<br>narrative Standard                                                                     |
| Overal week presidential                                                                                                                                                                                                                                                             | 5     | As Life Warm 2<br>Recreation 2<br>Viaier Supply<br>Agrouture  | D 0 =5 0 mg/<br>pH=5 59 0<br>F 0 pH=5 500 00mt<br>E 0 al=520100mt     | CN+0.005<br>CN4ch=0.011<br>CN4ch=0.011<br>CN+0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S=0.002<br>B=0.75<br>NO <sub>1</sub> =2.7                                                         | Aslact=100(Trec)<br>Berch=100<br>Colauch)=TVS<br>Colauch)=TVS<br>Crivilacch)=TVS<br>Crivilacch)=TVS              | Duracidnja TVS<br>Falchia 1000(Trec)<br>Pbljacidnja TVS<br>Min(acidnja TVS<br>Hg(chja0.01(Tot)               | Ny aoloh j= TVS<br>Se(actor)= TVS<br>Ag(actor)= TVS<br>Zn(aolch)= TVS                                                                                                       | See strached Table 7 for<br>segment 3 standards for<br>segment 3 transforman<br>Two Job 17 Stand<br>(Type II: Expression date of<br>1231/2011                        |
|                                                                                                                                                                                                                                                                                      | \$    | ke Life Warm 2<br>Recreation 1s<br>Waek Supply<br>Agroubure   | D.0 =5 0 mg/l<br>pH=6 5-9 0<br>F Cole=200:100m/<br>E Cole=128/100m/   | NH (I action of a Control of a | 5=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10                                  | Asiact=50(Trec)<br>Be(ch)=4<br>Collacch)=TVS<br>Colligact=50(Trec)<br>Crul(actch)=TVS<br>Cullacth=TVS            | Fetch=1000(Trac)<br>Pb(ac0th)=TVS<br>Mn(ac0th)=TVS<br>Hg(ac1=0.01(Tot)                                       | N(addh)=TVS<br>Se(addh)=TVS<br>Ag(addh)=TVS<br>Zr(addh)=TVS                                                                                                                 | See sitached Table 2 for<br>addisonal standards for<br>segment 4a                                                                                                    |
| 4t. Namin and South Wahurd Creek and Wahling Creek.<br>Incom the outlet of pands A-4 and B-5 to Interna<br>Sireat                                                                                                                                                                    | 9     | An Life Warm 2<br>Recreation 2<br>Water Supply<br>Agroutine   | 0.0.45.0 mg/<br>pH=8.5.9.0<br>F.Coix:2000/100ml<br>E.Coik=630/100ml   | Cly(ant=0.019<br>Cly(ant=0.011<br>Cly(ant=0.005<br>S=0.002<br>B=0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01=CON                                                                                            | Asjacj=50(Trec)<br>Bej(ch)=4<br>Od(sotch)=TVS<br>Critit(ac)=50(Trec)<br>Crvti(actch)=TVS<br>Cu(sotch)=TVS        | Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ac)=0.01(Tot)                                      | Nijacich)=TVS<br>Se(acich)=TVS<br>Ag(acich)=TVS<br>Zr(acich)=TVS                                                                                                            | See attached Table 2 for<br>addicinal standards for<br>segment 45                                                                                                    |
| Maintaiems of North and Sguth Wahuri Creek,<br>Including all thousanes, Taking reservicing and<br>wellands. from there sources to the outlets of ponds<br>wellands. From there sources to the Ond 5, 2, on<br>Wennah Creek. All three ponnes are located on Rocky<br>Flats property. | đ     | Aq Life Varm 2<br>Recreation 2<br>Vater Supply<br>Agnouture   | D.O =5.0 mpf<br>pH=6.5-9.0<br>F Colr=23020100ml<br>E Colr=6301100ml   | Ch(ac)=0.019<br>Ch(ac)=0.011<br>CN+0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S=0.002<br>B=0.75<br>NO <sub>3</sub> =0.5<br>NO <sub>3</sub> =10.5                                | As(ac)=50(Trec)<br>Co(ac)=50(Trec)<br>Crill(ac)=50(Trec)<br>Crill(ac)=50(Trec)<br>Crill(ac)=1VS<br>Cu(ac)(h)=TVS | Fe(ch)=1000(Trec)<br>Po(actr)=TVS<br>Mr(actr)=TVS<br>Hg(ch)=0 01(Tol)                                        | N(ac(ch)=TVS<br>Selac(ch)=TVS<br>Ag(ac(ch)=TVS<br>Zr(ac(ch)=TVS<br>Be(ch)=A                                                                                                 | 568 attached Tables 2 and<br>3 for additional standards<br>and temporary modifications<br>for seg 5 Goal qualifier for<br>all use classifications<br>expres 12/31/09 |
| 6. Upper Big Dry Create and South Ustrue Big Dry Creek<br>ທິວາກ Their source to Standley Lake                                                                                                                                                                                        | ₫.    | Aq Life Warm 2<br>Recreation 2<br>Water Supply<br>Agriculture | D.O =5.0 mp/<br>pH=6.5-9.0<br>F Cel=2000/100m1<br>F.Cel=530/100m1     | NH ((ac)th)=TVS<br>CU(ac)=0 018<br>CU(ch)=0 015<br>CN=0 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5+0.002<br>B=0.75<br>NO <sub>2</sub> +0.5<br>NO <sub>2</sub> +10<br>CI+250<br>SO <sub>4</sub> =WS | Asi acirs50(Trec)<br>Cdi ac/ch)=TVS<br>Crill(aci=50(Trec)<br>Crvi(ac/ch)=TVS<br>Cui ac/ch)=TVS                   | Fe(ch)=WS(0ls)<br>Fe(ch)=7VS<br>Pb(actor)=7VS<br>Mn(ch)=VVS<br>Mn(ch)=VVS(0ls)<br>Hg(ch)=0.01(Tot)           | N(sc/ch)=TVS<br>Setac(ch)=TVS<br>Ag(ac(ch)=TVS<br>Zn(sc/ch)=TVS                                                                                                             |                                                                                                                                                                      |

ĥ. Narraine standard for Segment 2, big Dry Creek Standey Lake. The popment status of Standey Lake shall be maintained as mesorophing as m oxygen. Indementation of this narraine standard shall only be by Bast Management Practices and controls implemented on a voluntary basis

|   | DESIG   | CLASSIFICATIONS                                                 |                                                                                                    |                                                               | NUME RI                                                                                            | NUMERIC STANDARDS                                                                                                                     |                                                                                                                            |                                                                                       | TEMPORARY  |   |
|---|---------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------|---|
|   |         |                                                                 | PHYSICAL<br>and<br>BIOLOGICAL                                                                      | INDRGAMIC                                                     | 90                                                                                                 |                                                                                                                                       | METALS                                                                                                                     |                                                                                       | QUALIFIERS |   |
| - | MO      | Art Life Cold 1<br>Recreation 1s<br>Water Supply<br>Agriculture | D. 0. =6.0 mg/t<br>D. 0. (sp)=7.0 mg/t<br>pH=6.5-9.0<br>F. Coli = 200/100mf<br>F. Coli = 126/100mf | NH4/80/ch)=TVS<br>Cly(act=0.019<br>Cly(ch)=0.011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>C=250<br>SO <sub>4</sub> =V/S | As(ac)=50(Trec)<br>Co(ac)=TVS(1t)<br>Co(ch)=TVS<br>Co(th)=TVS<br>Co(l(ac)=TVS<br>Co(l(ac)ch)=TVS<br>Co(ac)ch)=TVS                     | Felch=VS(dis)<br>Felch)=1000/Trec)<br>Pb(such)=TVS<br>Mn(naclch)=TVS<br>Mn(ch)=VS(dis)<br>Hg(ch)=C01(Tes)                  | Nijacich)=TVS<br>Sejacicn)=TVS<br>Agiacicn)=TVS<br>Agiacicn)=TVS(h)<br>Znijacich)=TVS |            |   |
|   |         | Ad Life Cold 1<br>Recreation 12<br>Water Supply<br>Agriculture  | D.O. 46.0 mg/<br>D.O. (sp)=7.0 mg/<br>pH=6.5.9.0<br>F. Col+2001100m<br>E. Col+2001100m             | NH4/acron/#TVS<br>C5/acr=0.019<br>C15(ch)=0.011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>Cr=250<br>SO <sub>4</sub> =WS | As(ac)=50(Thec)<br>Cd(ac)=TVS(tr)<br>Cd(ab)=TVS<br>Cd(h)=TVS<br>Cd(h)=CVS<br>Cd(h)=TVS<br>Cd(h)=TVS<br>Cu(ac(ch)=TVS<br>Cu(ac(ch)=TVS | Felchi=WS(dis)<br>Felchi=1000[Trec)<br>Pt(addh)=TVS<br>Mr(cardh)=TVS<br>Mr(ch)=VS(dis)<br>Hg(ch)=0.01(Tet)                 | N(soldh)=TVS<br>Se(acldh)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(acldh)=TVS        |            |   |
|   |         | Aq Like Cold 1<br>Recreation 1a<br>Water Supply<br>Agnouture    | D 0. +6.0 mg/t<br>D 0.(sp)=7.0 mg/t<br>pH=6.5-9.0<br>F.Col=200(100m/t<br>E.Col=125(100m)           | NH JJackmar TVS<br>Cly(chi=0.019<br>CN=0.005                  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS   | As(ac)=50(Trec)<br>Cd(ac)=TVS(ir)<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cd(ac)=TVS<br>Cutacion)=TVS<br>Felcon=VVS(drs)                       | Fejch)=1000(Trec)<br>Pb(actch)=TVS<br>Mn(solch)=TVS<br>Mn(ch)=WS(ns)<br>Hg(ch)=0.01(Tet)<br>N(actch)=TVS                   | Selauton)=TVS<br>Aglac)=TVS<br>Aglac)=TVS(tr)<br>Zn(ad/ch)=TVS                        |            |   |
|   |         | Aq Life Cold 1<br>Recreation 13<br>Water Supply<br>Agriculture  | 0.0.=5.0 mg/l<br>0.0.(sp)=7.0 mg/l<br>pH=6.5.9.0<br>F.Cali=200/100mi<br>E.Cali=2201100mi           | NHJ(ac)m()=0.01<br>0Hac)=0.019<br>0Hac)=0.011<br>0H=0.005     | S=0.002<br>B=0.75<br>N0 <sub>2</sub> =0.05<br>N0 <sub>2</sub> =10<br>CI=250<br>S04=WS              | Astac)=50(Trac)<br>Colena TVS(tr)<br>Colena TVS<br>Crititac)=50(Trac)<br>Crititac)=50(Trac)<br>Crititac)=50(Trac)<br>Crititac)=1VS    | Fe(ch)=WS(dis)<br>Fe(ch)=YOO()Trec)<br>Po(actin)=TVS<br>Mo(carch)=TVS<br>Mo(ch)=WS(dis)<br>Hg(ch)=0.01(Tot)                | Nijaclen)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(t))<br>Zn(ac/ch)=TVS       |            | 1 |
|   |         | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agnouture    | 0 0.=5 0 mg/<br>0.0 (sp)=7 0 mg/<br>PH=6 5-9.0<br>F Coli=2001100ml<br>E Coli=2201100ml             | NH4/ac/ch)=TVS<br>Cl_6(ac)=0.019<br>Cl_6(b)=0.011<br>CN=0.005 | S=0.002<br>B=0,75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Astarc)=50;Trec)<br>Collac)=TVS(tr)<br>Collar)=TVS<br>Critikac)=50(Trec)<br>Critikac)=50(Trec)<br>Critikac)=TVS<br>Critikac/tr)=TVS   | Felch/=WS(die)<br>Fe(ch)=1000(Trec)<br>Pb(ackh)=TVS<br>Mn(ackn)=TVS<br>Mn(ch)=VS(dia)<br>Hu(ch)=VS(dia)                    | Ni, auton) = TVS<br>Se(ac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zn(ac/ch)=TVS    |            | 1 |
|   | \$      | Aq Life Warm 2<br>Recreation 1a<br>Water Supply<br>Agriculture  | D. U. =5.0 mg/l<br>pH=5.5-9.0<br>F. Coli=2200100ml<br>E. Coli=125/100ml                            | NH-Jackhu-TVE<br>Clylath=0.019<br>Clylath=0.011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> +0.5<br>NO <sub>2</sub> +0.5<br>CE=250<br>SO <sub>4</sub> =WS | Astiac)=50(Thec)<br>Cotac(h)=TVS<br>Cotac(h)=FVS<br>Cotac(h)=TVS<br>Cotac(h)=TVS                                                      | Fa(ch)=VS(dis)<br>Fa(ch)=1006(Trec)<br>Pb(ac(h)=TVS<br>Mh(ac(h)=TVS<br>Mh(ch)=VS(trs)<br>Hg(ch)=0.01(Tau)                  | Nnackhi=TVS<br>Se(ackhi=TVS<br>Ag(ackhi=TVS<br>Zn(ackhi=TVS                           |            |   |
|   | 5       | Ag Life Warm 2<br>Recreation ta<br>Water Supply<br>Agrouture    | D. 0. +5 0 mg4<br>pH=6.5-9.0<br>F Col=200100ml<br>E Col=126,100ml                                  | NHMACICH)= TVS<br>Cl_Jach=0 019<br>Cl_Jch=0 011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=260<br>50,=WS               | Asjac)=56(Trec)<br>Co(ac(ch)=TVS<br>Collacc)=56(Trec)<br>Collacc)=50(Trec)<br>Collacc)=TVS<br>Colacch)=TVS                            | Fe(ch)=WS(das)<br>Pblac/ch)=TVS<br>Mn(ch=WS(das)<br>Mn(ch=WS(das)<br>Hg(ch)=0.01/150)<br>M(cccb)=TVS                       | Se(acidh)=TVS<br>Ag(acidh)=TVS<br>Zn(acidh)=TVS                                       |            |   |
|   | dh<br>H | Ag Life Warm 1<br>Recreation 1a<br>Water Supply<br>Agroulture   | D.O. <5.0 mgf<br>pH=6.54.0<br>F Col=2904100ml<br>E Col+126/100ml                                   | NH4/ac/ch1=TVS<br>C5/ac)=0.019<br>C5/ch1=0.011<br>CN=0.005    | 5=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS  | Asiac)=56(Trec)<br>Collisech>TVS<br>Collisech>TVS<br>Collisech=54(Trec)<br>Collisech=1VS<br>Colleetoh=TVS                             | Ferch1=WS(das)<br>Pb(acton)=TVS<br>Mn(acton)=TVS<br>Mn(an)=VS(das)<br>Mg(an)=VS(das)<br>Mg(an)=0.01(7 at)<br>Mr(acton)=TVS | Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                                       |            |   |
|   | В       | Ag Life Cold 2<br>Recreation 1a<br>Water Supply<br>Agrouture    | D 0.=5,0 mg/<br>D 0.1sp1=7,0 mg/<br>pHe5 5,9 0<br>F Cole 200/100ml<br>F Cole 200/100ml             | MM/acidni=TVS<br>Dijaci-0.019<br>Dijaci-0.019<br>CN=0.005     | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH=250<br>SO <sub>2</sub> =WS | As(ac)=56(Trec)<br>Ca(ac)=TV5(tr)<br>Ca(ch)=TV5<br>Ca(ch)=TV5<br>Ca(hac)=56(Trec)<br>Cr(hac)=7V5<br>Ca(ac)ch)=TV5                     | Felch)-WS(dis)<br>Eelch)=1000(Trec)<br>Pb(auch)=TVS<br>Mn(arbh)=TVS<br>Mn(arbh)=WS(dis)<br>Hg(ch)=0.01(Tes)                | Nijadon)=TVS<br>Sejadon)=TVS<br>Agion=TVS<br>Agion=TVS(tr)<br>Zriadoh=TVS             |            |   |

|                                                                                                                                                                                                                                                                                                | DESI | <b>CLASSIFICATIONS</b>                                         |                                                                       |                                                                          | NUME                                                                                               | NUMERIC STANDARDS                                                                                                                |                                                                                                                           |                                                                            | TEMPORARY<br>MODIFICATIONS                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN BOULDER CREEK<br>Stream Segment Descruber                                                                                                                                                                                                                                                |      |                                                                | PHYSICAL                                                              | DINORGANIC                                                               | SIL                                                                                                |                                                                                                                                  | METALS.                                                                                                                   |                                                                            | AND<br>QUALIFIERS                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                |      |                                                                | BIOLOGICAL                                                            | 10m                                                                      |                                                                                                    |                                                                                                                                  | ligu                                                                                                                      |                                                                            |                                                                                                                                                                              |
| 7a. Manstern of Cost (Creek from highwar 93 to nighear) 36<br>(Boulder Turnplee)                                                                                                                                                                                                               | d I  | Agriculture<br>Agriculture                                     | D 0.=5.0 mg/<br>pH=6.5-9.0<br>F Cel=526/100m/<br>E Cel=526/100m/      | NH yackthat<br>Clyact=0.019<br>Clyath=0.011<br>CN=0.005                  | 5-0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                          | As(ch)=100(Trec)<br>Cd(adch)=TVS<br>Cr/lil(adch)=TVS<br>Cr/lil(adch)=TVS<br>Cu(adch)=TVS                                         | Fe(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mm(ac/ch)=TVS<br>Mg(ch)=0.01(Tot)                                                   | Ni(acich)=TVS<br>Se(acich)=TVS<br>Ag(acich)=TVS<br>Zn(acich)=TVS           |                                                                                                                                                                              |
| 7b. Manstern of Coal Ereak from Highway 36 lathar<br>confluence with Bouloer Creek                                                                                                                                                                                                             | Ч    | Aq Life Warm 2<br>Recreation 1a<br>Agriculture                 | 0 0 = 5.0 mg/<br>pH=6.5-9.0<br>F Col=200100ml<br>E Col=1261100ml      | NH1, acroh - TVS<br>CH3, exi=0,019<br>CH3, chi=0 011<br>CN=0,005         | 5=0.002<br>B=0.75<br>NO_e0.5                                                                       | As(ch)=100(Trec)<br>Co(actch)=TVS<br>Critt(=c/ch)=TVS<br>CVI(actch)=TVS<br>Cu(actch)=TVS                                         | Fe(ch)=1000(Trac)<br>Pb(ac)ch)=1VS<br>Mn(ac)ch)=1VS<br>Hg(ch)=0 01(Tot)<br>Ni(ac)ch)=TVS                                  | Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                            | Temporary .<br>modifications<br>NHJ(actor)=TVS(old)<br>(Type -) Exteration<br>date of 12031/2011                                                                             |
| All vibuaries to South Boulder Creek, including all lakes<br>reservors and welfands from South Boulder Road to the<br>continence with Boulder Creek, and all tradiness to Coal<br>Creek, including all lakes, reservors and wellands from<br>Highway 93 to the confisence, with Boulder Creek. | 5    | Ad Life Warm 2<br>Recrement a<br>Agriculture                   | 0.0=5.0 mg/<br>pH=5.5=9.0<br>F Coli=200100ml<br>E Coli=126/100ml      | NH, 62001=7VS<br>Cl, 821=0.019<br>Cl, 601=0.011<br>CN=0.005              | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =250 | Asjacj=50,Trec/<br>Coljac/ch)+TVS<br>Crift,ac/ch)+TVS<br>Crift,ac/ch)+TV5<br>Cuitac/ch)+TV5<br>Eu(ac/ch)+TVS<br>Fe(ch)=VS(as)    | Feldh)=1000[Te0)<br>Pb(actch)=TVS<br>Mm(actb)=TVS<br>Mm(act)=VS(de]<br>Hg(d)>0.01[Ta8]<br>Milacth)=TVS                    | Selacion)= TVS<br>Aglacion)= TVS<br>Zin(adion)= TVS                        |                                                                                                                                                                              |
| 9 Manstein of Boulder Creek from a park immediately<br>above the comburces with Skuth Boulder Creek to the<br>confluence with Coat Creek                                                                                                                                                       |      | Ag Life Warm 1<br>Recordation 1a<br>Waren Supply<br>Agrouiture | D.O. = 5 0 mg/t<br>PH=5 5-9 0<br>F Cole-2001 00ml<br>F Cole-126/100ml | CN+0.005<br>CH40=0.011<br>CH40=0.011<br>CH40=0.011                       | 5=0.002<br>B=0.75<br>N0 <sub>2</sub> =0.5<br>N0 <sub>2</sub> =10<br>CH-250<br>SO <sub>4</sub> =WS  | Astacl=50(Trec)<br>Cotacorh=TVS<br>Cotacorh=TVS<br>Cotacorh=TVS<br>Cotacorh=TVS<br>Fe(ch)=TVS<br>Fe(ch)=TVS                      | Fe(ch)=1000(Trac)<br>Pb(acch)=TVS<br>Mn(co/ch)=TVS<br>Mn(ch=vVS(ds)<br>Mn(ch=vVS(ds)<br>Hg(ch)=0 01[T01]<br>Ne(ec/ch)=TVS | Seladoth=TVS<br>Agracthe TVS<br>Zriedoth=TVS                               | Temporary<br>modifications<br>type (a)<br>Cu (addh)=Currens<br>Caratition Expression<br>date of 12:512009.<br>NH5(eCt)=TVS(cid)<br>(Type I) Expression date<br>of 17:31/2011 |
| 10 Marstern of Boulder Creek from the confiltence with Coal<br>Creek to the confuence with St Vrain Creek                                                                                                                                                                                      | 5    | Ag Lée Warm 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D 0 =5.0 mg/<br>pH=6 5-9.0<br>F Coli=200/100mt<br>E Coli=126/100ml    | NHylacidhe TVS<br>Clyacteo D19<br>Clycheo 019<br>Clycheo 011<br>CN=0 005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> -0.5<br>NO <sub>2</sub> -10<br>CI=250<br>SO <sub>2</sub> =WS  | Aslacy=50/Trec)<br>Colac(h)=TVS<br>Crititac(h=50(Trec)<br>Crititac(h=7VS<br>Curac(h)=TVS                                         | Fetcht=VS(gst)<br>Fetcht=1000(Trec)<br>Pb(ac(ch)=TVS<br>Mn(act)=VS(dst)<br>Mn(ch)=VS(dst)<br>Hg(cn)=0.01(Tot)             | Netacton)=TVS<br>Setacton)=TVS<br>Aqlacton)=TVS<br>ZNacton)=TVS<br>ZNacton | Temporary<br>modifications<br>NHJ_gad/phisTVS(old)<br>(Type if Expression<br>date of 12/31/2011                                                                              |
| <ol> <li>All troudanes to Boulder Creck including all lakes<br/>reservors, and wellands from a point mimepately above<br/>into confluence with South Boulder Creak to the confluence<br/>with St. Vrain Creek, except for specific Astrigs in<br/>Segments 5 7.3 and 7b</li> </ol>             | 9    | Ag Life Warm 2<br>Represent 1a<br>Water Supply<br>Agrouture    | E 0 = 5 0 mg/<br>pH=5 5-5 0<br>F Colr=200100mi<br>E Colr=126/100mi    | NH/Actoh=TVS<br>Chracte0.019<br>Clychh=0.011<br>CN=0.005                 | 5+0.002<br>B=0.75<br>N02+0.5<br>N02+10<br>CI+250<br>S0,=WS                                         | Asiacl=50(Trec)<br>Collectin=TVS<br>Crill(acl=50[Trec)<br>CrVI(acl=50[Trec)<br>CrVI(acl=50[Trec)<br>Fe(cr)=TVS<br>Fe(cr)=VVS(ds) | Fai(ch)=1000(Tred)<br>Ptd(ac/ch)=TVS<br>Mm(ac/ch)=TVS<br>Mm(ch)=V65<br>Mm(ch)=V65<br>Hg(ch)=0.01(Ted)<br>Ni(ac/ch)=TVS    | Selacton=TVS<br>Agiacton=TVS<br>ZN(acton)=TVS                              |                                                                                                                                                                              |
| 12 Debied                                                                                                                                                                                                                                                                                      |      |                                                                |                                                                       | -                                                                        |                                                                                                    |                                                                                                                                  |                                                                                                                           |                                                                            |                                                                                                                                                                              |

| REGION 2 AND 3                                                                                                                                                                                                                             | DESIG | CLASSIFICATIONS                                                 |                                                                                                 |                                                                        | NUMER                                                                                                        | NUMERIC STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |                                                                                           | TEMPORARY                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIM ST VRAIN CREEK                                                                                                                                                                                                                       |       |                                                                 | PHYSICAL                                                                                        | INORGANIC                                                              | VIC                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | METALS                                                                                                                     |                                                                                           | AND<br>AND<br>AND                                                                                                                                                          |
| Stream Segment Description                                                                                                                                                                                                                 |       |                                                                 | BIOLOGICAL                                                                                      | 10m                                                                    |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UBn                                                                                                                        |                                                                                           | CONTINENS                                                                                                                                                                  |
| <ol> <li>All pribuismes to St. Vram Creak, woluding all bakes<br/>inservans amo wetainds which are within tha Inglan Peaks<br/>Wademess Arieb and Rocky Mountiam Naronal Park.</li> </ol>                                                  | мо    | Aq Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture  | D. 0. =6,0 mg/<br>D. 0. (sp)= 7 0 mg/<br>pH=6 5-9 0<br>F 7 Oil = 200/100ml<br>E Coli= 126/100ml | NH-46441FTVS<br>C6(act=0.019<br>C34(cn=0.011<br>CN=0.005               | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS           | Asi act=60/Trect<br>Collact=TVS(k)<br>Collact=TVS<br>Collact=FVS<br>Crititact=50/Trect<br>Crititact=TVS<br>Cullactch=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fetch)=WS(dis)<br>Fetch)=1000(Trec)<br>Pb(addh)=TVS<br>Mn(addh)=TVS<br>Mn(addh)=TVS<br>Mn(adh)=VS(dis)<br>Hg(ch)=VS(dis)   | Niladoni = TVS<br>Se(acid) = TVS<br>Ag(aci= TVS<br>Ag(ch)= TVS(tr)<br>Zrijaddh) = TVS     |                                                                                                                                                                            |
| <ol> <li>Mainteem of Si Vrain Creek including all industance takes<br/>reservoir and webands from the boundarry of the Induan<br/>Peers Avait and Rocky Mountain National Park<br/>to Hygene Road</li> </ol>                               |       | Aq Life Cold *<br>Recreation 1a<br>Water Supply<br>Agriculture  | D 0.46.0 mg/l<br>D 0.46p1=7 0 mg/l<br>PH=6.5-8 0<br>F Cole=200100<br>F Cole=226/100m1           | NH_80(t)+TVS<br>C5(at)+0.019<br>C15(ch=0.011<br>CN=0.005               | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =V/5          | Ak(ac)=50(Trec)<br>Cd(ac)=TVS(h)<br>Cd(ch)=TVS<br>Cr(l)(ac)=50(Trec)<br>Cr(l)(ac)=50(Trec)<br>Cr(l)(ac)=50(Trec)<br>Cr(l)(ac)=1VS<br>Cr(l)(ac)=1VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Tred)<br>Pt)(apticn)=TVS<br>Mn(acch)=TVS<br>Mn(ch)=VS(dis)<br>He(ch)=VS(dis)                 | Nijacichya TVS<br>Selacichi-TVS<br>Aglaci=TVS<br>Agichi=TVS[v]<br>Zvijacichj=TVS          |                                                                                                                                                                            |
| <ol> <li>Mainstein of St Vravi Creek frem Hygena Road to the<br/>confluence with the South Platta River and Berbour Ponds.</li> </ol>                                                                                                      | đ     | Aq Life Warm 1<br>Recreation 1a<br>Agnouture                    | D. 0.=5.0 mg/l<br>pH=6.5-9.0<br>F. Cole=200/100ml<br>E. Cole=126/100ml                          | NHy/ac(ch)= TVS<br>Cl_5(ac)+0.019<br>Cl_5(ch)=0.011<br>CN=0.005        | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                                    | Asimir 100<br>Colacidhe 100<br>Colacidhe 1VS<br>Critikaechie 1VS<br>Critikaechie 1VS<br>Culacidhe 1VS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fe(ch)=1000(Trec)<br>Pb(actch)=TVS<br>Mn(actch)=TVS<br>Hg(ch)=0.01(Tot)                                                    | N(ac/ch)=TVS<br>Selacich)=TVS<br>Aglacich)=TVS<br>Zn(acich)=TVS                           | Temporary modification<br>NH-jac(ch)=TVS(old)<br>(Type 4, Expranor<br>date of 12/31/2011                                                                                   |
| 4a Manstern of Left Hand Creek Including all troutaries Takes,<br>reservoirs and wellands from the source to highway 36<br>except for specific listings in Segment 4b                                                                      |       | Aq Life Cold 1<br>Recreation 1s<br>Water Supply<br>Agriculture  | 0.0 =6.0 mg/<br>0.0 isbj=7.0 mg/<br>pH=6.5-9.0<br>F.Coi=2001:00ml<br>E.Coi=126/100ml            | NH4.44001=TVS<br>CLeacton=0.019<br>CLeb=0.019<br>CN=0.005              | \$=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =WS          | Astact=50(Trac)<br>Collact=TV5(v)<br>Collact=TV5(v)<br>Collicatent=TV5<br>Criticatent=TV5<br>Curvicatent=TV5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe(ch)=1000(Trec)<br>Fe(ch)=1000(Trec)<br>Po(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=WS(cis)<br>Harch)=WS(cis)               | N(,addh)=TVS<br>Seladdhi=TVS<br>Aglaci=TVS<br>Aglabi=TVS(tr)<br>Zh(addh)=TVS              |                                                                                                                                                                            |
| 4b Manstern of James Creek including all tributaries lakes<br>reservoirs and wetlands from the source for the confluence<br>with Left Hand Creek.                                                                                          |       | As Life Cold 1<br>Reservation 1a<br>Water Supply<br>Agroutiture | 0.0 = 6.0 mg/l<br>0.0.19p = 7 0 mg/l<br>pH=6.5-9 0<br>F Cole=2000100ml<br>E Cole=126/100ml      | NH_Jac(ch)=TVS<br>Cb(ec)=0.019<br>Ol_(ch)=0.011<br>CN=0.005            | \$=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>C1=250<br>SO <sub>4</sub> =WS          | As(ac)=50(Tred)<br>Cd(ac)=TVS[tr)<br>Cd(ac)=TVS<br>Cd(it)=TVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd(it)=CVS<br>Cd | Felch)=WS(dis)<br>Felch)=1000(Trec)<br>Pt(addh)=TVS<br>Mn(acth)=TVS<br>Mn(dn)=VS(dis)<br>Hot dh)=VS(dis)                   | N( ac/ch) = TVS<br>Se(ac/ch) = TVS<br>Ag(ac) = TVS<br>Ag(ch) = TVS(tr)<br>Zh(ac/ch) = TVS |                                                                                                                                                                            |
| 5 Mannalem of Left Hand Creek, inclusing all intrudiates takes<br>resonance and wetlands from highway 3610 the confluence<br>with St. Vrain Creek.                                                                                         | 5     | Ag Life Warm 2<br>Recreation 1a<br>Water Supply<br>Agroutiure   | D 0 =5 0 mph<br>pH+6 5-9 0<br>F Col=200100ml<br>E Col=126190ml                                  | NFJIacch =TVS<br>Clgac)=0.019<br>Clgch)=0.011<br>CA=0.0011<br>CA=0.003 | 5+0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =0.5<br>SO <sub>4</sub> =WS                     | As(ac)=50(17ec)<br>Cd(ac/c0)*TVS<br>Critical=50(17ec)<br>Critical=50(17ec)<br>Critical=1VS<br>Cutlac(ch)=TVS<br>Cu(ac(ch)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fe/ch)=WS(dis)<br>Fe/ch)=WS(dis)<br>Pt(ac/ch)=TVS<br>Mn(ch)=WS(dis)<br>Mn(ch)=WS(dis)<br>Hg(ch)=0.01(Tot)<br>N(disch)=T.01 | Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                                           |                                                                                                                                                                            |
| All Inibutatives to 51 Vram Creek, including fakes reservoirs<br>and werkands from Hygeria Road to the comfuence with the<br>South Plante River except for specific trainings in the Boulder<br>Creek subbash and in segments 4a. 4b and 5 | \$    | Ag Life Warm 2<br>Recreation 1a<br>Agriculture                  | D.0.550 mgf<br>Pft=6550<br>F.Cdi=200100ml<br>E.Coli=126100ml                                    | NH4Jac(cn)=TVS<br>CU4(ac)=0.019<br>CU4(ch)=0.015<br>CN=0.005           | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                                    | Astchi=100<br>Ediadchi=TVS<br>Ediladchi=TVS<br>Ediladchi=TVS<br>Euladdhi=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Felch/=1000(Trec)<br>Pblactor)=TVS<br>Mn(ac/b)=TVS<br>Mn(cb)=VS(6(s)<br>Hg(cn)=0.01(Tot)                                   | N(ac/ch)=TVS<br>Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                           | Temporary modifications<br>Selch)=6 6 µgh (das)<br>Selch)=6 6 µgh (das)<br>Exprement asis of<br>2/28/10<br>WHJ.acUch=TVS(red)<br>(Type il 6 zpration<br>date at v2/31/2011 |
| F Boulder Reservor Cook Lake, and Left Hand Valley<br>Reservor                                                                                                                                                                             |       | Aq Life Warm 1<br>Recreasion 1a<br>Water Supply<br>Agriculture  | D.0 =5.0 mg/<br>pH=6.5-8.0<br>F C.bh=2001100<br>E.Coh=126/100ml                                 | NHJacien)=TVS<br>Clyacie0019<br>Clyche0011<br>CN=0 C05                 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =0.5<br>CI=250<br>CI=250<br>SO <sub>4</sub> =WS | Astac)=50(Trec)<br>Od(acth)=TVS<br>Drill(ac)=50(Trec)<br>Drill(ac)=50(Trec)<br>Drill(ac)=105<br>Cu(acth)=TVS<br>Cu(acth)=TVS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fa(ch)=WS(64)<br>Pe(ch)=1000(Trec)<br>Pb(acbh)=TVS<br>Mn(ch)=UVS<br>Mn(ch)=VS(45)<br>Hg(ch)=0.01(Tet)                      | Nilacich)=TV5<br>Se(acich)=TV5<br>Ag(acich)=TV5<br>Zn(acich)=TVS                          |                                                                                                                                                                            |

| REGION 2                                                                                                                                                                                                                                                                                                                  | DESIG  | CLASSIFICATIONS                                               |                                                                            |                                                                                 | NUMER                                                                                              | NUMBRIC STANDARDS                                                                                                        |                                                                                                                                    |                                                 | TEMPORARY                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASH MIDDLE SOUTH PLATTE RUCH                                                                                                                                                                                                                                                                                             |        |                                                               | PHYSICAL<br>and                                                            | NORGANIC                                                                        | HC.                                                                                                |                                                                                                                          | METALS                                                                                                                             |                                                 | MODIFICATIONS<br>AND<br>OUALIFIERS                                                                                                                                                                                                                                               |
| Shear Segment Desorption                                                                                                                                                                                                                                                                                                  |        |                                                               | BIOLOGICAL                                                                 | Tgm                                                                             |                                                                                                    |                                                                                                                          | ngu                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                  |
| I.e. Manatam of the South Phate Revertions a point<br>minimutation before the confluence with St. Vrain Craek to<br>the confluence with St. Vrain Craek                                                                                                                                                                   | 2      | Aq Life Warm 2<br>Rectation 1a<br>Water Supply<br>Agriculture | 0.0 - Petro 5.9 0<br>Petro 5.9 0<br>F. Cole=125/100ml<br>F. Cole=125/100ml | MH4,ac/D1=TV5<br>C5J400-0019<br>C3J401=0011<br>CN=0.005                         | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>S:O <sub>4</sub> =WS | Action = 50(Trec)<br>Collinations TVS<br>Collinations TVS<br>Collination = TVS<br>Collination = TVS<br>Collination = TVS | Feichthark (145)<br>Feichtharthoch<br>Marchartharthos<br>Marchartharthos<br>Marchartharthos<br>Higcorped 011761<br>Nijacichtarthos | Selectoria TVS<br>Zniecona TVS<br>Zniecona TVS  | <ul> <li>"See attached table<br/>for side-specific<br/>Described Droygen<br/>and Ammicrus<br/>attantards<br/>Fash Ingreation<br/>Organics<br/>Fash Ingreation<br/>Organics<br/>Transpection<br/>MH4(acichter TVS(08)<br/>MH4(acichter TVS(08)<br/>Gale of *2/37(2011)</li> </ul> |
| 1b. Manktern of the South Plate Rivel familie point<br>immeautely before the confluence with \$, Vrain Creek to<br>the WeldPforgan County Line                                                                                                                                                                            | 8      | Ag Lee Warn 2<br>Recreation 1a<br>Water Supply<br>Agreuture   | 0.0 +5 0 mg/<br>pH=6 5-9 0<br>F Col=200100ml<br>E.Col=1261100ml            | NH4(ac/cn)+TVS<br>Cly(ac)=0 019<br>Cly(ac)=0 011<br>Cly(ac)=0 011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS  | As(actor)=TVS<br>Co(actor)=TVS<br>Crititac)=50(Trec)<br>Crititac)=TVS<br>Criv(actor)=TVS<br>Cu(actor)=TVS                | Fe(ch)=MS(As)<br>Fe(ch)=1000(Trec)<br>Pb(ac(ch)=1VS<br>Mn(ac(ch)=WS(as)<br>Mn(ac(ch)=WS(as)<br>Mn(ac(ch)=1VS                       | Sefacion=TVS<br>Agiacion=TVS<br>Zroacion=TVS    | Fish Ingestion<br>Organus<br>Temporany<br>modifications<br>NNHAL(acce)=TVS(od)<br>(Type I) Experimen<br>date of 12/31/2011                                                                                                                                                       |
| 2 Defeied                                                                                                                                                                                                                                                                                                                 |        |                                                               |                                                                            |                                                                                 |                                                                                                    |                                                                                                                          |                                                                                                                                    |                                                 |                                                                                                                                                                                                                                                                                  |
| 3.3 All Youndary of the South Plate River, including all lakes<br>reservors and wedlands, from a point immediately below<br>the control endowing and Dry Control with the NetaMosgan<br>Contry line, except to speerfic learnings in the subbasins of<br>the South Plate River and in Segments 30. 4. Sa 50. 50<br>and 6. | 3      | Aq Life Warm 2<br>Recreation 13<br>Agrouture                  | 0.0 =5 0 mpl<br>pH=5 5-9 0<br>F Coli=2001 00ml<br>E Coli=1261 00ml         | NH4/arch7TVS<br>C1_(acred are<br>C1_(are)=0 011<br>CN=0 005                     | S=0.002<br>8=0.75<br>NO_=0.5                                                                       | As(dn)=100(Trec)<br>Cotac(dn)=1VS<br>Cotac(dn)=1VS<br>Cot(ac(dn)=1VS<br>Cot(ac(dn)=1VS                                   | Felch)=1000(Tec)<br>Pb(actch)=TVS<br>Mit(actch)=TVS<br>Mit(act)=0.01(Tel)<br>Nitec(h)=0.01(Tel)                                    | Sei ackn)=TVS<br>Aglacch)=TVS<br>Zn(actch)=TVS  | Fish Ingestion<br>Crganes<br>Tempdeartor<br>NHs(actor)=TVS(of<br>04(1)pe i)<br>Expresen date of<br>1228/2019                                                                                                                                                                     |
| 30 Hayser/ourit Troutaries extering the Upper Haysemoun<br>Troughts (from the source to the acritication with Box<br>Elder Cirrels and the Lower Hudson Cartal<br>the source to the Demier Hudson Cartal                                                                                                                  | 41<br> | Ao Life Warm 2<br>Recreation 1a<br>Agrouture                  | D 0 (m)=<br>pH=6.5-9.0<br>F Col=200/100ml<br>E Col=126100ml                | NH (130/ch)+ TVS<br>C1_(30/m0.019<br>C1_(ch)=0.011<br>C1_(ch)=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO_2=0.5                                                                      | As(ch)=100(Trec)<br>Do(uc/ch)=TVS<br>Do(uc/ch)=TVS<br>Do(uc/ch)=TVS<br>Cu(ac/ch)=TVS                                     | Fe(ch)=1000(fred)<br>Ph(ac/dh)=TVS<br>Mir(ac/dh)=TVS<br>Mir(ch)=0.01(fet)<br>Ng(ch)=0.01(fet)<br>Ng(cch)=0.01(fet)                 | Selacioni=TVS<br>Agracioni=TV5<br>Zhracioni=TVS | When water is<br>present. D.O.<br>concentrations<br>small be<br>manifold<br>reacting at<br>levels that protect<br>dassried as                                                                                                                                                    |
| 4. Ban Lake snd Millon Reservoir                                                                                                                                                                                                                                                                                          | ç.     | Ag Life Warm 2<br>Recreation 1a<br>Water Surphy<br>Agroutine  | D 0 ~5.0 mg/<br>pH=6.5.9.0<br>F Col=200/170ml<br>È Col=126/100ml           | NH Jactonie TVS<br>Cidatio 0.019<br>Cidatio 0.11<br>CN=0 005                    | S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WIS                         | Asi sc) = 50 Trec)<br>Colsecton = TVS<br>Crititican = 105<br>Crititican = TVS<br>Crititican = TVS<br>Crititican = TVS    | Fe(ch)=WS(dis)<br>Fe(ch)=V000(Tec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=VS(dis)<br>Hg(ch)=0.01(Tet)<br>N(ac(ch)=TVS         | Se(acidh)=TVS<br>Ag(acidh)=TVS<br>Zn(acidh)=TVS | Fish Ingento                                                                                                                                                                                                                                                                     |
| 5a Manstains of Lone Tree Creek. Crow Dreek are Beer<br>Eider Creek from their soundes to freek an function<br>the Sound Platte Dreef andept for specific lightings in<br>Segment St.                                                                                                                                     | ŝ      | Aq Life Warm 2<br>Recreation 2<br>Agriculture                 | D.D =5.0 mg/l<br>pH=6.5-8.0<br>F Celi=2000/100ml<br>E Celi=630/100ml       | NH4/ac/ch)= TVS<br>Clyac)=0 019<br>Cly(ch)=0 011<br>CN=0 D05                    | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                          | Asich1=100, Frac)<br>Celac(ch)=105, Erac)<br>Criti(ac(ch)=1VS<br>Criti(ac(ch)=1VS<br>Cu(ac(ch)=1VS                       | Fe(ch)=1000[Tec]<br>Pbjadch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(cn)=0.01[Tot]<br>Ni(ac/ch)=TVS                                             | Se(ac/ch/=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS |                                                                                                                                                                                                                                                                                  |

| REGION 2                                                                                        | DESKG | CLASSIFICATIONS                              |                                                                       |                                                              | NUMER                                                            | NUMERIC STANDARDS                                                                                                          |                                                                                           |                                               | TEMPORARY                                                                                   |
|-------------------------------------------------------------------------------------------------|-------|----------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| BASIN MIDDLE SOUTH PLATTE RIVER                                                                 |       |                                              | PHYSICAL<br>Bread And Calification                                    | INDRGANIC                                                    | DIN                                                              |                                                                                                                            | METALS                                                                                    |                                               | MODIFICATIONS<br>AND<br>QUALIFIERS                                                          |
| 56. Manatam of Boxelder Creek from the confluence with<br>Coyole Run to the Denver Hudson Canal | đ     | Aq L/e Warm 2<br>Recreation 2<br>Agriculture | D.0.1ch)=4.7 mg/l<br>pH=6.5-9.0<br>F.Cal=530/100ml<br>E.Col=530/100ml | NH4(ac/dh)=TV5<br>Cl_(ac)=0.019<br>Cl_(ach=0.011<br>CN=0.005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>NO <sub>2</sub> =100 | Astern=100(Trec)<br>Cd(ac(en)=TVS<br>Crtillac(en)=TVS<br>Crtillac(en)=TVS<br>Curlac(en)=TVS                                | Feychy+100007 rect<br>Pblactch)=TVS<br>Mr(gch)=0.01(Tot)<br>Ngch)=0.01(Tot)<br>Ngcch)=TVS | Setaotch/FVS<br>Agtaotch/=TVS<br>Zriadch)=TVS | 15" percentile of<br>D.O.<br>measurements<br>collected between<br>6.30 a m and 6.30<br>p.m. |
| 6 Lost Creak from Interstate To south including all 4s<br>industries stock ponds and wellands   | đ     | Aq Life Warm 2<br>Recreation 2<br>Agrouture  | 0.0 =5.0 mg/l<br>pH+6.5-9.0<br>F. Col=2000100ml<br>E. Col=630100ml    | N0.#100<br>N0.#10<br>CN=0.2<br>CN=0.2                        | S=0.002<br>B=0.75                                                | As = 100(Thec)<br>Be(ch)= 100(Thec)<br>Cd= 10(Thec)<br>Cd= 10(Thec)<br>Crille 100(Trec)<br>Cv/I=100(Trec)<br>Cui=200(Trec) | Pbs100Trec)<br>Mmr200Trec)<br>N=200Trec)<br>Se=20(Trec)                                   | Zn=2000, Fres)                                |                                                                                             |

Site-Specific Minimum Dissolved Oxygen and Ammonia Standards for Middle South Platte Segment 1a

Dissolved Oxygen:

```
STANDARDS
Early Life Stage Protection Period (April 1 through July 31)
1-Day 3.0 mg/L (acute)
7-Day Average 5.0 mg/L
Older Life Stage Protection Period (August 1 through March 31)
1-Day 2.0 mg/L (acute)
7-Day Mean of Minimums 3.2.5 mg/L
30-Day Average 4.5 mg/L
```

Footnotes

1. For the purpose of determining compliance with the standards, dissolved oxygen measurements shall only be taken in the flowing portion of the stream at mid-depth, and at least six inches above the bottom of the channel. All sampling protocols and test procedures shall be in accordance with procedures and protocols approved by the Division.

2. A minimum of four independent daily means must be used to calculate the average for the 7-Day Average standard. A minimum of eight independent daily means must be used to calculate the average for the 30-Day Average standard. The four days and the eight days must be representative of the 7-Day and the 30-Day periods respectively. The daily mean shall be the mean of the daily high and low values. In calculating the mean values, the dissolved oxygen saturation value shall be used in place of any dissolved oxygen measurements which exceed saturation.

3. The 7-Day Mean Minimum is the average of the daily minimums measured at a location on each day during any 7-Day period.

4. During a 24 hour day, dissolved oxygen levels are likely to be lower during the nighttime when there is no photosynthesis. The dissolved oxygen levels should not drop below the acute standard (ELS acute standard of 3.0 mg/L or the OLS standard of 2.0 mg/L). However, if during the ELS period multiple measurements are below 3.0 mg/L during the same nighttime period, the multiple measurements shall be considered a single exceedance of the acute standard. For measurements below 2.0 mg/L during either the ELS or the OLS periods, each hourly measurement below 2.0 mg/L shall be considered an exceedance of the acute standard.

5. In July, the dissolved oxygen level in Segment 1a may be lower than the 3.0 mg/L acute standard for up to 14 exceedances in any one year and up to a total of 21 exceedances in three years before there is a determination that the acute dissolved oxygen standards is not being met. Exceedances shall be counted as described in Footnote 4.

Ammonia:

Early Life Stage Protection Period (April 1 through July 31)

| Ammonia | Warm Wate | r = (mg/l as N)Total    |                 |
|---------|-----------|-------------------------|-----------------|
|         |           | 0.411                   | 58 4            |
|         | acute     | $10^{-7} 204 - p/l = 1$ | + 10 pH = 7 204 |

$$chronic (Apr] - Auly31) = \left(\frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{PH-7.688}}\right) * MIN \left(2.85, 1.45 * 10^{0.028(25-77)}\right)$$

$$chronic (Aug1 - Mar 31) = \left(\frac{0.0577}{1+10^{7.688-pH}} + \frac{2.487}{1+10^{PH-7.688}}\right) * 1.45 * 10^{0.028*(25-MAX(T, 7))}$$

 $NH_3 = old TVS$ 

Warm Water Acute = 0.62/FT/FPH/2<sup>(4 old)</sup> in mg/ (N)

| REGION 2                                                                                                                                                                                                                                                                                                                                                        | DESIG | CLASSIFICATIONS                                                                                            |                                                                                                                                               | 2                                                                             | NUMER                                                                                              | NUMERIC STANDARDS                                                                                                             |                                                                                                                        |                                                                                              | TEMPORARY                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN BIG THOMPSON RIVER                                                                                                                                                                                                                                                                                                                                        |       |                                                                                                            | PHASKOW                                                                                                                                       | INDRGANIC                                                                     | ALC .                                                                                              |                                                                                                                               | WETALS                                                                                                                 |                                                                                              | MODIFICATIONS<br>AND                                                                                                                                                                                      |
| Stream Segment Description                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                            | BIOLOGICAL                                                                                                                                    | 10L                                                                           |                                                                                                    |                                                                                                                               | lign                                                                                                                   |                                                                                              | <b>GUALFIERS</b>                                                                                                                                                                                          |
| <ol> <li>All Instudies to the Big Thompson River system, including all<br/>lokes reservoirs and welfands, which are writh Rocky<br/>Mountian National Plark, except for specific lawnes in<br/>Segment 2.</li> </ol>                                                                                                                                            | MO    | Ag Lite Cold 1<br>Recreation 1a<br>Water Supply<br>Agrouture                                               | D 0 = 5.0 mg/<br>D.0 tap)=7.0 mg/<br>pH = 6.5-9.0<br>F Col=200/100mi<br>E.Col=126/100mi                                                       | NH-Jackhj=TVS<br>Cljac)=0.019<br>Cljatnj=0.011<br>CN=0.005                    | S=0 002<br>B=0 75<br>NO <sub>2</sub> =0 05<br>NO <sub>2</sub> =10<br>CH250<br>SO <sub>4</sub> W/S  | As(act=50(Frec)<br>Co(act=TVS(tr)<br>Co(cot=TVS<br>Cr01(act=TVS<br>Cr01(act=1)=TVS<br>Cr01(act=1)=TVS<br>Cr01(act=1)=TVS      | Feich)=W5(0x)<br>Feich)=1000(Trac)<br>Peracton)=TV5<br>Mn(ac(ch)=VV5<br>Mn(ch)=VV5(drs)<br>Hg(ch)=001(Tac)             | Nijacich)=TVS<br>Sejacich)=TVS<br>Aglac)=TVS<br>Aglah)=TVS(tr)<br>Znjacich)=TVS(tr)          |                                                                                                                                                                                                           |
| <ol> <li>Mainstein of the Eig Thompson River, including all tobutanies<br/>basis reservors, and wignowing the boundary of Rodsy<br/>Mountain National Park to the tistine Supply Ganti diversion<br/>except for the specific fisting in Segment 7 misristem of Black<br/>control Creek and Glaciar Creek below Eater Park water<br/>registrent puert</li> </ol> |       | Aq Lefe Cold 1<br>Receasion 1a<br>Vistor Supply<br>Agnouture                                               | D.0. = 6.0 mg/<br>D.0. (sp)+7.0 mg/<br>pH = 6.5.9.0<br>F.Cole=200/190m)<br>E.Cole=2501/190m)                                                  | NHIJACCI)=TVS<br>C5JACP1=0 011<br>C5JACP1=0 015<br>CN=0 015                   | S=C 002<br>B=D 75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =0.05<br>CI=250<br>SO4=WS            | Astact=50(Trec)<br>Colorb=TVS(tr)<br>Colorb=TVS<br>Crilitac)=50(Trec)<br>Crilitac)=50(Trec)<br>Culac(dr)=TVS<br>Culac(dr)=TVS | Fe(cn)=VVS(0is)<br>Fe(ch)=1V00(Trec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(c(ch)=TVS(dis)<br>Hg(ch)=0.01(Tot)        | N(addh)=TVS<br>Sq(adh)=TVS<br>Sq(ac)=TVS<br>Ag(ch(=TVS)r)<br>Zn(addh)=TVS                    | Temporary<br>modifications<br>D.O.E.colin NHS, NOS<br>B.Cd.O.P.D. Hig Mi<br>Se.Aq.Zr.e.existing<br>quarkiy. Wapht Meedlow<br>wellands at the tan of<br>Lake Estes Dam<br>Expression date of<br>12/31/2009 |
| <ol> <li>Manuferr of the Big Thompson River from the Hame Supply<br/>Canal diversion to the Big Barnes Dictrip diversion</li> </ol>                                                                                                                                                                                                                             | 5     | Aq Life Cold 2<br>Recreation 1a<br>Water Supply<br>Agnouture                                               | D 0. = 6 C mgl<br>D.0 (spl=7 g mgl<br>pH = 6 5-9 0<br>F Coin-200100ml<br>E Coin-200100ml                                                      | NHy actro)=TVS<br>Clyac)=0.019<br>Clych)=0.011<br>CN=0.005                    | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI*250<br>SO <sub>4</sub> =WS | Astach=50(frec)<br>Cotach=TVS(tr)<br>Cotach=TVS<br>Cotach=TVS<br>Cotach=TVS<br>Cotacch=TVS<br>Cotacch=TVS                     | Fe(ch)=WS(chs)<br>Fe(ch)=1000(Trec)<br>Pe(autr)=TVS<br>Mn(adh)=TVS<br>Mn(ch)=WS(chs)<br>Halch)=01(Tel)                 | Nijac/ch1=TVS<br>Sejac/ch1=TVS<br>Ag(ac)=TVS<br>Ag(ch1=TVS(tr)<br>Zh(sc/ch1=TVS              | Water + Figh Organiza                                                                                                                                                                                     |
| 4a Mäurstein of the Bug Thompson from Lite Big Barnes Drich<br>litviersion to the Greeky-Loveland Canal threeson                                                                                                                                                                                                                                                | ē     | Ara Life Cold 2<br>Water Supply<br>Agroutine<br>5,1 - 1015<br>Recreation 1a<br>10/16 - 400<br>Recreation 2 | D.0 + 6.0 mg/l<br>D.0. (so)+7.0 mg/l<br>pH = 6.5.9.0<br>S1 + 1015<br>F Cal=2001100ml<br>E Cal=2001100ml<br>E Cal=2000100ml<br>F.Cal=2000100ml | NH4JeC(M)=1VS<br>C(340)=0.019<br>C(340)=0.011<br>CN=0.005                     | S=0.002<br>B=0.75<br>NO <sub>2</sub> =10<br>CI=2500<br>SO <sub>4</sub> =40<br>SO <sub>4</sub> =40  | Astact=50(Trec)<br>cidact=TVS(tri<br>cidiact=TVS(tri<br>cidilact=50(Trec)<br>crift(acton)=TVS<br>culac(tr)=TVS                | Feicht)=WS(das)<br>Feicht=1000(Trac)<br>Pstacch=TVS<br>Mr(acch)=TVS<br>Mr(acch)=VS<br>Mr(dh=WS(ds)<br>Hg(dh)=0.01(Tat) | Neacrichi=TVS<br>Serecth)=TVS<br>Serecth)=TVS<br>Serecth=TVS<br>Agi dhi=TVS<br>Zhi eddh]=TVS | Waler + Fish Organics                                                                                                                                                                                     |
| di: Mainstein of the Big Thompson from the Greeley-Loveland<br>Garlal aversion to County Road 11H                                                                                                                                                                                                                                                               | 5     | Aq Life Warm 2<br>Agriculture<br>5/1 – 10/15<br>Recreation 1a<br>10/16 – 4/30<br>Recreation 2              | Dr 0 = 5.0 mp/<br>DH = 6.5 9.0<br>5/1 = 10/15<br>5/1 = 10/15<br>5/1 = 200/100ml<br>E Cole=120/100ml<br>10/16 = 4/30<br>F Cole=500/00ml        | MH,(actr)-TVS<br>CJ(dh)=0.019<br>CJ(dh)=0.011<br>CJ(dh)=0.011<br>CJ(dh)=0.011 | S=0.002<br>B=0.75<br>NO-n0.5                                                                       | Asidn)«10/11/ecl<br>colaedhy=TVS<br>colaedh=TVS<br>colaedh=TVS<br>colaedh=TVS<br>culaedh)=TVS                                 | Fu(ch)=1000(Trec)<br>PN(add)=TVS<br>Mn(add)=01TVS<br>Hqchi=01(T0)<br>Nd(add)=TVS                                       | Serac(ch)=TVS<br>Agrac(ch)=TVS<br>Zn(ac(ch)=TVS                                              | Fish Ingestion Organics<br>Temporary modification<br>Sechol=5 Sigh (dits)<br>type in<br>Expression date of<br>2/28/10.                                                                                    |
| 4c Munstern of Ine Big Thompson from County Read 11H to I-<br>25                                                                                                                                                                                                                                                                                                | ц     | An Life Warm 2<br>Agrouture<br>5/1 - 10/15<br>Repression 1a<br>10/15 - 40/0<br>Recreation 2                | D 0. = 5.0 mg/<br>pH = 6.5-9 d<br>5.1 - 10/15<br>5.1 - 10/15<br>F. Col=2001100ml<br>F. Col=2001100ml<br>F. Col=200100ml<br>F. Col=20100ml     | MHJach)=TVS<br>Classes 019<br>Classes 011<br>Classes 011<br>CN-0.005          | S=0 002<br>8=0 75<br>NOy=0.5                                                                       | Astch)=100(Trac)<br>Colradon=TVS<br>Colfil acton=TVS<br>Colfil acton=TVS<br>Colladon=TVS                                      | Falch/= 1000/Trec)<br>Pb(acch)=TVS<br>Mn/acch)=TVS<br>Hd(z) +40.017/191<br>Ni(acch)=TVS                                | Sejacon)-TVS<br>Agiacon)-TVS<br>Znjaconj=TVS<br>Znjaconj=TVS                                 | Fish Ingestion Organics                                                                                                                                                                                   |
| 5. Marristem of The B.g. Thompson River from 1-25 to the<br>confluence with the South Platte River                                                                                                                                                                                                                                                              | d1    | Ad Ufe Warm 2<br>Aground e<br>5/1 - 10/15<br>Receation 18<br>10/16 - 4/50<br>Recreation 2                  | D 0 = 5 9 mg/<br>pH = 6.5-9 0<br>5/1 = 10/15<br>F Cole325/100ml<br>E Cole325/100ml<br>E Cole326/100ml<br>E Cole3200/100ml<br>E Cole3200/100ml | MM_acichie TVS<br>Columne 011<br>Columne 011<br>Columne 011<br>Columne 001    | S+0.002<br>B=0.75<br>NO2=0.5                                                                       | Astohi=100,Trec)<br>Collascohi=TVS<br>Collascohi=TVS<br>Collascohi=TVS<br>Culascohi=TVS                                       | Fe(ch)=1000(Trec)<br>Pb(acch)=TVS<br>Me(cen)=TVS<br>Hg(ch)=D 01(Tot)<br>M(acc(n)=TVS                                   | Selacichi=TVS<br>Agacichi=TVS<br>Zniacichi=TVS<br>Zviacichi=                                 | Temporary<br>modification<br>NHJ accinit= TVS(old)<br>(Type I. Experation data<br>of 12/31/2011                                                                                                           |

| REGION 2                                                                                                                                                                                                                                                | DESIG | CLASSFICATIONS.                                                |                                                                                              |                                                                                          | NUMERD                                                                                                 | NUMERIC STANDARDS                                                                                                                               |                                                                                                                                |                                                                                 | TEMPORARY                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| EASIN BID THOMPSON RIVER<br>Stream Segment Description                                                                                                                                                                                                  |       |                                                                | PHYSICAL<br>BIOLOGICAL                                                                       | INDRGANIC                                                                                | 4C                                                                                                     |                                                                                                                                                 | METALS<br>vgi                                                                                                                  |                                                                                 | MODELICATIONS<br>AND<br>QUALIFIERS                                                                                 |
| 6 All initializations to the Big Thompson Rever, including all lakes<br>reservoirs and wellands, from the Home Supply Canal<br>diversion to the confluence with the South Plane River<br>except for specific listings in Segments 12.                   | 9     | At Lfe Ware 2<br>Raceation 1a<br>Agriculture                   | D.O = 5.0 mg/<br>pH = 6.5-9.0<br>F. Cel-200/100m1<br>E. Cele=126/100m1                       | NH4, ac/cn)= TVS<br>Cly ac)=0.019<br>Chydhy=0.011<br>CN=0.005                            | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                              | As(ch)=100(Trec)<br>Cataoth)=TVS<br>Critiliacicn)=TVS<br>Critiliacicn)=TVS<br>Cuiacicn)=TVS                                                     | Fe(th)=1000(Trec)<br>Pb(addh)=TVS<br>Mn(addh)=TVS<br>Hg(ch)=201(Tot)<br>N(adoh)=TVS                                            | Se(addh)=TVS<br>Ag(addh)=TVS<br>Zniaddh)=TVS                                    | Fish Ingestion Organics<br>Temporary modification<br>NHy/action=TVS(old)<br>(Type, Expiration date of<br>1231(2011 |
| Manyistim of the North Fork of the Big Thompson River<br>from the boundary of Roby Mountain Nanovali Park to the<br>confluence with the Big Thompson River manalem at<br>Buckhom Creek from the source to the confluence with the<br>Big Thompson River |       | An Life Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture | D. O. =6.0 mg/<br>D. O.(15p)=7.0 mg/<br>pH=6.5-9.0<br>F. Coli+126/100ml<br>E. Coli+126/100ml | NHJ/362011 TVS<br>Classre0.019<br>Classre0.019<br>CV=0.005                               | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.0<br>5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | Asyacie Softract)<br>Catacle TVS(tr)<br>Catacle TVS<br>Catacle TVS<br>Catacle Softract)<br>CVII(accente TVS<br>Cut acchite TVS                  | Felch/#WS(dis)<br>Felch/#WS(dis)<br>Pb(acch)=1000(Trec)<br>Pb(acch)=1VS<br>Mr(ach)=VS<br>Mr(ach)=0.01(Tot)<br>Hg(ch)=0.01(Tot) | Nujac/ch)=TVS<br>Sejacch-TVS<br>Agiac/=TVS<br>Agich)=TVS<br>Zh(ac/chj=TVS       |                                                                                                                    |
| R Manustern of the Little Thompson Rover moluting all<br>is buildings. Bakes reservants and wellands from the source<br>to the Culver Districtionerscon.                                                                                                |       | Aq Life Cold 1<br>Recreation 1s<br>Water Supply<br>Agriculture | 0.0.=6.0 mg/<br>0.0.(sp)=7.0 mg/<br>pi+16.5.9 0<br>F.Cai=200100m<br>E.Coi=126/100m           | NH Jacich - TVS<br>C(Jac)=0 019<br>C(Jac)=0 011<br>CM=0 005<br>CM=0 005                  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.0<br>5<br>NO <sub>2</sub> =10<br>CH=250<br>SO <sub>4</sub> =WS | Astact=50(1*ec)<br>Cotact=TVS(br)<br>Cotact=TVS<br>Cotact=50(1rec)<br>Crititact=50(1rec)<br>Crititact=50(1rec)<br>Crititact=1VS<br>Cutacth]=TVS | Felch1=WS(dis)<br>Felch=WS(dis)<br>Pb(addh=TVS<br>Mn(ch1=WS(dis)<br>Mn(ch1=WS(dis)<br>Mn(ch1=0.01(Tot)                         | Ni(ad/dr)=TVS<br>Se(acrb)-TVS<br>Ag(ac)=TVS<br>Ag(dr)=TVS[tr)<br>Zn(acrdr)=TVS  |                                                                                                                    |
| 4 Manuater of the Little Thompson River from the Cullver<br>Drich diversion to the confluence with the Big Thompson<br>River.                                                                                                                           | ٩     | Ag Life Warm 2<br>Recreation 1a<br>Agriculture                 | D. 0 = 5.0 mg/<br>pH=6.5-9.0<br>F. Coli=200100mi<br>E. Coli=126/100mi                        | NH 4(ad/ch)- TVS<br>Cl <sub>3</sub> (ac)=0.019<br>Cl <sub>3</sub> (ch)=0.011<br>CN=0.005 | S=0.002<br>6=0.75<br>NO <sub>7</sub> =0.5                                                              | As(dr)=100(Trec)<br>Colacidn)=TVS<br>Criti(ac(dr))=TVS<br>Criti(ac(dr))=TVS<br>Criti(ac(dr))=TVS<br>Cu(ac(dr))=TVS                              | Fs(ch)=1000(Trec)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(Tot)<br>Ni(ac/ch)=TVS                                       | Se(acton)=TVS<br>Ag(acton)=TVS<br>Zn(acton)=TVS                                 | Temporary modifications<br>AHydactory=TVS(old)<br>(Type) (Expration date<br>of 12/31/2011                          |
| 10. As treasures to the utility Thompson River including all<br>lakes meanures and wellands from the Curlee doch<br>diversion to the Big Thompson River except for specific<br>fistings in Segments (1, and 13).                                        | đ     | Ag Life Warm 2<br>Recreation 13<br>Agrouture                   | 0.0 =5.0 mg/l<br>pH=6.5.9 0<br>F.Col=200100mg<br>E.Col=126/100mr                             | NH4(ac/on)=TVS<br>Cly(cn)=0.019<br>Cly(cn)=0.011<br>CN=0.005                             | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                              | As(ch)=100(Trec)<br>Cetactone TVS<br>Critit(actone TVS<br>Critit(actone TVS<br>Critit(actone TVS<br>Cutactone TVS                               | Fe(ch)=1000(Trec)<br>Pb(adch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01(Tot)<br>Ni(ac/ch)=TVS                                        | Selecton)=TVS<br>Aglacton)=TVS<br>Zn(acton)=TVS                                 | Temporary modifications<br>NH4(acten)=TVS(old)<br>(Type i) Experation date<br>of 12/31/2011                        |
| -1 CarterLatio                                                                                                                                                                                                                                          |       | Ag Lee Cold 1<br>Recression 1a<br>Water Supply<br>Agriculture  | D 0 =6 0 mg/<br>0.0 (sp)=7.0 mg/<br>pHe6.5.9 0<br>F Col=200100m/<br>E Col=126/100m/          | NHyadon=TVS<br>Clyad=019<br>Clyde1=0.011<br>CN=0.005                                     | 5+0.002<br>8=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CF 250<br>50,=WS                  | Astache50(Tred)<br>Colact=TVS(tr)<br>Colact=TVS<br>Crtitiact=S0(Trec)<br>Crtitiact=S0(Trec)<br>Crtitiact=S0(Trec)                               | Fe(dh)=WS(dx)<br>Fe(dh)=V000(Trec)<br>Pb(acddh)=TVS<br>Mn(addh)=TVS<br>Mn(adh)=V5(du)<br>He(dh)=WS(du)                         | Nijaciónj=TVS<br>Se(acton)=TVS<br>Agtaci=TVS<br>Agtch=TVS[tt]<br>Zn(jacton)=TVS |                                                                                                                    |
| 12 1.8º6 Loveland Harseshoe Lake. Boyd Lake                                                                                                                                                                                                             |       | Aq Life Warrin 1<br>Recretion 1a<br>Water Supply<br>Agrouture  | D.O = 5.0 mpl<br>pH = 6.5-9.0<br>F. Col=126/100ml<br>E. Col=126/100ml                        | NH-%acton=VD<br>010 0=019<br>010 0=019<br>010 0=019<br>010 0=000                         | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO4=W5                   | As(ac)=50(Trec)<br>Ed(soldn)=TVS<br>Crth(sol=20(Trec)<br>Crth(soldn)=TVS<br>Eu(soldn)=TVS                                                       | Fo(cn)=WS(dis)<br>Fo(cn)=1000(Trec)<br>Po(actoh)=TVS<br>Mn(actoh)=TVS<br>Mn(ch)=0.01(Tet)<br>Hg(cn)=0.01(Tet)                  | N(acto)=TVS<br>Selecto)=TVS<br>Ap[actoh]=TVS<br>Zh(actoh]=TVS                   |                                                                                                                    |
| 13 Benhous Reservor Johnstown Reservor                                                                                                                                                                                                                  | 3     | Aq Life Waim 2<br>Recression 1a<br>Waim Supply<br>Agriculture  | D.0 =5.0 mg/<br>pH=5.5-9.0<br>F. Coi=202100m/<br>E. Coi=126100m/                             | NH (action = 7VS<br>Cl_(act)=0.019<br>CN=0.005<br>CN=0.005                               | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =W5      | As(ac)=50/Trec)<br>Ediac/ch)=TVS<br>Critiac/ch)=TVS<br>Critiac/ch)=TVS<br>Cultac/ch)=TVS                                                        | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pe) addrh=TVS<br>Mn(adch)=TVS<br>Mn(adch)=TVS<br>Mn(ch)=WS(dis)<br>Hg(ch)=01(Tot)       | N (ac/ch)=TVS<br>Selacion=TVS<br>Aplacion=TVS<br>Zni(ac/ch)=TVS                 |                                                                                                                    |
| 14 Welch Reservoir Loneiree Reservoir Boedecker Lähle Lon<br>Hagter Reservoir                                                                                                                                                                           |       | Aq L/e Wayn *<br>Recreation 1.a<br>Water Supply<br>Agriculture | D 0 =5 0 mg/<br>tH=6 5-5 0<br>F Cole=200100ml<br>E Cole=261100ml                             | NH3/32/Ch)=TVS<br>Cl_(36)=0.019<br>Cl_(10)=D.011<br>CN=0.005                             | S+0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =VNS     | Asfact=50(Triec)<br>Collacionie TVS<br>Crititiac)=50; Triec)<br>Crititiac)=50; Triec)<br>Crivitiacich)=TVS<br>Culacich)=TVS<br>Fe(ch)=775[dis)  | Fe(ch)=1000(Trec)<br>Pb(acton)=TVS<br>Mn(acton)=TVS<br>Mn(ch)=WS(des)<br>Hg(ch)=01(Tot)<br>N(acton)=TVS                        | Se(actoh)=TVS<br>Ag(actoh)=TVS<br>Zniacton)=TVS                                 |                                                                                                                    |

| REGIÓN 7                                                                                                                                                                                                                                                                                                          | DESIG | CLASSIFICATIONS                                                  |                                                                                                     |                                                               | NUME                                                                                                         | NUMERIC STANDARDS                                                                                                              |                                                                                                                                 |                                                                                   | TEMPORARY                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BASIN CACHE LA POUDRE RIVER                                                                                                                                                                                                                                                                                       |       |                                                                  | PHYSICAL                                                                                            | INDRGANIC                                                     | 100                                                                                                          |                                                                                                                                | METALS                                                                                                                          |                                                                                   | MUDIFICATIONS<br>AND<br>Duto refer                                                                                                                                                                                                            |
| Siream Segmers Description                                                                                                                                                                                                                                                                                        |       |                                                                  | BIOLOGICAL                                                                                          | hgm                                                           |                                                                                                              |                                                                                                                                | hgu                                                                                                                             |                                                                                   | GUAL FIERS                                                                                                                                                                                                                                    |
| Marinstein of the Cische La Pouldre River and all<br>inductives including lakes teachroins and wellands<br>within Rocky Mountain Rational Park and the<br>Ravain Neetla Comanche Peak, and Cische La<br>Pouldre Wildemsis Areas                                                                                   | MO    | Agr Life Cold 1<br>Recretion 1a<br>Water Supply<br>Agrouture     | D.0 =6.0 mg/<br>D.0 (sp)=7.0 mg/<br>PH+6.5.9.0<br>F.Col=200/100m1<br>E.Cole 126/100m1               | NHJ adoh = TVS<br>Cl4c == 0 019<br>CLeb) = 0 011<br>CN=0.005  | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH=250<br>SO <sub>2</sub> =WS           | As(ac)=50(Trec)<br>Co(co)=TVS(tr)<br>Co(ch)=TVS<br>Cr/ll(ac)=50(Trec)<br>Cr/ll(ac)=50(Trec)<br>Cr/ll(ac)=1VS<br>Curlacth)=TVS  | Fe(ch)=MS(das)<br>Fe(ch)=1000(Trec)<br>Pb(acdh)=TVS<br>Mn(aclch)=TVS<br>Mn(ch=WS(das)<br>Mn(ch=201(Tch)                         | N(ac/ch)=TVS<br>Selac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(tr)<br>Zh(ac/ch)=TVS    |                                                                                                                                                                                                                                               |
| 2 Marnetern of the Cache La Poudre River and all<br>interuitaires including lakes, restervoirs and wellands<br>from the boundaires of Rouxy Mountain<br>Pails and the Rawin Neolal, Comanche Peals, and<br>Cache La Poudre Wildminesis Areas to the Monroe<br>Gravity Canalithorth Poudre Supply, canal diversion |       | Aq Line Cold 1<br>Recretion 1a<br>Water Supply<br>Agreeding      | D 0 = 6 0 mg/<br>0 0 (sp)=7 0 mg/<br>pH=6 5-9.0<br>F Col=200/100m)<br>E Col= 126/100ml              | NH4/adch)= TVS<br>Clyac)=0.019<br>Clyan)=0.015<br>CN=0.005    | 5=0.002<br>8=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS           | As(ac)=50(Trec)<br>Colac)=TVS(tr)<br>Colach=TVS<br>Criti(ac)=50(Trec)<br>Criti(ac)=50(Trec)<br>CVV(actch)=TVS<br>Cu(actch)=TVS | Fetch1=VVS(dix)<br>Fa(ch1=1000(Trec)<br>Pb(actch1=TVS<br>Mn(actch1=TVS<br>Mn(ch1=VVS(dix)<br>Hd(ch1=VVS(dix))                   | N(ac/dr)=TVS<br>Set(ac/dr)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(ar)<br>Zn(ac/dr)=TVS   |                                                                                                                                                                                                                                               |
| <ol> <li>Desisted</li> <li>A Desisted</li> </ol>                                                                                                                                                                                                                                                                  |       |                                                                  |                                                                                                     |                                                               |                                                                                                              |                                                                                                                                |                                                                                                                                 |                                                                                   |                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                   |       |                                                                  |                                                                                                     |                                                               |                                                                                                              |                                                                                                                                |                                                                                                                                 |                                                                                   |                                                                                                                                                                                                                                               |
| <ol> <li>Mainstein of the North Fork of the Cache La Pourtre<br/>River including all unbukines: takes reservoirs and<br/>vertiants from the source to the inter of Hallingan.<br/>Reservoir</li> </ol>                                                                                                            |       | Aq 1.46 Colo 1<br>Recression 1a<br>Wate Supply<br>Agnouture      | 0.0 =6.0 mpf<br>0.0 (sp)=7.0 mpf<br>pH=6.5.9.0<br>F. Col=2000100ml<br>E. Col=2000100ml              | NH Jackh J-TVS<br>Charle 019<br>Charle 011<br>CN+0.005        | 5=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH-250<br>SO <sub>4</sub> =WS           | Aktac)=50(fiec)<br>Co(ce)=TVS(tr)<br>Co(ce)=TVS<br>Cr01(ac)=50(frec)<br>Cr01(ac)=50(frec)<br>Cr01(ac)=1VS<br>Cr01(ac)=1VS      | Feich)=WS(dis)<br>Feich)=1000(Trec)<br>Po(iscor)=TVS<br>Mr(ac/bh)=TVS<br>Mr(ch)=WS(dis)<br>Hs(ch)=WS(dis)<br>Hs(ch)=0.01(Tot)   | N(addrh)=TVS<br>Sejadoh)=TVS<br>Aglacj=TVS<br>Aglch)=TVS(tr)<br>Zh(adch)=TVS      |                                                                                                                                                                                                                                               |
| Manistern of the North Fork of the Cache La Poude<br>River from the inlet of Hatilgan Reservor to the<br>confluence with the Cache La Poudre River                                                                                                                                                                | 5     | Aq Lrie Cotol 2<br>Recreation 1 a<br>Vraek Supply<br>Agriculture | D. 0. =6.0 mg/l<br>D. 0. (sp)=7.0 mg/l<br>PA+56.5-9.0<br>F. Coli+ 2:00/100ml<br>E. Coli+ 2:01*120ml | NHJ/ac(m)=TvS<br>Clyaci=0.019<br>Clycn)=0.011<br>CN=0.005     | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS           | As(ac)=50(Trec)<br>Cotac)=TVS(n)<br>Cot(on)=TVS<br>Cot(of)=TVS<br>Cot(l(ac)=50(Trec)<br>CrVI(ac(of))=TVS<br>Cutac(of))=TVS     | Felch)=WS(des)<br>Felch=1000(1rec)<br>Pelcackn=TVS<br>Mrcds=Ch=TVS<br>Mrcds=Ch=TVS<br>Herch=01(1ret)                            | N(gulch)=TVS<br>Sejac/ch)=TVS<br>Ag(ac)=TVS<br>Ag(ch)=TVS(th)<br>Zn(ac/ch)=TVS    | Wauer + Fish<br>Organics                                                                                                                                                                                                                      |
| All Intuitance to the North Fork of Imp Cache La<br>Poudre River including all takes reservors and<br>wellands from The intel of Hallgan Reservor to the<br>comfuence with the Cache La Poudre Rivel istocet<br>for specific Istings in Segment 9                                                                 | an    | Ad Life Cold 7<br>Recretion 1a<br>Water Supph<br>Agriculture     | D D ==6.0 mg/<br>D 0 (spi=7.0 mg/<br>pH=6.5=9 0<br>F Coli=126/100mi<br>E Coli=126/100mi             | NHJJBUCh)=TVS<br>ClJJBCJ=0.018<br>CJSCh)=0.011<br>CN=0.005    | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CH-250<br>CH-250<br>SO <sub>4</sub> =WS | Asiac)=50(Trec)<br>Colon)=TVS(r)<br>Colon)=TVS<br>Colon)=TVS<br>Coliliac(=)=50(Trec)<br>Coliliac(=)=TVS<br>Collac(=)=TVS       | Fe(ch)=VIS(dus)<br>Fe(ch)=1000(Trec)<br>Po(acch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=VIS(dus)<br>Hg(ch)=C01(Tat)                     | Nijaddnj=TVS<br>Sejazichj=TVS<br>Ag(chj=TVS(tr)<br>Znjacichj=TVS                  | Water - Fish<br>Organics                                                                                                                                                                                                                      |
| 9 Marristem of Rabbit Creak and Lone Price Creak from<br>the source to the confuence with the North Fock of<br>the Cache La Pounte River                                                                                                                                                                          |       | Aq Life Cold 1<br>Recrement 1a<br>Wate Supply<br>Agriculture     | 0.0 =6.6 mg/<br>0.0 (tp)=7.0 mg/<br>pH=6.5-9.0<br>F.Coh=200(100m1<br>E.Coh=126/100m1                | NH (Jacuth)= TVS<br>CH(aci=0.019<br>CH(ch=0.011<br>CN=0.005   | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS           | Astact=56(Trec)<br>Cd(ac)=TV5(tr)<br>Cd(ac)=TV5<br>Cd(acd)=TV5<br>Cd(acd)=TV5<br>Cd(acd)=TV5<br>Cd(acd)=TV5                    | Fa(ch)=V/S(dis)<br>Fa(ch)=1000(T/rec)<br>P()ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Mn(ch)=V/S(s)<br>Mn(ch)=V/S(ra))<br>Hg(ch)=0.01(Tat) | Netecthy=TVS<br>Selacth=TVS<br>Ag(ch)=TVS(P1<br>Zn(ac(ch)=TVS(P1<br>Zn(ac(ch)=TVS |                                                                                                                                                                                                                                               |
| 10 Manisteri ol the Cache La Poudro River from the<br>Monroe Gravy Canatificinin Poudre Supply Canati<br>diversion to Shietds Sreee in Fit. Collins. Colorado.                                                                                                                                                    | പ     | Ag Life Cold 2<br>Recreminen 1a<br>Water Supply<br>Agnouture     | D.0.+6.0 mg/<br>D.0.(spix7 d mg/<br>pH=6.5-9.0<br>F Col+200100mi<br>E Coler200100mi                 | NH-y(ac/un)=TVS<br>CI-(ac)=0.019<br>CI-(ab)=0.011<br>CN=0.005 | S=0.002<br>8=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS           | Asiacj=50, Tract<br>Colacj=TV5(tr)<br>Colacj=TV5<br>Cr(Nacj=50, Trac)<br>Cr(Nacimj=TV5<br>Cuv(cacimj=TV5<br>Cuv(cacim)=TV5     | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pb(ac)ch)=TVS<br>Mn(acch)=TVS<br>Mn(acch)=TVS<br>Mn(ch)=001(Foi)<br>Hg(ch)=001(Foi)      | Nijacichi=TVS<br>Sejacichi=TVS<br>Agiacj=TVS<br>Agichi=TVS(V)<br>Zv(scichj=TVS    | Whiter + Frish<br>Organics                                                                                                                                                                                                                    |
| <ol> <li>Marrutem of the Coorte La Pounte River from Shelda<br/>Street in Fr. Colins to a point immediately above the<br/>circlituence with Boxelate Greats</li> </ol>                                                                                                                                            | 5     | Aquite Warn 2<br>Recenting<br>Agrouture                          | 0.0.50 mgl<br>Freeso<br>E cole126/10ml<br>E Cole126/100ml                                           | NH4,86001-TVS<br>Clack=0.019<br>Clack=0.011<br>CN=0.005       | S=0.002<br>B=0.75<br>NO <sub>2</sub> =2.7                                                                    | As(th)=100(Trec)<br>Coll(ac(b))=TVS<br>Coll(ac(b))=TVS<br>Coll(ac(b))=TVS<br>Coll ac(b)=TVS                                    | PE(ach)= 1000(frac)<br>PB(ach=1VS<br>Mn(ach)=7VS<br>Hg(ch)=0 01(Tat)<br>Niac(ch)=TVS                                            | Selecton: TVS<br>Aglaeton: TVS<br>Zruadon: TVS                                    | Minne as a 30 day<br>average<br>Fish hopesion<br>Crganucs<br>Ternomary<br>Modificatures<br>Uppe (in<br>Cu (da)(ch)=Current<br>Cu (da)(ch)=Current<br>Cu (da)(ch)=TVS(chd)<br>MHy(ac(ch)=TVS(chd)<br>(Type () Expiration<br>date of 12/31/2005 |

| REG      | REGION 2                                                                                                                                                                                                                                                                                                       | DESIG  | CLASSIFICATIONS                                                                        |                                                                                                                            |                                                                   | NUMER                                                                                               | NUMERIC STANDARDS                                                                                              | 8                                                                                                               | 2                                                                                                    | TEMPORARY                                                                                                                                                                        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stre     | BASIN CACHELA POUDRE RIVER<br>Stream Segment Description                                                                                                                                                                                                                                                       |        |                                                                                        | BIOLOGICAL<br>BIOLOGICAL                                                                                                   | NORGANIC                                                          | 2                                                                                                   |                                                                                                                | METALS                                                                                                          |                                                                                                      | MODIFICATIONS<br>AND<br>QUALIFIERS                                                                                                                                               |
| ti       | Mainstein of the Cache La Poudre River from a poerly<br>immediately above the contuiving with Bouelder Creek<br>to the confluence with the South Platts River                                                                                                                                                  | 5      | Ao Life Warm 2<br>Recreation 1a<br>Agriculture                                         | D.0 = 5.0 mg/<br>F Hole 2:00 0 ml<br>E Cole 125/100ml<br>E Cole 125/100ml                                                  | MH y action TVS<br>Cloten = 0 0 1<br>Cloten = 0 0 1<br>CN = 0 005 | 8=0.002<br>8=0.75<br>NO <sub>2</sub> =2.7                                                           | Akich)=100(Trec)<br>Colligarch)=TVS<br>Colligarch]=TVS<br>Covigarch]=TVS<br>Covigarch]=TVS                     | Fe(ch)= 1000(Trec)<br>blactor)= TVS<br>Mn(actor)= TVS<br>Hg(ch)=0.01(T cf)<br>M(actor)= TVS                     | 54(ad/cn)=TVS<br>Agracon)=TVS<br>Zn(ad/cn)=TVS                                                       | Nitrite as a 30 day<br>average<br>Fish Ingestion<br>Organics<br>Temporary monthcations<br>Condition Expiration<br>date of 12/31/2009<br>Nitsyet (Expandion date<br>of 12/31/2009 |
| 134      | All tratecharies to the Cache La Poudra Ruyer, including all<br>lakes reservoirs and wellances from a point immediately<br>above the confluence was the North Fork of the Cache<br>La Poudra River to the confluence with the Squith Platta<br>River acception specific hamps in Segments 13b, 14<br>15 and 15 | 5      | Aq Life Warm 2<br>Recreation 1a<br>Agriculture                                         | D 0 =5 0 mg/l<br>pH=6.5-9 0<br>F. Col= 2261 00ml<br>E. Col= 1261 00ml                                                      | NH4/accn= TVS<br>Class=0 019<br>Class=0 011<br>CN=0.005           | 5-0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                           | Asichi=100(Trec)<br>Caladah=7VS<br>Criti(acich)=7VS<br>Criti(acich)=7VS<br>Criti(acich)=7VS<br>Cu(acich)=7VS   | Fe(D)=1000(Trac)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Mg(ch)=0.01(Tet)<br>M(ac/ch)=TVS                          | Sefaulchi-TVS<br>Aglactchi=TVS<br>Zn(aetchi=TVS                                                      | Temporary modification<br>NH <sub>1</sub> (acton) = TVS(old)<br>(Type I) Expiration date of<br>12/31/2011                                                                        |
| 8        | Maintem of Bouelder Creek from its source to the<br>confluence with the Cache la Poucré Ruwe                                                                                                                                                                                                                   | 4<br>2 | Aq Life Werm 2<br>5/15-9/15<br>Racreation 1b<br>9/16-5/14<br>Recreation 2<br>Agrouture | 0.0 = 5.0 mg/l<br>pH=6.5 ± 0.<br>5/15.4/15<br>F. Col=205/100ml<br>E. Col=205/100ml<br>E. Col=200/100ml<br>E. Col=200/100ml | NHyacthe IVS<br>Cyache 019<br>Cyache 011<br>CN=0.005              | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5                                                           | Asichier (00(Trec)<br>Colescient)=TVS<br>Colilicacióni=TVS<br>Colilacióni=TVS<br>Colilacióni=TVS               | Fe(dh)=1006(Trec)<br>Pb(actdh=TVS<br>Mn(actdh)=TVS<br>Hng(dh)=01(Ted)<br>N(actdh)=TVS                           | Selautch)=TVS<br>Agazuth)=TVS<br>Zniauthi=TVS                                                        | Temporary modification<br>NHyackin)=TVS(idd)<br>(Type I), Experition date of<br>12/31/2011                                                                                       |
| 19<br>19 | Hursetooth Reservoir                                                                                                                                                                                                                                                                                           |        | Ag title Cold 1<br>Recreation 1a<br>Water Supply<br>Agriculture                        | D.O. =5 0 mg/<br>D.O. (spi=7.0 mg/<br>PH=5 5-8.0<br>F.Coli=200100mi<br>E.Coli=126/100mi                                    | NHJJADCH1=TVS<br>Cl_karch=0.019<br>CN=0.005<br>CN=0.005           | S=0 002<br>B=0.75<br>NO <sub>1</sub> =0.05<br>NO <sub>1</sub> =10<br>CH=250<br>SO <sub>4</sub> =W/S | As(ac)=50(Trec)<br>As(cn)=50(Trec)<br>Co(ac)=TVS(h)<br>Co(ch)=TVS<br>C(h)=TVS<br>C(h)=TVS<br>C(h)(ac)=50(Trec) | Curractech= tVS<br>Fe(ch)=VVS(dis)<br>Fe(ch)=1006(Trec)<br>Pb(ac/ch)=TVS<br>Mn1sc/ch)=TVS<br>Mn1sc/ch)=VVS(dis) | Hg(dh)=0 01(To<br>1)<br>N((aodm)=TVS<br>Secarbh=TVS<br>Ag(dh=TVS(th)<br>Ag(dh=TVS(th)<br>Zh(addh=TVS |                                                                                                                                                                                  |
| 2        | Wutson Lake                                                                                                                                                                                                                                                                                                    |        | Ag Life Celd 1<br>Recreation 1a<br>Water Supply<br>Agriculture                         | D 0 =5 0 mgA<br>D 0 159/47 0 mgA<br>PH46 5:59 0<br>F 0 phi=200/100ml<br>E 0 phi=200/100ml                                  | NH// ac/ch/=TVS<br>Cb// ac/=0 019<br>Cb//ch+=0 011<br>CN=0.005    | 5=0.002<br>8=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>S0_=W5               | Aslact=50(Trec)<br>Colact=TV5(tr)<br>Co(ch)=TV5<br>Crititact=50(Trec)<br>Crititactch=TV5<br>Cu(actch)=TV5      | Fe(ch)=V00(Tiet)<br>Fe(ch)=V00(Tiet)<br>Pbiarch)=YV5<br>Mm(ac(ch)=VV5<br>Mm(ach)=VV5(dis)<br>Hg(ch)=V03(Tiet)   | NijacchieTVS<br>SelecichieTVS<br>AgracieTVS<br>AgracieTVS<br>AgracieTVS<br>ZricadchieTVS             |                                                                                                                                                                                  |
| 12       | Reservor #4 (T S N R 58 W), Water Supply Reservor<br>#3 (T 8 N R 58 W), Claymore Lake College Lake<br>Duck Reservor Robert Benson Lake Black Hoflow<br>Reservor Seefley Lake                                                                                                                                   | đ      | Aq Life Warm 1<br>Recreation1a<br>Agrouture                                            | D.O =5.0 mg/l<br>pH=6 5-9 0<br>F.Coi=200/100ml<br>E.Coil=126/100ml                                                         | NH4(ac/ch)=TVS<br>Cly(ac)=0.019<br>Cly(ch)=0.011<br>CN=0.005      | S=0.002<br>B+0.75<br>NO <sub>2</sub> =0 5                                                           | As/ch)=100(Trec)<br>Col(ac/ch)=TVS<br>Cr(II(ac/ch)=TVS<br>Cr(II(ac/ch)=TVS<br>Cr(I(ac/ch)=TVS                  | Felch)=1000(Trec)<br>Pti(ac)dh)=TVS<br>Mn(ac/dh)=TVS<br>Hg(cn)=0.01(Tch)<br>M(ac/dh)=TVS                        | Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zr(ac/ch)=TVS                                                      |                                                                                                                                                                                  |

# REGULATION NO. 38 SOUTH PLATTE RIVER BASIN (continued) STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

| REGION 2                                                                                                                                                                                                     | DESHC | CLASSIFICATIONS                                               |                                                                                          |                                                             | NUMERIC                                                                                             | NUMERIC STANDARDS                                                                                                                      |                                                                                                                |                                                                                   | MODIFICATIONS     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|
| HASIN LARAME RIVER<br>Stream Segment Description                                                                                                                                                             |       |                                                               | PHYSICAL<br>and<br>BIOLOGICAL                                                            | INORGANIC                                                   | NC                                                                                                  |                                                                                                                                        | METALS                                                                                                         |                                                                                   | AND<br>QUALIFIERS |
| 1. All tribularies to the Laram e River, including all lakes<br>reservoirs and wellanips, which are written the Rawah<br>Wildemess, Alleia.                                                                  | MO    | Ag tife Cold 1<br>Recreasion 1a<br>Waran Supply<br>Agrouture  | D 0 = 5 0 mpl<br>0.0.ispl=7 0 mpl<br>pH=6.5-9 0<br>F Coli=200/100ml<br>E Colie126/100ml  | NHyleCith)=TVS<br>CL(ac)=0.019<br>CJy(ch)=0.011<br>CN=0.005 | \$=0.002<br>8=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>50,=W5              | Astac)=50(Trec)<br>cd(ac)=TV5(tr)<br>cd(ac)=TV5<br>cf(trac)<br>crititac)=50(Trac)<br>crititac)=50(Trac)<br>crititac)=TVS<br>cd(ac)=1VS | Fe(ch)=V/S(dm)<br>Fe(ch)=1000(Trac)<br>Pb(addn)=TVS<br>Mn(addn)=TVS<br>Mn(adn)=VS(dm)<br>Hg(ch)=0.01(fot)      | Nejac/27)=TVS<br>Seleace/h=TVS<br>Aglac1=TVS<br>Aglac1=TVS(P1<br>Zn(acidh)=TVS(P1 |                   |
| <ol> <li>Manistern of the Latartue River including all throutanes takes<br/>reservors and wellands from the source to the<br/>Colorado/Wyommig Dorder except for specific lishing m<br/>Segment 1</li> </ol> |       | Ag Life Cold 1<br>Recreation 1.a<br>Water Supply<br>Agrouture | D. 0 =6 0 mg/<br>D. 0 169.7 0 mg/<br>pH=6.5.9.0<br>F. Coli=200100ml<br>E. Coli=126/100ml | NH4,800019<br>CH(eb)=0.019<br>CH(eb)=0.011<br>CN=0.005      | 5+0.002<br>B=0.75<br>NO <sub>2</sub> =0.05<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>2</sub> =WIS | Asiach=50(Trec)<br>Collop=TVS(tr)<br>Collop=TVS<br>Colling=TVS<br>Colling=50(Trec)<br>Colling=20(Trec)<br>Colling=205                  | Fe(ch)=WS(dis)<br>Fe(ch)=1000(Trec)<br>Pb)=c/ch)=TVS<br>Mn(ac/ch)=TVS<br>Mn(ac/ch)=VS(dis)<br>Hg(ch)=0.01(Tet) | Ni(actch)=TVS<br>Sellacicn)=TVS<br>Aglac)=TVS<br>Aglac)=TVS(ir)<br>Zn(acich)=TVS  |                   |

REGULATION NO. 38 SOUTH PLATTE RIVER BASIN (continued) STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

| REGION 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Desed  | Classifications                                               |                                                                      |                                                                     | NUMB                                                                                              | NUMERIC STANDARDS                                                                                                     |                                                                                                          |                                                                 | MODIFICATIONS                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| BASIN Lower South Platte River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                               | PHYSICAL                                                             | NORGANIC                                                            | Q                                                                                                 |                                                                                                                       | METALS                                                                                                   |                                                                 | DUALIFIERS                                                                                     |
| Sheem Sogment Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                                               | BIOLOGICAL                                                           | <sup>1</sup> ,gim                                                   |                                                                                                   |                                                                                                                       | hgu                                                                                                      |                                                                 |                                                                                                |
| <ul> <li>Meanstein of the South Palito River From the WoldMisrogen<br/>County line to the Colorado/Nebrasha border</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | d<br>⊃ | Aq Life Vkaim 2<br>Reciestion Ta<br>Water Supply<br>Agnouture | 0.0 =5.0 mgl<br>pH=5.5-9.0<br>F.Col=200100m<br>E.Col=125/100mi       | NHJJac/ch)=TVS<br>CIJac/e0.019<br>CIJch)=0.011<br>CN=0.005          | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI=250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec<br>Cd(ac)ch1=TVS<br>Cd((ac)ch1=TVS<br>Cd((ac)ch1=TVS<br>Cd((ac)ch1=TVS<br>Cd((ac)ch1=TVS<br>Cd(ch1=TVS | Fe(ch)=V/S(det)<br>Fe(ch)=1000(Trec)<br>Pe(acch)=TVS<br>Mn(acch)=TVS<br>Mn(ch)=WS(det)<br>Hu(ch)=01(1et) | N(ac/ch)=TVS<br>Setac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS | Temporary<br>modifications<br>NHy accmis-TV5(0Hd)<br>(Type I) Expeation<br>(3496 0f 12/31/2011 |
| 24 All Mouthres to the South Platte Rower encoding all takes<br>reservoirs and wetlands. Then the WetlaMongan County free to<br>the EcloradolNetdakia bordior except for the specific plange<br>in Segments, 20 and 3.                                                                                                                                                                                                                                                                                                                                                 | 3      | Aq Life Warm 2<br>Recreation 2<br>Agriculture                 | D. 0 =5.0 mg/l<br>pH=6.5-8.0<br>F.Col=2000/100ml<br>E.Col=630/100ml  | CN=0.2<br>NO <sub>2</sub> =10<br>NO <sub>2</sub> *100               | B=0.75                                                                                            | As(en)=100(T/ec)<br>Be(ch)=100(Trec)<br>Col(ch)=10(Trec)<br>Col(ch)=10(Trec)                                          | CaVI(dn)=100(Trec)<br>Cu(cn)=200(Trec)<br>Pb(cn)=100(Trec)                                               | Nujch)=200, frec)<br>Se(ch)=20(Trec)<br>Zn(ch)=2000(Trec)       |                                                                                                |
| 26. All bituitanes to the Geuch Flatte Rever incurping all Bioas<br>reasons are and wellands norm of the Stouth Platte River and<br>Partice Al 500 legit in elevation in Morgan County, north of the<br>South Platte Rever in Washington County, north of the South<br>Platte Rever and below 3 X00 legit in elevation in County<br>norm of the South Plante River and plates at 700 fast in<br>Revertion in South Plante River and the manistering of Beaver<br>Carb. Algoin Creek and Kowat Creek from Platte River and<br>Conflightone with the South Platte River. | 3      | Aq Life Warm 2<br>Recreation 18<br>Agriculture                | D. 05 0 mg/l<br>bH-6.2 50.4<br>F Cola 2004 00ml<br>E Cola: 126/100ml | NH4Jectch)=TVS<br>CGyacheD 019<br>CGyacheD 011<br>CGyeD 005         | S=0 002<br>B=0, 75<br>NO <sub>2</sub> =0.5                                                        | As(ch)=100(Trec)<br>cdisacht)=TVS<br>Critiliac(ch)=TVS<br>Critiliac(ch)=TVS<br>Culad(ch)=TVS                          | Fe(ch)=1000(Trec)<br>Ptyach)=TVS<br>Mn(actch)=TVS<br>H0(ch)=0.01(Tct)<br>N(actch)=TVS                    | Se(acton)=TVS<br>AQ(acton)=TVS<br>Zn(acton)=TVS                 | Temporary<br>modicapons<br>MHyacohi TVS(ad)<br>(Type I) Expiration<br>date of 12/312011        |
| <ol> <li>Jack son Reserver Prewet Rekerver, Nonth Staffing Reserver<br/>Jumbo (Juleaburg) Briggspale Rejervor<br/>and Vanol Regervor</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                        | 5      | Ag Life Warm 1<br>Recroation 1a<br>Agnouture                  | D 0 ×5.0 mg/<br>pH=6.5-9.0<br>F Col=200100ml<br>E Col=126/100ml      | NH-J(acton) = TVS<br>C5Jac) = 0.019<br>C1_J(ch) = 0.011<br>CN=0.005 | S=0 002<br>B=0 75<br>NO <sub>2</sub> =0 5                                                         | As(ch) = 103(Trec)<br>Cd(ac)ch)= TVS<br>Critit(ac(ch)= TVS<br>Crivit(ac)ch)= TVS<br>Cu(ac)ch)= TVS                    | Fa(ch)=1000(Tred)<br>Pb(ac/ch)=TVS<br>Mn(ac/ch)=TVS<br>Hg(ch)=0.01/Tott<br>Ni(ac/ch)=TVS                 | Se(ac/ch)=TVS<br>Ag(ac/ch)=TVS<br>Zn(ac/ch)=TVS                 |                                                                                                |

REGULATION NO. 38 SOUTH PLATTE RIVER BASIN (continued) STREAM CLASSIFICATIONS and WATER QUALITY STANDARDS

| REGION 1 and 5                                                                                                                                                                                          | Desig | Classifications                                                 |                                                                                    |                                                               | NUMER                                                                                             | NUMERIC STANDARDS                                                                                                                                     |                                                                                                                        |                                                                                      | TEMPORARY     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------|
| BASIN Recupican River                                                                                                                                                                                   |       |                                                                 | PHYSICAL                                                                           | INORGANIC                                                     | tic.                                                                                              |                                                                                                                                                       | METALS                                                                                                                 |                                                                                      | MODIFICATIONS |
| Sfream Segment Descriction                                                                                                                                                                              |       |                                                                 | BIOLOGICAL                                                                         | l/6m                                                          |                                                                                                   |                                                                                                                                                       | yon                                                                                                                    |                                                                                      | QUALIFIERS    |
| <ol> <li>Mainsiem of the South Fork of the Republican River from a<br/>point 10 miles anove Bohny Reservoir to the Colorado-Kansas<br/>horder</li> </ol>                                                | g.    | Aq Life Warm 1<br>Recreation 1a<br>Water Suppti;<br>Agriculture | D. D =5 0 mg/<br>pH=5 5-9 0<br>F. Golie 200790mi<br>E. Colie 128/700mi             | NH y(acten )= TVS<br>Cs(act=0 019<br>Cr(ch)=0 011<br>CN+0 005 | S=0.002<br>B=0.75<br>NO <sub>2</sub> =0.5<br>NO <sub>2</sub> =10<br>CI+250<br>SD_7NS              | Astact=50(Trec)<br>Cdtac/cn/a TVS<br>Cr/litacf=50(Trec)<br>Cr/litacfch)=TVS<br>Cutacfch)=TVS                                                          | Fe(ch)=MS(dis)<br>Fe(ch)=1000(Trec)<br>Pt)actor)=TVS<br>Mn(di)=TVS<br>Me(ch)=TVS<br>Me(ch)=VS(dis)<br>Hat(ch)=0(Tf)eff | N(addth)=TVS<br>Se(addh)=TVS<br>Ag(addh)=TVS<br>Zn(addh)=TVS                         |               |
| 2 Bonny Reservor Stalker Lake                                                                                                                                                                           |       | Ag Life Warm 1<br>Recreation 13<br>Water Supply<br>Agnouture    | 0.0 +5.0 mg/<br>pH=6.5.9.0<br>F. Col=200/100m1<br>E. Col=126/100m1                 | NH4/addh=TVS<br>Cl4(adh=019<br>Cl4(cm=0011<br>CN=0005         | \$=0.007<br>B=0.75<br>NC2=0.05<br>NC2=0.05<br>CI=250<br>SO4=WS                                    | Asiac.P50/Treci<br>C6(actch)=TVS<br>Crili(ac)=50(Treci<br>Crili(ac)=50(Treci<br>Crili(ac)=50/Treci<br>Crilicacth=TVS<br>Cuiactch=TVS<br>Fe(ch)=WS(ds) | Fe(ch)=1000(T=ec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=WS(dis)<br>Hg(ch)=0.01(Tal)<br>N(ac(ch)=TVS              | Se(m/ch)=TVS<br>Ag(addn)=TVS<br>Zn(ed/ch)=TVS                                        |               |
| <ol> <li>Mantiterri di the Marth Fock of the Reputation River from the<br/>source to the Colorado/Netbrasha border and the mantiterri of<br/>Chiel Creak</li> </ol>                                     |       | Aq Life Coler 1<br>Recreation 1a<br>Water Supply<br>Agrouture   | D 0 =6 0 mg/<br>D 0 (sp)=7 0 mg/<br>pH=5 5-9 0<br>F Color100ml<br>E Coli=126/100ml | NHJ/acie/111VS<br>Clyacie/0019<br>Cl_(cn)=0011<br>CN=0005     | S=0.002<br>B=0.75<br>NO_=0.05<br>NO_=0.05<br>CM_250<br>SO_=WS                                     | Astac)=50(Trinc)<br>Col(ac)=TVS(hr)<br>Col(ac)=TVS<br>Col(ch)=TVS<br>Col(ch)=TVS<br>Col(act=50(Trinc)<br>Col(acten)=TVS<br>Col(acten)=TVS             | Fe(chi=WS(dis)<br>Fe(chi=1000[Trec)<br>Pb(ac(ch)=TVS<br>Mn(ac(ch)=TVS<br>Mn(ch)=WS(dis)<br>Hg(ch)=WS(dis)              | Nijadičnji TVS<br>Sejadichji TVS<br>Ag(ac)# TVS<br>Ag(ch)# TVS(tr)<br>Ze(adichj# TVS |               |
| <ul> <li>Maintaim of the Avietare River from the confinence of the<br/>Norm and South Forks to the Califoredol Manuas border</li> </ul>                                                                 |       | Aq. Lo Warm 1<br>Recreation 1a<br>Agriculture                   | D 0 =5 0 mg/<br>pH=6 5-9 0<br>F Coli=200/100mi<br>E. Coli=126/100mi                | NHy(acted 019<br>Clylacied 019<br>Clylacied 011<br>CN=0.005   | S=0.002<br>8=0.75<br>NO <sub>2</sub> =0.5                                                         | Asichi=100 Tree;<br>Cataotoi=TVS<br>Crittactoi=TVS<br>Crittactoi=TVS<br>Curactoi=TVS                                                                  | Feichi=1000Trec)<br>Pb(acidh)=TVS<br>Mn(acidh)=TVS<br>Hg(ch)=0.01(Tat)<br>Ni(acidh)=TVS                                | Secarchy TVS<br>Aglactchy TVS<br>Znyac/ch/= TVS                                      |               |
| MarkStern of the Black Wolf Creek from the source to the<br>confluence with the Ankaree River                                                                                                           | 5     | Aq Life Warm 2<br>Recreation 18<br>Water Suph<br>Agriculture    | 0.0 ==5.0 mg/<br>pH=6.5-9.0<br>F Coli=205-100ml<br>E.Coli=126/100ml                | NH_(GC/0)=TVS<br>CI(act)=0.019<br>CI(act)=0.011<br>CN=0.005   | S=0 002<br>B=0 75<br>NO <sub>2</sub> =0 5<br>NO <sub>2</sub> =10<br>Cir250<br>SO <sub>4</sub> =WS | As(ac)=50(Trec)<br>Co(ac(ch)=TVS<br>Crat(ac)=50(Trec)<br>Crat(ac)=50(Trec)<br>Crvt(ac(ch)=TVS<br>Cu(ac(ch)=TVS<br>Fe(cn)=WS(dra)                      | Figlicans=1000(17/sc)<br>Pb(accdny=TVS<br>Mn(cn)=W05(dis)<br>Mn(cn)=W05(dis)<br>Hg(ch)=0.01(Tot)<br>N(acch)=101        | Setac/cn)=TVS<br>Aglac/cn)=TVS<br>Zniac/ch)=TVS                                      |               |
| 6 All tributances to fine Republican Rhoer system in Colorado<br>including all lakes, reservoirs and wellands, except for specific<br>killings in Segments 1 through 5                                  | В,    | Aq Life Warm 2<br>Recreation 2<br>Agriculture                   | D-0 ~5 0 mg/l<br>pH=6 5-9 0<br>F Coli=2000/100ml<br>E Coli=530/100ml               | CN=0.2<br>NO <sub>2</sub> =10<br>NO <sub>2</sub> =100         | ۲.<br>۲                                                                                           | Asych)=100(Trec)<br>Be(ch)=100(Trec)<br>Cd(ch)=10(Trec)<br>Cd(ch)=10(Trec)                                                                            | CrVI(ch)=100(Trec)<br>Cu(ch)=200(Trec)<br>Pb(ch)=100(Trec)                                                             | Nich)=200(Trec)<br>Se(ch)=20(Trec)<br>Zn(ch)=2000(Trec)                              |               |
| Mainterent of the Namh Flork of the Smoky Hell Rives and<br>mainsteem of the Smoky Hill River including all stributanes<br>lakes reservors and wedlands from the source to the<br>ColoradoMarkas border | 8     | Aq Lfa Warm 2<br>Recreation 2<br>Agriculture                    | D 0 =5 0 mgA<br>pH=6 5-9.0<br>F Cole=2000/100m1<br>E Coa=630/100m1                 | CN=0.2<br>N02=10<br>N02=100                                   | 8=0.75                                                                                            | As(ch)=100(Trec)<br>Be(ch)=100(Trec)<br>Cd(ch)=10(Trec)<br>Cdl(ch)=300(Trec)                                                                          | CuVI(cn)=100(Trec)<br>Cu(cn)=200(Trec)<br>Pb(cn)=100(Trec)                                                             | Ni(ch)=200(Trec)<br>Se(ch)=20(Trec)<br>Zn(ch)=200(Trec)                              |               |

### Table 2 SITE SPECIFIC RADIONUCLIDE STANDARDS\* (in Picocuries/Liter)

The radionuclides listed below shall be maintained at the lowest practical level and in no case shall they be increased by any cause attributable to municipal, industrial, or agricultural practices to exceed the site specific numeric standards.

|             | Segment 2<br>Standley<br>Lake | Segment 3<br>Great<br>Western<br>Reservoir | Segment 4a<br>Segment 5<br>Woman<br>Creek | Segment 4a<br>Segment 4b<br>Segment 5<br>Walnut<br>Creek |
|-------------|-------------------------------|--------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| Gross Alpha | 6                             | 5                                          | 7                                         | 11                                                       |
| Gross Beta  | 9                             | 12                                         | 8                                         | 19                                                       |
| Plutonium   | .03                           | .03                                        | 0.15** ***                                | 0.15** ***                                               |
| Americium   | .03                           | .03                                        | 0.15** ***                                | 0.15** ***                                               |
| Tritium     | 500                           | 500                                        | 500                                       | 500                                                      |
| Uranium     | 3                             | 4                                          | 11                                        | 10                                                       |

\*Statewide standards also apply for radionuclides not listed above.

\*\*0 15pCi/l Statewide Basic Standards.

\*\*\*For plutonium and americium measurements in Segment 5 in Woman Creek and Segment 5 in Walnut Creek, attainment will be assessed based on the results of a 12-month flow-weighted rolling average concentration (computed monthly).

### Table 3 Temporary Modifications (type i) Big Dry Creek, Segment 5

Effective until December 31, 2009 for the Walnut Creek portions of segment 5:

| Parameter | mg/l |
|-----------|------|
| Nitrate   | 100  |
| Nitrite   | 4.5  |

Effective until December 31, 2009 for all of segment 5:

| Parameter                          | mg/l                                           |
|------------------------------------|------------------------------------------------|
| Benzene                            | 0.005                                          |
| Carbon tetrachloride               | 0.005                                          |
| 1,2-Dichloroethane                 | 0.005                                          |
| 1,1-Dichloroethene                 | 0.007                                          |
| Tetrachloroethylene                | 0.005                                          |
| Trichloroethylene                  | 0.005                                          |
| All other organic and radiologic p | parameters are covered by the Basic Standards. |

.

.

,

RESPONSE TO COMMENTS ON DRAFT EA

# Response to Comments on the Draft EA (September 2008)

COMMENT LETTER FROM: Colorado Department of Public Health and the Environment Bonie B. Pate, Project Coordinator, Restoration and Protection Unit - Water Quality Control Division October 14, 2008

**CDPHE-1:** As mentioned in the Draft EA, Wolford Reservoir is on the 2008 303(d) list of impaired waters as shown in Regulation #93 Section 303(d) List Water-Quality-Limited Segments Requiring Total Maximum Daily Loads for dissolved oxygen. Although there may be only minor changes in Wolford reservoir content, implications for compliance with the dissolved oxygen standard should be considered in the proposed action during substitution years.

**Response:** The project team coordinated with Phil Hegeman, CDPHE on October 23, 2008 regarding their comment letter. In summary, CDPHE is concerned about the changes in volume in Homestake and Wolford Mountain reservoirs and potential resultant change to dissolved oxygen content and temperature levels. Refer to Section 3.5.1 Affected Environment (Water Quality) and Section 3.5.2 Environmental Consequences (Water Quality) Proposed Action, which better clarifies the locations for the analysis determination. Further, as discussed in Section 3.3.2 Environmental Consequences (Hydrology), the hydrologic modeling for this project demonstrated that there would be minimal stream flow changes and a proportionate minimal change in content in these reservoirs. Specifically, the model results showed that a minimal drop in the Homestake Reservoir content occurred only one time in a 56-year period. Minimal changes in flow and content are within the natural variation of these water bodies and are not anticipated to result in water quality impacts from the project.

**CDPHE-2:** Potential changes to water quality in Homestake should also be considered since changes to reservoir content are likely to be more significant. Prevention of future impairments is highly recommended.

**Response:** See response to comment CDPHE-1, and revisions made to Final EA in Section 3.5.1 and 3.5.2.



### COMMENT LETTER FROM: Bureau of Land Management David Stout, Field Manager, Kremmling Field Office, Colorado October 14, 2008

**BLM-1:** BLM requests clarification of the outstandingly remarkable values (ORVs) recognized for each of the eligible stream segments identified by BLM, portrayed in the EA. BLM provided clarifying information for Blue River Segments 2 and 3, and Colorado River Segments 3, 4, 5.

**Response:** Comment noted. See changes made to Final EA on Section 3.3.1.1 Blue River Basin and Section 3.3.1.4 Colorado River Basin, under the heading BLM Wild and Scenic Rivers Designation.

**BLM-2:** BLM is concerned about the cumulative effects analysis in this EA, particularly in relation to the proposed Windy Gap firming project. BLM notes that collectively, the individual reasonably foreseeable projects (which includes the Green Mountain Reservoir Substitution and Power Interference Agreements EA) could have substantial impacts on the ORVs over time. BLM suggests that Reclamation consider some limited measures to minimize cumulative impacts to the ORVs, such as operational restrictions on the proposed projects during very limited periods when changes in flow rates could be detrimental the ORVs.

**Response:** The changes in flow under the Proposed Action would be well within the normal range of flows that have historically occurred on the segments of the Colorado River and supported the flow-related ORVs as they exist today. Based on the magnitude and frequency of flow changes on the Colorado River, there would be no more than negligible direct impacts of this project on flow-related ORVs and a potential Wild and Scenic Rivers designation. Correspondingly, the incremental effect of the Proposed Action would be negligible in relation to other reasonably foreseeable projects. This response is reflected in the text on Page 3-51 of the Draft EA. The Final EA clarifies this in the cumulative effects analysis in Section 3.3.3.1 Cumulative Effects for the Proposed Action (Hydrology).

**BLM-3:** BLM presents a flow-related concern of this project and its effect on the Colorado River below the confluence with the Williams Fork River. When combined with potential flow decreases associated with the Windy Gap Project, does the additional flow decrease compound stream temperature impacts? BLM suggests that Reclamation and water users consider establishing triggers for both flow rates and stream temperatures when the substitution operation would not be implemented, to minimize impacts to fish populations. This may require establishing a real-time stream temperature monitoring station near the confluence with Williams Fork.



**Response:** Because of the requirements of the Blue River Decree, Springs Utilities must implement the substitution operation in August if Green Mountain Reservoir does not fill. The flow changes that occur in August along the Colorado River mainstem are the result of changes in the location of substitution releases under the Proposed Action versus the No Action Alternative. More water is released from Wolford Mountain and Homestake reservoirs than from Williams Fork Reservoir under the Proposed Action. Springs Utilities diversions from the Upper Blue River do not deplete the Colorado River from the confluence of the Williams Fork downstream to the confluence to the Blue River. In substitution years, water released from Williams Fork Reservoir for substitution payback augments flows in the Colorado River below the confluence of the Williams Fork River. Therefore, the effect on flows in the Colorado River from the confluence with the Williams Fork River downstream to the confluence with the Blue River under the Proposed Action is a reduction in the amount of water **added** to the river due to a change in substitution releases from Williams Fork Reservoir. However, in both the Proposed Action and the No Action Alternative, flows in this reach are higher as a result of substitution operations than in years when there are no substitution operations.

The flow reductions BLM refers to are *maximum* flow reductions. The flow reduction of 4.1 cfs below the confluence with the Williams Fork River occurs in only **one** year out of a 56-year study period. The next highest flow reduction is 2.0 cfs and the average flow reduction in the driest years and substitution years is only 0.6 cfs and 0.2 cfs, respectively. The average flow change in the driest years and substitution years is also less than 1 cfs at the Kremmling gage. These flow changes are considerably less than the accuracy of flow measuring devices at these locations.

Additional discussion of instream flow requirements and flow reductions along the Colorado River was added to Section 3.3.2.2 Proposed Action (Hydrology) of the Final EA.

**BLM-4:** BLM presents a flow-related concern of this project and its effect on the Colorado River below Kremmling. When combined with potential flow decreases associated with the Windy Gap Project, does the additional flow decrease extend the length and frequency of periods during August when flows are not acceptable for floatboating? BLM suggests that Reclamation and water users consider establishing triggers for flow rates when the substitution operations would not be implemented, to minimize impacts to floatboating recreation.

**Response:** See response to comment BLM-3.



### COMMENT LETTER FROM: Trout Unlimited Amelia S. Whiting October 10, 2008

**TU-1** TU is concerned about the cumulative impacts of transmountain diversions on upper Colorado River, particularly the reach between Granby Reservoir and the Blue River. This reach of the river is a designated Gold Medal trout fishery and eligible for Wild and Scenic Rivers Act designation. TU states that a more detailed analysis of cumulative effects should be presented in the EA, even though the Proposed Action would create a negligible to minor cumulative effect in comparison to the reasonably foreseeable actions.

**Response:** Springs Utilities' transmountain diversions from the Upper Blue River do not deplete the reach of the Colorado River between Granby Reservoir and the Blue River. However, substitution operations affect the amount of additional water released to this reach. The cumulative effects analysis was supplemented and additional analysis completed of potential hydrologic effects due to reasonably foreseeable actions (Section 3.3.3 Cumulative Effects-Hydrology). See analysis and discussion added to Section 3.1.3 (Reasonably Foreseeable Water-Based Actions Considered in Cumulative Effects Analysis) and the cumulative effects analysis for all other resources (Sections 3.4.3 through 3.9.3) of the Final EA.

**TU-2:** TU recommends that Reclamation delay a determination of the Proposed Action pending the completion of the Windy Gap Firming Project Final EIS or supplement the Draft EA for this project.

**Response:** Reclamation does not believe that a delay in the decision on the Green Mountain Reservoir Substitution and Power Interference Agreements Project is warranted. The Windy Gap Firming Project (WGFP) is a proposed water supply project that would provide more reliable water deliveries to the Front Range and West Slope through additional physical connections to the Colorado-Big Thompson Project facilities. However, this Green Mountain Reservoir project is not to increase water deliveries but rather to provide operational flexibility in meeting substitution obligations under the Blue River Decree and the ability to assure replacement water and power generation to the West Slope of Colorado. This Green Mountain Reservoir project is also intended to fulfill Springs Utilities' obligations to Green Mountain Reservoir. Also, any potential changes to the Colorado River that would occur as a result of this Green Mountain Reservoir project would occur in a geographically distinct location and during a different season from those potential impacts resulting from the WGFP. Reclamation believes that the scopes of these separate actions are distinct and a decision on this project should not be contingent on a decision on the WGFP.



Additional analysis and discussions of potential hydrologic effects due to reasonably foreseeable actions was included in Section 3.3.3 (Hydrology) and Sections 3.4.3 through 3.9.3 (other resource topics) of the Final EA, as described in the response to comment TU-1.

**TU-3:** TU states that the Draft EA should address the potential impacts of climate change on the project and whether the need for the project will be triggered more often in the future based on historical data (i.e., the substitution requirement has required more in the last five years than previous years combined).

**Response:** The Proposed Action would provide additional operational flexibility to Springs Utilities by allowing Wolford Mountain and Homestake reservoirs to be used as additional substitution sources. Under certain climatic conditions, effects associated with this project may change. However, it is not possible to predict those anticipated changes or if climate change would increase need for future substitutions. If future impacts under the Proposed Action are determined to be outside those analyzed in this EA, additional NEPA compliance would be completed. The Final EA includes a discussion (Section 3.1.2) on how climate change may influence water resources in the West.

**TU-4:** TU states that the cumulative impacts of the Green Mountain Pump Back project combined with the Proposed Action on the Blue River downstream of Green Mountain Reservoir should be evaluated in the EA.

**Response:** Refer to the new section in the Final EA, Section 3.1.3 Reasonably Foreseeable Water-Based Actions Considered in Cumulative Effects Analysis. The Green Mountain Pump Back project was not considered a reasonably foreseeable project because there is not reasonable certainty as to the likelihood of this action occurring. The Green Mountain Pump Back project has only been studied at the feasibility level, and the formulation of a project, if any, to move forward has not been made by the study participants. In addition, there is currently not sufficient information available to define this action and conduct an analysis to quantify the cumulative effects of pump back options.

**TU-5:** TU states that the use of gage data from Kremmling (0905800) is too far downstream to adequately assess the direct impacts of flow changes on the Colorado River below the Williams Fork confluence. TU recommends evaluating data from the Parshall gage (i.e., Colorado River immediately below the Williams Fork River confluence) in the EA.

**Response:** Table 3-12 in the EA shows the modeled differences in flows for the Colorado River immediately below the confluence with the Williams Fork River. The



title of Table 3-12 was mislabeled and has been corrected in the Final EA to read "Colorado River below the Confluence with the Williams Fork River."

**TU-6:** TU states that the EA should evaluate impacts on Colorado Water Conservation Board (CWCB) Instream Flow rights in the portion of the Colorado River between Granby Reservoir and the Blue River.

**Response:** Refer to the additional discussion of instream flow requirements and potential effects on these requirements that was added to Sections 3.3.1 and 3.3.2 in the Final EA.

**TU-7:** TU states that the use of a monthly time step model to assess impacts on aquatic resources within potentially affected streams is inadequate.

**Response:** As discussed in Section 3.3.2 of the Draft EA, a monthly model was considered adequate given the magnitude of hydrologic effects anticipated under the Proposed Action. Additional discussion regarding this issue was added to Section 3.3.2 in the Final EA.

**TU-8**: TU states that the discussion of direct and cumulative water quality impacts, particularly temperature, in the EA is too general to support that these impacts are not significant. Direct and cumulative impacts on water quality should be quantified.

**Response:** A qualitative water quality direct and cumulative analysis was conducted for the EA. It was determined that the Proposed Action would create none to minor short-term direct impacts on water quality. An agency is only required to conduct analysis to the point that the level of impacts can be determined. Since the qualitative analysis resulted in none to minor short-term impacts, a qualitative analysis is considered appropriate for this NEPA analysis.

**TU-9:** TU states that the EA should evaluate whether the Proposed Action will directly or cumulatively interfere with obligations under Senate Document 80.

**Response:** Reclamation does not believe that this project directly or cumulatively interferes with its obligations under Senate Document 80. Senate Document 80 specifies the manner of operation of Colorado-Big Thompson (C-BT) Project facilities. Green Mountain Reservoir is a component of the C-BT Project and is therefore subject to the provisions of Senate Document 80. There would be no change in Green Mountain Reservoir operations under the Proposed Action nor would there be any effect on other West Slope C-BT facilities, including Lake Granby, Grand Lake, Shadow Mountain Reservoir, and the Adams Tunnel. Green Mountain Reservoir will continue to be operated in accordance with Senate Document 80 under the Proposed Action. The



explicit purpose of the requested substitution operation is to assure the fill of Green Mountain Reservoir which in turn assures and protects Reclamation's ability to perform its obligations under Senate Document 80.

**TU-10:** TU states that the Project Purpose and Need and the alternatives are too narrowly defined. Is the purpose of the project to "provide a reliable source of municipal water to the citizen owners and customers of Springs Utilities" as stated in § 1.1, page 1-1 of the Draft EA? Or is it to "allow Springs Utilities to comply with the Blue River Decree?"

**Response:** The purpose and need of the proposed project is adequately defined in Section 1.2 of the EA and provides Springs Utilities a broader range of operational flexibility under the Blue River Decree, which in turn provides Reclamation and WAPA the certainty they need to approve a long-term substitution plan.

The range of alternatives analyzed in the EA is sufficient for this level of NEPA analysis. An alternatives screening process was conducted (see Section 2.2 of the Final EA), where a reasonable range of alternatives was evaluated (Section 102(2)(E) of NEPA). Reasonable alternatives considered were those that were practical or feasible from technical and economic standpoints using common sense, rather than simply desirable from the standpoint of the applicant. The range of alternatives initially screened were assessed to determine if they could reasonably achieve the need that the Proposed Action is intended to address, while simultaneously minimizing environmental impacts. Unlike the Proposed Action, all of the preliminary alternatives that were considered required the construction of new facilities, which would result in significant environmental impacts.

**TU-11:** If a Power Interference Agreement were to be granted by Reclamation, specific conditions which reflect the scope and assumptions of the EA should be specifically stated in the Agreement. The 2003 Memorandum of Agreement is an agreement between private parties that could be subject to negotiated amendments. The Power Interference Agreement, on the other hand, is a federal agreement, subject to public review. Accordingly, the Agreement should contain all necessary conditions, including conditions that formed the basis of the assumptions used in the EA. In addition, the Agreement must include specific provisions precluding operation of the Agreement if such operation results in injury to the CWCB's Instream Flow water rights within pertinent reaches. Other terms and conditions may be needed to prevent or mitigate impacts to the human and natural environment as a result of the Proposed Action and to ensure compliance with Senate Document 80. Trout Unlimited would like to be notified if and when a draft Power Interference Agreement is ready for public review.

**Response:** WAPA may include language in the Power Interference Agreement referencing the Blue River Decree. The Power Interference Agreement is a means to document and formalize the terms of compensation between Springs Utilities and WAPA. WAPA has historically received compensation from Springs Utilities without



the benefit of an agreement and will continue to do so in the absence of an agreement because WAPA is entitled to and has historically been compensated by court order (i.e., under the Blue River Decree). WAPA holds that the Power Interference Agreement can neither allow nor disallow stream depletions granted by the Blue River Decree and public review of and comment to the agreement is therefore not required.



### COMMENT LETTER FROM: Petros & White, LLC, on behalf of the Board of Commissioners, Summit County, Colorado Charles B. White October 14, 2008

**SC-1:** Summit County states that recent comments made by the Colorado Attorney General's Office in pending water court Case No. 03CW320 may have undermined and contradicted one of the 2003 MOAs assumptions. More specifically, 250 AF in the West Slope Account in the Upper Blue Reservoir would be administered as an exchange from Wolford Mountain Reservoir with a 2003 priority date, rather than a contractual bookover of storage between the two reservoirs. If implemented, this administrative policy would prevent the Substitution MOA from operating in a manner that the parties, including Summit County, intended. Summit County requests that the Proposed Action not be approved by Reclamation if the reservoir bookover cannot be implemented as contemplated by the 2003 MOAs.

**Response:** The Draft EA states (Section 1.2, Project Purpose and Need) that the MOAs form the basis of the Substitution and Power Interference Agreements. This NEPA action is being conducted concurrently to Colorado water court Case No. 03CW320, which is still pending a final determination. Any alteration to the terms and conditions of the agreements would require amendments to the agreements, and additional NEPA compliance if the impacts are determined to be outside those analyzed in this EA. Springs Utilities has not retracted their request to Reclamation for a substitution and power interference agreement. Therefore, Reclamation will continue to proceed with this NEPA process.

**SC-2:** The statement in the Draft EA that Springs Utilities' 1929 rights "are not governed by the terms and conditions of the Blue River Decree" is incorrect.

**Response:** The intent of this statement was with regard to substitution operations. This is clarified in the Final EA in Section 1.4.4 Springs Utilities' Collection Systems and Customers, under the heading Continental-Hoosier Transmountain Diversion System.



**SC-3:** The EA should also discuss the water rights Springs Utilities claimed in water court Case No. 03CW314. The EA should evaluate the impacts of exercising these rights of exchange and expressly incorporate the limitations of the Exchange MOA.

**Response:** Springs Utilities pending exchange water rights claimed in Colorado water court Case No. 03CW314 are separate and distinct water rights, unrelated to substitution operations as described in the Blue River Decree. The exchanges proposed in that water rights case are not part of the Proposed Action or No Action alternatives. Please refer to Section 3.3.3 of the Final EA for further discussion of these pending exchange rights in the cumulative effects analysis.

**SC-4:** The discussion of Springs Utilities Reuse Program is incomplete. The Draft EA should discuss Springs Utilities' reuse obligations under the Blue River Decree and consider opportunities for additional reuse of water that would be created by the approval of the Proposed Action.

**Response:** Springs Utilities' Continental-Hoosier System diversions would not change under the Proposed Action or the No Action alternatives. While diversions would not change, the net yield to Springs Utilities Continental-Hoosier System under the Proposed Action may increase in a limited number of substitution years when releases are made from Springs Utilities Wolford account or from Homestake Reservoir since they would not have to release as much water from Montgomery Reservoir or the Homestake system to payback Denver Water for substitution releases made on Springs Utilities behalf on the West Slope. However, because of West Slope delivery obligations in the MOA, the net yield to Springs Utilities' system, and subsequently reuse opportunity, may be reduced in some non-substitution years under the Proposed Action. To the degree that Springs Utilities has any additional yield from their Continental-Hoosier System, that water would be reused consistent with their current reuse program and the Blue River Decree. Springs Utilities currently reuses all water generated from their Continental-Hoosier System and would reuse any additional yield if it is generated under the Proposed Action.

**SC-5:** The Draft EA states that Denver Water supplied Springs Utilities with additional water to operate a Williams Fork to Hoosier Tunnel exchange after Green Mountain Reservoir and the Continental-Hoosier water rights were our of priority. Summit County requests that Reclamation describe the amount of water exchanged, if approval was obtained from Reclamation for power interference, and whether the exchange was administered by the Division 5 Engineer.

**Response:** The Williams Fork exchange included in the Draft EA in Table 1-1 Summary of Historical Substitution Year Operations (Section 1.4.6 Substitution Year Operations) does not relate to substitution but was listed for informational purposes only. To avoid confusion, this exchange has been removed from the Final EA in Table 1-1 as well as



from the discussion in Section 1.4.6 Substitution Year Operations under the heading 1964 Substitution Year.

**SC-6:** The EA should examine the implications for water rights administration of a power interference agreement, including the effect on the Green Mountain power call of the State Engineer's policy on administration.

**Response:** The administration of Springs Utilities' power interference is carried out under the authority of the Blue River Decree. Springs Utilities must replace the power that would have been generated by Reclamation at Green Mountain Reservoir's hydroelectric plant had Springs Utilities not diverted water. Springs Utilities has historically provided the replacement power year-to-year by mutual agreement with the WAPA. There would be no change in the Green Mountain Reservoir power call nor would there be any change in the administration of a power interference agreement under the Proposed Action. The Proposed Action would establish a long-term power interference agreement with Reclamation and WAPA that would be operated in the same manner as under the No Action Alternative.

**SC-7:** Under certain circumstances, a Summit County 1041 permit may be required for the change in operation proposed in this EA.

**Response:** Comment noted. Clarification was added to the Final EA in Section 1.5 Required Permits and Approvals to note that additional County permits may be required, including a 1041 permit.

**SC-8:** The assumption that Denver Water would provide replacement water under the No Action Alternative does not appear to be valid since they do not have a legal obligation to provide this water. Thus, under the No Action Alternative, Springs Utilities would not have sufficient replacement water to divert the projected volume in its Continental-Hoosier System in a substitution year. This would result in much different impacts on the Blue River than those described in the Draft EA.

**Response:** The assumption that Denver Water continues to provide replacement water in the future on behalf of Springs Utilities in substitution years under the No Action Alternative is reasonable given that it is consistent with the manner in which Springs Utilities' substitution obligation has been paid back in all but one substitution year and it is consistent with the letter provided by Denver Water to Springs Utilities dated July 23, 2008, which states that Denver Water is willing to consider performing similar operations in the future.



**SC-9:** All or a portion of the 250 AF may be used for augmentation purposes, in which case it would be used to replace out-of-priority depletions to the Blue River or its tributaries, directly or by exchange, resulting in full consumption. Summit County beneficiaries of the water retain the right to reuse, successively use, and dispose of the effluent and return flows resulting from the use of that water.

**Response:** The assumption that all of the 250 AF is consumed is reasonable for modeling purposes and conservative from the standpoint of estimating flow changes. See additional discussion added to Section 2.4 in the Final EA regarding how this water might be used.

**SC-10:** Minimum bypasses from Dillon Reservoir are governed by the terms of the FERC Order. The relevant conditions require a bypass of 50 cfs or the inflow, whichever is less, without any exceptions.

**Response:** See discussion added to Section 3.3.1 in the Final EA regarding the 50 cfs bypass requirement per the FERC Order. The CDSS Model reflects the 50 cfs bypass or inflow, whichever is less, without exceptions, which is consistent with the FERC Order.

**SC-11:** The EA should identify the current issues surrounding the administration of the Green Mountain Reservoir water rights and the impact on the administration of the proposed substitution if the State Engineer's Interim Policy is changed (see pg. 3-14).

**Response:** The CDSS Model accurately reflects the current administration of the Green Mountain Reservoir water rights, which is defined in the 2008 Interim Policy adopted by the State Engineer. Potential changes to the State Engineer's Interim Policy and the associated effects on the administration of substitution operations are difficult to assess since there is no certainty regarding when or how the Interim Policy may change. Potential changes to the State Engineer's Interim Policy are not addressed in the Final EA since that is not a reasonably foreseeable action. Even so, the Interim Policy's primary effect is the calculation of the paper fill of Green Mountain Reservoir. Any change to this policy might result only in a change in the amount of fill deficit in substitution years, or the amount water required to complete the fill of Green Mountain Reservoir. However, regardless of how the fill deficit is calculated, the method of substitution operations under either the Proposed Action or the No Action Alternative would not be affected.

**SC-12:** Summit County refers to comment SC-8 [6], and refers to a statement in the CSU EA that assumes that CSU is able to obtain a sufficient supply of replacement water from Denver Water. Summit County suggests that there is a possibility under the No Action Alternative that CSU would not have sufficient replacement water to divert the projected volume in its Continental-Hoosier System in a substitution year.



**Response:** See response to comment SC-8.

**SC-13:** Summit County refers to the following statement "In years the substitution obligation is less than 2,100 AF and the total contents in the Upper Blue Reservoir are sufficient to fully payback the substitution obligation, there would be no difference in the location, amount or timing of substitution payback under the Proposed Action. Summit County indicated this statement does not take into account the requirement of the Substitution MOA that the timing or releases from Upper Blue Reservoir be coordinated between the River District, CSU and Denver Water to provide environmental benefits in the late summer and early fall.

**Response:** See additional discussion added to Section 3.3.2 in the Final EA.



### COMMENT LETTER FROM: White & Jankowski, L.L.P, on behalf of the Board of County Commissioners, Grand County, Colorado David C. Taussig October 30, 2008

**GC-1:** Grand County is concerned with the use of monthly averages rather than a daily stream flow model especially during the 13 substitution years. The use of monthly average flows is not adequate to address daily stream flows and the factors that affect the aquatic environment. The monthly timing and amount of average releases ignores the changed location of the releases from Williams Fork Reservoir to locations downstream. On any day when the release is at the downstream locations the effect is 100% decrease to the Williams Fork and Colorado River above the confluence with Muddy Creek.

**Response:** See response to Trout Unlimited's comment TU-7. Also, Tables 3-8 and 3-12 in the EA show the hydrologic effects to the Williams Fork River and Colorado River below the confluence with the Williams Fork River, respectively associated with the changed location of releases from Williams Fork Reservoir to locations downstream. Whether the analysis is completed on a daily basis or monthly basis, changes in substitution releases from Williams Fork Reservoir would only occur in years the last increment of Denver Water's substitution obligation is released from Williams Fork Reservoir. In those years, substitution releases from Williams Fork Reservoir would decrease. In years when the last increment of Denver Water's substitution obligation is released from Wolford Mountain Reservoir, the same amount of substitution water would released from both Wolford Mountain and Williams Fork reservoirs as explained below. A break down of the 13 substitution years during the study period and the associated flow changes in the Colorado River reach of concern follows.

- In 5 years, contents in Upper Blue Reservoir are sufficient to cover Spring Utilities entire substitution bill. In those years, there would be no change in releases from Williams Fork or Wolford Mountain reservoirs between the No Action and the Proposed Action alternatives.
- In one year (1977), contents in Upper Blue Reservoir would not be sufficient to cover Spring Utilities' entire substitution bill, which was estimated to be 1,606 AF. However, under both the No Action and Proposed Action alternatives, Denver Water would meet Springs Utilities' entire substitution obligation of 1,606 AF. Water would not be released from Springs Utilities' accounts in Wolford Mountain or Homestake reservoirs for substitution payback. Therefore, there would be no difference in releases from Williams Fork or Wolford Mountain reservoirs between the No Action and the Proposed Action alternatives.
- In 7 years, contents in Upper Blue Reservoir would not be sufficient to cover Spring Utilities substitution bill, in which case releases from Springs Utilities' account in Wolford Reservoir would be made under the Proposed Action. In six of those years,



the last increment of Denver Water's substitution obligation would be released from Wolford Mountain Reservoir. The total amount released from Wolford Mountain Reservoir for substitution payback would be the same; however, the amounts releases from Springs Utilities' and Denver Water's accounts would be different. Likewise, the total amount released from Williams Fork Reservoir would be the same; however, the amount allocated to payback Denver Water substitution bill would increase and the amount allocated to payback Springs Utilities bill would decrease by a commensurate amount. In summary, there would be no change in the total amount of substitution water released from Wolford Mountain and Williams Fork reservoirs and no corresponding change in flows along the Colorado River in those years under the Proposed Action. **Table 1** illustrates why there would be no change in flows in 6 of these 7 years.

In one of these substitution years (1963) there would be a flow change in the reach of the Colorado River downstream of the confluence with Williams Fork River because of the changed location of the releases from Williams Fork Reservoir to Wolford Mountain and Homestake reservoirs. In 1963, the total substitution bill would be 4,319 AF. Of that amount, Denver Water would release 2,100 AF for Springs Utilities, 1,750 AF would be released from Springs Utilities' account in Wolford Mountain Reservoir, and 470 AF would be released from Homestake Reservoir. In that year, the last increment of Denver Water's substitution obligation would be released from Williams Fork Reservoir. As a result, the total substitution release from Wolford Mountain Reservoir for Denver Water and Springs Utilities would increase, while the total substitution release from Williams Fork Reservoir would decrease. However, the reduction in release from Williams Fork Reservoir is only 570 AF instead of the full 2,100 AF released by Denver Water for Springs Utilities as shown in Table 2. Model results show the reduction in substitution water released from Williams Fork Reservoir occurs over the period from August 1963 through March 1964. It is possible that the daily flow changes could be greater than an average monthly changes predicted by the model in those months, depending on the schedule of releases from Williams Fork Reservoir. However, Springs Utilities diversions from the Upper Blue River do not deplete the Colorado River from the confluence of the Williams Fork River downstream to the confluence of the Blue River. In substitution years, water release from Williams Fork Reservoir in August and September for substitution payback augments flows in the Colorado River below the confluence with the Williams Fork River. Therefore, the flow change associated with the change in location of substitution release to downstream locations would be a reduction in the amount of water added to the river.

In addition to the monthly model results, historical daily substitution releases in 2002 were evaluated because it is a recent substitution year and the driest year in the 56-year study period evaluated. In 2002, Springs Utilities' substitution operations were consistent with the Proposed Action. Their total substitution obligation was 3,143 AF of which 1,923 AF was paid back with a release from Denver Water's account in Wolford Mountain Reservoir. Denver Water's substitution bill was paid back in part by a release from Williams Fork Reservoir of 10,000 AF. Had 1,923 AF of Springs Utilities' substitution obligation been paid back with a release from



Williams Fork Reservoir consistent with the No Action alternative, the total release from Williams Fork Reservoir would have still been 10,000 AF. This is due to the manner in which Denver Water's substitution obligation is paid back with alternating releases from Wolford Mountain and Williams Fork Reservoir. Under the No Action alternative, 1,923 AF of the total substitution release from Williams Fork Reservoir would have been allocated to payback Springs Utilities obligation and the 1,923 AF released from Denver Water's account in Wolford Mountain Reservoir for Springs Utilities would have been released to payback Denver Water's obligation instead. As a result, there would have been no change in daily flows as a result of the Proposed Action in 2002.

**GC-2:** The maximum rate of exchange of 30 cfs is a significant amount of stream flow in the reach of the Colorado River below the confluence with the Williams Fork River. The 30 cfs rate of flow should be utilized as the maximum rate of impact under the Proposed Action to remove 30 cfs from the Williams Fork River and the Colorado River and instead release it from Wolford Mountain and Homestake reservoirs.

**Response:** The 30 cfs exchange referred to in Attachment A of the 2003 MOA is a separate exchange not associated with substitution operations. This exchange was included in the MOA and discussed in paragraph 4.e. as it pertains to the reuse of return flows from the 250 AF that would be provided to Summit County from Upper Blue Reservoir. The intent of that paragraph is that the reuse of any returns flows associated with the use of the 250 AF can not impact the exchanges listed in Attachment A. The 30 cfs should not be utilized as the maximum rate of impact from substitution operations as suggested by Grand County. The examples provided of potential flow changes in 2006 do not apply since that was not a substitution year, and Springs Utilities Proposed Action would not affect flows in these reaches of the Colorado and Williams Fork rivers during non-substitution years. Flows in 2006 are discussed in the response to Trout Unlimited's comment TU-6.



 Table 1

 Summary of Substitution Releases from Williams Fork, Wolford Mountain, and Homestake Reservoirs in 1966

 Values in Acre-Feet

|                                        |      | No Action    | Alt.          |      | Proposed Acti | on Alt.       | Difference in  |
|----------------------------------------|------|--------------|---------------|------|---------------|---------------|----------------|
|                                        | CSU  | Denver Water | Total Release | CSU  | Denver Water  | Total Release | Total Releases |
| Wolford Mtn Reservoir                  |      |              |               |      |               |               |                |
| Release from Springs Utilities Account | 0    | 0            | 0             | 224  | 0             | 224           |                |
| Release from Denver Water Acct.        | 0    | 13425        | 13425         | 0    | 13201         | 13201         |                |
| Total Release                          | 0    | 13425        | 13425         | 224  | 13201         | 13425         | 0              |
|                                        |      |              |               |      |               |               |                |
| Williams Fork Reservoir                |      |              |               |      |               |               |                |
| Release for Springs Utilities          | 2324 | 0            | 2324          | 2100 | 0             | 2100          |                |
| Release for Denver Water               | 0    | 7676         | 7676          | 0    | 7900          | 7900          |                |
| Total Release                          | 2324 | 7676         | 10000         | 2100 | 7900          | 10000         | 0              |
| Homestake Reservoir                    | 0    | 0            | 0             | 0    | 0             | 0             | 0              |
| TOTAL RELEASE                          | 2324 | 21101        | 23425         | 2324 | 21101         | 23425         | 0              |



| Table 2                                                                                                 |
|---------------------------------------------------------------------------------------------------------|
| Summary of Substitution Releases from Williams Fork, Wolford Mountain, and Homestake Reservoirs in 1963 |
| Values in Acre-Feet                                                                                     |

|                                        |      | No Action    | Alt.          |      | Proposed Acti | on Alt.       | Difference in         |
|----------------------------------------|------|--------------|---------------|------|---------------|---------------|-----------------------|
|                                        | CSU  | Denver Water | Total Release | CSU  | Denver Water  | Total Release | <b>Total Releases</b> |
| Wolford Mtn Reservoir                  |      |              |               |      |               |               |                       |
| Release from Springs Utilities Account | 0    | 0            | 0             | 1750 | 0             | 1750          |                       |
| Release from Denver Water Acct.        | 0    | 25067        | 25067         | 0    | 23418         | 23418         |                       |
| Total Release                          | 0    | 25067        | 25067         | 1750 | 23418         | 25168         | 101                   |
|                                        |      |              |               |      |               |               |                       |
| Williams Fork Reservoir                |      |              |               |      |               |               |                       |
| Release for Springs Utilities          | 4319 | 0            | 4319          | 2100 | 0             | 2100          |                       |
| Release for Denver Water               | 0    | 6251         | 6251          | 0    | 7900          | 7900          |                       |
| Total Release                          | 4319 | 6251         | 10570         | 2100 | 7900          | 10000         | -570                  |
|                                        |      |              |               |      |               |               |                       |
| Homestake Reservoir                    | 0    | 0            | 0             | 469  | 0             | 469           | 469                   |
| TOTAL RELEASE                          | 4319 | 31318        | 35637         | 4319 | 31318         | 35637         | 0                     |



**GC-3:** Grand County is concerned with the cumulative impacts of various pending projects on the Colorado River and tributary headwaters. The cumulative impacts analysis conducted does not comply with NEPA. This EA could be supplemented based on information developed from the Denver Water Moffat Collection System Project and Windy Gap Firming Project (WGFP) and the use of PACSM in the cumulative impacts review. Grand County stated that NEPA does not involve a comparison. Rather impacts can result from individually minor actions that have a collective significant impact over time. Grand County also stated the lack of utilizing a daily time step stream flow model limits the ability to conduct a proper cumulative impact review.

**Response:** As suggested by Grand County the cumulative effects analysis was supplemented based on available information from the WGFP and Denver Water's Moffat Collection System Project. Additional analysis was completed of potential hydrologic effects due to reasonably foreseeable actions. See analysis and discussion added to Section 3.3.3 of the Final EA.

**GC-4:** The EA needs to be supplemented to include the information from the Grand County Stream Management Plan (GCSMP) and to include a discussion of potential mitigation measures developed in the GCSMP. The GCSMP studies some of the same reaches impacted by this project. The EA needs to include a discussion of ways to mitigate the cumulative adverse impacts.

**Response:** The Final EA has been supplemented to include a discussion of *Grand County's Stream Management Plan, Phase 2, Environmental and Water Users Flow Recommendations.* See Section 3.3.1.7 (Grand County Stream Management Plan in the Hydrology Section), Section 3.5.2 (Environmental Consequences for Water Quality), Section 3.8.1 (Affected Environment for Recreation), and Section 3.8.2 (Environmental Consequences for Recreation) in the Final EA. The Final EA also includes a discussion of mitigation measures for the Blue River above Dillon Reservoir in Section 2.4 and 3.3.2.2. As discussed in response to Grand County comment GC-1, there would be little to no change in flows under the Proposed Action along the Williams Fork River, Muddy Creek, Eagle River, and Colorado River mainstem under the Proposed Action, therefore, mitigation measures have not been proposed for those river reaches.

The Draft EA states (Section 1.2, Project Purpose and Need) that the MOAs form the basis of the Substitution and Power Interference Agreements. Paragraph 9.a. of the 2003 MOA states the timing of releases from Upper Blue Reservoir for substitution payback will be coordinated between the River District, Springs Utilities and Denver Water with releases made in the late summer and early fall to provide environmental benefits.



