

Techniques for Successful Risk Management Lessons Learned from the Spallation Neutron Source

Suzanne Herron U.S. ITER Deputy Project Manager Former SNS Project Controls Manager

The Spallation Neutron Source (SNS) achieved world-class objectives

- Construction completed <u>ahead of schedule</u> (June 2006) and <u>under budget</u> (\$1.411B)
- World's leading facility for neutron science
- Room for eventual 25 instruments spanning physics, chemistry, biology, and materials science
- Upgradeable to higher power, second target

SNS was a partnership among six national labs and a major industrial partner

SPALLATION NEUTRON SOURCE

SNS partners owned major scope, budget, and risk!

Risk Management is not a part-time job

- SPALLATION NEUTRON SOURCE
- Risk management must be implemented early and continually applied throughout the project
- Can not treat it as an add-on or parallel activity should be an integral part of the daily project discussion

Risk Management is a closed loop process

Essential for risk issues to be made visible early

- Activity manager and their teams (not admin support staff) must analyze the risks
 - Must report risk even if believe the cost for the mitigation and residual risk can be absorbed in the existing budget (even though should strive to absorb in existing budget!)
- Analyze for risks at least monthly
- Open communication to the project management team necessary
 - Encouraged to exercise judgment in reporting so not flooded in details and lose the big picture

Rigor must be applied for completeness

All project elements need to be reviewed for risks

- ES&H
- Scope
- Technical
- Cost estimating
- Schedule control
- R&D
- Design
- Acquisition Management
 - Number of suppliers and capabilities
 - Materials cost
 - Exchange Rates
- Performance
- RAMI
- Operations

• Systems should be:

- Useful
- Not overly complicated
- Designed to be effectively used by the working engineer

• SNS utilized a WEB based system

- Allowed all participants to access and update the risk register in an easy, timely manner
- Provided and effective way to sort for various reports (e.g., most likely risks, all schedule risks....)

Consequence thresholds changed as the project evolved

Table 3. Risk likelihood categories				
Likelihood category	Definition			
Very likely	Risk is likely to occur with a probability greater than or equal to 90%.			
Likely	Risk is likely to occur with a probability greater than or equal to 50%.			
Unlikely	There is less than 50% chance that this event will occur.			

Table 4. Risk consequence categories								
Type of risk	Marginal	Significant	Critical					
Cost: Impact on project contingency	<\$1M	\$1M - \$5M	>\$5M					
Schedule: Impact on project schedule	None	Impacts Level 0-2 milestones defined in PEP	Impacts early finish date					
Technical: Impact on performance	Minor degradation; performance falls below upper end of goal; CD-4 can still be met	Moderate performance shortfall, but workarounds available; Performance falls below mid-range goal	CD-4 will not be met (essential performance parameter not met)					

3x3 matrix was sufficient for risk categorization

Consequence

		Marginal	Significant	Critical
Likelihood	Very Likely	Moderate	High	High
	Likely	Low	Moderate	High
	Unlikely	Low	Low	Moderate

Management team provided separate assessment of risks

•SNS Management team input their assessment of risk probability and consequences

- Considered <u>overall</u> project consequences

- Direct managers would frequently see problems before they saw solutions and without solutions the problems would appear insurmountable resulting in risks being categorized as very likely

- Management team was further removed from problem, often had experience in similar situations, and could present a more objective view

Thorough, credible mitigation plans must be prepared and implemented

- Emphasis should be on developing/implementing viable risk-mitigation plans rather than on simply generating the risk registry
- Individuals responsible for performing mitigation were specified and held accountable
- Development of performance incentives in contracts helped achieve safety, schedule and cost objectives and reduce risks

Risk list used as an early warning of contingency usage

- As risks turned into reality (or if >95% probability of occurring), the EAC was updated and/or the baseline schedule revised
 - If appropriate rigor is applied, the majority of new costs in the EAC should have first appeared in the risk analysis

 Total estimated value of residual risks (cost and schedule) plus a value for unknowns were routinely compared to the project's cost and schedule contingency to understand if adequate contingency remained

Real time management of risks is key

- Project management team would apply systematic attention each month by evaluating the risks and mitigations status
 - Drive credible mitigation plans and ensure progress is made on resolving risk issues
 - "Higher risk" technical innovations received management attention early, but risks in low-tech areas can not be dismissed
 - Integral part of the daily project discussions and considered in decision making and setting project priorities

Risk reporting/tracking accomplished through a variety of meetings

- Various meetings used to identify new risks and discuss/track mitigation plans on a continuing basis
 - Weekly executive management meetings
 - Weekly videoconferences with technical managers
 - Subproject Group meetings
 - Monthly Performance Indicators Review meetings
 - Quarterly Cost/Schedule Review meetings
 - Monthly Technical Issues meetings
- EAC/Contingency/Risk summary discussed monthly with DOE- ORO and DOE-HQ

Regular, candid advice is an excellent risk management tool

- SPALLATION NEUTRON SOURCE
- SNS Project strongly supported regular, disciplined external reviews on all aspects of the project
- Value added
- "Peer pressure" strong motivator
- Allows sharing of knowledge and expertise to identify issues and resolve problems
- Excellent tool for understanding and managing risks
- Benefits accrued from preparing for formal reviews

- Quantitative approaches are valuable in risk management, however, success or failure largely depends on the organizational culture and interactions
 - Implement early, continually applied
 - Open communications
 - Emphasis on risk mitigation
 - Integral part of daily discussions and considered in decision making