

U.S. Department of Energy Office of Civilian Radioactive Waste Management

The National Repository at Yucca Mountain

Presented to: EM High Level Waste Corporate Board

Presented by: **Russ Dyer** Chief Scientist Office of Civilian Radioactive Waste Management

July 24, 2008 Idaho National Laboratory

Solving a national problem now

 On June 3, 2008, the U.S. Department of Energy submitted an application to the U.S. Nuclear Regulatory Commission for a license to construct a repository at Yucca Mountain

Repository license application

- The LA seeks authorization to construct the nation's first geologic repository
- It is a culmination of more than 25 years of scientific research and engineering
- The LA describes DOE's plan to safely isolate spent nuclear fuel and high-level radioactive waste in tunnels deep underground at Yucca Mountain

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing_070808Rev1.ppt

Repository meets a pressing national need

- Spent nuclear fuel and highlevel radioactive waste have been accumulating in the United States since the 1940s
- Currently, waste destined for Yucca Mountain is stored in temporary facilities at 121 sites in 39 states

Department of Energy • Office of Civilian Radioactive Waste Management

SBBB-GeneralBriefing_070808Rev1.ppt

Yucca Mountain, Nevada

Department of Energy • Office of Civilian Radioactive Waste Management

License Application Content and Supporting Documents

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing 070808Rev1.ppt

LA components

- The LA is accompanied by a final EIS, as well as 200 key supporting documents
- The LA comprises 17 volumes:
 - Total number of pages 8,646
 - Total number of figures 2,830
 - Total number of tables 930
 - Number of inches thick 78
 - Weight of each complete copy 110 pounds

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing 070808Rev1.ppt

Contents of the license application

- The license application includes General Information and a Safety Analysis Report (SAR)
- The General Information includes:
 - A general description of the repository and its operations
 - Schedules for construction, receipt, and emplacement of waste
 - A description of the physical protection plan for safeguarding the facility
 - A description of the material control and accounting program to be implemented to track radioactive materials movement at the repository
 - A description of site characterization studies

Contents of the license application (continued)

- The SAR is the principal technical document in the licensing process
- The SAR discusses why the repository is considered safe and how it complies with NRC regulations
- Major topics of the SAR include:
 - Preclosure Safety Analysis
 - Postclosure Safety Analysis
 - Programmatic Requirements

Yucca Mountain Surface at Repository Facility Portals

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing_070808Rev1.ppt

Site overview

Nuclear facilities

- Initial handling facility
- Wet handling facility
- Canister receipt and closure facility 1
- Canister receipt and closure facility 2
- Canister receipt and closure facility 3
- Receipt facility

Balance of plant facilities

- Low-level waste facility
- Emergency diesel generator facility
- Heavy equipment maintenance facility
- Central control center facility
- Warehouse and non-nuclear receipt facility
- Utility, security, and administration facilities

Department of Energy • Office of Civilian Radioactive Waste Management

Surface design

- The revised surface design provides maximum flexibility in the development of a simple, clean, safe, primarily canisterbased repository
 - Based on the use of modular waste handling facilities and processes – expansion as needed
 - Incorporates commercial waste handling experience
 - Can receive by truck and standard rail
 - Can handle multiple forms of wastes
 - Can accommodate multiple sizes of transportation, aging and disposal canisters
 - Canisters would require less handling than individual spent nuclear fuel assemblies at the repository

Surface facilities layout

• This image shows the relative size of the planned surface facilities compared with a large football stadium

Los Angeles Memorial Coliseum Planned Surface Layout

00577WB_002c.ai

SBBB-GeneralBriefing_070808Rev1.ppt

Repository is longer than the Las Vegas Strip

SBBB-GeneralBriefing_070808Rev1.ppt

Engineered Barrier System

Depar SBBE

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing 070808Rev1.ppt

Emplacement Drift

SBBB-GeneralBriefing_070808Rev1.ppt

Estimating now the repository will perform in the future using Total System Performance Assessment (TSPA)

Department of Energy • Office of Civilian Radioactive Waste Management

SBBB-GeneralBriefing_070808Rev1.ppt

Key barriers work together

Features and Components

- Surface soils and topography
- Unsaturated zone above the repository
- Emplacement drift
- Drip shield
- Waste package
- Pallet
- Waste form and waste package internals
- Drift invert
- Unsaturated Zone below the repository
- Saturated zone

Department of Energy • Office of Civilian Radioactive Waste Management

Upper natural barrier

Department of Energy • Office of Civilian Radioactive Waste Management

SBBB-GeneralBriefing_070808Rev1.ppt

Lower natural barrier

Department of Energy • Office of Civilian Radioactive Waste Management

SBBB-GeneralBriefing 070808Rev1.ppt

Total System Performance Assessment Process

- Screen features, events, and processes to determine those to be evaluated in performance assessment
- Develop models, along with their scientific basis, for each feature, event and process included in TSPA
- Evaluate uncertainty in models and parameters
- Construct integrated TSPA model using all retained features, events and processes in scenario classes
 - Nominal scenario class contain all features, events, and processes expected to occur (including climate change)
 - Disruptive event scenario classes contains unexpected events (e.g., early failure, igneous, and seismic)
- Evaluate total-system performance in terms of individual protection and groundwater protection standards; incorporating uncertainty through Monte Carlo simulation

TSPA model architecture

- TSPA Model consists of four scenario classes
 - Nominal Scenario Class
 - Igneous Scenario Class
 - Seismic Scenario Class
 - Early Failure Scenario Class
- Each model component has an integrated set of inputs and outputs
- Each model abstraction has a conceptual basis

Performance resultsindividual protection standard

Time Period After Closure (yrs)	Projected Maximum Mean Annual Dose (mrem)	Time of Maximum Mean Annual Dose (yr)	Projected Maximum Median Annual Dose (mrem)	Time of Maximum Median Annual Dose (yr)	Limit for Annual Dose (mrem)
10,000	0.24	10,000	NA	NA	15 (mean)
1,000,000	NA	NA	0.96	~ 720,000	350 (median)
NOTE: Numerical Limits from proposed 10 CFR 63.311(a). Source: SNL 2008a, Table 8.1-1[a].					

SAR Table 2.4-2. Performance Results for Individual Protection Standard

Department of Energy • Office of Civilian Radioactive Waste Management

Adding confidence: natural and man-made analogues

www.ocrwm.doe.gov

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing_070808Rev1.ppt

Licensing Support Network (LSN) contributors by number of records

00637PR_LSN_records.ai

Department of Energy • Office of Civilian Radioactive Waste Management

SBBB-GeneralBriefing_070808Rev1.ppt

Repository program steps

Department of Energy • Office of Civilian Radioactive Waste Management

SBBB-GeneralBriefing_070808Rev1.ppt

What's next

Yucca Mountain License Application Review Timeline (anticipated)

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing 070808Rev1.ppt

Upcoming key milestones

- Start Nevada Rail Construction October 2009
 - Delayed Inadequate funding to proceed with design
- YM Construction Authorization September 2011
 - Depends on NRC decision
- Operating License Submittal March 2013
 - Predicated on funding and construction schedule
- Rail Line Operational June 2014
 - 2016 is achievable only if adequate funding is provided
- Begin Receipt
 - Currently under evaluation due to FY 07 and 08 actual funding shortfalls and expected near term funding limitations
 - Firm date cannot be set until funding issue resolved

For more information

www.ocrwm.doe.gov

Department of Energy • Office of Civilian Radioactive Waste Management SBBB-GeneralBriefing_070808Rev1.ppt