

Tank Waste System Integrated Project Team

Tank Waste Corporate Board July 29, 2009

Steve Schneider Office of Engineering and Technology

- Purpose of IPT
- Accomplishments
- Process Optimization
- Modeling
- Regulatory
- Challenges
- Next Steps

Tank Waste System IPT - July 2009

Purpose of IPT

The Tank Waste System Integrated Project Team will develop a Tank Waste System Strategic Model and alternative strategies and transformational solutions that could result in an improved, optimized and lesscostly tank waste system.

This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained.

3

Accomplishments

- Held Kick off meeting March 24, 2009
- Established IPT Subteams
- Held tank waste system reviews at Office of River Protection (ORP) and the Savannah River Operations Office (SR) in April
- Completed initial draft of model parameters / capabilities
- Identified a model that can meet objectives (development and updates will be required)
- Drafted descriptions of current ORP and SR tank waste systems

4

Accomplishments

- Developed initial drafts of optimization strategies for ORP and the SR
- Conducted briefing for EM management on proposed ORP and SR optimized tank waste strategies on June 25, 2009
- Developed initial drafts of regulatory optimization strategies
- Began development of tank waste system model
- Identified proposed transformational solutions for the tank waste system

Process Optimization

IPT has identified over 30 optimization strategies

Top strategies fall into three categories

- Pretreatment
- Vitrification
- Retrieval and Closure

This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained.

6

Proposed Top Optimized Strategies*

Cross-walk of top strategies to the Roadmap

Roadmap Initiative Area	Optimization Strategies* * May change following strategic model analysis and further development of the technical strategy \$ EM-1 and EM-2 focus	
Pretreatment	ORP <> At-tank treatmentORP <> Sodium and Aluminum managementORP <> Mixing and blending systems optimizationORP <> Mixing and blending systems optimizationORP Off-site disposal of Class A and C WastesSR <> Increase salt processing rate (includes extending operations of ARP/MCU)SR Reduce complexity of low-level waste disposalSR Aluminum management (remove aluminum and dispose of resulting Class A waste streams off site)SR SR Removal of risk drivers (I, Tc, Cs)	
Vitrification	 ORP ◇ Glass Optimization - Improve waste form performance, waste loading, and melt rate SR ◇ Glass Optimization - Improve waste loading and increase Pu limit in glass 	

7

Proposed Top Optimized Strategies*

Cross-walk of top strategies to the Roadmap

Roadmap	Optimization Strategies*		
Initiative Area	*May change following strategic model analysis and further development of the technical strategy		
Retrieval and Closure	 ORP Waste staging in single shell tanks and then area tank closure ORP Risk-informed retrieval and closure SR Reduce complexity of tank cleaning and closure. Includes: a. Implement risk-informed cleaning and closure requirements b. Grout tanks in major groupings instead of individually and then area tank closure c. Optimize point of compliance location and expand definition of maximum extent practical SR Place Saltstone grout in tanks during closure 		

Proposed Top Optimized Strategies*

- Alignment with Waste Processing Gaps identified in the NAS 2009 Report
 - The Retrieval & Closure strategies align with Gap 1
 - WP-1 Substantial amounts of waste may be left in tanks after their cleanout—especially those with obstructions or associate piping.
 - The Pretreatment and Vitrification strategies align with Gap 4
 - WP-4 Increased vitrification capacity may be needed to meet schedule requirements of EM's HLW programs.
- Technology development is required to implement most of these strategies

*May change following strategic model analysis and further development of the technical strategy

Tank Waste System IPT - July 2009

Technology Development - ORP

	Top Optimized Strategies – ORP*	Technology Development Needs
T	1. At-tank treatment	Requires in-riser and tank-side treatment technologies
(T)	2. Sodium and Aluminum management	Requires alternative Sodium recovery and Aluminum leaching technologies
T	B. Mixing and blending systems optimization Requires tank mixing, sampling, and characterization technologies, and physical properties studies	
	4. Glass Optimization - Improve waste form performance, waste loading, and melt rate	Requires new melter technologies
T	5. Waste staging in single shell tanks and then area tank closure	Requires tank integrity improvements and development of improved evaporation technology such as Wiped Film Evaporator
	6. Risk-informed retrieval and closure	Requires versatile retrieval technologies such as MARS (Mobile Arm-Based Retrieval System), and closure technologies including fill, barriers, and monitoring
T	7. Off-site disposal of Class A and C Wastes	Requires technologies for coarse removal of solids from salt waste, and possibly other treatment technologies

* May change following strategic model analysis and further development of the technical strategy (T) Transformational Strategy

This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained.

Tank Waste Corporate Board, July 2009

Tank Waste System IPT - July 2009

Technology Development - SR

	Top Optimized Strategies – SR*	Technology Development
T	1. Increase salt processing rate (includes extending operations of ARP/MCU)	Requires alternate salt processing technologies such as small column ion exchanger
T	 2. Reduce complexity of tank cleaning and closure. Includes: a. Implement risk-informed cleaning and closure requirements b. Grout tanks in major groupings instead of individually and then area tank closure c. Optimize point of compliance location and expand definition of maximum extent practical 	None
T	3. Reduce complexity of low-level waste disposal	Requires volume reduction technologies such as wet air oxidation or fluidized bed steam reforming, and/or alternate low-level waste form
T	4. Aluminum management (remove aluminum and dispose of resulting Class A waste streams off site)	None
	5. Glass Optimization - Improve waste loading and increase Pu limit in glass	Requires new melter technologies
	6. Removal of risk drivers (I, Tc, Cs)	Requires removal technologies, process improvements, and waste form performance testing
	7. Place Saltstone grout in tanks during closure	Requires engineering and design only

* May change following strategic model analysis and further development of the technical strategy

(T) *Transformational Strategy*

safety

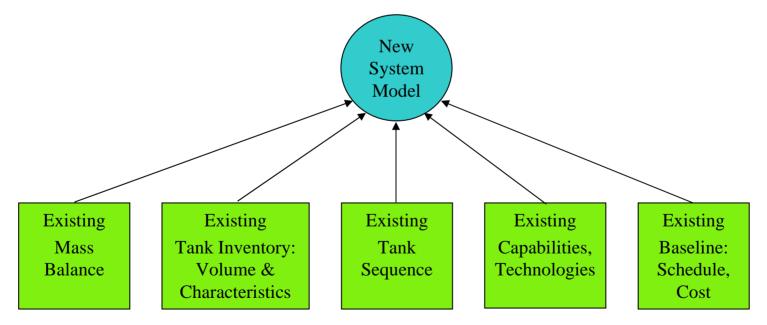
E M Environmental Management

✤ performance ✤ cleanup ✤ closure

Tank Waste Corporate Board, July 2009

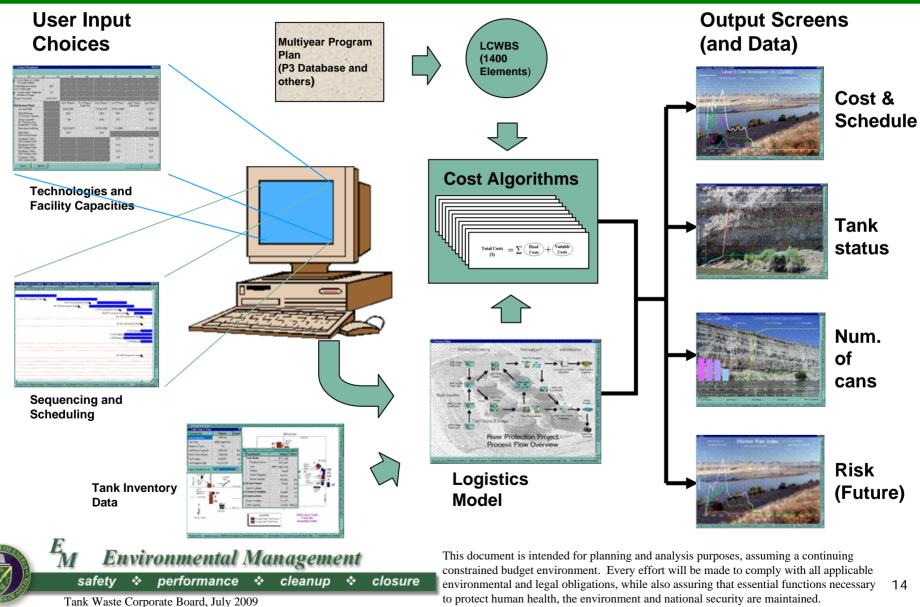
Tank Waste System Strategic Model

- Develop capability for strategic analysis
- Evaluate and optimize tank waste system



This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary 1 to protect human health, the environment and national security are maintained.

12


Strategic Model - Structure

- Establish a model that draws information from existing models and data sources
- Identified a tool at PNNL that may be beneficial
 - Tool was used for Hanford tank waste planning through 2003

Proposed Lifecycle Analysis- System Flow Chart

Strategic Model Capabilities

Glass Optimization

- Waste loading improvement
- Melt rate
- Next generation melter

Process Optimization

- At-tank or in-tank processing
- Alternate waste streams
- Risk-informed retrieval
 - Tank sequencing
- Risk-informed area closure/footprint reduction
- Worker Risk
- Cost and Schedule

Tank Waste System IPT - July 2009

Possible Metrics

At Tank Treatment

- Which Tanks
- Volume change in tanks
- Curie reduction over time
- Number of cans produced over time
- Change in schedule completion
- Na / AI Management
 - Number of cans produced over time
- Mixing and Blending
 - Number of new facilities
 - Number of cans produced over time
 - Percent waste loading over time
- Environmental Management

 safety * performance * cleanup * closure

 Tank Waste Corporate Board, July 2009

- Retrieval and Closure
 - Tank sequence
 - Areas closed
- Glass Optimization
 - Percent waste loading over time
 - Number of cans produced over time

Deliverables – Model

September 30*

- Updated model based on current strategies
- Limited runs for cost and schedule impacts
 - ORP At-tank treatment; Sodium and Aluminum management; and Glass
 Optimization waste form performance, waste loading, and melt rate
 - SR Increase salt processing rate (includes extending operations of ARP/MCU); and Glass Optimization - waste loading and increase Pu limit in glass

December 31 **

- Model framework fully functioning
- Goals:
 - Site specific parameters loaded for both sites
 - Able to analyze the top 14 strategies
 - Multiple strategies
 - No new facilities

Notes:

- Current strategies do not reflect soon to be developed system planning input
- ** Assumes full support from contractors at both sites

Environmental Management

Tank Waste Corporate Board, July 2009

Regulatory Focus

- Evaluating regulatory actions, if any, to enable Optimization Strategies
- Evaluating operations/closure activities within a different risk envelope

Challenges

Aggressive schedule

- Dependence on involvement of both federal and contractor personnel at the sites to support strategy and model development
- Communications with stakeholders when and how
- System planning at sites is evolving
 - Feasibility Report may be issued before system plans are updated
 - New contractors at each site

Next Steps for Tank Waste System IPT

- Finalize Optimization and Regulatory Strategies
 - Feasibility report under development
 - Strategy summaries under development
- Develop costs
 - Initiated 7/27/09
- Complete IPT Scope of Work
 - Working Model and Feasibility Report by 9/30/09
 - Final Model and Final Report by 12/31/09

Tank Waste System IPT - July 2009

Pre-Decisional Draft

Tank Waste System IPT

BACKUP

Tank Waste System Integrated Project Team Scope

<u>Scope</u>

- Develop the Tank Waste System Strategic Model
- Further evaluate the three attributes that could result in an improved, optimized and less-costly strategy for the tank waste system
 - Optimized processing
 - Risk-informed retrieval
 - Area-based tank closure
- Identify transformational solutions

<u>Goal</u>

Identify a savings of more than \$1 Billion in lifecycle costs

Scope of IPT Subteams

Model Development & Integration

- Capability to analyze tank waste system performance and costs
- Accessible to Headquarters, the field, and stakeholders
- Prepare IPT report

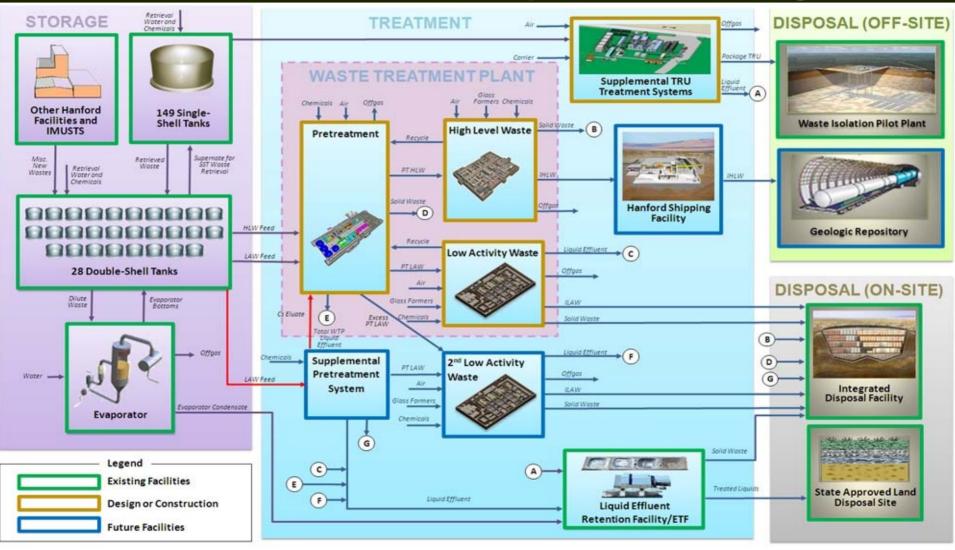
Optimized Strategy

- Optimized strategies for Hanford and Savannah River
 - Optimized processing
 - Risk-informed retrieval
 - Area-based tank closure
 - Research and technology
- Programmatic impacts, such as availability of a repository

Regulatory and Stakeholder

- Develop win-win regulatory strategy
- Prepare communications plan, including fact sheets

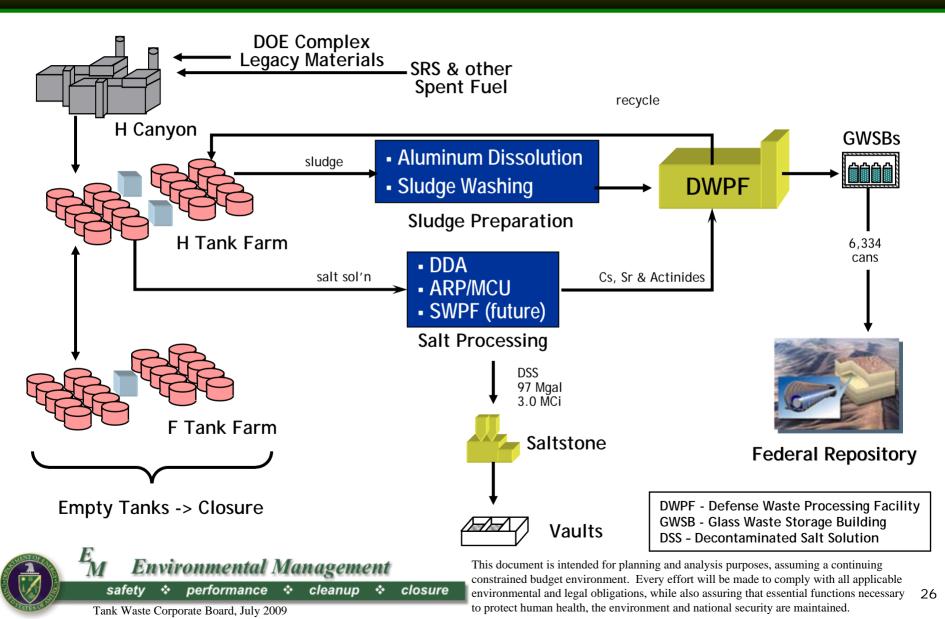
Tank Waste System IPT - July 2009


Review of Schedule

Activity	Forecast	Status
Conduct Site Meetings at Hanford and Savannah River	April	Complete
Complete Current Tank Waste Strategy Documentation	4/30/09	Draft Complete
Complete Initial Parameters for Tank Waste System Model	4/30/09	Complete
Complete Draft Optimized Site Strategies	5/31/09	Draft Complete
Identify Draft Transformational Solutions	5/31/09	In-Progress
Begin Preparing Detailed Cost Estimates	6/1/09	In-Progress
Complete Draft Regulatory Strategy	7/15/09	In-Progress
Complete Initial Model Test Runs	8/30/09	
Complete Working Model and Feasibility Report	9/30/09	In-Progress
Complete Final Model and Final Report	12/31/09	
Conduct Additional Site Meetings	As Needed	
Brief Senior Management Review Team	Monthly	

Tank Waste System IPT - July 2009

River Protection Project Flow Diagram



M Environmental Management

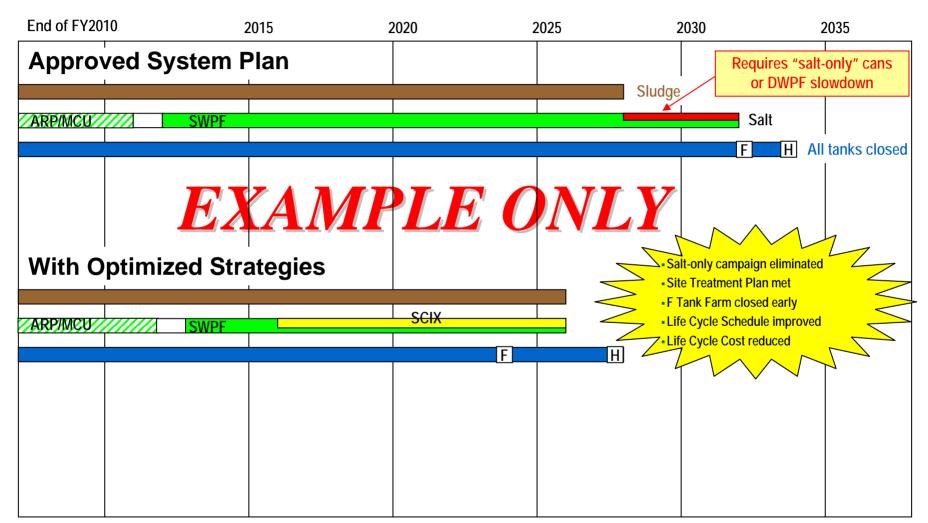
safety ***** performance ***** cleanup ***** closure Tank Waste Corporate Board, July 2009

Tank Waste System IPT - July 2009

SR Flowsheet

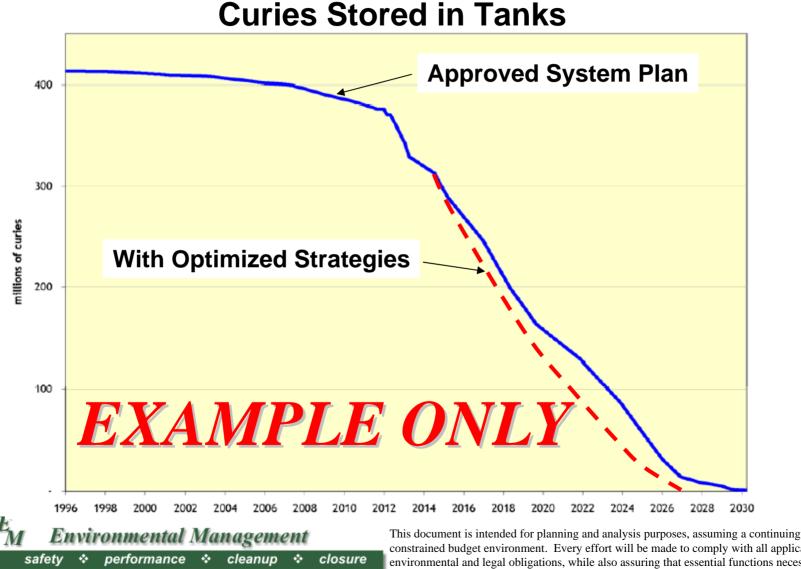
Waste Processing Areas: Roadmap & NAS 2009 Report

Roadmap Waste Processing Strategic Initiatives


- 1.1 Improved Waste Storage Technology
- 1.2 Reliable & Efficient Waste Retrieval Technologies
- 1.3 Enhanced Tank Closure Processes
- 1.4 Next-Generation Pretreatment Solutions
- 1.5 Enhanced Stabilization Technologies

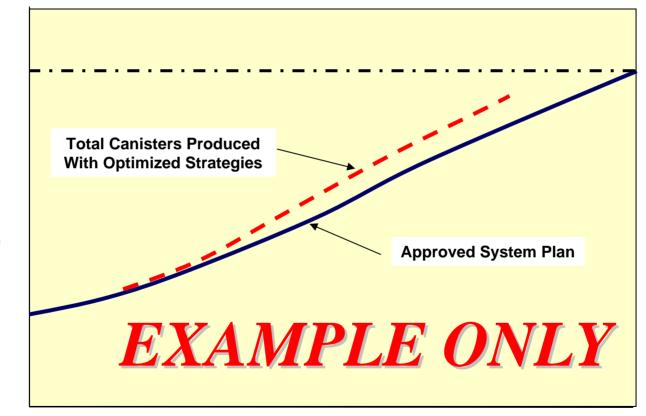
NAS 2009 Report, Gaps for Waste Processing

- 1. Substantial amounts of waste may be left in tanks after their cleanout—especially those with obstructions or associate piping. (High Priority)
- 2. Low-activity streams from tank waste processing could contain substantial amounts of radionuclides. (Medium Priority)
- 3. New facility designs, processes usually rely on pilot-scale testing with simulated rather than actual wastes. (Medium Priority)
- 4. Increased vitrification capacity may be needed to meet schedule requirements of EM's HLW programs. (High Priority)
- 5. The baseline tank waste vitrification process significantly increases the volume of HLW to be disposed of. (Medium Priority)
- 6. A variety of wastes and nuclear materials do not yet have a disposition path. (Low Priority)


Metric Example – Schedule, Savannah River

Tank Waste System IPT - July 2009

Metric Example – Curie Reduction


Tank Waste Corporate Board, July 2009

constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained.

Tank Waste System IPT - July 2009

Metric Example – Canister Production

Equivalent Canister Production

Fiscal Years

This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained.

Equivalent Canisters