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PREFACE

The material presented herein represents Volume 2 of the Igneous Consequences Peer

Review Panel Final Report (henceforth referred to as Volume 1).  Volume 2 consists of

the appendices to Volume 1.

The text files, tables and charts in Appendix 2 of Volume 2 are labeled according to the

Chapter and Section of Volume 1 in which they first are cited.  For example, text file

A2.3 in this Volume 2 is keyed to Section 2.3 in Volume 1.  Tables and charts are labeled

sequentially and refer back to Chapters in Volume 1.  For example, Table 2A is the first

table in Appendix 2 and Table 2B is the second table in Appendix 2.  Figures (graphs or

charts) are labeled similarly, so that Figure 2B is the second figure in Appendix 2.

The Sections of Appendix 3 are numbered sequentially in the order they are cited in

Chapter 3 of Volume 1.  Equations in Appendix 3 are numbered sequentially within each

section; unless otherwise noted, call-outs to equations refer to the Section of Appendix 3

in which the call-out appears.
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APPENDIX 2

TEXT FILES

A2.3   Estimating Magmatic Volatiles in CFVZ Basalts

The presence of amphibole, a hydroxyl-bearing phenocryst found sparsely in some CFVZ

basalts, constrains the water fugacity (fH2O) and the dissolved H2O content of melt.  Cal-

culations were performed using the MELTS algorithm (Ghiorso, 1997; 1999) for the

composition given in Table 2A in Appendix 2.  This is an approximate calculation be-

cause activity-composition relations for Ti-bearing amphibole are not available.  At 50

MPa and 1220 °C, there is no water content that causes saturation with amphibole.  At 50

MPa, the “dry” liquidus temperature is 1182 °C on the QFM oxygen fugacity buffer, and

the liquidus phase is olivine (Fo81).  The minimum chemical affinity for phase saturation

of amphibole at 1220 °C and 50 MPa occurs at 2.5 wt % H2O.  At higher pressure

(100 MPa and 300 MPa), the dry liquidi are 1186 °C and 1200 °C, respectively, and the

minimum chemical affinity for amphibole phase saturation occurs again around 2.5 wt %

H2O.  Thermochemical calculations indicate that amphibole is not stabilized at any pres-

sure at ~ 1200 °C.  Additional calculations reveal that at 100 MPa (~ 3 km depth),

amphibole saturation occurs at 2.8 wt % dissolved H2O at 1010 °C.  Because the amphi-

bole activity-composition model used in the computation does not incorporate the effects

of Titania, these results cannot be considered definitive.  However, based on the H2O

content of the melts at which amphibole does attain its minimum chemical affinity and

allowing for the probable effects of TiO2 on activity-composition relations, it is estimated

that the maximum stability of amphibole occurs ~ 3 wt % H2O.  Multiple-phase satura-

tion of amphibole, olivine, clinopyroxene, plagioclase and Fe-Ti oxides (magnetite

crystalline solution) occurs at temperatures in the range 1025 oC to 1100 °C at 100 MPa,

allowing for the role of Ti in stabilizing amphibole in a potassic trachybasalt composi-

tion.  The laboratory phase equilibration experiments of Knutson and Green (1975) cited

by Hill et al. (1995) provide an additional independent estimate of 2 wt % H2O  to 5 wt %

H2O for the stabilization of amphibole in an alkali basalt.  This is consistent with the es-

timate based on MELTS Gibbs free energy minimization cited above.
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A second approach for estimating volatile abundance is to examine glass and fluid inclu-

sions within phenocrysts from the potassic trachybasalts at Lathrop Wells by quantitative

IR spectroscopy.  Luhr (2002) recently conducted a study and estimates H2O and CO2

content in the range 3 wt % to 4 wt % and several thousand parts per million (1 ppm

equals 10-4 wt %), respectively. These values give bulk magma H2O/CO2 ratios

(ZH2O/ZCO2) in the range 10 to 30.

A third method for estimating the dissolved H2O content of CFVZ magmas is to compare

the petrographically observed sequence of phenocryst crystallization with that determined

by experimental phase equilibria.  As an illustration, consider the crystallization sequence

for composition given in Table 2A, thought to be representative of possible future erup-

tions at YMR.  For this composition, the mineral plagioclase is the liquidus phase and

remains the sole crystallizing phase for 30 oC to 50 °C below the liquidus in low-pressure

(100 MPa) isobaric crystallization experiments with no added H2O (i.e., the dry case).  In

contrast, this same major element composition plus 3 wt % H2O is characterized by oli-

vine on the liquidus and the suppression of plagioclase saturation until temperatures well

below the liquidus.  The order of phenocryst crystallization is a sensitive indicator of the

dissolved H2O content of the melt.  In Tables 2E (Appendix 2), representative results are

presented of MELTS simulations showing the influence of H2O concentration on crystal-

lization sequence.  In order to reproduce the phenocryst crystallization sequence recorded

by petrographically, H2O contents in the range 2 wt % to 4 wt % are required.

A2.5.2   Eruption Chronology of Lonquimay and Capulin Mountain

Lonquimay, Southern Chile — The volcanic history of Lonquimay volcano in the

Southern Andes Volcanic Zone of Chile illustrates the importance of timescale and erup-

tive variability at a single volcanic center.  Although Lonquimay is in a different tectonic

setting (subduction zone, not extensional) and has erupted magma of different composi-

tion (basaltic andesite, not potassic trachybasalt) than post-Miocene activity in Crater

Flat, its variability over time intervals from days to weeks to months to years to centuries

is instructive.  Lonquimay is a small, flat-topped, symmetrical polygenetic composite
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stratovolcano that has erupted five times in the past 150 years (1853, 1887-1890, 1933,

1940 and 1988-1990).  The most recent eruption at Lonquimay was in 1988-1990

(Moreno and Gardeweg, 1989; Smithsonian Institution, 1989; Naranjo et. al, 1992).

Historical lava flows have issued from vents along the NE flank of the Lonquimay strato-

cone along a SW-NE trend.  All eruptions have been explosive and all have produced

lava flows.  However, details of each eruption vary in terms of intensity, style and vol-

ume of volcanic product.  The vent of the 1853 eruption was within the central crater of

the composite Lonquimay volcanic edifice.  Thirty-four years later, a 19-month eruption

began in June 1887.  Lava issued from a radial fissure on the NE flank of Lonquimay.

The dominant product of this eruption was basaltic andesitic lava of approximate volume

0.1 km3; relatively little tephra was produced during this eruption.  Small eruptions took

place in 1933 and again in 1940.

The most significant eruption in the past 150 years at Lonquimay began on December 25,

1988 after a two-week period of increasing seismicity.  The eruption began along a 400 m

fissure trending ENE-WSW on the NE flank of the Lonquimay stratocone about 4 km

from the summit crater.  Vigorous tephra emission was followed several days later by

substantial lava eruption feeding a block lava flow that traveled to the NNE.  A 400-m

high parasitic tephra cone (Navidad cone) was constructed along the fissure within the

first few weeks of the eruption.  Moderate ash emission and lava production continued

through mid-September 1989 from Navidad cone, on the NE flank of the composite edi-

fice.  Decrease in activity at the cone began in late September and continued until late

November, when the eruption intensity briefly increased.  Continued ash and lava were

produced in December 1989, but lava production slowed in early January 1990.  The

eruption ended late in January 1990, having lasted 13 months and generated 0.10 km3

(DRE) of pyroclastic ejecta (Navidad cone plus dispersed tephra) and 0.23 km3 (DRE) of

lava, for a total volume of ~ 0.33 km3.  The fissure eruption that began Christmas day in

1988 produced lava at ~ 5 x 106 m3/day averaged over the first ten days, 1.4 x 106 m3/day

averaged over the next 30 days, 7.5 x 105 m3/day averaged over the period 31 January to

8 February, and 1.2 x 104 m3/day between 17 September and late November.  The rate of
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tephra production is less well constrained, but about 80% of the total thickness of the

tephra blanket was produced in the first ~ 50 days of the eruption (Naranjo et al., 1992).

The average volumetric rate of eruption for the 1988-1990 eruptive phase at Lonquimay

was ~ 0.37 km3/year.  Assuming a magma density of 2700 kg m-3, the average mass flow

during the 13-month eruption was 3.2 x 104 kg s-1, within the range for typical

Strombolian eruptions (104 kg/s to 106 kg/s). The eruption intensity (volume flow rate)

decreased by a factor of ten in the first 100 days and by a factor of 100 in the first year.

Capulin Mountain, Raton-Clayton Volcanic Field — The Raton-Clayton Volcanic Field

(RCVF), in NE New Mexico is made up of ~ 120 basaltic cinder cones (and associated

lava flows) with ages in the range > 1 Ma to about 7500 years before the present.  The

youngest volcano in the region is Capulin Volcano, distinguished by its remarkably

symmetrical cinder cone.  The rim of the cone is approximately 1.7 km in circumference

with a basal diameter of about 1.5 km.  The cone stands 360 m high above the local base

level; the central crater depth is about 125 m below the rim of the cinder cone.  Capulin

volcano erupted about 7500 years ago.  This cinder cone represents the last stage of a pe-

riod of volcanism that had begun ~ 8 Ma earlier at RCVF.  The eruption began along a

northwest-oriented fissure vent that centralized to form a single vent or conduit during

the early part of the eruption.  Powered by the conversion of PV vapor expansion work to

kinetic energy, cinders were propelled by expanding gases along steep ballistic trajecto-

ries.  Tephra fall deposits piled up around the vent to produce the Capulin cinder cone.

Simultaneously with cinder cone growth, a sequence of four lava flows were erupted

from a bocca on the NW side of the cone.  The first erupted lava flowed to the SE of

Capulin Mt, covering an area of several square kilometers.  Following the first lava flow

and rapid growth of the cinder cone, additional lava flows were emitted as mildly effu-

sive flows from the bocca on the northwest side of the cone.  Magma flowed at least

partly in lava tubes, first to the south (second lava flow), then southwest (third lava flow),

and finally to the north and northeast (fourth lava flow).  The total area covered by lava

flows is about 38 km2.  The volume of tephra making up the cone is approximately
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0.7 km3 (density ~ 1000 kg/m3), whereas the total volume of lava is about 0.57 km3 (den-

sity ~ 2700 kg/m3), to give a lava/tephra mass ratio ≈ 2 for Capulin Mountain volcano.

A2.6.1   Rheology of Bubbly Magma

Once the rising magma becomes saturated with respect to vapor, it becomes important to

consider the viscosity of the magmatic two-phase mixture (melt plus vapor) and not sim-

ply the viscosity of volatile-saturated melt.  A key question becomes the relative motion

between bubbles and melt.  Are bubbles distributed homogeneously within magma trav-

eling at the same velocity as the melt?  Or will melt and vapor move upward at different

velocities?  Here we perform a simplified analysis of the problem.

Two cases may be differentiated.  If the bubble Stokes ascent rate (ub = 2/9 grb
2∆ρ/η) is

large compared to the magma ascent rate (u), bubbles will rise through ascending magma

to form a vapor-rich cap.  These may be removed by Darcy percolation into permeable

country rock, or at least accumulate near the top of the rising dike.  Alternatively, if the

magma ascent rate is fast compared to bubble rise rates, the mixture can be treated as a

homogeneous bubbly flow with an effective mixture viscosity.  For typical parameters

(rb ≈ 5 mm, ∆ρ ≈ 1800 kg/m3, η ≈ 50 Pa s and u ≈ 1m/s), one finds ub/u to be of the order

of 10-3.  This implies that the melt-bubble magmatic suspension can be treated as a ho-

mogeneous bubbly flow.  Naturally, at very shallow depths, when the volume fraction of

vapor is close to or exceeds the critical value for magma fragmentation, ub/u will ap-

proach unity.  There is a flow regime change at this point from bubbly flow to slug flow

or some other form of separated two-phase (melt-vapor) flow.  The conclusion is that for

bubbly flows with θ <~ 0.5, the assumption of bubbly homogeneous flow is reasonable.

If the magma can be treated adequately as a homogeneous mixture, it then becomes im-

portant to determine the effect of bubbles on the shear viscosity of the magma.

There is a large literature on the shear viscosity of bubbly flows that extends from the

pioneering work of G. I. Taylor (1932) to the present (Frankel and Acrivos, 1970; Stein

and Spera, 1992; Bogdassarov and Dingwell, 1992; Manga et al., 1998; Lejeune et al.,

1999; Martel et al., 2000; Spera and Stein, 2000; Spera, 2000; Lensky et al., 2001;
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Blower et al., 2001; Pal, 2001a,b,c; Manga and Loewenberg, 2001; Rust and Manga,

2002a,b; Llewellin et al., 2002; Stein and Spera, 2002; Pal, 2003).  For magmatic flows

relevant to Yucca mountain, the bubble Reynolds number (Reb ≡ ρGrb
2/ηm , where G, the

mean shear rate, ≈ u/d, d is the dike thickness, and ηm is the melt viscosity) is small,

which means that, from the perspective of the bubble, viscous forces outweigh inertial

ones.  The shear viscosity of a magmatic two-phase pseudofluid mixture (ηp) is given by

ηp = f (ηm,θ, Ca), where ηm is the shear viscosity of the melt (a function of pressure,

temperature and composition including dissolved volatiles), θ is the volume fraction of

bubbles, and Ca is the Capillary number, defined Ca ≡ Grbηm/σ , where G is a mean mac-

roscopic shear rate, rb is a typical bubble radius, and σ is the melt-vapor interfacial

energy.  It is convenient to discuss the relative viscosity (ηr), defined as the ratio of the

pseudofluid (mixture) viscosity to the viscosity of the single-phase melt:  ηr ≡ ηp/ηm and

so ηr = g (θ, Ca).  There are three relevant regimes based on the magnitude of Ca.  At

low Ca (Ca < 0.1), bubbles are little deformed, and ηr is a monotonically increasing

function of the bubble volume fraction, θ , and independent of the shear rate (or Ca num-

ber).  In the dilute limit, ηr = 1 + θ.  For higher bubble fractions, there are a number of

empirical relations of the form ηr = h (θ), where h (θ) is a monotonically increasing

function of the bubble loading (θ).  In this regime, the viscosity of the two-phase mixture

exceeds that of the melt, and Newtonian behavior is observed.  In contrast, for

0.1 < Ca < 10, a transitional power-law regime exists such that ηr decreases as Ca in-

creases at fixed θ.  In the power law regime, the relative viscosity decreases as the

volume fraction of vapor increases.  Finally, for Ca > 10, ηr is independent of Ca and,

again, a monotonically decreasing function of θ.  The key factor is the magnitude of the

capillary number.  For application to magma beneath Yucca Mountain, ηm ≈ 50 Pa s and

σ ≈ 0.2 N/m.  For a dike 1 m thick and a magma ascent rate of 1 m/s, then, for rb = 1, 3

and 10 mm, Ca ≈ 0.3, 0.8, and 3, respectively.  If the magma ascent rate is 10 m/s, then

G = 10 s-1 and Ca ≈ 3, 8 and 30, respectively.  A plot of the relative viscosity of magma

as a function of the volume fraction of vapor (θ) and the shear rate (or Capillary number)

is presented in Figure 2B (Appendix 2).
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TABLES

Table 2A Devolatilized major element composition used in magma property
calculations

OXIDE Percent
by Mass

SiO2
TiO2
Al2O3
Fe2O3
FeO
MnO
MgO
CaO
Na2O
K2O
P2O5

48.99
1.95

16.91
1.76
8.99
0.17
5.89
8.69
3.57
1.86
1.23

TOTAL 100.00
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Table 2B   Nomenclature for Chapter 2

Mass fraction H2O dissolved in melt WH2O
m

Mass fraction CO2 dissolved in melt WCO2
m

Mass fraction H2O in vapor WH2O
v

Mass fraction CO2 in vapor WCO2
v

Mass fraction H2O in mixture ZH2O
Mass fraction CO2 in mixture ZCO2
Mass fraction of vapor in mixture φ
Mole fraction H2O dissolved in melt XH2O

m

Mole fraction CO2 dissolved in melt XCO2
m

Mole fraction H2O in vapor XH2O
v

Mole fraction CO2 in vapor XCO2
v

Density of CO2 vapor (kg/m3) ρ CO2

Density of H2O vapor (kg/m3) ρ H2O

Density of SO2 vapor (kg/m3) ρ SO2

Density of vapor (kg/m3) ρ v

Density of melt (kg/m3) ρ m

Density of magma (mixture) (kg/m3) ρ
Melt viscosity (Pa • s) η
Volume fraction of vapor in magma θ
Fugacity coefficient of H2O χ H2O

Fugacity of H2O (Pa) fH2O
Fugacity coefficient of CO2 χ CO2

Fugacity of CO2 (Pa) fCO2

Isobaric specific heat capacity of melt (J/kg • K) cp, m

Isobaric specific heat capacity of H2O vapor (J/kg • K) cp, H2O

Isobaric specific heat capacity of CO2 vapor (J/kg • K) cp, CO2

Isochoric specific heat capacity of H2O vapor (J/kg • K) cV, H2O

Isochoric specific heat capacity of CO2 vapor (J/kg • K) cV, CO2
Heat capacity ratio (Cp/Cv) of vapor kg

Isobaric specific heat capacity of vapor (J/kg • K) cp, v
Heat capacity ratio of magma k
Mean vapor molar mass (kg/kmol) Mv

constant (J/kmol • K) R
Vapor gas constant (J/kmol • K) Rv
Isentropic compressibility of melt (Pa-1) β s

 Sonic velocity of melt (m/s) cm
Sonic velocity of vapor (m/s) cv
Sonic velocity of magma (m/s) c
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TABLES 2C   Magma properties versus pressure

Fifty-four tables are presented.  Properties computed are identified at the top of the table

columns.  Symbols and units are keyed to Table 2B.  Properties are computed for magma

at temperatures 1050 °C, 1150 °C and 1220 °C for H2O/CO2 mass ratios (≡ ZH20/ZCO2)

equal to 2, 4, 6, 10 and 20 and total volatile content (ZH2O + ZCO2) equal to 1, 2, 3 and 4

wt %.  Additional tables for pure H2O and pure CO2 with ZH2O or ZCO2 equal to both

4 wt % and 8 wt % are provided.  All properties are computed at the following pressures:

100, 90, 80, 70, 60, 50, 40, 30, 20, 17, 14, 11, 8, 5, 2 and 0.10133 MPa.

For readers interested in seeing these tables, they will be made available in the future on

the web at http://www.ymp.gov, under Technical Documents.

Those interested in obtaining a copy of these tables before they are posted may contact

Thomas Rodgers at Bechtel SAIC Company LLC (1-702-295-5483).
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Table 2D   Recent short-lived basaltic eruptions

Analog Volcano
Type Magma Type Eruption

Characteristics VEI log V
(km3) References

Cerro
Negro

Long-lived
cinder cone
(150+ yrs)

Basalt, w/30%
plg, 5% ol, 1%
pyx phenos

Violent Strombolian erup-
tion in  1992 produced .03
km3 tephra over 17.5 hrs;
avg. eruption rate ~ 500
m3/s (DRE)

3 -2 Smithsonian
Inst., 1992a,
1992b.

Viramonte &
DiScala, 1970

Parícutin,
1943-1950

Mono-
genetic
cinder cone
& lava
flows

Andesite to
basaltic ande-
site, 55-60
wt % SiO2
(whole rock).
ol+plg phenos,
ol+cpx+opx
microphenos.

Construction of a scoria
cone ~ 420 m high, .5 km3

lava, and  ~ .7 km3 tephra
distributed over several
hundred km2.  Maximum
tephra column height ~ 7
km.  Tephra discharge rate
during early cone-building
phase (2/22-26/43), ~ 40
m3/s (= ~ 10 m3/s DRE;
Luhr & Simkin, 1993,
p. 70)

3 0 Fries &
Gutierrez (1952,
Table 5);
Segerstrom
(1950, Table
22), Luhr &
Simkin (1993)

See Scandone
(1979) for de-
tails of eruptive
volume (tephra,
lava and
magma) versus
time

Tolbachik Fissure on
a large
basalt
shield.

High-Al2O3
alkali basalt

Fissure eruptions from
vents on flanks of a lava
shield. Eruptions occurred
at two locations (the
“southern” and “northern”
breakthroughs”) and built
cinder cones and lava flows
at each location. Eruptive
sequence included violent
Strombolian phases and,
near the end of the
sequence, phreatomagmatic
explosions.

3 -1 Fedotov et al.,
1983; Fedotov
& Markhinin,
1983.

Lonquimay,
Chile,
12/25/88-
1/24/90

Fissure on
a strato-
volcano

Andesite to
basaltic andesite
(57.8-59.5 wt %
SiO2)

Fissure eruption from flank
vent with construction of a
scoria cone ~ 300 m high, .2
km3 lava, and ~ .23 km3

tephra distributed over ~
500 km2.  Maximum tephra
column height ~5 km.

3 -1 Smithsonian
Inst. (1989)

Izu Oshima,
11/15-
24/1986

Strato-
volcano

Basalt, 53-57 %
SiO2 (whole
rock)

Lava fountains at summit
< 1600 m high producing
~ . 0018 km3 tephra and
.0019 km3 lava.  Mean
eruption rate during violent
phase = 1-4 m3/s (DRE).

3 -2 Smithsonian
Inst. (1986)

Heimaey,
1/23-
6/28/1973

Basaltic
hot-spot
volcano

Basalt; hawaiite
at beginning of
eruption

Eruption along a 2-km fis-
sure that produced a cone
100 m high, ~ 0.3 km3 lava,
0.25 km3 tephra, max.
Eruption rate ~ 105 kg/s in
late January.

3 0 Williams &
Moore (1983)

Jakobsson et al.
(1973)
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Melt Fraction Vs Temp 
at 100 MPa and 3% H 2O
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Tables 2E Results of MELTS modeling of fractional crystallization of melt composi-
tion from Table 2A plus varying amounts of H2O (from dry to 3 wt %)
under isobaric conditions.

Note that the sequence of phenocryst crystallization depends sensitively on the dissolved

H2O content of the magma.  Results portrayed pictorially.

Separate plots are given for isobaric crystallization for the following cases: (10 MPa,

dry), (100 MPa, dry), (100 MPa, 1 wt % H2O), (100 MPa, 2 wt % H2O), (100 MPa, 3 wt

% H2O).  The figures show the mass fraction of each crystalline phase during isobaric

fractional crystallization of the devolatilized composition listed in Table 2A plus various

amounts of H2O as a function of temperature. The mode refers to the sum of all crystal-

line phases present.
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Melt Fraction Vs. Temp 
at 100 MPa and 2% H 2O 
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Figure 2A Cumulative volume of erupted magma versus time for post-Miocene
volcanism in the Crater Flat Volcanic Zone
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Figure 2B Relative viscosity of magma (ηr) as a function of Capillary number (Ca) for
various volume fraction of vapor ( θ ) values:  The definition of both relative
viscosity and the Capillary number are noted in the text.  Note that in the high
Ca regime, the shear viscosity of magma is up to a factor of 5 smaller than for
that of melt alone at the same conditions of temperature and pressure for  θ =
0.5. In contrast, at low Ca, the magmatic mixture is more viscous than that of
single-phase melt at the same conditions of temperature and pressure. Refer-
ences cited in Section A2.6.1, Rheology of Bubbly Magma.
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APPENDIX 3

APPENDIX 3.1 GAS PRESSURE IN THE TIP CAVITY OF A DIKE
PROPAGATING IN UNSATURATED ROCK

1   Introduction

When the cavity behind the tip of a propagating dike is located in an unsaturated perme-

able rock, the pressure of the gas in this cavity is less than the fragmentation pressure,

due to leakage of gas into the country rock.  The magnitude of the gas pressure is con-

trolled by the balance between the amount of gas fed to the cavity at the fragmentation

front (assumed here to coincide with the magma front) and the amount of gas bleeding

off into the rock.  In this appendix, we provide an estimate of this pressure using scaling

arguments and back-of-the-envelope calculations.  It then is shown, using reasonable val-

ues of the relevant parameters, that the gas pressure when the tip cavity is propagating in

the unsaturated Yucca Mountain tuff is “low” — i.e., less than 1 MPa.

2   Gas Inflow

It can readily be argued that the total gas flow rate, iQ , supplied at the magma front to the

tip cavity is given by

12iQ w Vλα= (1)

where 1α  is a number of the order of 1, V  is the velocity of the front (taken to be equal

to the dike tip velocity), and wλ  is the half-aperture of the dike at the magma front.  In

reference to Appendix 3.3, wλ  can be expressed as

2w wλ α ∗= (2)

where 2α  is a number of order 1(10 )O −  or less, and w∗  is the characteristic half-aperture

given by
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1 23 mvw η
δ

/
∞

∗ ′
 =  
 

(3)

with mη′  denoting the viscosity of the melt, v∞  the magma velocity at great depth, and δ ′

a relative unit weight.  Hence,

1 2

1 2
32 m

i
vQ Vηα α

δ

/
∞

′
 =  
 

(4)

3   Gas Outflow

Calculation of the gas outflow rate is based on the particular solution of the one-

dimensional non-linear diffusion equation governing the evolution of gas pressure,

( )p x t, , in the semi-infinite unsaturated permeable medium 0x > :

g

k p pp
x x tφη

∂ ∂ ∂  = ∂ ∂ ∂ 
(5)

with the following initial/boundary conditions:  ( 0) 0p x, = ,  0x > ;  (0 ) op t p, = ,  0t > .

(The non-linearity of (5) is a consequence of the dependence of the gas density on the

pressure).  In (5), φ  denotes the rock porosity, k  the rock intrinsic permeability, and gη

the gas viscosity.

The self-similar nature of this problem implies that the volumetric gas flux, ( )oq t , at the

boundary is given by

4

2
o

o
g

kpq
t

α φ
η

= (6)

where 4α  is a number that can be computed by solving numerically a non-linear ordinary

differential equation that is deduced from (5):

885.04 ≈α (7)
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Solution (6) can then be used to compute the volumetric flow rate, oQ , of gas bleeding of

the cavity, assumed to be propagating at the constant velocity, V , and to be filled by gas

at constant pressure, op :

4
o

o
g

kp VQ φ λα
η

= (8)

where λ  is the length of the tip cavity.

4   Cavity Pressure Estimate

Balancing the gas mass-flow rate in and out of the cavity can be translated into the fol-

lowing relation between oQ  and iQ , after recognizing that iQ  corresponds to a gas at the

fragmentation pressure, cp , and oQ  to a gas at pressure, op — i.e.,

o o c ip Q p Q= (9)

After writing that the tip velocity, V , is of the same order as v∞  — i.e., 3V vα ∞= , with

3 (1)Oα =  — the final expression for tip cavity pressure, op , is deduced from (4), (8),

and (9) to be
1 32

2 3m g
o c

v
p p

k
η η

β
φδ λ

/

∞ /
′

 
=   

 
(10)

where β  is a number likely to be 1(10 )O − :

( )
2 3

1 31 2
4

3

2 3α αβ α
α

/
/ 

=  
 

(11)

Taking 410−≈mη  MPa s, 1110−≈gη MPa s, ≈∞ν 1 m/s, 1210−≈k m 2 , 210≈λ  m,

310−≈′δ  13 10,MN/m −≈φ  and 110≈cp  MPa, we obtain 1≈op  MPa or less.
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APPENDIX 3.2   INSTABILITY OF THE DIKE TIP

The dike tip cavity is expected to respond on the (very short) timescale of rock fracture to

maintain an approximate balance between the two major contributors to the stress inten-

sity factor, K: the magma pressure (for the most part, an excess pressure) acting over the

bulk of the dike, and the underpressure within the cavity.  For a uniform cavity under-

pressure, pλ∆ , the (negative) contribution from the cavity increases monotonically with

λ  (proportionally to 1/ 2pλ λ−∆  in the limit of small / lλ ).  This implies that as pλ∆ for a

given dike decreases, λ increases monotonically so as to maintain cK K= .

At the top of a rising dike, the pressure within the cavity, pλ , may be taken to be quasi-

uniform (at least in the context of “classical” dike propagation models with a well-

defined magma front and insignificant mass in the cavity), but the dike-normal stress, oσ

decreases toward the tip at a rate /od dzσ . When the cavity length, λ , is small enough

that [ ]dzd oσλ  << mfp∆ where mfp∆  is the underpressure at the magma front, gradients in

oσ  are unimportant, and the cavity underpressure may be approximated as constant.

However, as the dike tip approaches the surface, the decrease in oσ ensures that the cor-

responding decrease in mfp∆  (for fixed pλ ) and increase in λ  lead to strong variations in

the underpressure along the length of the cavity (decreasing toward the dike tip).  Under

such conditions, λ  cannot increase indefinitely to offset the decreasing mfp∆  (to main-

tain cK K= ), because, eventually, both increasing λ  and decreasing mfp∆  lead to an

increase in K.

To determine when this occurs, we can write the contribution to K from the lag zone

( K λ≡ ) as the superposition of that due to a uniform underpressure, mfp∆ , and that due to

an overpressure that increases linearly from zero at a distance λ  behind the tip to

( )/od dzλ σ  at the tip.   Assuming λ <<  l , one may use the result that the stress intensity
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factor due to a point force, F (per unit length), applied at a distance z behind the tip of a

semi-infinite fracture is given by ( )1/ 2 1/ 22 /K F zπ −=  (Tada et al., 1985).  Integrating

this over the cavity length, λ ,  yields

1/ 2 3 / 28 2 8
3

o

mf
dK p
dz

λ σλ λ
π π

= − ∆ + (1)

For small λ , the first term in (1) dominates, and the uniform underpressure results apply; for

large λ , the second term dominates.  Differentiating with respect to λ  yields

1/ 20.45 0.9
o

mf
dK dp
d dz

λ σλ λ
λ

− 
≈ − ∆ + 

 
(2)

Setting (2) to zero shows that K λ  reaches a minimum for ( )/ 2 /o
mfp d dzλ σ= ∆ .  This

means that as the dike tip shallows and λ  increases from small values, K λ  first decreases

but then increases when the underpressure at the tip, tipp∆ , is 0.5 mfp∆  — that is, long before

the tip develops an overpressure.  (Even though the net suction force within the lag zone

increases with λ  beyond this critical value, K λ  decreases in magnitude because the Green’s

function for K is heavily weighted toward those stresses applied very near the tip, and

tipp∆ decreases as λ  increases.)

The implication of Eq. (2) for rising dikes is that there is a strong tendency for the tip to go

unstable once λ  grows to the point that 0.5tip mfp p∆ ≈ ∆ .  This view is somewhat simplistic

in that (in addition to using a small / lλ  approximation and neglecting the free surface) it

neglects the changing pressure distribution behind the magma front as λ  increases and how

that affects K.  Nevertheless, preliminary results from the full numerical calculations shown

in Chapter 3 indicate that 0.5tip mfp p∆ ≈ ∆  is a reasonably good rule-of-thumb for instability,

suggesting that the changing pressure distribution behind the magma front does not have a

large influence on K.
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Equation (2) is not enough to determine the depth at which a given dike tip will tend to go

unstable; for this, an additional relation is needed.  A rough — but nonetheless, useful —

estimate can be obtained from a global balance for the stress intensity factor, K, which, for

conceptual purposes, may be thought of as having contributions from three sources:

P visc
cK K K K Kλ∆= + + = (3)

where PK ∆ (positive) is the contribution that would result from a constant excess pressure,

P∆ , acting all the way to the tip of a dike of length scale, l; viscK (negative) is the contri-

bution from the drop in excess pressure due to viscous flow up to the magma front; and

K λ  (negative) is the contribution from the tip cavity.  We assume pK ∆ >> cK , so (3) may

be approximated as 0P viscK K K λ∆ + + ≈ .  For λ <<  l , viscK exceeds K λ , and the domi-

nant balance is between  PK ∆ and viscK .  However, when the magma is buoyant all the

way to the dike tip and the tip is approaching instability (as for the examples shown in

Chapter 3), λ  is large enough that viscK K λ< .  In this case, we may write PK Kλ α ∆= − ,

where α  is an unknown coefficient less than (but near to) unity.

PK ∆  is given by 1/ 2Pl∆ , where the relevant length scale, l , is the lesser of (1) (half) the

lateral extent of the dike, or (2) the vertical extent of the region over which the excess

pressure is substantially larger than that at great depth.  To determine K λ  at instability,

substitute / 2mfp∆  for ( )/od dzλ σ in (1) to yield

1/ 2
1/ 2 3 / 2 3 / 20.6 1.2 0.4

o

mf mf
d dK p p
dz dz

λ σ σλ λ
−

 
≈ − ∆ ≈ − ≈ ∆  

 
(4)

Setting 1/ 2K Plλ α= − ∆ yields (at instability),

2 / 3 2 / 31 1/ 2
1/ 2 1/ 20.8 ; 2.4

o

mf
d dPl p Pl
dz dz
σ σλ α α

−      
≈ ∆ ∆ ≈ ∆      

         
(5)
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To compare the estimate in (5) to the results of Figure 3-4, we can substitute 1α ≈ ,

P∆ ≈ 2.5 MPa (an average over the length scale of 2 km), l ≈ 2 km (half the lateral ex-

tent), and ( )/od dzσ  = 12 MPa/km to find λ = 380 m and mfp∆ ≈  9.5 MPa at instability.

These values are reasonably close to the numerical values of λ  = 320 m and

mfp∆ ≈  6.8 MPa.  (Closer agreement would be had for α  = 0.7, a plausible value.) A

greater exploration of parameter space by the numerical models may be required to see if

this rough agreement holds generally.  Perhaps the most important point is that, despite

the simplicity of this elastic analysis, which ignores all coupling to the fluid flow (except

through the unknown constant α , which should be close to 1), Eq. (5) seems sufficient to

show that, for dike lengths of the order of 1 km and excess pressures of a few MPa, the

tip cavity length at instability is of the order of hundreds of meters —not tens of meters

or less.

Two processes conceivably could reduce considerably the length of the tip cavity at in-

stability.  First, if inelastic deformation becomes distributed over a wide region as the

dike tip approaches the surface (comparable to the tip depth, for example), rather than

being concentrated only along the plane of the dike, this effectively imparts a compres-

sion to the cavity that will lessen the distance from the magma front to the dike tip.  In a

crude sense, this may be thought of as increasing the rock fracture toughness, cK , to val-

ues orders of magnitude larger than those measured from laboratory tests.  Second, if the

dike is filled with magma with a low enough bubble content to be effectively “negatively

buoyant”, 1/ 2Pl∆  may grossly overestimate PK ∆ , so that K λ  (and, hence, λ ) at instabil-

ity will be considerably less.  Note that, in the latter case, the tendency for lateral

propagation of the dike is much stronger than the tendency for vertical propagation (see

below).

Observations

Few fissure eruptions have been observed from the time the dike tip first breached the

surface.  Duffield et al. (1982) report that during the 1971 eruption in the Southwest Rift
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of Kilauea, a line of lava fountains moved downrift at about 0.15 m/s, ahead of which

new ground cracks opened and pre-existing cracks widened.  “Then in rapid succession,

volcanic fume combined with condensing steam from vaporized ground water (?) issued

from the cracks, clots of molten lava were ejected in Strombolian fashion to heights of a

few meters, dense dark fume billowed forth, and finally lava fountaining began.”  The

paper is not quantitative about the timing, but Duffield (personal communication, 2002)

states “The sequence of action immediately before lava fountaining probably lasted no

more than a minute or two at a fixed site.  It may have been less than a minute.” Because

vertical flow rates are likely to have been less than horizontal flow rates for this dike, the

tip may have been no more than 10 m beneath the surface when the cracks appeared.

However, for low-gas eruptions in Hawaii, the magma may be effectively negatively

buoyant nearly to the surface; in this case, the crack tip can be stabilized with a lag zone

so short that the instability discussed above does not occur until much shallower (because

of the underpressure over much of the upper portion of the dike; see, for example, Rubin,

1990; Lister and Kerr, 1991).

Observations more pertinent to the YMR may come from the onset of the eruption of

Parícutin in 1943 (Foshag and Gonzales, 1956).  As is discussed in Appendix 3.4, the

parent dike may have been halted at depth by freezing near the tip.  After about 2 weeks

of seismic activity, a fissure ~ 50 m long and ~ 5 cm wide opened up, followed about 8

hours later by vigorous fountaining thought to mark the arrival of a robust magma supply

to the surface.  Very little magmatic material came out of the crack initially, and what

came out did so quite gently; thus, a reasonable interpretation is that the crack was driven

not by a high-pressure gas phase, but by gradual inflation of the dike at depth.  (The same

gradual inflation could have been responsible for the stress increase driving the seis-

micity.)  The depth of the magma front at the time of fissure formation is unknown.

Three-dimensional boundary element calculations for a subsurface dike with a fixed

(rectangular) geometry, but gradually increasing (uniform) magma pressure and an at-

mospheric-pressure cavity show that, as expected, the tip cavity gradually increases in

height and is tallest above the dike midpoint.  Instability occurs when this tallest portion
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is roughly half the distance to the surface, consistent with the conclusion following from

Eq. (2).  The maximum thickness of the first crack to breach the surface is only a very

small fraction of the maximum dike thickness, so 5 cm is not an unreasonable value for

this scenario.  The strike length of this unstable crack appears to be roughly equal to the

depth of the magma front (as long as the lateral extent of the dike is much greater), sug-

gesting a minimum depth of 50 m for the dike tip at Parícutin.  However, it is quite likely

that the full extent of the (thin) surface fissure was obscured by having to propagate

through near-surface soils, placing the actual dike tip deeper.
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APPENDIX 3.3 MATHEMATICAL MODEL OF PROPAGATING DIKE WITH
COMPRESSIBLE HOMOGENEOUS FLOW

1   Introduction

Mathematical models of dikes that can be found in the literature involve only incom-

pressible magma; see Lister and Kerr (1991), Rubin (1995a) and Rubin (2003) for

reviews.  The expected H2O and CO2 content of the magma considered for a hypothetical

intrusion at Yucca Mountain implies that volatiles will exsolve from the magma during

its ascent (see Chapters 2 and 3).  This appendix summarizes some of the efforts ex-

pended by the Panel to modify classical dike models to account for the exsolution process

as well as for the fragmentation of the magma when the magma pressure drops below a

critical pressure cp  (a function of the magma composition).  The new models remain ru-

dimentary, however, and are proposed here only as a first step toward the incorporation

of the complex physics that takes place during ascent of a magma with a high volatile

content.

Consider first the classical problem of a vertical dike propagating in a semi-infinite elas-

tic medium and driven by an incompressible Newtonian magma, which is injected at the

base of the dike at a constant volumetric rate, q∞ .  Several assumptions are introduced to

simplify this problem:

(1) plane strain conditions apply;

(2) the magma is injected at infinity;

(3) the dike propagates continuously in mobile equilibrium; and

(4) lubrication theory and linear elastic fracture mechanics are applicable.

The complete formulation of this problem relies on equations from elasticity and lubrica-

tion theories, on a fracture propagation criterion from linear elastic fracture mechanics,

and on boundary conditions at the inlet and at the tip of the fracture.  Within this de-

scription, several parameters are used to characterize the rock, the magma, the far-field



The ICPRP Final Report — Volume 2, Appendices 29

horizontal stress, and the boundary conditions.  The material constants needed for the

rock are Young’s modulus ( E ), Poisson’s ratio (ν ), toughness ( IlcK ) and density ( rρ ),

while the relevant constants for the magma are the dynamic viscosity (η ) and the density

( fρ ).  For convenience, we introduce the reduced constants

1 2

2

24 12
1 Ic

EE K K η η
πν

/
′ ′ ′ = , = , = −  

(1)

(While E ′  is the plane strain modulus, the new parameters ( K ′ , η′ ) are introduced sim-

ply to unclutter the governing equations from numerical factors.).  The horizontal stress

field, oσ , is assumed to vary with depth z  according to

o c r g zσ σ χρ= + (2)

where cσ  is a constant stress, g  is the acceleration of gravity, and χ  is a number that is

typically in the range 0 3 1χ. ≤ ≤ .  Finally, the boundary conditions at infinity correspond

to a constant injection flow rate, q∞ .  The mathematical model can be used to compute

the fracture half-aperture, ( )w z t, , the magma pressure, ( )fp z t, , and the flow rate, ( )q z t,

as a function of depth z  and time t , as well as to study the dependence of the solution on

the problem parameters.  (Note that q  is taken positive when directed upward, in the op-

posite direction to the z -axis.)

A dike model, which accounts in an approximate manner for the presence of dissolved

volatiles in the magma, can be constructed by modifying classical dike models to include

the compressibility of the magma due to the gas bubbles in the continuity equation, a

thermodynamic relationship between the bubble volume fraction and the magma pres-

sure, and the condition at which magma fragments.  Two cases are considered,

corresponding to the dike tip propagating in either an impermeable or permeable rock.
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Case 1:  Tip in Impermeable Rock and a Slowly Growing Cavity — Three regions can

be distinguished along the dike:

 (1) an incompressible flow region at large depth;

 (2) a homogeneous compressible flow region characterized by an increasing

bubble fraction with decreasing depth and same (average) velocity for

the gas and the liquid phase (This region is bounded above by the

magma front ( )mz t .);  and

 (3) a tip cavity between the magma front, ( )mz t , and the dike tip, ( )h t .

(The tip cavity is filled with vapors at the fragmentation pressure, cp .

Thus, the magma front is characterized by the critical bubble volume

fraction, cθ , at which magma fragments.)

Case 2:  Tip in Permeable Rock or a Rapidly Growing Cavity — Four regions

can be distinguished along the dike:

(1) an incompressible flow region at great depth, as in Case 1;

(2) a homogeneous compressible flow region, as in Case 1. (This region is

bounded above by the fragmentation front, ( )cz t , where the gas phase

becomes continuous.);

(3) a complex flow region between the fragmentation front, ( )cz t , and the

moving magma front, ( )mz t .  (This is a region where several poorly

understood mechanisms take place, such as channeling of gas in the

magma/bubble mixture, and bleeding of the gas into the host rock.);

and

(4) a tip cavity between the magma front, ( )mz t , and the dike tip, ( )h t .

(The pressure in the cavity is assumed to be at uniform pressure, fop ,

which is less than cp , because gas is bleeding off in the rock.  In the
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calculations reported in Figure 3-5 of the main text, the tip vapor pres-

sure fop  was set to zero in view of the large permeability of the Yucca

Mountain tuff.)

This appendix concerns the two models (Model 1 and 2) introduced in Chapter 3.  In

Sections 2 and 3, we focus on Model 2 under the more general Case 2 conditions.  (In-

deed, if fo cp p= , the magma front, ( )mz t , and the fragmentation front, ( )cz t , coincide.)

This model makes dramatic simplifications for the complex flow region by assuming that

the magma completely degasses in this region over a distance small compared to the its

length, either by bleeding gas into the country rock and/or via high-velocity gas channels

that transfer gas from the fragmentation front to the magma front.  Under these condi-

tions, the fragmentation front can be viewed as a sharp front separating magma at the

critical bubble fraction, cθ , from pure melt.  Thus, this model is characterized by a dis-

continuity of the bubble fraction, although the pressure remains continuous.  Under these

assumptions, the magma flow in the region between the magma front and the fragmenta-

tion front simplifies to an incompressible Poiseuille flow.  In Section 4, we summarize

the features of Model 1 that differ from those of Model 2.  The most salient difference is

in the treatment of the region between the fragmentation front and the dike tip.

2   Mathematical Formulation for Model 2

2.1   Elasticity Equation

The elastic relation between the fluid pressure, ( )fp z t, , and the fracture aperture, ( )w z t, ,

is expressed by a singular integral equation (Hills et al., 1996):

f ( )

( )( ) ( ) 2 ( )o h t

w s tp z t z E M z s ds
s

σ
∞′ ∂ ,

, − = ,
∂∫ (3)

where ( )M z s,  is an elastic kernel that accounts for the presence of a free surface:
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( ) ( ) ( )

2

2 3

1 2 4( ) ( )
4 4 4

s sM z s M z s
z s z s z sπ π π

∞, = , − − +
+ + +

(4)

with ( )M z s∞ ,  denoting the Cauchy singular kernel for the infinite plane,

( )
1( )

4
M z s

z sπ∞ , =
−

(5)

 We will refer to f op σ−  as the net pressure, p .

2.2   Poiseuille Law

 According to lubrication theory, the equation governing the flow of a Newtonian fluid

within the fracture is given by (Batchelor, 1967):

38 f
f

pwq g
z

ρ
η′

∂ 
= − ∂ 

(6)

where fρ  is the magma density, and g  is the acceleration of gravity.

Writing η′  and fρ  in terms of the viscosity of the melt ( mη′ ) and the density of the melt
( fmρ ),

( ),m mη η θ γ′ ′= & (7)

( )1f fmρ ρ θ= − (8)

where θ  denotes the volume fraction of the gas bubbles and γ&  the shear strain rate of the

magma.   Note that in a first approximation, 1m = .

 2.3   Constitutive Equation for the Bubble Volume Fraction

 The bubble volume fraction, θ , is a function of the absolute magma pressure, fp , which

depends on the composition of the magma.  Here, we assume that the constitutive equa-

tion is of the form
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f c c

o

p p
p

αθ θ
θ

− − =  
 

(9)

where op  is a reference pressure, cp  is the fragmentation pressure, cθ  is the critical bub-

ble volume fraction (at which magma fragments), and α  is a positive number.  Note that

this form of the constitutive equation implies that the magma becomes incompressible at

great depth (i.e., at great pressure); thus, there is no formal need to distinguish between

regions 1 and 2, as done in the Introduction.

2.4   Fluid Mass Balance

By assuming incompressibility of the pure melt, the local mass balance can be expressed

as

12 2 0
1

w q w q
t z t z

θ θ
θ

∂ ∂ ∂ ∂ − − − = ∂ ∂ − ∂ ∂ 
(10)

In the pure melt region, this equation reduces to

2 0w q
t z

∂ ∂
− =

∂ ∂
(11)

 2.5   Propagation Criterion

 The propagation criterion imposes the asymptotic form of w  at the tip (Rice, 1968):

( )1 2

2
Kw z h z h
E

′
/

′= − , → (12)

This criterion obviously implies that 0w =  at z h= .

2.6   Condition in the Lag Zone

( ) ( )f fo mp p h t z z t= , ≤ < (13)
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2.7   Condition at the Magma Front

At the magma front, ( )mz z t= , the fluid pressure is the gas pressure, fop , in the lag zone,

and the velocity of the front corresponds to the average magma velocity at the front.

Hence,
2

'

4 at ( )fm
f fo fm m

pdz wp p g z z t
dt z

ρ
η

∂ 
= , = − = ∂ 

(14)

where the position of the fluid front, mz , is given by

mz h= + l (15)

with l  being the length of the tip cavity.

2.8   Condition at the Fragmentation Front

 At the fragmentation front, ( )cz z t= , the magma pressure is continuous and equal to the

fragmentation pressure, cp .  Under the assumption that the magma degasses completely

at the fragmentation front, both θ  and the flow rate, q , are discontinuous at ( )cz z t= .

Conservation of the melt across the front implies that

2 (1 ) at ( )c c c cwv q q z z tθ θ− += − − = (16)

where q+  and q−  denote, respectively, the volumetric flow rate upstream and down-

stream of the front, and cv  is the velocity of the fragmentation front:

c
c

dz
v

dt
= − (17)

2.9   Condition at Infinity

The condition at infinity corresponds to a constant injection rate, q∞ :

atq q z∞= = ∞ (18)
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It can be shown that this condition corresponds to a constant mean velocity, ν ∞ , at infin-

ity.

The set consisting of the elasticity equation (3), Poiseuille law (6), fluid continuity (10),

propagation criterion (12), conditions at the fronts (14) and (16), and conditions at infin-

ity (18) form a complete system for determining ( , )w z t , ( , )fp z t , ( )h t , ( )cz t , ( )mz t , and

( )tl , starting from known values of these quantities at an initial time, 0t .

3   Scaling (Model 2)

Scaling this problem hinges on introducing the following characteristic quantities:

length, ∗l ; time, t∗ ; width, w∗ ; pressure, p∗ ;  and flow rate, q∗ .  Then we define the di-

mensionless depth, ζ , and time, τ , as

 andz t tζ τ∗ ∗= / = /l (19)

the dimensionless crack opening, ( )ζ τΩ , , the net pressure ( )ζ τΠ , , and flow rate,

( )ζ τΨ , ,  as

2w w p p q q∗ ∗ ∗Ω = / , Π = / , Ψ = / (20)

as well as the depth of the dike tip, ( )ψ τ , the length of the tip cavity, ( )λ τ , and the posi-

tion of the magma front, ( )mϕ τ , and the fragmentation front, ( )cϕ τ ,

m m c ch z zψ λ ϕ ϕ∗ ∗ ∗ ∗= / , = / , = / , = /l l l l l (21)

Recall that mϕ ψ λ= + .  The characteristic quantities ∗l , t∗ , w∗ , p∗ , and q∗  will be

identified below.

Using (19)-(21), the system of equations governing ( )ζ τΩ , , ( )ζ τΠ , , ( )ζ τΨ , , ( )ψ τ ,

( )cϕ τ and ( )mϕ τ become as shown below.
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Elasticity Equation

( )eG M s ds
sψ

ζ
∞ ∂Ω

Π = ,
∂∫ (22)

Poiseuille Law

3

(1 )m tG G G
m γ θ

ζ
 Ω ∂Π

Ψ = + − − ∂ 
(23)

Constitutive Equation for Bubble Volume Fraction

with   c
c b c s tG G G

αθ θ
ζ

θ
− Π − Π = Π = − 

 
(24)

Fluid Continuity

1 0
1wG θ θ

τ ζ θ τ ζ
 ∂Ω ∂Ψ ∂ ∂

− − Ω − Ψ = ∂ ∂ − ∂ ∂ 
(25)

Fracture Propagation Criterion

( )1 2 askG ζ ψ ζ ψ/Ω = − → (26)

Boundary Condition in the Tip Cavity

( )p t mG G ζ ψ ζ ϕΠ = − + , < ≤ (27)

Boundary Condition at the Magma Front

2

m w mG G G
m γϕ

ζ
 Ω ∂Π

= − + ∂ 
&    at  mζ ϕ= (28)
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Interface Condition at the Fragmentation Front

(1 )c w c ccG θ θϕ − +Π = Π , − Ω = Ψ − − Ψ&     at   cζ ϕ= (29)

Boundary Condition at Infinity

asqG ζΨ = → ∞ (30)

The eight dimensionless groups eG , mG , Gγ , wG , qG , kG , tG , pG  are defined as fol-

lows:

3
2 2

8
E w q w q

e m w qp qt qp w p
G G G G Gη δ

γ
′ ′ ′

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗∗ ∗∗ ∗ ∗ ∗

= , = , = , = , =l l l
l (31)

1 2

2
c fo r o c cpK g p p

p sp p p ptk bE wG G G G Gσ χρ σ−′ /
∗ ∗
′ ∗ ∗ ∗ ∗∗

−
= , = , = , = , =l l (32)

where r fm gδ χρ ρ′  
 
 

= − .  The particular scaling used in this problem is selected by im-

posing that the five dimensionless groups in (31) are all equal to one,

1e m w qG G G G Gγ= = = = = (33)

so as to define the five characteristic quantities ∗l , t∗ , w∗ , p∗ , and q∗ , which are then

given by

( ) ( )3

4

1 6 1 3 1 63 2
8

m mE q q
mw p E qη η

δδ
η δ

′ ′ ′
∞ ∞

′′
 
 
 

/ / /′ ′ ′
∗ ∗ ∗ ∞= , = , =l (34)

( )2

1 2
mE

q
t q qη

δ

′ ′

′
∞

/

∗ ∗ ∞= , = (35)

Also, the three remaining groups are renamed as

k p t b sG G G G Gκ σ γ β φ≡ , ≡ , ≡ , ≡ , ≡ (36)

where κ will be referred to as the toughness, σ  as a reference stress, γ  as the relative

host rock density, β  as the reference pressure (for the thermodynamic relationship
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between the bubble volume fraction and the magma pressure), and φ  as the fragmenta-

tion pressure.

3 1 6
3 2

1 4
1 c fo r

r fmm
m

p
E q E q

K σ χρ
χρ ρη η δ

κ σ γ
 
 
 
 

′ ′ /∞ ′ ′ ′ ∞

/ −′
−

 
 
 

= , = , = (37)
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E q E q
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η δ η δ
β φ

   
   
   
   

−
/ /

′ ′ ′ ′ ′ ′
∞ ∞

= , = (38)

This scaling is an extension of the scaling used by Lister (1990) for the self-similar

propagation of a dike to the time-dependent case with compressible magma.  Note that

this scaling collapses if 0δ ′ = .   (For example, 0δ ′ =  if 1χ =  and rρ =  fmρ .)  In that

case, an appropriate scaling would correspond to

1e m t w qG G G G G= = = = = (39)

when 0Gγ = , from which new expressions for ∗l , t∗ , w∗ , p∗ , and q∗  can be derived
easily.

3.1   Dimensionless Formulation

In summary, the set of governing equations can be written as

3

( ) 1 (1 )M s ds
s mψ

ζ γ θ
ζ

∞  ∂Ω Ω ∂Π
Π = , , Ψ = + − − ∂ ∂ 

∫ (40)

1 0
1

c
αθ θ θ θφ γζ β

θ τ ζ θ τ ζ
 − ∂Ω ∂Ψ ∂ ∂ Π − + = , − − Ω − Ψ =   ∂ ∂ − ∂ ∂   

(41)

with the propagation criterion and the conditions in the lag zone, at the fluid and frag-

mentation fronts and at infinity given by

( )1 2κ ζ ψ ζ ψ/Ω = − , → (42)
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( ) mσ γζ ψ ζ ϕΠ = − + , < ≤ (43)

2

m m
γϕ

ζ
 Ω ∂Π

= − + ∂ 
&    at  mζ ϕ= (44)

(1 )c ccφ γζ θ θϕ − +Π = − , Ω = Ψ − − Ψ&     at  cζ ϕ= (45)

1 ζΨ = , → ∞ (46)

The system of equations (40)-(45) is closed in the sense that it can be used to determine

the solution ( , ; , , , , , )F ζ τ κ γ σ α β φ , where { , , , , , , }c mF θ ψ ϕ ϕ= Ω Π Ψ , given a suitable set

of initial conditions.

It can be shown readily (as already recognized by Lister (1990) for the self-similar case)

that the solution behaves at infinity as

11
4

ζ
πζ

Ω = , Π = , → ∞ (47)

Hence, the average magma velocity is 1ϒ ≡ Ψ/Ω =  at ζ = ∞.   In dimensional terms, the

average fluid velocity at infinity, v∞ , is given as

1 32

m

q
v

δ
η

/′
∞

∞ ′

 
=  

 
(48)

It is convenient to formulate the boundary conditions at infinity in terms of v∞  rather than

q∞ .  Hence, the characteristic quantities can be formulated as follows:

( ) ( )2

3

1 4 1 2 1 42
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∗ ∗ ∗ ∞
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= , = , =

= , =l

l
(49)

and
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1 8
c fo

m m

p
E v E v

K σδ
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κ σ
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 
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 

′
′ ′ /

′ ′ ′∞
∞

/ −′= , = (50)

Further details on Model 2, as well as a presentation of the numerical implementation of

this model, are discussed by Detournay and Savitski (2003).
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4   Formulation for Model 1

4.1   Elasticity

Rather than relating spatial gradients of the dike thickness to stresses (Eq. 3) using the 2D

elastic Green’s functions of Eq. (4), Figure 3-4 uses the 3D Green’s functions for a dike of

finite lateral extent.  The equations are analytic but cumbersome to write; they are given by

Okada (1992) and were implemented using the program DIS3D (Erickson, 1986).  Because

of the added complexity of these Green’s functions, the effect of the free surface is not

included. “The resulting calculation is only “pseudo 3-D” in that the dike thickness is con-

stant along strike, the host rock stress and magma pressure are computed only along the dike

centerline, and fluid flow equation is solved only for 1-D vertical flow along that centerline.”

Ideally, one would like to model a fully 3D elastic (planar) dike with 2D flow in that plane

and compute the lateral extent of the dike as a function of depth and time; however, in the

absence of access to such a code, it was deemed useful to explore the influence of a finite

lateral extent in this approximate fashion.

For a semi-infinite 2D dike of infinite lateral extent (e.g., Figure 3-5), the relevant length

scale, *l (Eq. 34) is determined by the flux boundary condition at infinity and can be deduced

from the following argument.  Far from the dike tip, the excess pressure approaches zero,

because any finite pressure applied over a sufficiently large height would generate thick-

nesses (and hence fluxes) too large to be supplied by the source.  This means that the

pressure gradient for flow is simply the “effective” magma buoyancy, ( )r fm gδ χρ ρ′ = − .

(For scaling purposes, we phrase this discussion in terms of the bubble-free magma density,

fmρ ).  Given this pressure gradient, the dike thickness far from the tip adjusts itself to the

source flux and is given by *w  in Eq. (34).  Because the local excess pressure is ~ 0, this

thickness is produced by the finite excess pressure produced over the length scale, *l , near

the tip. The dimensional estimate of *l  comes from the elasticity equation,

* * * */ 2 / 2 /w l p E l Eδ′ ′ ′≈ ≈ , or
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1/ 2
*

* 2
w E

l
δ

′ 
=  ′ 

(51)

In deriving (51), we equate the bulk excess pressure in the dike nose (of the order of *p ) with

*lδ ′ ; this would be appropriate for a static magma column of height *l .  In practice, the dike

widening associated with the local excess pressure and the dependence of velocity on the

thickness squared make this a useful dimensional estimate despite the fact that the magma is

flowing.

Introduction of a finite lateral extent obviously introduces an additional length scale, de-

fined here as half the lateral extent, 1l .  The finite extent implies that the dike cannot be

held open at infinity by an excess pressure applied only near the tip.  Instead of the excess

pressure asymptotically approaching zero at infinity, for a constant flux, it approaches a

constant value, p∞∆ , given by

*

1

2w p
l E

∞∆
=

′
(52)

This p∞∆ implies another natural length scale, 2l ,  given by

2 /l p l pδ δ∞ ∞′ ′= ∆ ⇒ = ∆ (53)

— that is, 2l  is the vertical length required for the effective magma buoyancy to generate

a pressure equal to that at the dike source (or, equivalently, that required to generate the

thickness that can accommodate the source flux).  Combining (52) and (53) and compar-

ing with (51) shows that *l , 1l  and 2l  are related by ( )1/ 2
* 1 2l l l= .

For a dike of finite lateral extent, the most relevant length scale is the smaller of *l  and

1l .  When *l <<     1l , by analogy with the infinite-strike-length dike, the dike thickness at in-
finity can be reached elastically by an excess pressure, *lδ ′ , applied over a distance that
is small compared to 1l .  The dike develops an elastic nose with a vertical extent less than
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1l  and an excess pressure that is many times p∞∆  (compared to an infinite amount larger,
for 1l  = infinity).  In contrast, for *l >>        1l , pressures much larger than p∞∆ do not develop.
Figure 3-4 shows something of a transition between these states.  For the adopted pa-
rameters, * 1l l= .  For the deeper dike, vesiculation is not yet significant, and excess
pressures modestly larger than p∞∆  are distributed over a vertical extent larger than 1l .
Thus, 1l  is the length limiting the dike thickness.  For the shallower dike, vesiculation and
the effective magma buoyancy have increased to the point that the “effective” *l  (one
based on the local effective buoyancy) would be less than 1l , such that the dike is begin-
ning to develop an elastic nose smaller than 1l  (seen most clearly in the excess pressure
profile).

4.2   Poiseuille Flow

This section is identical to Section 2.2 of Appendix 3.3.

4.3   Bubble Volume Fraction

To simplify the expression for the bubble fraction in the implicit finite-difference nu-

merical scheme, the bubble fraction as a function of pressure is given not by Eq. (9), but

is assumed to vary linearly from a value of 1 at zero pressure to 0 at a pressure exsP  de-

pendent upon the volatile content of the magma.  This linear dependence on pressure

accurately describes the magma at bubble fractions larger than about 0.3, but not at small

bubble fractions (e.g., Figure 2-1c).

The magma bubble fraction controls both the magma buoyancy and the magma com-

pressibility.  At low bubble fractions, a given pressure change corresponds to only a small

fractional volume change, and the most important influence is on magma buoyancy (par-

ticularly for small δ ′ ).  The adopted expression for bubble fraction does a rather poor job

of capturing buoyancy variations as a function of pressure in this low bubble-fraction

range.  At large bubble fractions, a given pressure change corresponds to a large frac-

tional volume change, and the effective magma buoyancy changes only slightly.  (The

buoyancy begins to “saturate” because it cannot exceed the “effective” host rock density,

rχρ ).  This is where the adopted expression for bubble fraction does a good job of
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mimicking magma.  Because we are most interested in the behavior near a shallow dike

tip where large bubble fractions are present over an extended region and where the

adopted expression for the bubble fraction is fairly accurate, the adopted expression is

believed to be an adequate approximation.

4.4   Fluid Mass Balance

This section is identical to Section 2.4 of Appendix 3.3.

4.5   Propagation Criterion

Because of the added complexity of the elastic Green’s functions for a dike of finite lat-

eral extent, the grid spacing is fixed in space to be 0.005 1l  (e.g., a 10 m spacing for a

half-length of 2 km). To satisfy approximately a propagation criterion of K = 0, the equa-

tions of elasticity, Poiseuille flow, bubble volume fraction, fluid mass balance, condition

in the lag zone, and condition at the magma front are first satisfied for a “trial” lag zone

length that remains unchanged from the prior timestep.  (This is carried out in an implicit

sense in a reference frame moving with the magma front.)  If, for this trial length, the ten-

sile stress perturbation at a distance of 1/2 the grid spacing ahead of the dike tip exceeds

the ambient confining pressure, the trial calculation is redone with a cavity length larger

by one grid spacing.  This iterative procedure is repeated until the tensile stress perturba-

tion is less than the ambient compression (or instability occurs, corresponding to the lack

of such a stable state).  In principle, it seems that it should be possible to satisfy all the

relevant equations (except the tip propagation criterion) for any “trial” value of the lag

length.  In practice, once the cavity length increased by about 25% relative to the last sta-

ble length illustrated in Figure 3-4, no solutions could be found.

4.6   Condition in the Lag Zone

As in Section 2.6 of Appendix 3.3, the lag zone is assumed to be entirely gas-filled with a

uniform pressure that is continuous with the pressure at the magma front.  Unlike Section
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2.6, this pressure is allowed to vary with dike ascent according to the prescription in the

following section.

4.7   Condition at the Magma Front

Following the discussion of Chapter 3, Section 3.2.3 of the main Report, it is assumed

that, nominally (that is, for a slowly growing and impermeable cavity; the “Case 1” of

Section 1 of Appendix 3.3), the pressure in the cavity equals a fixed magma “fragmenta-

tion” pressure.  Under such conditions, which might be applicable when the dike tip is

located well below the water table and is far from instability, gas flux across the magma

front is plausibly non-explosive.  In addition, because the cavity pressure is hypothesized

to be constant, only that fraction of the gas required to feed the growing cavity actually

crosses the magma front.  To account for this gas flux, the condition at the magma front

becomes

1 cavity
mf

dV
w dt

ν ν= − (54)

where mfν  is the velocity of the magma front, cavityV  is the volume of the tip cavity deter-

mined from the equations of elasticity, and ν  and w  are the average flow velocity and

dike half-thickness (evaluated here at the magma front), respectively.

If the cavity grows sufficiently rapidly, it can not be maintained at constant pressure by

the available bubble fraction at the magma front.  For a given ν  and bubble fraction θ ,

there is a maximum potential gas flux across the magma front that is estimated below.

Because of the no-slip boundary condition at the dike wall, magma near the dike wall

moves more slowly than the magma front, while that near the dike center moves more

rapidly than the magma front.  Magma that reaches the magma front has the opportunity

to degas partially or completely as it turns toward the wall and forms the slower-moving

return flow (“return flow” in the reference frame of the moving magma front).  In the

following derivation, we ignore all complexities related to 2D flow and phase separation
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near the magma front.  We assume that the parabolic flow profile, applicable a few dike

thicknesses behind the magma front in the case of incompressible flow, is also applicable

at the magma front in the compressible-flow case.  The gas flux into the cavity can then

be determined by equating the dense liquid volume of the undegassed magma that crosses

the magma front, with the dense liquid volume of the partially degassed magma moving

slower than the magma front.

From the parabolic flow assumption, the downstream flow velocity, ν , as a function of

cross-stream distance, y , from the dike center is given by

23 1
2

y
w

ν ν
  = −  

   
(55)

In the absence of phase separation, the magma front velocity is equal to the average flow

velocity at the magma front.  With gas escape into the tip cavity, the magma front veloc-

ity is less.  The cross-stream coordinate, y′ , which separates undegassed from partially

degassed magma, is also the coordinate at which the local flow velocity equals the

magma front velocity, mfν .  Writing y′  for y when ν  equals mfν  in (55) yields

23 1
2

mf y
w

ν
ν

 ′ = −  
   

(56)

Mass balance dictates that the dense liquid fraction of the magma that reaches the magma

front equals the dense liquid fraction of the return flow that moves more slowly than the

magma front.  In equation form,

( ) ( )
0

2 2

1 1
3 31 1
2 2

y w

y
mf mfdy dy

y y
w w

θ αν ν ν ν
′

′

− = −
         − − − −                        

∫ ∫ (57)

The integral from 0 to y′  on the left gives the total volume of material crossing the

magma front using the parabolic flow approximation; (1 θ− ) represents the dense liquid

fraction, and θ  the bubble fraction.  The integral from y′  to w on the left gives the total
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volume of the return flow; (1 α− ) represents the dense liquid fraction, and α  the bubble

fraction of the degassed magma.  Dividing both sides of (57) by ν , substituting (56) for

/mfν ν , and integrating leads to a cubic equation for /y w′  in terms of θ  and α :

3 2 3 23 1 3 1 0
2 2 3 2 2

y y y y
w w w

θ α
 ′ ′ ′ ′       − + − + − + =        

         
(58)

For complete degassing (α = 0), the volume flux of gas, inq , across the magma front into

the tip cavity is equal to the integral on the left side of (57) multiplied by the bubble frac-

tion, θ ; integration leads to

3

2in
yq w
w

ν θ
′ =  

 
(59)

If the cavity grows sufficiently slowly that /cavitydV dt  is less than this maximum value,

then (54) can be satisfied with a constant (time-invariant) cavity pressure.  (We neglect

density increases due to cooling here.) However, as instability of the dike tip is ap-

proached, /cavitydV dt  begins to exceed this value, and the cavity pressure drops in

response so that inq  increases.  In this case, instead of (54), the condition at the magma

front becomes

1 cavity cavity
mf

dV V dp
w dt wp dt

ν ν= − − (60)

where p is the (no longer constant) pressure evaluated at the magma front (also the cavity

pressure), and the last term on the right accounts for expansion of the gas already present

in the cavity.

Physically, one expects that as the cavity pressure drops farther and farther below the

fragmentation pressure, “fragmentation” becomes more and more explosive, with perhaps

a larger and larger fraction of the magmatic material being accelerated downstream into

the tip cavity.  For small pressure differences, fragmentation may be only mildly explo-
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sive, and the assumption of a uniform-pressure gas-filled cavity, with all the magma re-

maining behind the magma front, may not be a bad approximation.

4.8   Condition at the Fragmentation Front

Following the above prescription, there is no “fragmentation front” in the sense of mag-

matic liquids or solids being accelerated in the downstream direction at that point.  In this

prescription, the cavity remains 100% gas, and all the degassed magma becomes part of

the “return flow” moving more slowly than the magma front.  A more general prescrip-

tion would account for the magmatic material that gets accelerated into the “cavity” as

the cavity pressure drops progressively farther below the fragmentation pressure.  In

practice, in Figure 3-4, the cavity became unstable when the pressure dropped from the

nominal “fragmentation” pressure of 10 MPa (corresponding roughly to 2.5 weight per-

cent H2O) to only 9.7 MPa.

4.9   Condition at Infinity

This section is identical to Section 2.9 of Appendix 3.3.

4.10   Dimensionless Groups

The 5 dimensionless parameters needed to completely specify the calculations (with the

values used in Figure 3-4 given in brackets) are:

( )1/ /p l δ∞ ′∆ [1.0]: excess pressure at infinity divided by the dike half-

length, normalized by the effective buoyancy of

dense magma

/exsp p∞∆ [18.5]: gas exsolution pressure, normalized by excess pres-

sure at infinity
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( )/fm r fmρ χρ ρ− [23.0]: density of dense magma, normalized by effective

density contrast between rock and dense magma

( )1/ /r g p lχρ ∞∆  [12.0]: gradient of normal stress in host rock, normalized

by excess pressure at infinity divided by the dike

half-length

/cp p∞∆ [5.0]:   nominal fragmentation pressure, normalized by ex-

cess pressure at infinity

To translate to parameters appropriate for the YMR, one can choose (for example)

1l  = 2 km (half the dike lateral extent), p∞∆  = 2 MPa (excess pressure at infinity),

δ ′  = 1 MPa/km (effective buoyancy of dense magma), p∞∆  = 37 MPa (gas exsolution

pressure in the linear approximation; appropriate for ~ 2.5 wt % H2O),

r gχρ  = 12 MPa/km (rate of increase of dike-normal stress with depth),

fm gρ  = 11.5 MPa/km (Note that an unreasonably low density of gas-free magma is re-

quired for the dike to ascend if a uniform host rock stress gradient of only 12 MPa/km is

assumed; see Rubin (2003) for further discussion), and cp  = 10 MPa (nominal fragmen-

tation pressure, appropriate for ~ 2.5 wt % H2O).  The value of E ′  does not enter the

calculations but is required to translate dimensionless to dimensional thicknesses; for

1l  = 2 km and p∞∆  = 2 MPa, the full thickness at infinity would be 1 m for E ′  = 16 GPa.
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5   Summary

Except for modest differences (presence/absence of the free surface; infinite/finite lateral

extent of the dike; magma equation of state), Models 1 and 2 treat Case 1 dikes (cavity

pressure equals fragmentation pressure) in the same manner.  The main difference arises

when the cavity pressure is less than the nominal fragmentation pressure (Case 2).  In

Model 2, all the magma reaching the fragmentation front passes through the front and

“clogs” the cavity; the great simplification is that it is assumed that the cavity is so per-

meable that all the gas exits the cavity in a narrow zone at the fragmentation front, while

the remaining magmatic material can be described adequately by Poiseuille flow.  In

Model 1, all the magma reaching the fragmentation front is assumed to become part of

the “return flow” moving more slowly than the magma front, and the great simplification

is that the “cavity” can be treated as a pure gas phase at constant pressure.  In reality,

once fragmentation occurs, the equations governing the region between the fragmentation

front and the dike tip should include inertial terms (as in more “standard” conduit flow

calculations; e.g., Melnik, 2000), channeling of gas through magma accelerated across

the fragmentation front, gas leak-off into the host rock, and perhaps a strain-rate-

dependent fragmentation criterion.

The goals of such calculations should be to understand the likely properties (pressure,

length) of the tip cavities of gas-rich dikes that may impinge upon the YMR.  Despite the

fact that Models 1 and 2 are quite rudimentary compared to what is desired, they repre-

sent a step in the direction of addressing these questions.  As the models are quite

distinct, their similarities (dimensionless tip cavity size at instability, increase in magma

flow velocity and hence gas flux into the tip cavity at the fragmentation front) can be

used, in conjunction with future modeling efforts, to place more confident bounds on

these properties.
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APPENDIX 3.4   MAGMA FREEZING

1   General

Magma freezing (and subsequent remelting, for sufficiently robust flows) has been incor-

porated into some models of dike propagation, often at the expense of simplifying other

aspects of the problem such as neglecting elasticity (Delaney and Pollard, 1982; Bruce

and Huppert, 1990; Rubin, 1995b; Lister, 1994; Lister and Dellar, 1996; Fialko and

Rubin, 1998).  Thermal problems of this sort are resistant to simple analytical solutions

because they vary critically in space as well as time (e.g., the local flow velocity can be

greatly influenced by solidification far downstream, the dominant mechanisms of heat

transfer can vary along the flow, etc.).

Independent of the details of the approximations adopted by numerical calculations, one

can imagine two time periods at which freezing might be important:  shortly after the

passage of the magma front, which could retard propagation by restricting flow near the

(already thin) tip; and long after the passage of the magma front, when freezing may be

responsible for shutting off the flow completely.  Two mechanisms for freezing are avail-

able:  conduction out the dike walls, which should be important over most of the dike

ascent path and which for much of the duration of the flow is restricted to a thin boundary

layer near the dike walls, and raising of the liquidus temperature due to volatile exsolu-

tion, which might always be important at the dike tip but which becomes important over a

larger and larger portion of the dike as the tip shallows (which affects magma across the

entire dike thickness).  Mechanisms for retarding freezing are viscous dissipation and (for

constant volatile concentration) decreasing the liquidus temperature with decreasing pres-

sure, as well as latent heat release.

Existing models of freezing during magma flow generally assume the magma to be a

single-component system with a unique freezing temperature.  For the purposes of Ap-

pendix 3.4, this approximation is adequate.  Relevant thermal parameters are the latent

heat of fusion, L (~ 350 kJ/kg for basalt; see Table 1-2), thermal diffusivity, κ
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(~ 0.3 x 10-6 m2/s; an average of the magma and host rock values of ~ 0.2 x 10-6 m2/s

and ~ 0.4 x 10-6 m2/s, respectively), heat capacity, c (~ 1.1 kJ/kg oC), magma temperature

minus host rock temperature, Tm - Tr , and magma temperature minus the solidus tem-

perature, Tm - Ts . The assumption of a well-defined freezing temperature implies that all

solidification or melting occurs at a moving boundary at the edge of the flow.

2   Conduction

Immediately upon coming into contact with cold rock, heat flow is dominated by con-

duction, and (assuming planar geometry) a 1D heat diffusion equation is adequate for

determining the thickness of the chilled margin, δ : 

2 d tδ λ κ= (1)

with λd given by (Carslaw and Jaeger, Ch. 11, Eq. 33):

( ) ( ) ( )

2 2

1
1

d d
m s

m r d d m r d

T TL e e
c T T erf T T erfc

λ λπ
λ λ λ

− − −
= − 

− + −  
(2)

(For cases where the thermal properties of the magma and host rock differ, see the origi-

nal equation.)  Thus, for early times, the chilled margin grows as the square-root of time.

While this equation can (and should) be solved for λd numerically, as a temporary ap-

proximation, we can make use of the fact that, for basalts, ( )m sL c T T> −  (more heat

carried in as latent heat than as excess temperature), we can drop the second term in the

brackets in (2) and use Figure 4-36 of Turcotte and Schubert (1982) to find λd ~ 0.7

(given the thermal parameters in the preceding paragraph and Tm – Tr = 1000o).  Thus,

from (1), the frozen margin grows as δ ≈ 1.0 x 10-3 t1/2 in mks units (e.g., 1 cm in 100 s,

and 30 cm in 105 s or 1 day).  As δ approaches the dike half-thickness, w , this simple

expression underestimates δ  because it ignores the cooling influence of the opposite dike
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wall.  However, neglect of advection of heat by the magma (discussed below) is a more

significant deficiency.

This cooling time basically is consistent with observations of the eruption of ~ m-wide

dikes in Iceland and Hawaii, which tend to localize from a “curtain-of-fire” to one or

more quasi-cylindrical conduits (“plugs”) in a matter of hours to days.  In principle, this

localization can be thermal or mechanical in origin.  Based on observations of eroded

dikes and associated plugs, Delaney and Pollard (1981) inferred that mechanical breccia-

tion and erosion of the dike wall rock is responsible, often initiating at overlapping dike

segments with small offsets.  Once this mechanical widening occurs, the plugs can cap-

ture a larger share of the flow and are much more resistant to heat loss than the uneroded

portions of the dike.  Thermal instabilities are also a potential cause, although it seems

that such instabilities do not initiate until the dike has already cooled substantially (Lister

and Dellar, 1996).  It is not yet clear that such instabilities can stave off solidification in

the absence of a “jump-start” by mechanical erosion.  Given the potential for mechanical

erosion and overlapping en-echelon dike segmentation at a dike/drift intersection, it

seems reasonable (and conservative) to assume that plugs in a dike that has intersected

one or more drifts form preferentially so as to include this intersection along their path.

3   Propagation Distance

Flow of a hot fluid through an initially cold channel of half-thickness w can be divided

into an upstream region, where most of the heat resides in the fluid, and a downstream

region, where most of this heat has been lost by conduction to the solid (Delaney and

Pollard, 1982).  The dividing region is known as the “thermal entrance length”, lTE, and

its estimate is essentially the product of the flow velocity, u, and the conductive cooling

time:

2 2/ 4TE dl u w λ κ= (3)
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For the above conductive cooling time of t =106 w2 (in mks units) and a flow velocity of

1 m/s, a 1 m dike (w = 50 cm) has an estimated thermal entrance length of 250 km.

However, Delaney and Pollard (1982) showed that if the dike maintained a constant pres-

sure gradient, accounting for how growth of the chilled margin slows the flow reduces

the estimated thermal entrance length by a factor of 10, to 25 km for the parameters

adopted above.

While this estimate does not account for the increased host rock temperature at depth or

the reduction in liquidus temperature with decreasing pressure (at least until gas exsolu-

tion occurs), it does illustrate that meter-wide mantle-derived dikes are not immune from

the effects of freezing prior to or shortly after the onset of eruption.  Although more work

is needed before a clear understanding is at hand, it is worth noting that for basalts com-

ing from about 1 GPa pressure (the moho), the increase in liquidus temperature upon

devolatilization roughly is comparable to (perhaps slightly smaller than) the decrease in

liquidus temperature due to depressurization.  The liquidus temperature increase in-

creases with total volatile content; the magnitude of the liquidus temperature decrease

increases with ascent distance.  For this reason, it would be useful to have an idea of the

depth of origin of the dike (independent of the depth of the source region, which is

thought to be ~ 100 km in this region — e.g., Wang et al., 2002).

Freezing near the tip of the parent dike at shallow depth (shallow by coincidence or due

to volatile exsolution) might help explain observations of the onset of the eruption of

Paricutin.  If the tip froze, but buoyant magma (or bubbles) at depth continued to ascend,

the resulting widening of the dike and associated pressure increase could explain the

weeks of earthquake activity prior to eruption and the ultimate propagation of a crack

(observed size 50 m by 5 cm) to the surface (also see Appendix 3.2).  Following crack

propagation to the surface, the eruption gradually evolved from gentle to violent over a

period of ~ 8 hours.  Because unstable crack propagation to the surface would be accom-

panied by stresses tending to widen and perhaps fracture the frozen magma front, a

plausible explanation for the gradually increasing violence of eruption would be the local

and gradual mechanical erosion of the frozen magma front by escaping gases.  The onset
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of the eruption also marked the cessation of earthquake activity, consistent with a lack of

continued pressure increase due to increased magma storage or bubble ascent at depth.

4   Freezing During Dike Initiation

The thermal entrance length, lTE , is also a useful concept when considering the role of

freezing in a secondary or dog-leg dike emanating from a drift.  For a dike growing from

a source of constant excess pressure, ∆P, under plane-strain conditions, both the dike

thickness and propagation velocity increase linearly with dike length, l, as

( )2 /w P E l′≈ ∆  and ( ) ( )20.25 1/3 w P/l  u η≈ ∆ (here, E´ is ( )2/ 1E ν− , where E is the

Young’s modulus, ν is Poisson’s ratio, η  is the magma viscosity, the expression for u

assumes no retardation due to freezing, and the leading coefficient of ~ 0.25 comes from

numerical calculations — e.g., Rubin, 1995a).  Taking the product of propagation

(~ flow) velocity and cooling time and substituting for w yields

4
3

2

1 1
3TE

d

Pl P l
Eλ κη
∆ = ∆  ′ 

(4)

Thus, the ratio of the thermal entrance length to dike length increases as the dike length

squared, and short dikes are always longer than the thermal entrance length and can only

grow under special circumstances.  The critical dike length, lc , such that TEl l>  for

cl l> , is from (4):

2 1/ 23
c d

El
P P

κηλ
′   =    ∆ ∆   

(5)

For η =50 Pa s (We assume the magma to be considerably degassed at this point; see

Figure 2-1e of the main Report.), ∆P = 1 MPa (a reasonable value for a secondary dike

emanating from a drift, because the magma pressure is limited by that at the intersection

of the drift and the parent dike), E´ = 2 GPa (~ 1/7 the in-situ value at the decimeter scale,

yielding a thickness:length aspect ratio of 10-3), we find lc = 20 m.  In fact, for the given
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parameters, this is an underestimate of lc , because the estimate of propagation velocity

(1) neglects the retarding influence of the growing chilled margin, and (2) assumes 1D

flow from a linear source, rather than radial flow from a 5-m diameter conduit.  Each of

these would slow the flow relative to the values assumed here. On the other hand, it

should be noted that the dependence of lc on 5 / 2P∆ means that only a two-fold increase in

∆P would reduce the above estimate to ~ 3.5 m (although a two-fold increase in E´ would

essentially reverse this change).

In one sense, the precise value of lc is irrelevant:  No magmatic dike can start in a zero-

thickness crack in rock below the solidus temperature.  However, the value is relevant in

that the host rock at the source may approach the magma temperature, or the initial crack

may have a non-zero thickness; these are the “special circumstances” alluded to above.

♦ Dikes emanating from mantle source rocks or a shallow plug can survive thermally if

above-solidus temperatures extend more than lc from the point of initiation.  In the

case of growth from a drift, preheating by a substantial fraction of the magma tem-

perature over a distance of 20 m is not reasonable.

♦ For the parameters as above, the critical crack has a full thickness 2w of several cen-

timeters 10 m from the drift.  This is too large to be present in the drift prior to

magma arrival, but, if a gas-filled crack can reach these dimensions, then magma can

follow successfully.  However, owing to the permeable nature of the host rock, and

the fact that the gas pressure must exceed a few MPa just to open a crack, this seems

unlikely.

♦ Sills and laccoliths can grow from dikes, and dikes can grow from laccoliths and sills,

because of the mechanical leverage of the large crack behind the magma front.  This

acts to decouple the (local) pressure gradient, driving magma into the secondary crack

from the (more distant) pressure dilating that crack.  In a sense, this is not much dif-

ferent than propagating into a previously closed portion of a dike ahead of the magma

front (except that the “dike” now has a 90o bend).
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5   Freezing/Remelting During Flow in a Drift

As time elapses at a given location in the flow, and temperature gradients decrease, the

conductive heat flux decreases, and advection plays an increasingly important role in heat

transfer.  Given a sufficiently robust flow, a quasi-steady-state temperature profile devel-

ops in the thermal boundary layer adjacent to the solidification front, with cross-stream

conductive heat loss being balanced by downstream advective heat input.  With the tem-

perature profile in the fluid being roughly steady at this time, the large heat flux across

the boundary produces melting of the channel walls.  Lister and Dellar (1996) estimated

that, for flows that are much shorter than the thermal entrance length (as would be the

case for flow in a drift), the distance from the source over which the initial chill has

started to melt back is less than the total distance the flow has traveled by roughly the ra-

tio of the thickness of the chilled margin that would grow by conduction in that interval,

to the conduit thickness.  From the results of Appendix 3.5, the flow velocity in the drifts

may be taken to be of the order of that in the dike (say, 1 m/s).  The thickness of the

chilled margin that would grow in the time it took to fill the drift would be, from (1), only

a few cm.  Thus, meltback would be proceeding only over the nearest 1/100 or so of the

drift, or ~ 10 m from the dike/drift intersection, at the time the drift filled.  Consistent

with this, the full numerical calculations carried out by Lister and Dellar for a dike thick-

ness 2w of 80 cm and an initial (pre-freezing) flow velocity of 1 m/s showed that, while

this dike was robust enough eventually to melt the original chill everywhere (given an

unlimited source at constant pressure), in the time it took to fill the 2-km-long channel,

the chilled margin still was growing everywhere.  Meltback into the host rock did not oc-

cur over a significant portion of the dike until several days (~ 102 to 103 “filling” times)

later.

6   Final (Frozen) Dike Thickness

It is stating the obvious to point out that the observed outcrop thicknesses of analog dikes

are those that are frozen in, but it is worth remembering that these are not necessarily the

thicknesses that were active upon eruption.  Numerical models of buoyant dikes show
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them to ascend with small-to-moderate values of the excess pressure, such that the driv-

ing pressure gradient for flow is essentially ( ) ( )
0

/
m

g g d dzρ ρ σ′∆ ≡ − . (Larger pressures

would imply both larger thicknesses and larger pressure gradients for flow at still shal-

lower depth, which, together, would imply fluxes too large to be fed by the supply from

below.)  In the tectonic environment of the Basin and Range, “buoyant” magmas must be

bubble-rich.  Observations of frozen, bubble-poor analog dikes suggest that these dikes

may have ascended as bubble-rich but later degassed or were filled by degassed magma.

If so, this filling is likely to have been associated with a substantial increase in thickness,

as the excess pressure in a static column of dense magma in a region undergoing tectonic

extension would increase at a rate of 10 MPa/km or more.
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APPENDIX 3.5   MAGMA ASCENT IN A DIKE THAT HAS INTERSECTED
THE DRIFTS

In this Appendix, we derive analytic solutions to simplified model problems intended to

provide insight into the continued ascent of magma in a dike that has breached several

drifts, assuming that the flow takes the form of a lava flow rather than a pyroclastic flow.

The goal is not to provide the final word on this topic, as existing numerical codes can be

tailored with little difficulty to provide more accurate results.  Instead, this analysis is

presented to justify some of the conclusions of Chapter 3, Section 3.3.3.3, regarding the

height of magma in the dike at the time the drifts fill, as this work provided the basis for

those conclusions.

We focus on the portion of the dike near the proposed repository; magma ascent in more

distant regions of the dike will be less affected.  On the basis of the results summarized in

Chapter 3, Section 3.2, we assume that the dike tip has already propagated beyond the

drifts when magma first reaches the drifts.  The magma is treated as an incompressible

fluid and the dike as a rigid vertical slot of constant thickness 2w. Horizontal 5.5-m di-

ameter holes (radius a) with a spacing d of 80 m are drilled into the dike.  The dike is fed

at depth by a fixed flux per unit length.  It is assumed that the rock is sufficiently perme-

able that there is an atmospheric-pressure boundary condition at the flow front in both the

dike and the drifts.  We note in passing that if this pressure is not atmospheric (e.g., if the

host rock permeability is significantly reduced by the prior influx of pyroclastic material)

but is equal at the two different flow fronts, the approximate analysis to follow essentially

remains unchanged; if the pressure is greater than atmospheric in the drifts but atmos-

pheric in the dike (e.g., because the dike fracture has breached the surface), then the

following analysis underestimates the height of magma in the dike at the time the drifts

fill.  Neglect of any elastic narrowing of the dike at the dike/drift intersection (due to lo-

cally lower pressure) will also lead to underestimates of the height of magma at the time

the drifts fill, but mechanical erosion of the dike/drift intersection may to some extent

counteract this.
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When magma first reaches the drifts, influx is limited to that rising from directly below.

As the magma level between two drifts rises to height H above the drifts, an increasing

pressure gradient of order ρgH/(d/2) drives lateral flow into the drifts, and each inter-

sected drift captures an increasing fraction of the dike flow over a width d/2 to each side

As H increases, the flow fronts in the dike to either side of the drift may merge in the host

rock directly above the drift; the drift at the dike/drift intersection may fill to the ceiling

at this or some later time.  Once the drift fills at the dike/drift intersection, the flow in the

drift may be divided into two regions:  a filled section of length Ld , where the pressure

gradient for flow is P/Ld (where P is the pressure at the dike/drift intersection), and a

sloping flow front region of length Lf , where the pressure gradient for flow is of the or-

der of 2aρg/Lf.  As Ld increases from zero, the pressure drop in the drift offers increasing

resistance to flow.  For infinitely long drifts and an infinitely tall dike, H and Ld increase

for all time.  In the case of the proposed repository, either the drift ends or the Earth’s

surface will be reached first.

Solving this time-dependent problem is made difficult by the 2D nature of the flow (in

the plane of the dike).  To derive approximate analytic solutions, we further assume that

H is sufficiently large compared to d/2 that treating the flow into the drifts as radially

symmetric is an adequate approximation, and search for steady-state (large time) solu-

tions.  We begin by writing expressions for the magma fluxes up the dike well below the

drifts (Eq. 1), from the dike into the drifts (Eq. 3), and down the drifts (Eq. 4).

Well below the drifts, the (half-)flux up the dike out to an along-strike distance d/2 to

each side of a drift is 

( )3
1 3

dq w gρ
η

′= ∆ (1)

where (∆ρg)´ should be interpreted as the pressure gradient in excess of ρg that drives

vertical flow.  (ρ is the magma density.)  A reasonable estimate of (∆ρg)´ might be ∆ρg,

but we write the expression as primed because this need not be the case.
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Once H approaches ~ d/2, it seems reasonable to approximate the flow into the drifts as

radial, with pressure boundary conditions of ρgH at a distance d/2 and P at a distance a

from the symmetry axis.  For radial symmetry, pressure p as a function of distance r from

the drift center satisfies

2

2

1d p dp
r drdr

= − (2)

Solving this equation for boundary conditions of a pressure ρgH at r = d/2 and P at

r = a = d/29, the pressure gradient at r = a is found to be ~ 5.3(ρgH−P)/(d/2), so the flux

into the drift is

3
2

2 5.3
3 / 2

a gH Pq w
d

π ρ
η

−
≈ (3)

The flux down a drift is given by

( )4
3 18 d

Pq c a
L

π
η

= (4)

where c1a should be interpreted as an “effective” radius to account for canisters or other

obstructions in the drifts.  (The constant c1 may easily be determined numerically if one

ignores complications due to a deforming drip shield.)

With H, P, and Ld treated as unknowns, even this model problem resists simple analytic

solutions.  However, useful insight can be gained by examining the end-member cases of

P << ρgH and P ~ ρgH .  (The conditions under which these end-members are ap-

proached are indicated by Eq. (9) below.)  For P << ρgH, most of the pressure drop to

atmospheric occurs within the dike rather than the drifts, and H approaches a limiting

value as the drifts siphon off essentially 100% of the dike flow.  Setting the flux up the

dike, q1 (Eq. 1), equal to the flux into the drifts, q2 (Eq. 3) yields
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( )
0.9

/ 2
gH

d g
ρ
ρ

′∆
≈ (5)

where we have substituted the value of 29 for d/a.

Equation (5) states that H increases with the pressure gradient driving vertical flow

(∆ρg)´ and decreases with the weight per unit height ρg of the overlying column of

magma.  The value of (∆ρg)´/ρg is not well constrained.  A reasonable upper bound may

come from assuming 1D vertical flow within a constant-thickness dike, driven by the un-

vesiculated density contrast, ∆ρo , at great depth.  In this case, (∆ρg)´ ~ ∆ρog(1-θ)-1,

where θ is the local bubble fraction and the factor (1-θ)-1 accounts for the increased verti-

cal flow velocity required to satisfy mass balance.  The parameter ρg may be written

(1-θ)ρog, where ρo is the unvesiculated magma density.  For ∆ρog = 3 MPa/km and

ρog = 26 MPa/km, (∆ρg)´/ρg varies from 0.2 to 1.3 for θ varying from 0.3 to 0.7.  Some-

what larger values would result if θ increases with height above the drifts (reducing the

effective ρg while leaving (∆ρg)´ unchanged).  However, it is more likely that

(∆ρg)´/ρg ≈ 1 is an upper bound, because (1) the likelihood of a strong component of lat-

eral flow at shallow depth in the dike (Rubin, 2003) reduces the vertical velocity relative

to the 1D vertical flow assumption, and (2) if the dike widens near the surface because of

the near-universal reduction in elastic stiffness of the host rock at shallow depth (say, by

a factor of M), then, from Eq. (1), (∆ρg)´ will be reduced by a factor of M3 relative to the

estimate derived from mass balance assuming 1D vertical flow in a constant-thickness

dike.  This might place a “best guess” estimate of (∆ρg)´/ρg near 0.1, with reasonably

confident limits being 0.01 to 1.  At the upper end of this range, the drifts will fill with

H ≈ d/2.  At the lower end, the drifts apparently fill when H << d/2.  However, when

H << d/2, the assumption of radial flow is not valid and overestimates the flux into the

drifts, so that H will exceed the estimate from (5).  A robust conclusion is that when most

of the pressure drop from ρgH to atmospheric occurs within the dike (P<<ρgH), the drifts
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fill when the magma in the dike has progressed only a small fraction of the distance to the

surface (H < d/2).

For the other end member, P ~ ρgH, most of the pressure drop to atmospheric occurs

within the drifts rather than the dike.  In this case, a steady-state solution has the drifts

siphoning off a constant fraction, C1 , of the dike flow.  Setting q3 in (4) equal to C1q1 in

(1) yields

( ) ( )4 3
1 18 3d

gH dc a C w g
L

π ρ ρ
η η

′= ∆ (6)

Because the drifts capture a constant fraction of the flow, both Ld and H increase linearly

with time.  Then mass balance dictates

( )2
21

11
dc a LC

C dw H
π

=
−

(7)

where the constant c2 accounts for the average surface area in a drift cross-section taken

up by canisters or other objects.  Combining (6) and (7) yields a quadratic equation for C1

leading to

( ) ( )
( )2 4

1 2 4 2
1 2

1 1 4 8,
2 3

gA d wC A
A gc a c a

ρ
ρπ

′∆− + +
= ≡ (8)

which, for w > ∼ 0.5a, may be adequately approximated by C1 ≈ A-1/2 (for

[∆ρg]´/ρg ≈ 0.1).  Thus, for w/a = 1, C1 ≈ 0.12, and nearly all of the flow continues up the

dike; for w/a = 0.5, C1 ≈ 0.38; for a “median” analog dike thickness of 1.8 m (w/a = 0.33),

C1 ≈ 0.65, and the drifts capture nearly two-thirds of the dike flow.  (All of these numbers

are for [∆ρg]´/ρg = 0.1).  Substituting these values of w/a and C1 into (7) yields

H/Ld = 0.64 for w/a = 1, H/Ld = 0.28 for w/a = 0.5, and H/Ld = 0.14 for w/a = 0.33.  For a

repository depth of 200 m to 300 m, these results imply that, for w/a < ~ 0.5 (a 2.75-m-
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wide dike), the drifts fill before magma breaches the surface, but, for larger values,

magma may breach the surface first (although the drifts would fill shortly thereafter).

To determine the conditions under which the approximations P ~ ρgH and P << ρgH are

valid,  set the flux from the dike into the drift (q2 in 3) equal to the flux down the drift (q3

in 4), yielding

( )

3

4
1

2 dL wP
gH P c aρ

≈
−

(9)

When this ratio is much less than 1, most of the pressure drop occurs within the dike, and

Eq. (5) is valid; when it is much larger than 1, most of the pressure drop occurs within the

drifts, and Eqs. (7) and (8) are valid.  Note that Ld appears in the numerator, so that suffi-

ciently long drifts ultimately dominate the pressure drop, and Eqs. (7) and (8) apply.  The

relevant question is whether this occurs before the drifts fill.  Substituting 500 m for Ld,

2.75 for a, and 0.8 for c1 (c1 should be refined numerically), the equality sign in (9) holds

for w ≈ 30 cm (a 60-cm dike).  This is near the low end of observed thicknesses, so much

thinner dikes would seem to be a low-probability event.  Because of the dependence on

w3, dikes that are only modestly thicker (even less than the median thickness of 1.8 m)

would satisfy P ~ ρgH for Ld < 500 m.  Thus, the (P ~ ρgH) end-member appears more

appropriate for analog dikes (with the caveat that all such dikes must pass through an

early phase where Ld is small and P << ρgH).

Given these results, we note the following.

1. From (8), for wide dikes, the fraction of the flow captured by the drifts

decreases as (a/w)2 and [(∆ρg)´/ρg]1/2.  From (7), for wide dikes, the

ratio H/Ld increases as (w/a)3.  For dikes of more moderate thickness,

these “rules-of-thumb” become less accurate, but the super-linear de-

pendence upon (w/a) persists.  Thus, we expect that, for dikes

somewhat narrower to somewhat thicker than the median analog dike,
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H might vary from only a small fraction to a large fraction of the dis-

tance from the repository to the surface by the time the drifts fill.

2. If the dike and drifts are not orthogonal, Eqs. (7) and (8) are modified

trivially by substituting d/sin(θ) for d, where θ is the angle of dike/drift

intersection.

3. Any error associated with the assumption of radial flow into the drift is

unimportant if, as seems to be the case, most of the pressure drop to

atmospheric occurs within the drift rather than the dike.  The same

may be said of the neglect of any elastic narrowing of the dike in the

vicinity of the dike/drift intersection, although, in the time-dependent

problem, such narrowing may increase the time required for this ap-

proximation to be accurate (that is, for most of the pressure drop to

occur in the drift).

4. Because H increases linearly with Ld (once Ld becomes sufficiently

large), P increases linearly with Ld , and the pressure distribution

within the drift in the reference frame of the moving flow front is in-

variant in time.  This minimizes the tendency for gas exsolution and

compressibility effects (The “average” parcel of magma does not

change pressure as it flows down the drift.)  However, time-dependent

numerical solutions may be required to determine whether such states

actually are reached before the drifts fill with magma.

It may also be of interest to determine the length, Lf , of the sloping flow front in the

drifts.  For sufficiently slow influx, the flow front might reach the drift end before the

drifts fill to the ceiling at the dike/drift intersection, and P would remain zero until the

drifts filled.  However, this would require an unusually thin dike.  Based on the discus-

sion following (9), to make a rough estimate of Lf , we assume P ~ ρgH.  Then the flow
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velocity in the drift is constant and, from (7), the pressure gradient within the filled sec-

tion of drift is

( )2
21

1

1

d

c aCgH g
L C dw

πρ ρ
−

= (10)

Because the flow velocity is constant in this steady-state solution, Lf is also constant, and

the velocity within the flow front is the same as that within the filled section of drift.  An

upper bound on Lf can be derived from the assumption that the “global” pressure gradi-

ent, ρg(2a)/Lf , within the flow front is equal to the pressure gradient, ρgH/Ld , within the

filled section of drift.  (This is an upper bound because the flow front profile is expected

to be convex upward rather than linear, owing to the greater resistance to flow near the

thin leading toe.)  Setting ρg(2a)/Lf equal to the right side of (10) yields

1
2

12

2
1

fL C w
d C ac π

=
−

(11)

For the median dike thickness of w/a = 0.33 (so C1 ≈ 0.65 for (∆ρg)´/ρg ≈ 0.1), (11) indi-

cates an upper bound on Lf of ~ 40 m.



The ICPRP Final Report — Volume 2, Appendices 67

APPENDIX 3.6 FACTORS INFLUENCING THE STRESS STATE AT THE
REPOSITORY AND THE LIKELY ORIENTATIONS OF
SECONDARY FRACTURES EMANATING FROM THE
DRIFTS

Topography

The surface elevation above the ends of the drift is as much as 100 m below that of the

highest point.  Assuming a linear increase of stress with depth, this could result in a re-

duction of the least compressive stress at repository depths of roughly 1 MPa, relative to

that acting beneath the topographic high.

Stresses Due to the Drift

These may be produced by tunneling (removal of load-bearing rock), thermal loading,

pressurization by magma, and the presence of the drift in the face of the dike-induced

stress perturbations listed below.  Away from the drift ends, these stresses are fairly

straightforward to compute.  (In the case of the drift-induced modification of the dike-

induced stresses it is sufficient to (1) compute the dike-induced stresses in the absence of

the drift, and then (2) impose the stresses acting along the drift axis as the far-field

boundary conditions surrounding a stress-free hole).  However, the mechanical influence

of the end of the drift, and the uneven thermal loading at this point, may produce stresses

that are quite different from, and possibly less compressive than, those away from the

ends.  Stresses near the drift ends must be computed numerically (i.e., from 3D finite

element models).

Dike-Induced Stresses

Immediately adjacent to the dike, the normal stress on dike-parallel fractures is equal to

the pressure in the dike (so the change in stress is equal to the dike pressure minus the

pre-existing stress on the dike plane).  With increasing distance (but less than the dike

length), the host rock “sees” an average of the stress change over a larger and larger por-

tion of the dike.  At distances comparable to the dike length or greater, the rock sees just
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the elastic effect of the dike opening, and details of the loading distribution are lost.  This

makes for a range of possible stress changes at repository depths.  Near the dike the stress

change could be tensile (if the dike is filled by pyroclastic material at near-atmospheric

pressure) or compressive (if the dike is filled by dense magma or a pyroclastic flow under

choked conditions).  Tensile stresses on dike-parallel planes are produced to depths

somewhat below the dike top before the dike breaches the surface (Rubin and Pollard,

1988), and, in map view, off to the side and somewhat behind the tip of a dike of finite

lateral extent.  The latter implies that if a dike a few kilometers long ends within the re-

pository footprint, a few drifts intersected by the dike might be subjected to tensile stress

perturbations that are a modest fraction of the dike excess pressure, hundreds of meters

from the parent dike.

Stresses Due to Dike-Induced Fault Slip

Earthquakes are ubiquitous during dike propagation.  Historically, in any particular tec-

tonic setting, the maximum size of the earthquakes accompanying intrusion tends to

increase with elapsed time since the last intrusion, reaching magnitude 5.5-6 in some

cases in Iceland (Rubin and Gillard, 1998).  This is consistent with the notion that tec-

tonic extension between intrusions tends to bring the rock closer to failure, while

intrusion generally increases the horizontal stress and moves the rock farther from failure

(adjacent to but not beyond the ends of the intrusion).  Given that the stress state at Yucca

Mountain resides near the failure envelope (Stock et al., 1985), normal faulting is virtu-

ally certain to occur in conjunction with a propagating dike.  Such faulting might be

suppressed locally at depths near the proposed repository because of increased horizontal

thermal stresses, but not at greater or lesser depths.  As earthquakes themselves are not

expected to present much hazard, the biggest influence of such normal faulting might lie

in how it affects dike propagation.  Horizontal stress changes in conjunction with normal

faulting are spatially variable, but, in most regions adjacent to the fault, they are com-

pressive (locally, they are tensile); on the length scale of the fault, they are of the order of

the fault stress drop.  Thus, induced normal faulting is an additional mechanism that

could reduce the lag zone length.  Because the largest normal faults at Yucca Mountain
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have been mapped, the range of stress changes they produce upon slip can be evaluated

sensibly using 2D and 3D elastic models.

Stresses Due to Dike-Induced Tensile Fracturing

Paired tensile cracks or crack sets often are observed to occur parallel to and symmetri-

cally about an eruptive fissure, or to diverge from the ends of an eruptive fissure (Pollard

et al., 1983; Mastin and Pollard, 1988).  These cracks are inferred to grow down from the

surface at maxima in the dike-induced horizontal tensile stress.  Numerical and experi-

mental studies indicate that the depth of the dike top at the time of crack formation might

be half (or more) of the separation between the crack sets for a quasi-uniform excess

magma pressure, but 1/4 to 1/5 the separation between the crack sets for a magma pres-

sure distribution more appropriate for lateral dike propagation (Rubin, 2003).  The largest

system of paired crack sets of which we are aware surround an eruptive fissure in the

King’s Bowl lava field on the Snake River Plain (Greeley et al., 1997).  These crack sets

are separated by ~ 1.6 km, suggesting that the dike top might have been more than 300 m

deep when they formed.  If comparable fissures at Yucca Mountain could grow to depths

approaching 200m to 300 m, they may significantly reduce the compressive stress acting

across potential secondary dog-leg fractures distant from the parent dike.  The depth to

which such fractures might extend can be estimated using 2D and 3D boundary element

models.  2D calculations that are rather favorable for crack growth — in that (a) the

fracture toughness is assumed to be zero, and (b) the cracks are assumed to initiate just

before the dike tip goes unstable — show that such cracks might grow to a 160 m depth a

few hundred meters from the dike plane.  3D calculations for a 2 km dike reduce this to

130 m.  While a larger variety of calculations can be carried out, at present, it seems un-

likely that such cracks would grow to repository depths (for more details see Rubin,

2003).
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 Influence of the Stress State on the Orientation of Secondary Active Fracture

In this section, we examine various scenarios of magma breaking out of the drifts, once

the repository has been pressurized by magmatic material.  The requirements for this

breakout are discussed in the main Report and other Appendices; here, we assume that

such breakout occurs and consider only the likely orientations of the resultant fractures.

We consider separately two situations:  Case 1, where the horizontal stresses are larger

than the vertical stress; and Case 2, where the vertical stress remains the maximum com-

pressive stress.  (Note that the horizontal and vertical stresses are contrasted at the

repository scale, not at the drift scale.)

Case 1 (Horizontal Stresses are Larger than the Vertical Stress)

This situation arises within the period spanning approximately a few hundred years to a

few thousand years following closure of the repository, in the hot design scheme.  To the

first order, the pressure in the drift system will be equal to the horizontal stress perpen-

dicular to the dike (i.e., the original in-situ stress augmented by the thermal component).

Under these conditions, the drifts would more likely break at mid-height, and a system of

horizontal fractures (which could possibly link) would form.  In effect, this magma erup-

tion from the drifts would lead to the propagation of sills.  Outside the repository area,

where the vertical stress again becomes the major compressive stress, the magma-filled

fracture would either progressively reorient to eventually propagate along vertical planes

perpendicular to minimum horizontal stress or feed magma into pre-existing vertical

fractures.  (Reorientation of the fractures would be accompanied by multiple break-ups of

the crack edge, associated with mode-III fracture propagation.)  Note, however, that a

significant volume of magma could be held inside the sill, especially when accounting for

the increased storage due to bulging of the ground surface, for crack radius to depth ratio

exceeding 1.  Therefore, calculations should be performed to assess the possibility that

the system of drifts and the sills (within the repository footprint) could contain the vol-

ume of magma diverted from the main dike.  The model of a penny-shaped crack parallel

to the free surface (Zhang et al., 2003) can be used to compute the radius of a sill in
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stable limit equilibrium (i.e., no further propagation takes place), given the volume of

magma it contains, the elastic properties of the rock and its toughness.

Case 2 (Vertical Stress Remains the Maximum Compressive Stress)

We consider two mechanisms of magma breakthroughs:

Case 2a — The magma erupts along fractures aligned with the drift axis

that have initiated in the crown and in the floor of the tunnel; and

Case 2b — The magma erupts along pre-existing fractures that are sub-

orthogonal to the drift (and, thus, roughly parallel to the dike plane).

Case 2a — This case is plausible, as, in the absence of thermal stresses and when the

tunnels are not pressurized, the stress concentration around the drifts yields low values of

the hoop stress in the crown and in the floor.  However, propagation of the fractures be-

yond a distance approximately equal to the drift diameter causes the fracture to be

orthogonal to the smallest horizontal stress.  The energy losses associated with fracture

turning imply that these fractures are unlikely to propagate far beyond the zone of stress

concentration.  Thus, in this scenario, we can conclude that the magma would erupt along

the original dike, even though vertical longitudinal fractures would have initiated along

the drifts.

Case 2b — We consider the simplified scenario of an existing fracture parallel to the

dike.  It is expected that the aperture of this fracture would be less than the opening of the

dike under most circumstances, as it closed by compressive stress.  Although one would

infer from static considerations alone that the pre-existing fracture would reopen, because

the magma pressure in the drift is about the same as the normal stress across the fracture,

it is easy to argue using hydrodynamical considerations that most of the magma would

flow in the fracture with the widest opening — i.e., along the pre-existing dike in this

case.  Nonetheless, eruption of magma along this existing fracture rather than the dike
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cannot be ruled out entirely, owing to the possible sources of tensile stress perturbations

discussed earlier in this Appendix.

In summary, if the horizontal stress is more compressive than the vertical stress (ap-

proximately during the first few thousands years following sealing of the repository, in

the hot design), the magma would escape the drifts via the formation of sills.  If the sill

extends into the region outside the repository where the vertical stress is again the maxi-

mum compressive stress, then the possibility exists that the magma could reach the

surface, either by pre-existing vertical fracture or by reorientation of the initially hori-

zontal fracture.  If the horizontal stress is less compressive than the vertical stress, the

magma would preferentially erupt along the original dike, but it is possible to imagine

scenarios where the normal stresses acting across pre-existing vertical fractures inter-

secting the drifts would be favorable for their dilation as well.
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APPENDIX 3.7 OBSTRUCTIONS OF THE PARENT DIKE AND THEIR
INFLUENCE ON DOG-LEG PROBABILITIES

High pressures at the dike/drift intersection seem easiest to achieve if the parent dike or

vent has been obstructed in some way.  Possibilities include normal faulting of a hanging-

wall block into the dike tip cavity or freezing of previously emplaced magma.  In addition

to those scenarios that might cause blockage in the absence of a repository, if the parent

dike is thin enough to be susceptible to freezing in any case (see Appendix 3.4), then si-

phoning off of a large fraction of the flow by the drifts could promote freezing of the

parent dike above the level of the drifts (see Appendix 3.5).

Whatever the cause, an obstruction in the parent dike removes a potential “pressure-

release valve” from the system and might allow the pressure at the dike/drift intersection

to increase.  In this case, it is important for TSPA purposes to determine which fails first

in response to this pressure increase:  the drift (in the form of a dog-leg fracture), or the

obstruction?  We consider magma flows and pyroclastic flows separately below.

1   Magma Flows

Once the magma front stops, the pressure at the level of still-liquid magma below may

increase as a result of the continued ascent of buoyant magma or bubbles.  The maximum

pressure that may be attained (prior to failure of the system) is limited not by the dike-

normal stress or the weight of the overlying column of magma but by the degree of

magma or bubble ascent.  (For a discussion of pressure increases due to bubble ascent,

see Linde et al., 1994).

Dike Blocked By Normal Faulting:  In the absence of thermal stresses, normal faulting is

expected to occur preferentially at shallow depth where the stress perturbation due to the

dike is high but the confining pressure low.  With horizontal thermal stresses reaching

5MPa to 10 MPa, the tendency for normal faulting at the repository level is decreased

substantially (Rubin and Gillard, 1998), but normal faulting above the level of the large

horizontal thermal stresses is not.



The ICPRP Final Report — Volume 2, Appendices 74

To address the question of whether flow continues up the dike (via either the fault or a

planar extension of the dike) or via a dog-leg fracture as the magma pressure increases,

one must consider both the magma pressure at the site of the potential fracture and the

normal stress acting across that fracture.  By supposition, the magma front in the dike has

been halted; to achieve large pressures in the drift distant from the parent dike, the drift

must be filled.  In this case, the magma pressure distribution essentially is hydrostatic,

and the pressure at the dike/fault intersection is less than that in the drift by m gHρ ,

where H is the height of the obstructing fault above the repository.

Factors controlling the normal stress are much more numerous.  The normal stresses act-

ing across potential dog-leg fractures are influenced by many sources, including

topography, dike-induced stresses, and natural variability (see Appendix 3.6 and Chapter

3, Section 3.4.2 of the main Report).  While most of these are not expected to produce

stress variations exceeding ~ 1 MPa, compressive thermal stresses of several MPa are

expected for most of the first 10,000 years of the life of the repository.  Because such

stresses inhibit normal faulting, they are likely to be absent or much reduced at the

dike/fault intersection.

Normal stresses acting at the dike/fault intersection (across either the fault or the exten-

sion of the dike) are also influenced by several factors.  To the extent that the dike/fault

intersection is shallower than the potential dog-leg fracture, the overburden-induced

stresses can be expected to be lower.  The most important variable is the extent to which

fault slip alters the large tensile stress concentration at the dike tip.  If the fault cuts both

walls of the dike, such that an unbroken hangingwall extends across the dike plane, there

will be a large dike-induced tensile normal stress acting on the up-dip portion of the fault

that (in addition to the probable lack of large thermal stresses) will favor propagation up

the fault rather than initiation of a dog-leg.  This is the most likely scenario, at least at

depths greater than a few tens of meters, as only a single (existing) fault is required to

intersect the dike at one point.  (Observations of “keystone collapse” of a wedge-shaped

block into the dike cavity, to our knowledge, are restricted to near-surface exposures —
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e.g., where a dike cuts a cinder cone.)  The situation seemingly most favorable for a dog-

leg would be if such a “keystone”, or perhaps the “triangular” section of the hangingwall

bounded by the free surface, the portion of the fault up-dip of the dike/fault intersection,

and the dike plane, were completely unsupported by the rest of the hangingwall and

rested entirely on the fault segment up-dip of the dike.  In this case, the dike-induced ten-

sile stresses essentially are relieved by fault slip, and only differences in depth/

topographic stresses/fracture orientation and the presence/absence of thermal compres-

sive stresses are available to distinguish the normal stress across the fault from that acting

across a potential dog-leg fracture.  The first group of stresses could favor flow up either

the fault or the dog-leg, depending upon the depth of the dike/fault intersection and the

buoyancy of the magma.  However, the significant magnitude of the thermal stresses at

repository depths, together with their probable absence or significantly reduced magni-

tude at the depth of the dike/fault intersection, would seem to be the most important

consideration in this case and, again, favors flow up the fault rather than initiation of a

dog-leg.

Dike Blocked by Freezing:  We distinguish the following two types.

1. Freezing in a Thin Near-Tip Region — The considerations are much

the same as for a dike blocked by faulting, except that the absence of

faulting removes one mechanism for relieving the dike-induced tensile

stresses.  Owing to the large tensional stresses imparted by the inflat-

ing dike, renewed propagation of the parent dike seems highly favored

over initiation of a dog-leg fracture.

2. Freezing in Bulk — This may inhibit renewed propagation of the par-

ent dike, but it also inhibits the ascent of magma or bubbles driving

pressurization of the parent dike.  If the dike above the level of the re-

pository is substantially frozen because the drifts have siphoned off a

large fraction of the flow, the most likely outcome would seem to be

continued ascent of the dike at points distant from the repository.



The ICPRP Final Report — Volume 2, Appendices 76

Cylindrical Conduit Blocked by Freezing:  If this point is reached, then the parent dike

presumably has long since frozen (see Appendix 3.4).  If only the near-surface portion of

the cylindrical conduit is frozen, then blowing out of the frozen plug seems the most

likely response to a pressure increase.  If most of the plug above the repository is frozen,

then freezing below the repository and within the 5.5-m diameter drift appears very likely

as well.  Initiating new dikes off the conduit that intersect “pristine” (unfilled by magma)

drifts is also possible, but this scenario resembles the original one of an unobstructed

propagating dike intersecting some drifts.

2   Pyroclastic Flows

In some sense, most violent pyroclastic conduit flows are “obstructed” even while they

vent to the surface.  The (small) pressure drops due to viscous resistance and the density

of the erupting column do not allow the flow to reach near-atmospheric pressure until af-

ter some constriction is passed (which is the end of the vent for a sufficiently straight-

walled conduit).  However, the existence of a vent to the surface would still lead to lower

stresses at repository depths than would occur in the absence of such a vent.

Again, it seems more likely that a pyroclastic flow would circumvent a mechanical ob-

struction within the parent dike than form a dog-leg fracture.  The reasons are much the

same as those discussed in connection with magma flows above.  One difference is that

for a dike blocked by normal faulting, for a pyroclastic flow, there might not be a signifi-

cant pressure drop from the dike/drift intersection to the obstruction, making failure of

the obstruction (i.e., continued ascent of the flow either along the fault or vertically) even

more highly favored relative to initiation of a dog-leg off the drift than was the case for

magma flows.  Another difference is that if one is considering blockage of the parent dike

or vent due to freezing, one is most likely not considering a pyroclastic flow entering a

pristine drift, but pressurizing a drift that is already full of partially solidified magma.

This makes initiation of a dog-leg susceptible to the same “thermal death” issue as that

surrounding a magmatic dog-leg (unless drainback into the dike has occurred to a depth

of more than ~ 300 m).
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APPENDIX 3.8    RADIAL DIFFUSION OF GAS FROM A DRIFT

The volumetric flux per square meter, u (units of m/s), for fluid flow through a porous

medium is given by 

k dpu
drη

= − (1)

where k is the matrix permeability, η  is the fluid viscosity, p is the pressure, and r is dis-

tance.  Note that u is essentially a “bulk” flow velocity, a factor of φ  (the porosity) less

than the actual average velocity of the fluid phase.

Under conditions of radial flow, the mass balance equation is

( )d dr ur
dt dr
ρφ ρ= − (2)

where ρ  is the gas density, and t is time.  Here we have assumed that porosity, φ , is a

constant independent of pressure, a reasonable approximation in that the gas is so much

more compressible than the pore volume.

Combining (1) and (2) yields

1dp k d dppu
dt r dr drηφ

 =  
 

(3)

Here, we have assumed that permeability, k , and viscosity, η , are constants independent

of pressure and temperature, and we have made the isothermal assumption that ρ  is sim-

ply a constant times the pressure, p.  Note that the assumptions of constant permeability

and (at least until condensation of water vapor occurs) isothermal compressibility are

conservative in that they increase the pressure required to move a given mass flux, rela-

tive to what would be expected (increasing pressure leading to perhaps greatly increased

fracture permeability and decreasing temperature leading to a larger gas mass storage ca-

pacity at a given pressure).  Viscosity for steam varies only from about 4 x 10-5 Pa s to
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1 x 10-5 Pa s as the temperature decreases from about 800 oC to 100 oC and is very insen-

sitive to pressure.

Equation (3) is solved subject to boundary conditions p = 0.1 MPa (1 atmosphere) far

from the drift and a specified (time-varying) gas velocity, u , at the drift wall

(r = 2.75 m).  To determine this velocity boundary condition, we assume a constant mass

flux of magma into the drift and use the linearity of the gas volume fraction at low pres-

sure (see Figure 2-1c) to estimate that, for ~ 4 wt % H2O, 1 m3 of dense basalt

corresponds to ~ 60(MPa/p) m3 gas, where p is the pressure.  For a drift radius of 2.75 m

and an average length of 1.2 km, this corresponds to a velocity of (2.9 mm/s) (MPa/p) per

m3/s of dense basalt that enters the drift.  To translate a mass flux into the drift into a vol-

ume flux of dense magma, we use a density of 2.5 x 103 kg/m3, so (for example) a mass

flux of 105 kg/s corresponds to a dense magma volume flux of 40 m3/s and a gas volume

flux of (2400 m3/s) (MPa/p).

For a constant mass flux into the drift, the drift pressure gradually rises as high pressures

diffuse farther into the host rock.  At some time, the pressure fields of adjacent drifts

overlap, and, at some (earlier or later) time, the drifts may fill with pyroclastic debris.

The drift volume is ~ 2.8 x 104 m3 and (assuming dense magma) would take ~ 700 s to

fill at a mass flux of 105 kg/s and ~ 70 s to fill at a mass flux of 106 kg/s.  (Divide these

times by ~ 2 for filling with tephra).  The filling time would be longer if most solids go

up the dike; in this case, however, the dike must be venting to the surface, and that vent-

ing will put its own limit on the pressure at the dike/drift intersection.  By imposing the

gas velocity at the drift wall as a boundary condition, the time required to fill the drift

with gas is neglected, but this is insignificant compared to the filling time by tephra.
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The solid curves in Figure A3.8-1 show the time evolution of pressure in the drift for

mass fluxes into the drift of 105 and 106 kg/s.  In addition to the above values of magma

density and water content, we adopt η  = 3 x 10
-5

 Pa s (appropriate for a temperature of

~ 550 oC), k = 10-12 m2 (toward the low end of values measured in situ at the meter scale,

but probably an underestimate at the drift scale), and φ = 0.1.  For these parameters, the

drift pressure reaches values of ~ 2 MPa and ~ 5 MPa by the time the drifts fill for the

lower and higher mass fluxes, respectively.  These pressures increase to only ~ 2 MPa

and ~ 6 MPa for filling times ten times larger (if, for example, 90% of the solid or liquid

material goes up the dike, but all the gas appropriate for these mass fluxes goes into the

drifts).  The dashed curves in Figure A3.8-1 show the evolution of the pressure at a dis-

tance of 40 m from the drift axis.  This pressure remains essentially atmospheric to times

longer than the drift filling time, indicating that the 1D radial flow approximation is ade-

quate.

Figure A3.8-1 (solid curves) Drift pressure as a function of time for mass fluxes into a drift of 106 (top)
and 105 (bottom) kg/s (At these mass fluxes, the approximate “filling times” of the drift
are ~ 40 s and 400 s, respectively); (dashed curves) The evolution of pressure at a dis-
tance of 40 m from the drift axis, corresponding to the midpoint between adjacent drifts.
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These calculations can be augmented by considering the following processes.  It may be

that some of these can be shown to have a negligible influence on the drift pressure with-

out resorting to full-scale numerical calculations, but the Panel felt it was preferable to

list them so that others perhaps more familiar with the processes involved could judge:

(1) the complex permeability structure of the host rock — This will

probably reduce the “effective” porosity, φ , and thus tend to increase

the computed drift pressure;

(2) the volume decrease and viscosity decrease of the water vapor as it

cools — Both of these effects will decrease the computed drift pres-

sure.  The adopted viscosity is an approximate average from magmatic

to the boiling temperatures.  However, the volume decrease upon

cooling is not included in the calculations shown in Fig A3.8-1;

(3) the condensation of vapor to water — In an approximate sense, the

volume decrease compensates for the viscosity increase in that a given

pressure gradient can move a larger mass flux of water than steam.

However, the physics governing the storage capacity of the rocks is

very different for vapor and water (gas compressibility versus pore

volume compressibility and infiltration of water into unsaturated

rocks).  It seems likely that on balance condensation will reduce the

computed drift pressure;

(4) the boiling of any pore water remaining in the heated rock in the vi-

cinity of the drifts — This will increase the computed drift pressure,

but whether the influence of this process is significant is unknown.

(Certainly it will not be significant if most pore water has been driven

off.);

(5) the pressure sensitivity of the permeability of the host rock at the drift

scale, which is dominated by a fracture permeability that may increase
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dramatically as the gas pressure approaches the normal stress — This

will act to reduce the computed drift pressure.  On the other hand, be-

cause this mechanism depends upon the difference between the

fracture-normal stress and the gas pressure, by the same mechanism,

large thermal stresses in the vicinity of the drifts could act to decrease

the permeability relative to what is measured today (at low gas pres-

sure);

(6) infiltration of the host rock by fine pyroclastic material — This would

reduce the effective permeability and increase the computed drift pres-

sure.  Whether this process can be significant prior to the drift filling

with pyroclastic material is unknown.

The goal of considering these processes would be to see if drift pressures approaching the

expected normal stress acting across potential dog-leg fractures can be reached.  At pres-

ent, it seems that the computed pressures of < 2 MPa associated with a mass influx of

105 kg/s are too low to lead to a dog-leg, given even very modest thermal stresses.  How-

ever, given the variability in the normal stress that one might reasonably expect,

pressures a few times larger could be significant.  The pressures associated with a mass

flux of 106 kg/s are significant, but reaching such mass fluxes on a such a short timescale

seems unlikely.  Note also that mass fluxes of 105 kg/s to 106 kg/s typically are associated

with venting to atmospheric pressure; if pressures of several MPa develop in the drift

(still too small to overcome the expected nominal thermal stresses), one might expect the

mass flux into the drift to diminish.  (The relevant comparison is probably between the

pressure in the drift and the vent pressures upstream of the choking point under choked

flow conditions.)
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