Atmospheric Dispersion and Consequence Analysis at Sandia's TA-V Nuclear Facilities

SAND2012-4478P

Jim Dahl Manager, Nuclear Safety Analysis Sandia National Laboratories Office: 505-284-9067 Email: jjdahl@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dispersion and Consequence Analysis at Sandia's TA-V

Topics:

- Site Characteristics
- Dispersion Analysis Inputs
 - Meteorological Data
 - Stability Class
 - Dispersion Coefficients
 - Deposition Velocity
 - Surface Roughness
 - Dose Conversion Factors
- Issues

Site Characteristics

- High arid basin with desert grasses and sage
 - TA-V is 5400 ft. above sea level
 - Annual total precipitation ~ 8.5 inches
- Heterogeneous terrain characterized by an alluvial fan with eroded canyons and arroyos
- To the east are the Manzano and Sandia mountains with dramatic elevations changes resulting in down and up slope diurnal wind patterns
 - Manzanos 7700 ft. 7 miles from site (2300 ft. elevation Δ)
 - Sandias 9600 ft. 10 miles from site (4200 ft. elevation Δ)
- TA-V nuclear facilities located on Air Force Installation
- Site boundary established using an exclusion area concept at a radius from the site within the Air Force Base (1350 m, 0.84 miles)

Dispersion Analysis

- Current consequence analyses derived using WinMACCS v
 3.4, windows interface for MACCS2 v 2.4
- Meteorological data logged from a tower adjacent to TA-V and hourly averaged data from the 10 m high station is used as input to MACCS2
 - Five years of meteorological data are used (2003-2007)
- PG stability class is derived using the EPA σ^{θ} method
- Dispersion coefficients are power law calculations taken from Tadmor-Gur parameters

Consequence Analysis

- Inputs and assumptions consistent with DOE-EH-4.2.1.4, MACCS2-Code Guidance, 2004
- 95th percentile straight-line dose calculated for each weather year
 - Of the five weather year 95th percentile results, the year with the largest dose is used
 - Wind direction was not considered since the 1350 m boundary is symmetrical
- Two release heights were evaluated, ground release (0 m) and stack release
 - 10 m for Sandia Pulsed Reactor Facility
 - 14.3 m for Annular Core Research Reactor Facility

Consequence Analysis

- Dry Deposition Velocity (DV)
 - 0.0 cm/s for vapor, gases and tritium (³H₂O vapor)
 - 1.0 cm/s for all other particles
- Surface roughness 15 cm based on site specific evaluation
 - Calculated using a modified Wierenga gustiness method using data from Sandia meteorological tower network
- Dose Conversion Factors built into WinMACCS based on EPA Federal Guidance Report No. 13

– HSS-SB-2011-2

- Sandia's evaluation of the SB determined that assumptions used in the SB to derive the 0.1 cm/s DV do not align with observed weather conditions at TA-V, thus a site specific DV may need to be calculated
- Quality Assurance
 - WinMACCS runs of same weather data used by the toolbox version of MACCS2 and the results were identical
 - Pre and post processors undergo QA review
- TA-V's worst case accidents are operational upsets (reactor accidents, experimental disruption, etc.)
 - All TA-V operations are on a single shift daytime schedule
 - 95th percentile doses are based on evening meterlogical conditions (stable conditions, calm winds)
 - For operational accidents is it acceptable to use only daytime meteorology?