

SASSI Subtraction Method Effects at Various DOE projects

U.S. Department of Energy Natural Phenomena Hazards Workshop

October 25-26, 2011

Greg E. Mertz, Michael C. Costantino, Thomas W. Houston, Andrew S. Maham

Outline

- PF-4
- CMRR
- UPF
- Generic Study
- Lessons Learned

Note: Project results represent work-in-progress and do imply regulatory acceptance

SASSI Solution Methods for Embedded Structures

PF-4

Two story Box-type RC Structure 284'x265'x39' Embedded ~18'

1970's construction Thin basement floor with spread footings Flat slab interior floor supported by columns with capitals

PF-4 SSI Analysis

CJCAssociates

PF-4: Preliminary Analysis

Preliminary excavated soil model Extrusion of basement floor mesh Building model alone has ~19,000 nodes

PF-4 Highly Refined Mesh

- Highly refined quarter model
 - Regular mesh geometry
 - Lambda/5=25.5 Hz
- Side studies were used to demonstrate modified subtraction approximates direct
- Regular meshing reduced anomalous response by factor of 3
- Ratio of subtraction to modified subtraction TF is as large as 9
- Highly refined mesh has too many DOF for building analysis

8

PF-4 Coarse Regular Mesh

- Coarse 3D mesh
 - Direct solution
 - 1 element per bay
 - Use MPC's to constrain structural mesh to interaction nodes
 - Spurious response greatly reduced
 - Spikes @ 23 Hz due to mesh size
 - Coarse 3D mesh used for building analysis

9

CMRR-NF

- R/C box type building
 330' by 300' by 73'
- Embedded 39'

CMRR Quarter Model Study

X Transfer Functions on Quarter Model Basemat: Subtraction and Direct Method Comparison DM 3.5 Lateral Response 3 on basemat Subtraction. 2.5 (red) Щ. 2 1.5 Direct 1 (green) 0.5 0 5 10 25 15 20 30 0 Frequency (hz)

- Quarter model used to study subtraction anomaly
- Includes basemat and exterior walls
- Lateral soil column frequency is 6.4 Hz
- Lateral frequency of excavated soil volume is slightly higher
- First subtraction anomaly occurs at ~7.5 Hz
- Significant anomaly occurs at ~21 Hz

CMRR Modified* Subtraction

UPF

- 330'x470'x70' Surface RC building
- EUS site: High frequency input motion
- Site consists of:
 - Soil
 - Weathered shale
 - Unweathered shale
- Excavate poor soil and backfill with concrete

 SSI evaluates RC fill on competent shale

UPF Quarter Model Study

- Select a portion of the fill foot print for the quarter model study
- Compare response
 on top concrete fill
 - Subtract out uniform halfspace
 - Add irregular shale
 and concrete profile

14

UPF Quarter Model Study

Generic Study

- Western US Site
- Light building
- Heavy building
- 120'x120'x30'
 Excavation
 - Uniform 6' bricks
 - Lambda/5=29.2 Hz

Excavated Soil Behavior for Subtraction Method

CJCAssociates

Excavation Behavior

- Subtraction anomaly occurs at natural frequency of excavated soil volume
 - Anomaly at 10 Hz is at Lambda/14 << Lambda/5
 - Subtraction anomaly is NOT caused by mesh size

Rigid Massless Foundation Impedance

- Subtraction anomaly also observed in foundation impedance
- Modified subtraction also deviates from direct solution above 16 Hz
 - 16 Hz is the lateral frequency of the modified subtraction excavated soil volume

Building Response

- Light building
 - 2 story RC shear wall structure open floor plan
 - Lighter than excavated soil
- Heavy building
 - Light building on top of 60 ft rigid block of concrete
 - Weighs ~twice the excavated soil weight
- Subtraction anomaly affects ISRS in both buildings

Lessons Learned

- Subtraction can lead to anomalous response
 - Anomalous response occurs at and above the natural frequency of excavated soil volume
 - Anomalous response may not be evident in every transfer function
 - Irregular meshes can aggravate subtraction anomaly
- Subtraction anomaly is caused by independent vibration of excavated soil volume
 - Not a discretization (Lambda/5) issue
 - Not a programming error
 - Not due to numerical instabilities
 - This anomaly is a limitation of the applicability of the subtraction method

Lessons Learned (cont)

- Modified subtraction and variants, add restraint to excavated soil volume reducing independent vibration of excavated soil volume
 - Not a panacea anomalies still occur above natural frequency of excavated soil volume
 - Modified subtraction extends the range of applicability of the subtraction method
- Strongly recommend case specific studies for individual building geometry and soil properties
 - Benchmark with direct method
- Recommend open discussion of anomalous results
 - LA-UR-10-05302
 - This workshop
 - Position Paper CJCA-004