

Summary of the August Workshop to Identify Potential Synergies between Nuclear and Renewable Energy Opportunities

December 2011

Dana Christensen

NREL

Workshop Report at:

http://www.nrel.gov/docs/fy12osti/52256.pdf

Summary Presentation Outline

- Purpose and mission of the initiative
- Workshop summary
- Path forward

Initiative's Purpose / Mission

The objective of the workshop was to assemble experts in nuclear energy and renewable energy to

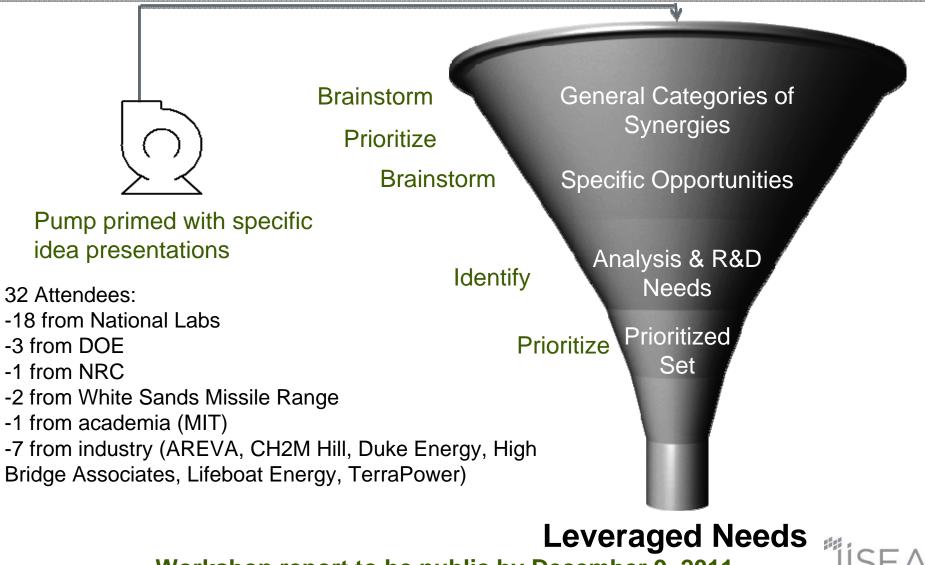
Identify and prioritize potential synergies between nuclear energy and renewable energy / energy efficiency

Identify potential leveraging opportunities

Why?

Meeting the U.S.'s energy needs will be challenging especially if carbon emissions are constrained or domestic and / or non-traditional sources for transportation energy become more important. Synergies may lead to additional and better options

Advantages/Challenges of Each Technologyar. Renewable Low GHG emissions


- Energy security fuel needs can be met in the U.S.
- Advantages Proven, commercial technologies Technologies gaining market share with ~20% market share and many Low to zero feedstock price volatility potential improvements Many of the technologies have the
 - Baseload power supply with very low fuel cost
 - High power density small footpril
 - Spent nuclear fuel
 - Concerns regarding potential
 - accidents
 - High up-front capital requires high capacity factors & makes financing challenging
- Challenges Long-lead times
 - Many designs have large water reqs.

^AIntermittent and variable production Pleads to integration challenges

potential for distributed generation

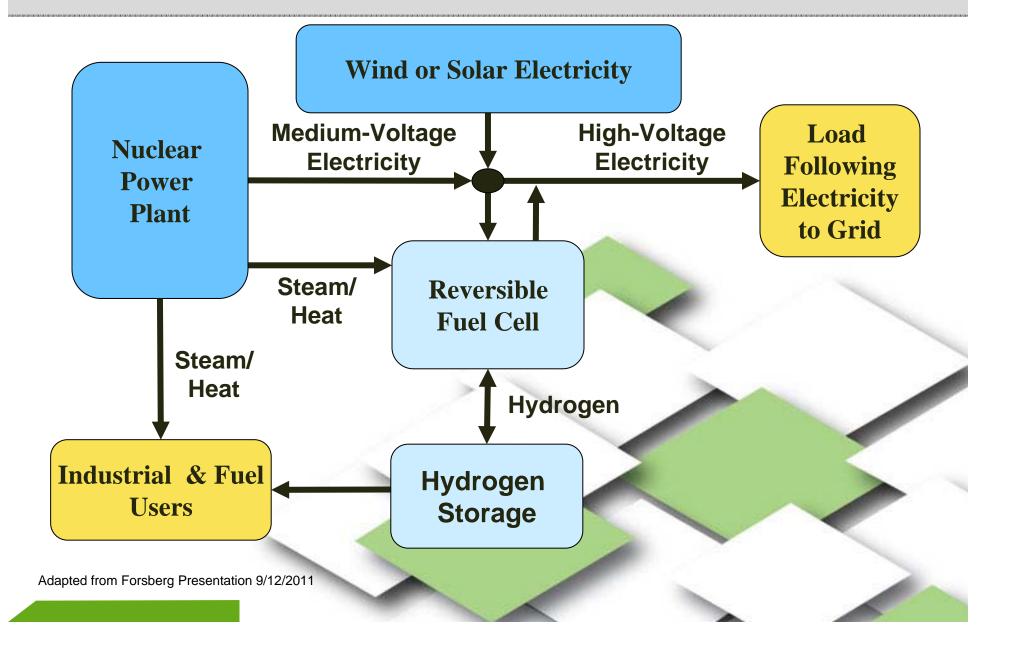
- Reductions to levelized costs are needed for some technologies
- Siting is limited for some technologies leading to transmission challenges
- Land area requirements can be challenging to meet

Workshop Structure

Workshop report to be public by December 9, 2011

Workshop Presentations (1)

- U.S. Nuclear Power Policies and R&D Programs
 - Pete Lyons Assistant Secretary for Nuclear Energy at DOE
- Nuclear/Wind/Hydrogen Systems for Variable Electricity and Hydrogen Production Synergies
 - Charles Forsberg MIT
- Potential Role of Thermal Energy Storage
 - Paul Denholm NREL
- Southeast Defense Energy Initiative
 - Ben Cross for Mike Navetta SRNL


Workshop Presentations (2)

- Small Reactors for Energy Supply: Islanded Generation and Load Management
 - Philip Moor High Bridge Associates
- Grid Scale Hybrid Energy Systems: Integrating Renewable and Nuclear Power
 - Richard Boardman INL
- Non-Technical Considerations for Small Modular Reactors
 - Phillip Bond White Sands Missile Range
- Small Modular Reactors NRC Readiness for Licensing Reviews
 - David Matthews NRC

Identified & Prioritized Opportunities

- Hybrid energy systems
- Energy for transportation
- Value Proposition/Business case development
- Example from Hybrid Team
 - Balancing capacity on the grid / grid optimization
 - Islandable Micro-grids with Small Modular Reactors (SMRs) and renewable energy
 - Nuclear energy source for industrial applications
 - Lessons-learned
 - Permitting / licensing / financing / risk
 - Policy and institutional opportunities
 - Common R&D needs

Example Nuclear-Renewable Hybrid System

Hybrid Energy Systems

Potential	 Basis of a sound national energy policy with improved sustainability and energy security and without reducing quality of life. Increase domestic energy production, which improves energy security and balance of trade ratios.
Challenges	 Stovepipes between regulatory agencies for nuclear and renewable energies Financing and risk assessment Management.
Priority Analysis Needs	 Requirements definition System design Engineering components (effects of different generation services, intermediate carriers, storage systems, and tradeoffs with storage/service options)
Priority R&D Opportunities	 Integrated, dynamic models Pilot integration especially with disparate technologies Enabling technologies such as energy storage, reactor design, energy conversion components, and interface components.

Energy for Transportation

Potential	 Might improve cost competiveness of biofuels and transform their potential from boutique fuels to viable alternatives to oil. Converting to a biofuels-based transportations system would contribute to several national policy goals
Challenges	 Same as hybrid systems Developing economic options for combining heat/power/hydrogen from nuclear facilities for generating fuels Overcoming benefits of sunken capital in existing fuel infrastructure Developing technologies to increase the density of biomass for transportation Addressing concerns about nuclear safety
Priority Analysis Needs	 Top-level systems analysis that includes what ifs, econometrics, customer input Cost analyses for scenarios Scale balancing and optimization.
Priority R&D Opportunities	 Processes where all of the biomass is converted to biofuel instead of a large portion used for heat, electricity, and hydrogen Processes that provide low cost hydrogen with a focus on nuclear processes Energy crops with high energy-to-land densities
	JISEA

Value Proposition Development

Potential	Expansive markets and huge potential
Challenges	 Bold vision and strong leadership Involvement of multiple stakeholder points of view Technical difficulty Engaging all stakeholders High risk / Quantification of risk
Analysis and R&D needs	 Systems Analysis (Techno-economic, policy) Quantification of the risks of the current energy system Identification of the barriers to entry with the increasing complexity of integrated systems Gap analyses looking at the build-out from current to the future state Computational Tool Development Energy management studies Market acceptance studies

Conclusions & Path Forward

- High level of interest in the potential for synergies between nuclear, coal, and renewable hybrid systems
- A 2nd workshop with INL in March 2012.
- Continue the Dialogue & Further input for a roadmap that identifies:
 - Multiple options for hybrid systems
 - Tool, simulation, and modeling
 - Necessary assessments (risk, demand variability, etc.)
 - Gaps for R&D focus
 - Regional, national, and international opportunities and organizational needs
- Workshop Report at: http://www.nrel.gov/docs/fy12osti/52256.pd