Advanced Nuclear Transformation Technology Subcommittee of the Nuclear Energy Research Advisory Committee

Status Report to NERAC February 21, 2007

Burton Richter, Chair Darleane Hoffman Sekazi Mtingwa Ron Omberg Joy Rempe Dominique Warin

Background

- Two ANTT Subcommittee meetings and status reports issued to NERAC in 2006
 - February 28-March 1, 2006
 - August 31-September 1, 2006
- FY07 funding of at least \$120 M announced February 2007.
- Next ANTT Subcommittee meeting planned March 5-6, 2007

Background (continued)

GNEP

- Initially rolled out Summer 2006.
- Altered course of AFCI R&D
 - Engineering Scale Demonstration Facility and Advanced Burner Test Reactor eliminated
 - Additional reprocessing scenarios considered
 - Research altered to support changing course
- Evolved during 2006
 - Two commercial facilities and one government laboratory facility
 - Industry participation in commercial facilities

Subcommittee Recommendations

- Subcommittee focused on AFCI R&D
 - Reviewed FY06 technical progress
 - Identifying inconsistencies and gaps in proposed research to support evolving GNEP
- Seven key recommendations in latest report
 - Recommendations encompassed those submitted in prior subcommittee report
 - Some recommendations already implemented

Mission Statement Needed for Each Major GNEP Facility

- Three key facilities proposed
 - ABR for TRU reduction
 - CFTC for LWR spent fuel treatment
 - AFCF for long range R&D and potentially for fabricating TRU lead test assemblies
- Multiple and possibly inconsistent facility objectives under consideration
 - ABR: facility to demonstrate NRC licensing, test facility for TRU-bearing fuel certification, or all of these?

Mission Statement Needed for Each Major GNEP Facility (continued)

- Many mission-related facility parameters not specified
 - ABR power rating, conversion ratio, and initial fuel type (metal or oxide), enrichment, or qualification path
 - AFCF fuel fabrication rate
 - CFTC fuel fabrication rate and separation process
- Some proposed facility objectives lead to design selections
 - Desire for NRC licensing may preclude ABR initially being loaded with TRU containing fuel

Integrated GNEP Program Timeline Needed

- GNEP based on multiple recycles
- Timeline should include period through demonstration of multiple transmutation recycles including qualification of required fuels.
- Expand current use of Technology Readiness Level (TRL) approach to assess research performed and additional research needed to accomplish GNEP objectives.

Review Availability of Necessary Test Facilities

- Development and qualification of transmutation fuel is long term process requiring irradiation facilities.
- Research programs require fuel and materials irradiations in thermal, fast, and pulse reactors.

Review Availability of Necessary Test Facilities (continued)

- Limited US and foreign facilities
 - Currently using INL's Advanced Test Reactor (ATR) and PHENIX.
 - Initial ABR fuel qualification assumed in ABR.
 - Vendor will propose fuel type (metal or oxide) and present qualification plan to DOE.
 - TRU qualification requires significantly more testing in
 - Existing facilities: INL's ATR and SNL's ACRR
 - International facilities with uncertain futures: PHENIX, JOYO, or BOR60
 - Unavailable facilities requiring restart: INL's TREAT
 - New facilities: addition of GTL to ATR or modifications to LANCE to create MTS at LANL.

Consider Various Transmutation Scenarios

- Current technology base supports ABRs with 0.5 to 0.6 conversion ratios
 - Lower conversion ratios require higher enriched fuel but reduce required number of fast reactors
 - Higher enriched fuels may have undesirable effects (reactivity swings in smaller reactors, thermal cycling on metallic structures, increased proliferation risk, etc.).
- Transmutation scenarios beyond 2050 should include possibility that breeder reactors will be main type of reactor deployed for power production.

Continue to Support Several Reprocessing Technologies

- UREX+ or COEX processes suitable for LWR and FR fuel
- Pyro process suitable for FR metal fuel
- Technology readiness levels approach should be increasingly used to prioritize additional required research

Ensure Universities Sufficiently Supported

- GNEP requires personnel with unique backgrounds
 - Actinide chemists
 - Nuclear engineers
 - Nuclear physicists (cross sections)
 - Advanced computational skills
 - Material scientists
- NERAC should develop a long-range plan for university funding that ensures sufficient GNEP workforce.

Establish NE, RW, NNSA, and SC Coordinating Committee

- Research and actions of NE, RW, NNSA, and SC related
 - GNEP could impact need for additional repository
 - Office of Science funding to be available to support basic GNEP-related research in FY07
 - New NNSA requirements for controlling nuclear material may impact GNEP selections for reprocessing.
- Coordination needed at higher levels
 - Informal coordination occurring among staff
 - Higher level program coordination needed
 - NE should create and chair high level coordinating committee that includes representatives from RW, NNSA, and SC.

Summary

- DOE-NE nuclear transformation technology programs evolved considerably since committee's initial formation.
- GNEP offers unique and much needed opportunity
 - Begin reduction of separated plutonium
 - Eliminate need for second repository
 - Path forward for power production
 - Slow (or perhaps stop) growth of fuel cycle countries.
- Funding and opportunity shouldn't be wasted
 - Subcommittee urges NERAC to recommend that DOE-NE develop an achievable path and stick to it.
 - International community watching to see if US is serious.