

Exceptional service in the

national

interest

Evaluating Utility Owned Electric Energy Storage Systems: A Perspective for State Electric Utility Regulators

DOE Energy Storage Program Peer Review 2012 September 28, 2012

Dhruv Bhatnagar & Verne Loose Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation for this Work

- Many state utility regulatory bodies are unfamiliar with electric energy storage systems
 - The technology
 - The functional uses
 - The value of these uses to the grid
- This leads to a handicap in their proper evaluation for rate base
- May prevent the best (economic) technologies from system integration

Sandia National Laboratories

Source: GE

What we are doing

- Developing a guidebook:
 - Inform regulators about the system benefits of energy storage
 - Identify regulatory challenges to increased deployment
 - Suggest responses & solutions to challenges
 - Identify energy storage valuation principles
 - Provide sample economic evaluations for regulatory commission submissions

SANDIA REPORT SAND2012-XXXX Unlimited Release Printed Month and Year

Evaluating Utility Owned Electric Energy Storage Systems: A Perspective for Electric Utility Regulators

Dhruv Bhatnagar and Verne Loose

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-944AL85000.

Approved for public release; further dissemination unlimited.

Ensuring informed and impartial analysis of competing technologies is the mechanism to develop a robust and efficient future U.S. electric system.

What we have completed

- Formed an advisory committee
- Extensive literature search
- Search of utility commission dockets throughout U.S.
 - All 48 contiguous states, Alaska and Hawaii

What we have completed

- Discussions with regulatory commissioners and their staff
 - Illinois, New Jersey, Arizona, California (CAPUC & CEC), New Mexico, Texas
- Discussions with utilities
 - SCE, PNM, FirstEnergy, Duke Energy
- Discussions with industry experts, consultants, academics, DOE, EPRI, NRRI
- Participated in NRRI and CESA webinars

The Guidebook

- 1. Energy Storage Defined
 - Sources, technologies, functional uses, factors affecting demand & the future grid
- 2. Review of PUC Hearings
 - Challenges, regulatory responses to these challenges
- 3. A framework for evaluating the services of energy storage
- 4. Evaluation Case Studies
 - Renewable energy time-shifting and firming
 - Distributed generation smoothing and integration

Results of this work

- Limited operational experience leads to uncertainty regarding the ability of energy storage to provide reliable service
 - Deployments and performance standard development are often issues cited that would increase regulator (and utility) comfort
- Challenges to quantifying value leads to difficulty in proving cost-effectiveness
 - The value of an energy storage system is governed by the cost of the next best alternative means of providing the regulated service(s)
 - In market areas, energy storage can deliver services at market prices, but some products are not available

Results of this work

- Operational, definition and classification issues: energy storage defies classification as a generation, transmission, or distribution asset
 - These can be clarified by viewing energy storage systems from the view of the services they perform rather than their inherent engineering characteristics (Texas and ERCOT)
- The regulatory environment may make it difficult for utilities to propose energy storage systems
 - Regulatory commissions may need to work with utilities to facilitate deployment
- Mandates and incentives might encourage more deployment but interrupt the process of market valuation of the technologies.
 - Feed-in tariffs or other incentives might provide the necessary financial boost to induce utilities to invest in energy storage in the absence of carbon pricing.

The Analysis Process

For a specific deployment:

- a. System specific modeling (internal modeling processes, Sandia Optimization tool, ESVT)
- b. Production cost modeling
- c. Power flow modeling
- d. Long term planning models

Functional Uses & their Evaluation

		Functional Use	Value Metric	Possible Analysis Approaches
Energy	1	Electric Energy Time-Shift	The price differential between off-peak and on-peak prices minus any efficiency losses associated with the charging process.	Production cost modeling; Sandia optimization tool; ESVT
	2	Electric Supply Capacity	The avoided cost of new generation capacity (procurement or build capital cost) to meet requirements.	Long term planning models
T&D Service	3	Transmission Upgrade Deferral	The avoided cost of deferred infrastructure to address the issue.	Long term planning models
	4	Distribution Upgrade Deferral	The avoided cost of deferred infrastructure to address the issue.	Long term planning models
	5	Transmission Voltage Support	The avoided cost of procuring voltage support services through other means.	Power flow modeling
	6	Distribution Voltage Support	The avoided cost of procuring voltage support services through other means.	Power flow modeling
erve Service	7	Synchronous Reserve	Regulated Env: the avoided cost of procuring reserve service through other means. Market Env: the market price for synchronous reserve.	Production cost modeling
	8	Non-Synchronous Reserve	Regulated Env: the avoided cost of procuring reserve service through other means. Market Env: the market price for non-synchronous reserve.	Production cost modeling
Rese	9	Frequency Regulation	Regulated env: the avoided cost of procuring service through other means. Market env: the market price for frequency regulation service.	Production cost modeling
tomer Service	10	Power Reliability	The avoided cost of new resources to meet reliability requirements.	Distribution modeling: power flow
	11	Power Quality	The avoided cost of new resources to meet power quality requirements, or avoided penalties if requirements not being met.	Distribution modeling: power flow
	12	Retail TOU Energy Time Shift	The price differential between low TOU and high TOU prices.	Simple internal models; Sandia optimization tool; ESVT
Cus	13	Demand Charge Management	The avoided cost of demand charges.	Simple internal models; Sandia optimization tool; ESVT

Functional uses and value metrics jointly developed with EPRI & ESA

Future Tasks

- Publish final version of report
- Disseminate the report as widely as possible
 - Presentations to PUCs, utilities, NARUC

This will be a valuable tool that has great potential to help regulators understand, analyze and make the right decisions in evaluating energy storage technologies.

Acknowledgments

- Dr. Imre Gyuk, Program Manager, DOE Energy Storage Program
- Advisory Committee Membership
 - Joseph Desmond, VP Gov't Relations BrightSource Energy, Inc.
 - Eva L. Gardow, Senior Project Manager, First Energy, Inc.
 - Ali Nourai, Executive Consultant DNV Kema
 - J. Arnold Quinn, Director of Econ. & Tech. Analysis, FERC
 - Ben Rogers, COO, Grid Storage Technologies
 - Carl J. Weinberg, Principal, Weinberg Associates

Contact Information

Sandia National Laboratories

Energy Storage and Transmission Analysis

- Verne Loose
 - vwloose@sandia.gov
- Dhruv Bhatnagar
 - dbhatna@sandia.gov