Sandia National Laboratories' Programs

- 1. Electroactive Ionic Liquids: A New Approach to Flow Batteries
- 2. Gallium Nitride Substrates for Power Electronics: Electrochemical Solution Growth

Karen Waldrip, PhD Advanced Power Sources R&D Sandia National Labs, Albuquerque, NM knwaldr@sandia.gov

Electroactive Ionic Liquids:

A New Approach To Flow Batteries

Date

Travis Anderson David Ingersoll Chad Staiger Karen Waldrip

Flow Batteries

Vanadium Redox Battery (VRB)

•No cross contamination

- •Flexible layout
- •High cycle life
- •Large, tunable capacity
- •Low maintenance

vanadium redox couples are in both cells, separated by a proton exchange membrane

Ionic Liquids

Common Anions

- $\mathsf{BF}_4^- \mathsf{PF}_6^- \mathsf{AICI}_4^-$
- CI^{-} NO_3^{-} $CF_3SO_3^{-}$

 CIO_4^- (CF₃SO₂)₂N⁻

Synthetic "Targets"

Low symmetry

•Weak Intermolecular Interactions

•Low charge density

Synthesis of Electroactive Ionic Liquids

- -scalable
- -versatile
- -low cost
- -two functional groups

+ 2 $CF_3SO_3^-$ or $CH_3(CH_2)_3CH(C_2H_5)CO_2^-$

Flow Battery Safety

Ionic liquids have no vapor pressure, thus mitigating cell pressurization issues

Data based on individual components

Versatile Synthesis

The coordination geometry can be varied by changing the reaction stoichiometry.

 $(CH_3(CH_2)_3CH(C_2H_5)CO_2)_2Cu(NH_2CH_2CH_2OH)_6$ $Cb_2Cu(EA)_6$ $(CH_3(CH_2)_3CH(C_2H_5)CO_2)_2Cu(NH(CH_2CH_2OH)_2)_6$ Cb₂Cu(dEA)₆ $(CH_3(CH_2)_3CH(C_2H_5)CO_2)_2Cu(N(CH_2CH_2OH)_3)_6$ $Cb_2Cu(tEA)_6$ $(CF_3SO_3)_2Cu(NH(CH_2CH_2OH)_2)_6$ $Tf_2Cu(dEA)_6$ $(CF_3SO_3)_2Zn(NH_2CH_2CH_2OH)_6$ $Tf_2Zn(EA)_6$ $(CF_3SO_3)_2Zn(NH_2CH_2CH_2OH)_4$ $Tf_2Zn(EA)_4$ $(CF_3SO_3)_3Fe(NH(CH_2CH_2OH)_2)_6$ $Tf_3Fe(dEA)_6$

Seven New Electroactive Ionic Liquids

Spectroscopic Studies of Synthesized Ionic Liquids

- •Determine molecular structures
- •Relate structure to properties
- •Tailor synthesis procedure to obtain molecules with desired properties (e.g., d.p. 150-255C)

Cyclic Voltammetry

Conditions: Pt working electrode, 1 M TEABF₄ in CH_3CN

Conductivity Studies

Complex	Specific Conductivity (µS cm⁻¹) at 25 °C	Activation Energy (kcal mol ⁻¹)	E _a of aqueous (and molten) meta salt ~3-5 kcal mol ⁻¹
Cb ₂ Cu(tEA) ₆	8.77	13.3	4
Cb ₂ Cu(dEA) ₆	14.3	11.6	-5 - 0 0 0 -
Cb ₂ Cu(EA) ₆	44.6	12.2	
Tf ₂ Cu(dEA) ₆	66.7	11.2	(X) III
Tf ₂ Zn(EA) ₄	101	8.9	-7 -
Tf ₃ Fe(dEA) ₆	207	13.1	$-^{\circ}$ Cb ₂ Cu(EA) ₆
Tf ₂ Zn(EA) ₆	341	14.6	$ Tf_2 Zn(EA)_4$

the specific conductivity of common battery electrolytes at 25 °C is ~0.5-1 S cm⁻¹

conductivity is low: suggests significant ion pairing

0.0034

0.0033

0.0032

← Tf₂Cu(dEA)₆

0.003

0.0031

1/T (K⁻¹)

0.0029

-10 -----0.0028

Anion Exchange to Increase Conductivity

• ORNL compounds $M(NH_3-R)_2(CF_3SO_2)_2N$ increased conductivity by three orders of magnitude

Decrease Viscosity to Increase Efficiency

• The increased hydrophobicity of $(CF_3SO_2)_2N$ will decrease the internal resistance to power extraction

Increase Molar Concentration of Metals

- Increases energy density
- Metal-Ligand exchange, mixed metal systems

Conclusions and Future Work

•Although we have demonstrated the compounds may serve as a **liquid electrode** they are not yet appropriate as the **electrolyte**

•Future work on the electroactive ionic liquids will focus on both new **ligands** and new **anions** to increase hydrophobicity

•Evaluate the effect of hydrophobicity on the fundamental electrochemical characteristics

Zinc-based ionic liquid

(cation shown)

Electrochemical Solution Growth (ESG) of Gallium Nitride for Power Electronics

Karen Waldrip Sandia National Labs, Albuquerque, NM

Dave F. Smith GNOEM Systems, Boulder Creek, CA

Combined Figure of Merit

	K (W/cm°C)	E _c (MV/cm)	ε	µ (cm²/Vs)	Vs	Combined Figure of Merit
Si	1.31	0.3	11.8	1350	1 x 10 ⁷	1
SiC	4.9	2	10	650	2 x 10 ⁷	136
GaN	1.3	3.3	9	1200	2.5×10^{7}	153

Energy gap - lattice parameter diagram of III-nitrides

Heterostructure Rectifiers Offer Improved Breakdown Voltages

- 9.7 kV for Al_{0.25}Ga_{0.75}N
- Leakage current due to bulk defects

GaN is Grown Heteroepitaxially on Sapphire (and Silicon Carbide) Substrates

Figure from Lada et al., J. Crystal Growth 258, 89 (2003).

- High temperature growth on the GaN nuclei produces GaN grains.
- Growth conditions can be varied to enhance the <u>pyramidal growth mode</u> or lateral coalescence. Dislocations are bent laterally on pyramidal facets.
- Dislocations are concentrated in bunches located microns apart.

- As grown GaN nucleation layers contain disordered GaN with many stacking faults.
- Once annealed, wurtzite GaN forms on top of disordered GaN NL, forming nano-sized GaN nuclei from which further high temperature GaN growth occurs.

TEM cross section

Methods for growing bulk GaN

Desires/Requirements for a Bulk Growth Technique

- Good crystalline quality () $\leq 1 \times 10^{5} \text{ cm}^{-2}$)
- High growth rate (~mm/hr): high throughput, high volume production
- Low impurity content
- Scalable
- Controllable
- Manufacturable
- Reasonably inexpensive
- Applicable to InN, GaN, AIN, and III-N alloys

1/2N₂ + 3e⁻ N⁻³: The Reactive Intermediate

• T. Goto and Y. Ito, "Electrochemical reduction of nitrogen in a molten chloride salt" Electrochimica Acta, Vol. 43, Nos 21-22, pp 3379-3384 (1998).

New Bulk Growth Technique: Electrochemical Solution Growth (ESG)

Note that this is not electrodeposition! •Avoids requirement for conductive materials •Avoids purity, crystalline quality issues Uses rotation of seed/boule to deliver ionic precursors (changes growth physics!)

Highlights of Advantages:

•Highest quality crystals produced by solution growth (disl. densities ~10² cm⁻²)

•Manufacturable process because electrochemistry controls concentrations

•Fully Scalable because seed/boule rotation produces uniform lateral Temp/Concentration and T, C gradients

•Inexpensive because relatively high concentrations enable mm/hr growth rates

Path Forward:

Demonstrate seeded growth (*in situ* seed prep)

Tune growth parameters to produce high quality boules

Transfer process to commercial 6" reactor (available for use)

GaN ESG Produces Photoluminescent GaN Crystallites

GNOEM Systems, Inc. Boulder Creek, CA

Example of Nitrogen Gas Reduction Cyclic Voltammograms

Industrial Partner (GNOEM) Hardware Development

Growth Rate vs. Rotation Speed and Concentration

Summary: Path For Development

- Demonstrate that chemistry is viable
 - Kinetics and thermodynamics are favorable in this setup
- Check for dissolution and precipitation approach
- Develop N₂ electrochemical reduction methods
- Develop initial fluid dynamics schemes
- Deposit GaN on a seed crystal
 - Improve crystal quality
 - Optimize growth rate

Electroactive Ionic Liquids

P. G. Rickert et al. *Dalton Trans.* **2007**, 529-531. J.-F. Huang et al. *J. Electrochem. Soc.* **2006**, *153*, J9-J13.

Magnetic Susceptibility Studies

<u>Compound</u>	Calculated χ	<u>Measured χ (±0.05)</u>
Cb ₂ Cu(EA) ₆	1.73 BM	1.50 BM
Cb ₂ Cu(dEA) ₆	1.73 BM	1.69 BM
Cb ₂ Cu(tEA) ₆	1.73 BM	1.72 BM
Tf ₂ Cu(dEA) ₆	1.73 BM	1.60 BM
Tf ₂ Zn(EA) ₆	0	0 diamagnetic
Tf ₂ Zn(EA) ₄	0	0
Tf ₃ Fe(dEA) ₆	5.90 BM	5.87 BM

-smaller ligands and anions promote antiferromagnetic coupling

Thermal Stability Studies

tunable based on metal, ligand, and anion

Complex	Disassociation Temperature
Tf ₂ Zn(EA) ₄	150 °C
Tf ₂ Zn(EA) ₆	150 °C
Cb ₂ Cu(EA) ₆	185 °C
Tf ₂ Cu(dEA) ₆	210 °C
Cb ₂ Cu(dEA) ₆	225 °C
Cb ₂ Cu(tEA) ₆	250 °C
Tf ₃ Fe(dEA) ₆	255 °C

Initial Experimental Setup: Unseeded Growth of GaN in a Test Tube

 Li_3N or $(Li_3N + N_2) + Ga, 450^{\circ}C$, current

Produced numerous wurtzite GaN crystals; This crystal was ~1.25mm long x 0.8mm wide

SEM of RD-ESG Growth Run #1

- SIMS revealed the layer to be a graphitic carbon layer, with Ga, N, and GaN clusters
- GaN content was about 10%
- Profile was consistent with an increasing concentration
- Problem with salt purity from supplier
- Working it out with supplier
- Developing in-house purification technique for reagent grade salt

Room Temperature Convection Experiments

Under laminar flow conditions, the spinning seed will draw nutrient-containing fluid to the surface- if the electrodes are properly shaped and located.

First GNOEM RD-ESG Experiment

- Hardware failure- susceptor sheared, not sure when
- Black line on sample surface delineated a higher, specular region and lower, roughened area
- Defect selective etching observed (several microns/hr)
- Highly encouraging for crystal quality
 - Must identify the conditions under which this takes place
- Polished cross sections of control and experiment sample consistently measure about 1 m thicker for experiment

