Environmental Sciences Laboratory

Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site

August 2005

Prepared for U.S. Department of Energy Grand Junction, Colorado

Work Performed Under DOE Contract No. DE–AC01–02GJ79491 for the U.S. Department of Energy Approved for public release; distribution is unlimited.

DOE-LM/GJ857-2005 ESL-RPT-2005-04

Vertical Distribution of Contamination in Ground Water at the Tuba City, Arizona, Site

August 2005

Work Performed by S.M. Stoller Corporation under DOE Contract No. DE–AC01–02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

Contents

1.0	Intro	duction	1
2.0	Back	ground Information	3
	2.1	Aquifer Discretization	3
	2.2	Ground Water Extraction	4
	2.3	Ground Water Contamination	4
		2.3.1 Contaminant Mass Balance at Extraction Wells	7
		2.3.2 Extraction Well Rebound Effect	.10
	2.4	Ground Water Capture Zone	.10
3.0	Aqui	ifer Isolation Tests	.11
	3.1	March 2004 Packer Tests	.11
		3.1.1 Well 1101	.12
		3.1.2 Well 1107	.13
	3.2	June 2004 Packer Tests	.14
		3.2.1 Well 1101	.15
		3.2.2 Well 1106	.15
	3.3	Discussion of Packer Test Results	.17
4.0	Tech	nology Review	.17
	4.1	Aquifer Isolation	.17
	4.2	Downhole Logging	.17
	4.3	Multilevel Sampling	.19
5.0	Sum	mary and Conclusions	.19
6.0	Reco	ommendations	.21
7.0	Refe	rences	.21

Tables

Table 1. Contaminant Data for Shallow Wells and Nearby Extraction Wells	
Table 2. Packer Test Information	

Figures

Figure 1. Site Location Map	1
Figure 2. Site Features Map	2
Figure 3. Uranium Concentrations in Ground Water, Horizons A and B, February 2005	5
Figure 4. Uranium Concentrations in Ground Water, Horizons C and D, February 2005	6
Figure 5. Nitrate Concentrations in Ground Water at Well Group 936/251/1113/1114	9
Figure 6. Sulfate Concentrations in Ground Water at Well Group 936/251/1113/1114	9
Figure 7. Uranium Concentrations in Ground Water at Well Group 936/251/1113/11145	10
Figure 8. Well 1101 Packer Test Results for March 2004	13
Figure 9. Well 1107 Packer Test Results for March 2004	14
Figure 10. Well 1101 Packer Test Results for June 2004	15
Figure 11. Well 1106 Packer Test Results for June 2004	16
Figure 12. Hypothetical Stagnant Flow Zone Beneath Packer	18

Figure 13.	Cross-Section Schematic of Well Bore	18
Figure 14.	Conceptual Test Design	20

Appendixes

Appendix A—Additional Figures Appendix B—Packer Test Field Data

1.0 Introduction

This report evaluates the vertical distribution of contamination in ground water at the Tuba City Disposal Site, near Tuba City, Arizona (Figure 1). An improved understanding of contaminant distribution with depth may lead to more accurately evaluating the progress of ground water remediation at the site and more efficient contaminant recovery. At present, 25 wells shown in Figure 2 operate to extract ground water for on-site treatment by mechanical distillation.

The ground water extraction system meets design expectations of contaminant recovery. However, although capture of some uncontaminated water is probably unavoidable, the vertical influence of the extraction wells may be excessive. It is the goal of this report to determine if sufficient evidence of excessive capture at depth merits additional studies. Minimizing such capture, possibly by modifying (shortening) the extraction wells, may reduce long-term costs of remediation.

M:\LTS\111\0023\14\001\S01753\S0175300.mxd carverh 4/5/2005 4:21:04 PM

Figure 1. Site Location Map

Figure 2. Site Features Map

2.0 Background Information

The Tuba City site lies on the middle of three alluvial terraces associated with ancestral flow in Moenkopi Wash, located about 1.25 miles southeast of the site. The regionally extensive Navajo Sandstone, a massively cross-bedded, fine to very fine friable sandstone and siltstone, underlies coarse, semi-indurated, remnant alluvium at most terrace locations. Loose dune sand and silt is prevalent to depths of up to 20 feet (ft), although bedrock slopes and cliffs dominate the terrace escarpments. Regional bedrock dip is about one degree to the northeast.

Within about 200 ft below ground, the eolian dune deposits of the "classic" Navajo Sandstone become interbedded with fine-grained alluvium more typical of the underlying Kayenta Formation. This "inter-tonguing interval" is 400 to 450 ft thick. Locally, the Kayenta Formation consists of 100 ft or more of slope-forming, flat-lying red silt and fine sand. From the ambient water table, at about 50 ft below ground at the site, the saturated zone extends through the intertonguing interval to the upper contact of the non-water bearing Kayenta Formation.

Moenkopi Wash occupies the axis of a broad bedrock valley. Ground water flow beneath the site is southeast to the wash. Aquifer thickness is reduced by about 40 percent (250 ft) over this distance. At the wash, regional discharge occurs from a laterally extensive (miles) spring zone that outcrops near the exposed base of the inter-tonguing interval. Some local discharge of ground water from higher in the formation likely occurs to sustain scattered populations of desert phreatophytes, such as in the "greasewood area" designated in Figure 2, where ground water is only about 20 ft below land surface. Figure A-1 in Appendix A depicts a conceptual model of the site hydrogeology.

2.1 Aquifer Discretization

Site hydrostratigraphy is discretized into 50-ft intervals, or "horizons," each with a letter designation. The top of the middle terrace, nominally 5,050 feet in elevation, marks the top of the uppermost horizon (Horizon A). Horizons A, B, C, and possibly D span the interval of "classic" Navajo Sandstone beneath the site, whereas the depths of Horizons E through J include the regions of the inter-tonguing interval. Horizons K, L, and M include the lower inter-tonguing interval and possibly the upper Kayenta Formation. These stratigraphic relationships to aquifer horizon are shown in Figure A–1.

The uppermost horizon on the lower terrace progresses from Horizon C to D north to south with the downslope of surface topography. The steep terrain at Moenkopi Wash intersects Horizons E through G. Ground water remediation at the site focuses primarily on the upper 250 ft of the bedrock aquifer (Horizons A through E).

Color-coding in Figure 2 identifies the horizon in which the mid-point of each well screen is located for extraction wells (round symbols) and monitoring wells (square symbols). Figure A–2 of Appendix A is a cross-section schematic of the placement depth of well screens in relation to aquifer horizon for all project wells.

2.2 Ground Water Extraction

In Figure 2, the extraction wells of interest are those labeled 1101 to 1125. They are constructed of 6-inch diameter Schedule 40 PVC casing and 6-inch, vee-wrap stainless steel screen (0.017-inch slot). A filter pack of 20-40 graded silica sand completes the 2-in annulus to 30 or 40 ft above the screen slots. Screen lengths are 150-ft and extend from the bottom half of Horizon B to the mid-depth of Horizon E, except at wells 1116, 1117, and 1118, where 100-ft screens extend nearly to the base of Horizon D. Extraction wells 1126–1133, (Figure 2) installed in 2004, are of similar specification but consist of 4-inch diameter casing and screen and are much shallower, with 30 to 40-ft screens located in Horizon B. These wells will become operational in Summer 2005.

Current production of the 25 extraction wells is 80 to 100 gpm sustained over periods of months. Individual production ranges from 0.5 to 6 gpm. The 25-well average is 4 gpm. Concentrations of nitrate (as NO₃), sulfate, and uranium, the primary site contaminants, remain relatively steady in the bulk extract at about 400, 900, and 0.25 milligrams per liter (mg/L), respectively, during steady pumping. Remediation goals are 44 mg/L nitrate as NO₃, 250 mg/L sulfate, and 0.044 mg/L uranium.

2.3 Ground Water Contamination

Figure 3 and Figure 4 show the extent of uranium contamination in ground water in aquifer Horizons A and B, and Horizons C and D (extraction wells included), respectively, in February 2005. The distribution of nitrate and sulfate contamination has similar trends to that of uranium. Until the installation of wells 272 - 276 in 2004, there was no discrete-depth monitoring capability of Horizons C and D within the main region of the contaminant plume as defined by the more extensive network of shallower monitoring wells.

Uranium concentrations shown in Figure 4 for the extraction wells are from samples collected while the wells are pumping and so are composites of the entire intake interval and do not necessarily indicate that contamination in the aquifer extends to the full depth of the well. Samples collected from the extraction wells before full-scale extraction and treatment started in mid-2002 are also unsuitable for assessing the depth of contamination because of similar sampling conditions.

Discrete-depth sampling beneath contaminated regions of Horizons A and B indicates that the contamination extends into Horizon D at wells 273 and 275 but does not at wells 272, 274, and 276. Contamination at well 273 is limited to relatively low levels of nitrate (185 mg/L) and uranium (0.06 mg/L), whereas elevated concentrations of nitrate (1,056 mg/L), sulfate (2,100 mg/L), and uranium (0.44 mg/L) are present at well 275. At the paired monitor wells along the escarpment separating the middle and lower terraces (well pairs 263/264, 265/266, and 909/932), contamination is limited to the shallow well (A or B Horizon) and does not extend into Horizon C or D at each location. At the remaining location of a monitor well pair completed in the interval of the extraction wells, contaminant concentrations also decrease sharply with depth, in this case between Horizon B (wells 908 and 935) and Horizon C (well 912, not sampled in February 2005).

Figure 3. Uranium Concentrations in Ground Water, Horizons A and B, February 2005

Figure 4. Uranium Concentrations in Ground Water, Horizons C and D, February 2005

Ground water is not contaminated at the sole Horizon E well (well 251) that is screened beneath significant shallow contamination. The brief period of contamination at that well that occurred several months after its installation (April 2000) presumably resulted from a failed annular seal and downward leakage of shallower contaminated ground water (DOE 2005). In response to ground water extraction, the vertical flow gradient has reversed from downward to upward and contamination is no longer present at well 251.

2.3.1 Contaminant Mass Balance at Extraction Wells

The tendency for contaminants to be concentrated in the shallowest horizons at the site, specifically Horizons A and B, can also be examined using approximate assessments of contaminant mass balance in extraction wells. As discussed in Section 2.2 and shown in Figure A–2, the screened intervals of most extraction wells begin in the bottom half of Horizon B and terminate either near the mid-point or the bottom of Horizon E. Thus, if it can be shown that contaminant concentrations in the water pumped from extraction wells in a specific area are considerably lower than comparable contaminant concentrations are less in the deeper horizons. A simple approach to this type of assessment assumes that the rate of inflow to the extraction well is uniform over its entire screened thickness, and that water mixing in the well can be represented by

$$C_{ext} = \frac{q \left(H_B C_B + H_{deep} C_{deep} \right)}{Q_{ext}}$$
(1)

where C_{ext} = contaminant concentration in the extracted water (mass/volume), q = rate of inflow to the extraction well per unit depth (length²/time), H_B = screened vertical interval in Horizon B (length), H_{deep} = screened vertical interval below Horizon B (length), C_B = measured contaminant concentration in Horizon B (mass/volume), C_{deep} = average contaminant concentration over H_{deep} (mass/volume), and Q_{ext} = $qH_B + qH_{deep}$ = extraction well pumping rate (volume/time).

Table 1, which presents representative concentrations for observation wells screened in distinct horizons and in nearby extraction wells, provides some data to which this simple mass balance logic can be applied. The data in this table for the 936/1113/1114 well combination were drawn from time series plots of contaminant concentrations at these wells (Figure 5, Figure 6, and Figure 7). Applying Equation (1) to the listed representative concentrations for nitrate, sulfate, and uranium in these wells suggests that the average contaminant concentrations in the deeper horizons (C_{deep}) of extraction wells 1113 and 1114 are, at the most, a small fraction of the concentrations occurring in Horizon B. The same finding also holds true for the 934/1116/1117/1118 and 942/11104 well combinations. At the locations of two other well combinations (935/1114/1115 and 940/1110/1111), this same conclusion is derived if it can be assumed that concentrations measured in wells screened in Horizon A are representative of local Horizon B concentrations.

Well	Represe	Representative Concentration (mg/L)								
(Horizon)	Nitrate (as NO ₃)	Sulfate	Uranium							
934 (B)	2,400	2,200	0.32							
1116	<50	100	0.007							
1117	200	600	0.03							
1118	600	1,400	0.059							
935 (A)	650	2,700	0.11							
912 (C)	375	600	0.03							
1114	180	280	0.03							
1115	250	350	0.05							
936 (B)	2,300	3,000	0.5							
1113	50-100	<50	<0.005							
1114	180	250	0.03							
940 (A)	1,700	9,000	0.43							
272 (D)	15	12	0.002							
1110	250	350	0.06							
1111	400	850	0.14							
941 (A)	600	800	0.08							
273 (D)	207	245	0.07							
1105	200-300	1000	0.5-1.5							
1106	140	400	0.6							
1107	200	250	0.04							
1108	700	1,750	0.25							
942 (B)	1,200	2,800	0.25							
274 (C)	19	39	0.003							
1104	800	1,250	0.12							

Table 1. Contaminant Data for Shallow Wells and Nearby Extraction Wells

The one remaining well combination in Table 1 (941/11105/1106/1107/1108) provides evidence that the trend of decreasing contaminant concentrations with depth is not universal within the extraction well field. For example, the representative concentrations of nitrate, sulfate, and uranium in water extracted from well 1108 exceed each of their comparable concentrations in Horizon A (measured in well 941). Also, the concentration of sulfate in water extracted from well 1105 is greater than the comparable Horizon A concentration, and the uranium concentrations in extraction wells 1105, 1106, and 1108 are greater than the nearby Horizon A concentration. These examples suggest that the vertical migration of contaminants can vary spatially at the Tuba City site, and that features such as preferential flow paths distributed randomly throughout the site's three-dimensional flow field might help to carry contaminants deeper in some areas than is observed in many others.

Figure 5. Nitrate Concentrations in Ground Water at Well Group 936/251/1113/1114

Figure 6. Sulfate Concentrations in Ground Water at Well Group 936/251/1113/1114

Figure 7. Uranium Concentrations in Ground Water at Well Group 936/251/1113/11145

2.3.2 Extraction Well Rebound Effect

During periods of non-pumping (hours to days) contaminant concentrations at many extraction wells are observed to increase significantly above those during "steady state" pumping, often approaching concentrations in nearby shallow monitor wells (DOE 2004). Once pumping resumes, this rebound effect is short-lived, generally less than one day. Concentration rebounding at the site may be due in part to water table recovery during the rest period within shallow, more-highly contaminated parts of the aquifer. During subsequent pumping, concentrations in an extraction well would then decrease as the shallow zone is again presumably dewatered and ground water capture expands into less contaminated deeper regions of the aquifer.

2.4 Ground Water Capture Zone

The existing ground water extraction system (i.e., before installation of the newest extraction wells in 2004) captures the bulk of the contaminant plume in lateral extent and probably the full vertical extent, as determined by analysis of water level drawdowns, flow direction analysis, and contaminant distribution (DOE 2005). The contaminated region of the aquifer not currently captured is south of the existing extraction system and extends to the escarpment separating the middle and lower terraces. New extraction wells 1125 through 1133 target Horizons A and B in this area. Existing evidence suggests that the existing capture zone likely extends beyond the limits of contamination to the east and west of the well field comprised of wells 1101 through 1125. Similarly, it appears that the vertical extent of the vast bulk of contamination does not extend below Horizon D. Significant water level drawdowns produced by the extraction system to several hundred feet or more beneath the base of the extraction wells in Horizon E likely indicate capture well below the depth of contamination.

3.0 Aquifer Isolation Tests

Packer isolation tests were conducted at wells 1101 and 1107 during March 9 to 11, 2004, and again from June 15 to 17, 2004 at wells 1101 and 1106, in an attempt to profile vertical contaminant distribution in the aquifer. Table 2 lists relevant information of the conditions of each test; field data for the tests are contained in Appendix B.

Well	Date	Test	Packer Depth (ft)	Duration (min)	Pumping rate (gpm)	Bore Volumes Removed	Maximum Drawdown (ft) ^a	Water Level Horizon
		1	216	63	0.55	0.1	7.5	
	2/0/04	2	186	90	5.8	1.7	9	
1101	3/9/04	3	156	90	5.4	1.6	9.5	
		4	150	60	4.6	0.9	9	
	3/10/04	5	126	90	5.7	1.7	9	
		1	210	20	1.0	0.2	20	
		1	210	30	1.0	0.2	29	
1107	3/11/04	2	188	100	1.9	0.7	27	
		3	158	90	1.5	0.5	24	
		4	128	105	1.2	0.4	18	
4404	0/45/04	1	194	130	upper: 3.8 & 5.5 lower: 4	4.2	20	
1101	6/15/04	2	162	90	upper: 5.7 lower: 3.5	3	21	
	1							
		1	191	90	lower: 2.5 & 1.8 lower: 2.5, 2.2, 1.7	1.3	40	
1106	6/17/04	2	191	80	upper: 1.3, 0.8 lower: 1.2, 0.7	0.6	17	
		3	161	60	upper: 0.7 lower: 0.7	0.3	1-2	
		4	131	90	upper: 0.7 lower: 0.7	0.5	1-2	

Table 2. Packer Test Information

^aDrawdown produced by packer test, excludes prior residual drawdown.

3.1 March 2004 Packer Tests

The 10-ft tool assembly for the March 2004 tests consisted of a single 3-ft inflatable packer, the dedicated well pump for ground water extraction above the packer, a bladder pump with intake below the packer, and pressure transducers above and below the packer. After inserting this tool string to near the base of the well and inflating the packer, ground water extraction began while the bladder pump operated at a much lower rate for sample collection. The discharge of both pumps was monitored continuously for pH, electrical conductivity, and temperature, and samples were collected periodically for on-site analysis of chloride, nitrate, sulfate, and uranium. Following a brief period of field parameter stability and sample collection, pumping was discontinued, the packer deflated, and the assembly raised 30 ft. This process was repeated several times per well to the top of the screen. Test rationale assumed that by maintaining upward flow from below the packer, a pronounced increase in contaminant concentrations at the lower pump would identify the base of contamination in the adjacent formation.

3.1.1 Well 1101

Five tests at four depth intervals were conducted at well 1101 (Table 2). Test 1 was completed in 1 hour at a flow rate of about 0.5 gpm. About one-tenth of the calculated bore volume (300 gallons, casing plus filter pack) was extracted during Test 1. The duration of each remaining test except Test 4 (1 hour) was 1.5 hours at flows ranging from 4.5 to 5.5 gpm, resulting in the extraction of about 1 to 1.7 bore volumes per test. Test 4 was a continuation of Test 3 but with air injected below the packer in attempt to bridge the filter pack. The tests at well 1101 produced about 10 ft of drawdown. This drawdown, when combined with the 40 ft of residual drawdown before the tests started, placed the water level in well 1101 at about the top of Horizon C.

Figure 8 shows the measured concentrations of nitrate, sulfate, and uranium above and below the packer throughout the tests. Test order is from deepest (Test 1, top of packer at 215 ft) to shallowest (Test 5, packer at 125 ft), left to right in the figure. In Test 1, respective analyte (nitrate, sulfate, uranium) concentrations are initially greater above the packer then below despite the perturbations of first pulling the extraction pump from the well and then inserting the tool string to depth. By the end of Test 1 higher concentrations were measured below the packer. Given the short separation distance of pump intakes (10 ft), this initial test may indicate a heterogeneous water composition within the well at the start of the test. Due to limited purging, Test 1 samples likely represent pre-test compositions within the borehole rather than water quality in the adjacent formation.

Higher initial concentrations above the packer may again indicate a non-uniform water composition in the well at the start of Test 2. At its conclusion, concentrations above and below the packer are nearly identical and similar to those at the end of Test 1. Initial concentrations above and below the packer for Test 3 are only slightly greater than those at the end of Test 2. During Tests 3 and 4, gradually decreasing concentrations above the packer accompany increasing concentrations below. By the design criteria of these tests, this signifies the base of contamination at about 155 ft (base of Horizon C) at well 1101. This result cannot be confirmed or disputed by the conflicting evidence at nearest monitoring wells: contaminant levels at well 275 (upper Horizon D) far exceed remediation goals, but are consistent with background levels at well 276 (lower Horizon C). Air injection (Test 4) had no noticeable effect.

Test 5 did not maintain the high contaminant concentrations detected in Test 4. Instead, concentrations above and below the packer stabilized at similar values. This occurred because the test interval was at the top of the water column and so essentially all flow in the well bore and casing was upward, resulting in the same composite water at both the upper and lower pumps by the end of the test. This final composition is common to that occurring at the end of Tests 1 and 2 in the upper and lower pumps, and to those measured at the upper pump during each test. This is because during each test, the interval above the packer was open to the entire the well bore with minimal flow restriction or isolation by the packer. Test 5 best exemplifies this condition: the 0.6-foot interval above the packer was not drawn down or dewatered during sustained pumping of about 5.5 gpm, equaling the full production capacity of the well.

Figure 8. Well 1101 Packer Test Results for March 2004

3.1.2 Well 1107

Air injection was not a component of either test conducted at well 1107 because of no noticeable effect at well 1101. Well 1107 Test 1 was completed in one-half hour during which the initial flow rate of 8 gpm was later reduced to about 2 gpm. Total ground water extraction was about 0.2 bore volumes. Tests 2, 3, and 4 were between 90 and 105 minutes in duration. In Test 2, the initial flow rate of 2.8 gpm was reduced to 1.5 gpm. Total ground water extraction accounted for about 0.7 bore volumes. Pumping was steady at 1.6 and 1.2 gpm throughout Tests 3 and 4, respectively, each extracting about one-half of a bore volume. Maximum drawdown reached 30 ft during Tests 1 and 2, and 25 and 18 ft, respectively, during Test 3 and 4. Combined with 20 ft of pre-test residual drawdown, the varied pumping levels in well 1107 were in the upper half of Horizon C.

Figure 9 shows analyte concentrations above and below the packer for the well 1107 tests. Test order is from deepest (Test 1, packer at 218 ft) to shallowest (Test 4, packer at 128 ft). In Test 1, initial concentrations of the respective contaminants are distinct above and below the packer but by the end are almost identical. As with Test 1 at well 1101, the results probably do not represent water quality outside of the well bore because of low purge volume. Test 2 initial concentrations match those at the end of Test 1. As the test proceeded, upper concentrations steadily declined while those below the packer remained relatively stable. Throughout Test 3, concentrations above and below the packer were similar to those at the upper pump at the end of Test 2. Initially heterogeneous concentrations appear to converge on a common composition by the end of Test 4.

Figure 9. Well 1107 Packer Test Results for March 2004

Under the given test conditions (excluding Test 1), the middle test interval (Test 3, lower portion of Horizon C) apparently is less contaminated than those above and below, with no recognizable "base" of contamination. Discrete depth samples at adjacent monitor well 273, which is screened in Horizon D between 153 and 173 ft, identify only limited contamination at this location (185 mg/L nitrate as N, <250 mg/L sulfate, and 0.06 mg/L uranium). These concentrations are much lower than any observed in the well 1107 tests and attest to significant contamination in an overlying horizon. Such a contrast or transition of concentration in vertical profile is not recognized in the packer test results.

3.2 June 2004 Packer Tests

Packer tests were conducted again at well 1101 and at well 1106 on June 15 and 17, 2004, respectively, using a similar apparatus at that used in March 2004. However, condition of the June tests was to extract water from above and below the packer at approximately equal rates with submersible pumps to prevent possible flow stagnation in the sampling interval below the packer as may have resulted in the previous tests. Injection of buoyant glass spheres (11 to 17 micron diameter) below the packer during several tests attempted to seal the filter pack in the test interval.

3.2.1 Well 1101

Test 1 was conducted for 2 hours at a packer depth of 194 ft. The pumping rate above the packer varied between 3.8 and 5.5 gpm, while the lower pump maintained a rate of 4 gpm. Several bore volumes in total were extracted by the conclusion of the test, at which time concentrations above and below the packer were identical and unchanged from the initial condition (Figure 10).

Figure 10. Well 1101 Packer Test Results for June 2004

With the packer raised 28 ft, Test 2 was conducted for 1.5 hours at pumping rates of 5.7 and 3.5 gpm, respectively, for the upper and lower pumps. Fifteen to 20 ft of drawdown resulted and about three bore volumes were extracted. Stable, distinct concentrations were maintained above and below the packer throughout this test. Based on this distinction, the interval above the packer at 162 ft apparently is less contaminated than below, a result vaguely consistent with Test 3, conducted at approximately the same depth, at well 1101 in March 2004.

An additional result of the tests conducted at well 1101 in June 2004 was the occurrence of air and glass spheres in the discharge from the upper pump after their injection below the packer.

3.2.2 Well 1106

Four tests at 3 depth intervals were conducted at well 1106 in June 2004. The top of the packer was at 191 ft for Tests 1 and 2, 162 ft for Test 3, and 131 ft for Test 4. The duration of Test 1 was 1.5 hrs. Pumping from above and below the packer was reduced from 2.5 gpm initially to

1.7 gpm later in the test, totaling 1.3 bore volumes of water extracted, and producing 60 ft drawdown, equivalent to a pumping level in the upper part of Horizon D. In Test 2, the upper and lower pump discharge was initially 1.2 gpm each, and later reduced to 0.7 gpm, reducing the drawdown in the extraction well by about 45 ft compared to Test 1. The volume of water extracted equaled about 0.6 bore volumes. Figure 11 illustrates slightly increasing concentrations during Tests 1 and 2 conducted at 191 ft.

Figure 11. Well 1106 Packer Test Results for June 2004

In Tests 3 and 4, pumping rates were steady at 0.7 gpm above and below the packer, resulting in drawdown of only 1 to 2 ft. Each test extracted about one-half of a bore volume. Samples were not collected during Test 3. By the end of Test 4, concentrations had declined slightly to be only marginally greater than Test 1 starting values (Figure 11). Very similar and stable concentrations above and below the packer throughout each test conducted at well 1106 may indicate similar and homogeneous water composition in the intervals tested or thorough mixing in the region of the pump intakes of dissimilar waters. Air and glass spheres were also observed in the discharge from the upper pump after their injection below the packer during the tests conducted at this well.

3.3 Discussion of Packer Test Results

Results of the March and June 2004 packer tests are ambiguous in resolving the vertical distribution of contamination within the screened intervals of the test wells. Interpretation of test results is problematic for four reasons: (1) incomplete purging of the test interval (below the packer), particularly for several of the tests conducted at the deepest interval; (2) excessive drawdown, resulting in shallow ground water entering a well at an artificially low position relative to ambient or low-stress conditions; (3) non-steady pumping during and between tests at a given well that could result in transient contaminant input from different inflow zones; and (4) the water produced during a given test may simply originate from above the packer, whereas the sample below the packer is drawn from a zone of stagnant water (Figure 12) of unknown origin. This last reason questions the assumption of upward flow past the packer. Preferred flow past the packer could be a cause of stagnation in the lower zone. The air and glass spheres observed in the upper pump discharge attest to such a flow conduit, likely occurring as an annulus between packer and inner vertical rods of the well screen (Figure 13).

4.0 Technology Review

Several broad approaches are available to characterize contaminant profiles utilizing existing long-screened wells. These are (1) aquifer isolation methods, (2) geophysical and hydrophysical logging, and (3) discrete depth, multilevel sampling (Taylor 1990). These technologies are briefly reviewed for their potential application to the Tuba City site for future work in characterizing the vertical distribution of contamination.

4.1 Aquifer Isolation

Inflatable packers are routinely used to isolate specific depth intervals for various testing purposes. Without innovation, packers are best suited for open-hole conditions in stable formations and have limited value in isolating sections of screened wells because the gravel pack remains unaffected (Sukop 2000). Packers may be used singly or paired to straddle a specific interval.

Use of a temporary sealant, such as guar gel, to isolate portions of an aquifer has potential application to the Tuba City site. The sealant could be injected into the filter pack from the interval of a straddle packer. Presumably, the guar would also seal the annulus between packer and vee-wrap screen but the final disposition of the sealant would not be certain. Later injection of a specific enzyme decomposes the guar seal.

4.2 Downhole Logging

Radiometric logging to characterize uranium distribution was previously evaluated for the site and determined to be infeasible because dissolved uranium concentrations in the ground water are too low.

Figure 12. Hypothetical Stagnant Flow Zone Beneath Packer

Figure 13. Cross-Section Schematic of Well Bore

Hydrophysical logging is a feasible technology that involves replacing the initial water in the well bore with distilled water and then recording electrical conductivity profiles over time as formation water enters the well and displaces the control water. Tests are conducted either under ambient or low stress conditions to identify inflow zones. Contamination is identified by the conductivity signature or by accompanying multilevel sampling. Hydrophysical logging was successfully employed previously at the site but for a different purpose.

The logging of vertical flow within the well under ambient or low flow conditions using heat pulse or electromagnetic induction is feasible. Impeller flow logging is feasible only at high flow rates. If conducted under pumping conditions, ground water extraction is steady and stationary from either top or bottom of the water column. The resulting flow log, in combination with accompanying discrete depth sampling, determines the position and quantity of inflow zones. By mass balance analysis, the composition of water from each inflow zone can be estimated.

4.3 Multilevel Sampling

Low flow purging and sampling at different depths under ambient flow conditions is not feasible because there is no assurance that the sample originates from formation adjacent to the sample collection intake. Additionally, strong vertical hydraulic gradients exist at the site over distances equivalent to the lengths of the extraction well screens; thus solute transport and mixing within the well bore is possible, which obscures the contaminant profile (Church 1996). This condition also limits passive, diffusion-type sampling methods. Multilevel sampling under mildly stressed, low-flow conditions is feasible if steady pumping is from the top of the water column and well bore purging is sufficient to remove the initial volume of water present in the well bore.

5.0 Summary and Conclusions

- Conditions under which the March and June 2004 packer tests were conducted lead to an ambiguous interpretation of the results.
- Evidence independent of the packer tests suggests that ground water contamination does not extend below the depth of the extraction wells.
- Contamination of Horizon D is much less extensive than in Horizons A and B.
- The extraction system captures the base of contamination.
- Vertical capture of uncontaminated ground water may be excessive at many extraction wells depending on the proportion of inflow from the various horizons, which is unknown.

Figure 14. Conceptual Test Design

6.0 Recommendations

- Modifying the extraction wells based on the findings of this report is not recommended.
- Additional field tests to determine vertical flow and contamination profiles may justify extraction well modification on a well-by-well basis. Initial testing would occur at wells on the periphery of the extraction field that exhibit low concentrations of contaminants.
- Additional tests based on multilevel sampling and flow logging under low-flow pumping conditions are recommended. After full water level recovery in the extraction well, small-diameter bladder pumps placed at various depths (e.g., lower, middle, and upper portions of Horizon D) would monitor water quality as pumping occurred from the top or bottom of the water column. Raising the sample ports while maintaining the same flow would facilitate investigation of the upper portions of the screen interval. Flow logging of the entire depth interval would be performed either before or after sample collection. Figure 14 illustrates the conceptual test design.

7.0 References

U.S. Department of Energy (DOE) 2004. *Analysis of Contaminant Rebound in Ground Water on Extraction Wells at the Tuba City, Arizona, Site*, Environmental Sciences Laboratory, DOE–LM/GJ625–2004, ESL–RPT–2004–04, prepared for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, April.

———, 2005. Annual Performance Evaluation of Ground Water Remediation from March 2004 Through March 2005 at the Tuba City, Arizona, Disposal Site, DOE–LM/GJ881–2005, prepared for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado, June.

Church, P.E. and G.E. Granato, 1996. "Bias in Ground-Water Data Caused by Well-Bore Flow in Long-Screen Wells," *Ground Water*, vol. 34, No. 2, March-April.

Sukop, M.C., 2000. "Estimation of Vertical Concentration Profiles from Existing Wells," *Ground Water*, vol. 38, No. 6, November-December, pp. 836-841.

Taylor, K., J. Hess, A. Mazzella, and J. Hayworth, 1990. "Comparisons of Three Methods to Determine the Vertical Stratification of Pore Fluids," *Ground Water Monitoring and Remediation*, vol. 10, No. 1, Winter.

End of current text

Appendix A

Additional Figures

M:\LTS\111\0023\14\001\S01702\S01702000.DWG 03/15/05 2:40pm J50191

Figure A–1.

M:\LTS\111\0023\14\001\S01701\S0170100.DWG 03/15/05 1:54pm J50191

S0170100

Appendix B

Packer Test Field Data

Well 1101—March 2004 Well 1107—March 2004 Wells 1101 and 1106—June 2004

Well 1101—March 2004

Tuba City Well 1101

Date	Well	No	B/T	Time	Uranium	Chloride	Nitrate	Sulfate
3/9/2004	1101	1	B	9:55	371	81	511	1,259
3/9/2004	1101	1	Т	9:55	402	85	544	1,361
3/9/2004	1101	1	B	10:40	374	83	524	1.302
3/9/2004	1101	1	Т	10:40	369	80	500	1,237
3/9/2004	1101	2	В	13:35	378	85	536	1,316
3/9/2004	1101	2	Т	13:35	370	89	575	1,424
3/9/2004	1101	2	В	14:05	376	87	551	1.363
3/9/2004	1101	2	Т	14:05	362	81	503	1,240
3/9/2004	1101	2	В	14:35	369	82	525	1,278
3/9/2004	1101	2	Т	14:35	352	81	508	1.252
3/9/2004	1101	2	В	15:00	365	81	505	1,244
3/9/2004	1101	2	Т	15:00	373	82	512	1.260
3/9/2004	1101	3	В	15:50	385	86	535	1.321
3/9/2004	1101	3	T	15:50	388	79	520	1.255
3/9/2004	1101	3	В	16:15	465	109	654	1,637
3/9/2004	1101	3	T	16:15	362	77	490	1,191
3/9/2004	1101	3	В	16:45	543	129	747	1,875
3/9/2004	1101	3	Т	16:45	349	78	497	1,208
3/9/2004	1101	3	В	17:15	573	137	788	1,975
3/9/2004	1101	3	T	17:15	351	78	499	1,218
3/9/2004	1101	4	B	18:30	540	139	801	1,999
3/9/2004	1101	4	T	18:30	347	77	487	1,184
3/10/2004	1101	5	В	9:05	539	134	796	1,958
3/10/2004	1101	5	Т	9:05	435	90	601	1,522
3/10/2004	1101	5	B	9:35	419	86	563	1,419
3/10/2004	1101	5	T	9:35	342	76	468	1,159
3/10/2004	1101	5	B	10:05	327	75	449	1,130
3/10/2004	1101	5	T	10:05	323	76	473	1,162
3/10/2004	1101	5	B	10:35	327	75	453	1,135
3/10/2004	1101	5	T	10:35	340	78	493	1,205

E W Te	Date /ell # est #	3/10/ 1101 5	64	Packer Depth Top of screen Above Packer Pressure with water at top of screen						Name JP & CJ			
0211-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2				Depth t	to water t	able T		109.8	<u>उ</u> ft बि				
	Well I	Pressure		Ext	raction P	ump	В	ladder P	ump	1	1	÷	
	Above	Below	Flow			1		T		Air			
-	Packer	Packer	Totalizer	Cond.	Temp	pH	Cond.	Temp	pH	Flow			
Time	п	π	gallons	u S/cm	F		u S/cm	I F		?	Comment	6:	
4:45				2162	1.7.73	-					Started Bladdre P	14/1	
9:10				3500	13.12	775	HEHG	16.23	6.76		Tout sample		
9:15				3200	16.61	6.11	4789	15.90	6.69]	
9:20	1.1			3004	1650	6.69	39.43	16.44	6.67			1	
9:25				3054	16.78	6,70	3682	16.92	6.69		w/ 116.7		
9:20				3008	16.20	6.67	3595	17.39	6.64		or h 117.13	1	
9:75				3060	16.82	6:72	3514	17.65	6.64		To K comula		
9:40				2995	16.89	6.67	3316	10.38	6.68		1 we as sample		
9-45		9:47:10	32720	2965	16.27	6.68	3141	19.13	667				
9:70				3025	16.88	6.73	3077	19.81	6.69				
9.99				3070	1693	6.24	3041	20.29	6.69				
10:05			-	2019	16.96	6.68	3040	20.83	6.67		WL 113.85		
10:10				3030	16.97	6,67	3032	21.62	6.68		Took sampe		
10:15		35		3051	16.40	6.1	1010	16.97	6.67				
10:20		10:234:50	37930	3053	16.93	6.00	3047	22.98	6.67				
10:25				3074	17.02	65	3073	23 04	2-2-01				
10:30				3071	17.05	6.65	3069	24,47	6.60				
10:35		10:36:40	33007	3096	17.06	6.66	3080	25.02	6.67		ar h 120 of Tark and		
		-									in a lifered look sampip		
									-				
												3	
									- C				

Date Well #	3/10/04	Packer Depth Top of screen Above Packer Pressure wit	126.5 ft	Name	JP	車(丁	25
Test #	6	water at top of screen Depth to water table	ft <u>109.89</u> ft				
We	Il Pressure	Extraction Pump	Bladder Pump	1 1			

40

Г

	Abovo	Rolow	Elour							-	
	ADOVE	Delow	FIOW							Air	
	Packer	Packer	Totalizer	Cond.	Temp	DH	Cond	Tomp	nH	Flow	
Time	ft	ft	collona	uslom		pri	Cond.	remp	рп	FIOW	
TIME		ц	galions	u Srcin	F		u S/cm	F	-	?	Comment
							1				Continione
:35											
,										0	AL 120.05
									-		
											aborted tech
											pamp wog bA
											with air
-											
										-	
							T				
									-		
_										1	
-		-									
_											
											*
-											
_											
							1				
_											
_						T					
-											
								1			

Packer Depth Top of screen Above Packer Pressure with water at top of screen Depth to water table

216'6'ft ft ft 111,04 ft

Name CIJ/JP

	VVell Pressure			Extr	action P	ump	BI	adder Pu	mp		
	Above	Below	Flow					1	T	Air	
	Packer	Packer	Totalizer	Cond.	Temp	pH	Cond	Temp	nH	Flow	1 1
Time	ft	ft	gallone	US/cm	FC	pri	uslom	remp	рп	FIOW	
155			gailons	u oronn	RC RC		u Sicili	800		?	Comment
GUE			407030				2001			-	×
749	141			12 1			2901	16.02C	1.21		
94 2	111-64	111.64		3.544	16,24	7.04	3424	16.36	651		Starled Pump 9:52
000			20:07	3313	17.38	6.85	3400	16.49	6.52		
(605			407086	3316	17.71	6.88	3396	16.66	6.55		
010	117.18	117.03		3234	17.95	6.98	3390	16.81	6.64		~ 4 61 1340
115				3261	17.81	6 87	3392	16.82	6.57		
070			407695	3256	18.67	6,90	3394	1694	6.53		
125				7249	18.29	6.39	3385	17.30	6.57		
430			407100	3237	18.21	6.89	3391	1740	658		wale doubh 11455 1
635				3221	19.17	6.85	33.97	:7.54	6.54		10 10 10 10.99
440				2721	1900	6,90	3294	17.79	CEU.		
045				3213	19.45	6.90	2261	1802	6.00		sampler 10:45
いあり				3211	19.54	0.01	2227	1005	6.57		aprisore = 2 gol/ FF
055				3210	19.10	CAL	7300	1810	613		2
~ 1				771-	11.10	6.11	1760	10.23	6.91		Power outage 10:50
-											Shut down tert yo
											moved to fest #2
-											
-+											
-											
-											
				-				-			

	I V	Date Vell #	3/9/0	Packe	Packer Depth 186'4"						CJ/3P		
			1101		Abov	e Packe	r Proces	Iro with	-	- ^π			
	Т	est#		2	W	ater at to	on of scr			<i>c</i> 1			
			10	-	Depth t		toble	cen		- ⁿ			
					Deptilt	o water	lable,		-111.04	_ft (1).	Q		
		Mall	200001100		1 5 1	101-1	D	61	41-17				
	1	VVen P	ressure		Exti	raction F	ump	В	ladder Pi	ump			
	1	Above	Below	Flow							Air		
	T	Packer	Packer	lotalizer	Cond.	Temp	pH	Cond.	Temp	pH	Flow		
	Time	п	π	gallons	u S/cm	76		uS/cm	F		?	Comment	
	+155						ter					Bladle Ru d h 12:11	-
	1330			4731.150	3352	7.09	16.63	3448	19.6	677		Proceed 6 12:21	4
	1335				3334	6.96	16,64	3443	1924	6.70	R	Tompton po 19.90	-1
	1340				3297	16.70	6.80	3443	19.16	6.66		TOOK SUMPTY	-
	1345	1	1344-	> 31730	3275	16:78	6.86	3432	19.14	C.62			-
	1350				3231	16.36	6.87	3432	19.37	6.59		Vinter Intel 117 C	-
	1355				3211	16.82	6.86	3436	19.24	6.60		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
400	1360				3204	16.76	6.96	3430	1904	1 59		110 3	-
	1405				3202	16-74	6.26	3424	19.07	6:21		WZ= 11873	-
	1410			4731380	3199	16.74	6.86	3190	1000	6.57		Took sample	-
	1415				3195	16.90	000	3473	1920	6.11		WL 119.95	_
	1420				3192	16.91	6.26	3412	19 52	6:77			1
	1-+25				3191	16:91	6.87	2297	10.00	6.94			
	1430				2194	16.9.	6.87	2240	19.61	6.54			
	1435				3195	16.95	10.01	7774	19.61	6.99		WL=119.7	
	1440				3192	16.96	000	2710	17.67	6.55		Took Sample	
	HUY				3107	16,14	6.84	2012	19,69	6,55		int = 120.1	
	1450				2105	16.89	6.20	3281	19.59	6.56		Philusted value to hold	@ 120
	1455				2122	16,99	6.26	3271	19.54	6.55		WL = 120.1	1
	1500				9110	16.90	6.86	3282	19.51	6.54		T	1
					0516	16.93	6.26	3266	19.45	6.54		Took Semple WL=	126.3
ł													1
ł													1 8
ŀ													1
ł													1
ŀ													1
H													
- H													1
ŀ													
-													
-													
-													
-													
H													
L													
L													
			4						-				
												2	
									1				

E W T.	Date /ell # est #	3/9/0 1101 3	4	Packe Top of s Above wa	er Depth screen e Packer ater at to	r Pressi	ure with reen	156.4	ft ft	Name	JP & CJ	-
					0 -3B	able		1101-3	F ^{ft}			
	Well F	Pressure		Extr	action P	ump	B	ladder Pu	ump	1		
	Above	Below	Flow						1	Air		
	Packer	Packer	Totalizer	Cond.	Temp	pH	Cond.	Temp	Hq	Flow		1
Time	ft	ft	gallons	u S/cm	FC		u S/cm	F	1	2	Comment	
1545				3106	17.18	7.70	3412	2143	6.04	<u> </u>		4
1550	5		31720	3057	16.74	718	3392	21.53	6.53		Igok sconpt	-
1555				2965	16.21	7.13	3393	21.30	657		111.1-66	-
1600				2933	16.77	7.10	2508	2139	1.51		W L = 118.5	4
1605				2441	11 41	700	3740	10100	6.91		WL = 118.9	
1610				2925	16.70	7.00	3910	11.29	6.43		WL = 114.2	1
1615	20		31860	2947	11 86	705	4071	21.78	6.48		WL= 119:25	
1620			0.000	9933	1104	7.09	4155	26.97	6.45		Tok Sumple	1
1625		1627 .	21920	2022	16.07	7.09	7139	11.98	6.44			1
1630			2717	2941	16.11	7.01	4788	21,99	6.43		UL= 12012	~
1635				2020	10,00	7.01	4338	21.62	6.41		UL = 120. 0 [Pedactd	4/0a
1611				1929	16.85	6,99	4433	20,64	6.42		2 - 7018	14041
104	Cu			2926	16.88	6.99	4473	20.66	6.42		46 = 120.2	
1644	60			1961	16.29	6.97	4472	20.40	6.41		Tuctisampli	2
1650	-			2957	16.87	6.97	4509	20.60	6.41			
1077				2946	16.88	6.97	4536	20.73	6.40			
1700				2947	16.85	6.96	4568	20.88	6.40			
1705				2947	16.23	6.96	4602	20.42	6.39		(2 L= 120,6	
17/0		1712	32154	2915	16.81	6.96	4617	19.90	6.40		5.0 900	
1715	90			2920	16,83	6.97	4608	19.67	6.39		The K to walk	
											1 Stapre	
						1.1						
								-	f			

1	AL	1000010	-	LAU	action	ump	B	adder Pu	ump	Prosper	(CC)
	Above	Below	Flow							Air	1.57
	Packer	Packer	Totalizer	Cond.	Temp	pH	Cond	Temp	DH	Flow	
Time	ft	ft	gallons	u S/cm	F	- P	US/cm	E	pri	FIOW	
			Jenerie				u oronn	Г		90	Comment
1730									1		storted adding air
1770		=10+10								10	
1795		5.37.30	3258	3034	16-78	6.99	4638	18.17	6.38	10	120.2
1740		5.42:40	3234	2824	16.79	6.96	4666	18.12	6.39	15	
1745				2758	16.79	6.95	4650	10.02	GHU	1.1-	
1750		5:49:00	32314	2961	16.22	6.91	4146	17 91	6.40	12	
1755				3447	1/ 81	6 91	1667	17.72	6,40	F/	· · · · · · · · · · · · · · · · · · ·
1000		19:01:20	32366	3022	100	Cal	4001	11.74	6.41	17	
1805		10.01.70	2016.0	2001	16.00	6.91	46/6	17.67	6.40	17	
10.1				2091	16.13	6.91	4676	17.52	6.40	19	
1511				3109	16:71	6.96	4683	17.07	6.40	20	
18:19				3175	16.71	6.98	4671	16.56	6.40	20	
1272				3176	16.72	6.99	4634	15.99	6.40	19	
1974				3095	16.76	7.00	4617	15.86	6.40	111	
1930				3050	16.77	6.97	4570	1507	6110	18	
						0 17	1110	19,61	6,41	16	
	_										
											4

Packer Jest 3-9-04 Juril

		1		1.	1-0 0			~ /	· ·	nun			
	1	2	3	4		5	6	7 12	* NO2	3 SO,1	10/14 201110 11	12	13
1	1101-1-	B	0955	1	2		1	\$1.0	511.3	1259.4	271 2		
2	1101-1-	T	0955		1		1	84.9	544.2	1360.5	1/22 1		
3	1101-1-	B	1040	1			1	825	5242	1301.6	702.1		
-4	1101-1-	T	1040					799	500.3	12272	3/36		
5	1101-2-	13	1335					gila	525-	1211.0	268.8		
6	1101-2-	T	1R35					07.7	5205	1313.5	311,6	į.	
2	1101-2.	13	1405					20.2	514.1	1423.9	370.0		
8	1101 - 2	- 7	1405		1		1	86.5	550.8	1362.6	375.6		
9	1101-7	-13	isen III	17-				80.5	503.1	1239.6	361.9		
10	1101 2	T	the start	32				8.2.1	524.9	1278.3	368.9		
11	1101-2	-1	1500 10	653				81.1	508.0	1252.1	352.1		
1.2	1101 - 2	-15	1500					80.7	5053	1243.6	364.5		
	1101-2	- /	1500					81.5	511.8	1259.5	373.4		
13	1101 - 3	-/3	1550					85.9	534.6	1320.8	385.3		
14	1101 - 3	-7	1550					79.3	519.8	1255.2	387.8		
15	1101-3	-13	1615					109.1	653.8	11.36.5	41.50		
16	1101-3	-7	1615	1				76.8	489.8	1191.1	31.20		
17	1101 - 3	-13	1645					1.29.0	747.0	18741	5478		
18	1101 - 3	- 7	1645					77.9	4965	1207.8	2100		
19	1101-3-	B	1715					127.4	788.3	197117	548.5		
20	1101 - 3-	- 7	1715		1			78.4	199.3	111701	3511		
21	1101-4	-B	1830					129 1	SUV J	12/1.1	551.4		
22	1101-4	- T	1830					137.0	000.1	1178.1	337.6		
23		·	1000					16.1	486.6	1182.6	346.5		
24													
25 1													
26													
27													
												1	
					1								
30													
- 4.6 32													

		Dai	cker Ie	ot	3-10-04	1 . Iv	ri R			
	1 2	1	e	5	12	7	18 P.C.	º NOS	10 50.1	Har In
3	1101-5-B	0905			1		133.5	795.6	19.57.8	5387
	1101-5-1	0905					89.6	601.2	1522.4	434.7
3	1101-5-0	0935					863	563.2	1419.3	419.1
·	1101-5-1	0935					75.5	468.3	1159.1	341.5
ε	1101-5-7	1005					74.7	449.2	1130.4	3268
7	1101-5-6	3 10 75	•				75.6	472.5	1161.9	323.3
8	1101-5-7	1035					74.7	452.8	1135.0	326.5
9		100					11.1	472.8	1207.8	340.2
10										
11							-			
12		_								
14										
15										
16							-			
17										
15										
19										
20										
21										
- 22										
24										
25								1		
26										
27										
28										
29	-									1
30			*							
31			1	1				1		Ē

t

22:210

Well 1107—March 2004

Tuba City Well 1107

Date	Well	No	B/T	Time	Uranium	Chloride	Nitrate	Sulfate
3/11/2004	1107	1	В	7:35	165	104	847	1,033
3/11/2004	1107	1	Т	7:35	184	113	1,015	1,230
3/11/2004	1107	1	В	8:05	182	111	989	1,201
3/11/2004	1107	1	Т	8:05	190	112	1,016	1,230
3/11/2004	1107	2	В	9:10	170	112	993	1,214
3/11/2004	1107	2	T	9:10	180	113	1,013	1,226
3/11/2004	1107	2	В	9:45	172	119	1,065	1,320
3/11/2004	1107	2	Т	9:45	148	98	827	1,005
3/11/2004	1107	2	В	10:15	173	111	999	1,204
3/11/2004	1107	2	Т	10:15	140	92	762	928
3/11/2004	1107	2	В	10:45	183	112	1,011	1,218
3/11/2004	1107	2	Т	10:45	137	90	751	914
3/11/2004	1107	3	В	11:40	129	86	699	848
3/11/2004	1107	3	T	11:40	134	90	745	898
3/11/2004	1107	3	В	12:10	130	85	690	834
3/11/2004	1107	3	T	12:10	148	93	792	956
3/11/2004	1107	3	В	12:40	128	85	699	844
3/11/2004	1107	3	T	12:40	129	83	671	812
3/11/2004	1107	3	B	13:10	129	86	703	848
3/11/2004	1107	3	T	13:10	124	82	661	799
3/11/2004	1107	4	B	15:15	130	89	751	915
3/11/2004	1107	4	T	15:15	164	112	996	1,206
3/11/2004	1107	4	B	15:45	159	103	934	1,128
3/11/2004	1107	4	Т	15:45	139	96	813	993
3/11/2004	1107	4	B	16:15	145	101	903	1,088
3/11/2004	1107	4	T	16:15	128	87	713	867
3/11/2004	1107	4	B	16:45	137	95	832	1,005
3/11/2004	1107	4	T	16:45	130	90	758	920

E	Date	3/11/0	4-	Pack	er Depth			218	ft	Name	e JP	
V	vell#	116 (-	lop of	screen	-	235	_	ft			
т	oot #	.107 1	1	ADOV	e Packer	Pressu	re with					
19	est#	[101-1.	p	W	ater at to	p of scre	en		ft			
01	1-	1	10	Depth t	o water ta	able		101.2	S ft			
Ditu	urt les	4:01	30	11	07-1-1	5+		1107	-1- × t	>		
	Well	Pressure	1.0	Ext	raction P	ump	B	adder F	ump	T		-
	Above	Below	Flow		-				1	Air		1
	Packer	Packer	Totalize	Cond.	Temp	pH	Cond.	Tem	DDH	Flow		1
Time	ft	ft	gallons	u S/cm	FC		uS/cm	FC		2	Commont	
0735	(Sam	(6)	61080	4150	16.3	6.47	3980	143	6.61		Comment	4
0140			61120	4137	16.5	6A7	4295	14.6	6.54	-	5122 2	
2745				4131	16.5	6.48	4332	14.9	6.49		- ISC KEDU	ED FG
0150			61135	4097	16.7	6.48	4312	15.0	6.47	-	= 134 5 51 0	ICA7
0755			61146	4143	16.8	6.49	4298	15.3	6.47		- /20 7. /	-
0900		61156	6156	4147	16.9	6.49	4284	15.4	- 6.46		-133 10000	-
0805	(Some	·6)	61165	4137	17.0	6.47	4282	15.4	- 1.47	6	E121.2	4
									CITA	ř	2151.5	-
												-
												-
												1 1 2
												-
												1
		1										1
												1
\vdash										-		1
\vdash			1								1	
												1
									2			
											*	

Ĭ	Date	3/11/04	-	Packe	er Depth			180	ft	Name	TP	
N	/ell#	1107		Top of :	screen			100	— "ft	INAILIE	الـ	
				Abov	e Packe	r Pressu	ure with	-		1.24	1-51 1-	11-
T	est#	1107-2		Wa	ater at to	op of scr	een		ft		(First readings are ;	llys -
	-		_	Depth to	o water t	table		107.	o ft		flopped)	0
Start	YEST	7:04	05	ile	07-2-	÷		1107	-7-6		(1.0)	
	Well	Pressure		Extr	action F	ump	В	ladder F	Pump	1		_
1	Above	Below	Flow			T	1	T		Air	1= Sample: 09:10	
	Packer	Packer	Totalize	r Cond.	Temp	pH	Cond.	Tem	Ha	Flow	5 10115	1
Time	ft	ft	gallons	u S/cm	FC	-	u S/cm	FC		2	4 Comment 5	WL
0910	Sau	nde	61177	4155	16.9	6.48	3713	17.1	6.68	1	Stat: 61165 1	- 114
0715			110	\$3276	17.2	6.60	4111	17.0	6.46	1	WL = 118,2	-1
0920			61200	3275	17.3	6.58	4090	17.3	6.45		= 121.2	-
012			11224	3320	17.3	6.58	4080	17.5	6.45		=123.1	-
0935			61220	3455	17.4	6.58	4088	17.5	6.44		= 126.0	-
0940			61240	3577	(7.5	6.58	4090	17.6	6.45		= 127.5 Flow 1	1
0945	Sau	ndo	3450	2477	17.0	10.51	4105	(7.9	6.44		= (29.8	1
0950		love	61260	2473	17.7	6.54	4124	17.7	6.45			
0955			DICED	3384	11.7	6.61	4147	18.3	6.45		= 131.0	
1000			61270	3355	17.9	6.63	4160	10 7	6.45		= 131. Flow V	
1005			I de la companya de l	3321	17.9	6.62-	4172	10.0	6.44		=130	
1010			61290	3320	0.8)	6.60	4192	19.0	6.45		2100	4
1015	Sav	nple		3258	18.1	6-62	4204	19.3	6.45		- (20	-
1020			61306	3277	18.2	6.64	4211	19.4	6.45		= 129.7	
1025			110.0	3264	19.6	6,65	42.07	19.6	6.45		= 1293	-
1030			61320	3252	18.4	6.66	4223	19.6	6.45		= 129.0	1 .
10 33			11997	3252	18.4	6.66	4239	19.6	6.46		=129.9	1
1045	80	1	6(320	3240	18.5	6.66	42:39	47 19.7	6.46		= 128.7	1
1050	Jaw	ipio	41357	3227	18,5	6.61	4241	19.9	6.46		=128.5	1
1			PUTT	-031	13.2	6.68	4242	19.8	6.46		= 129.5	1
												1
												1
						1						6
		\rightarrow										
											4	
			\rightarrow									
			$-\lambda$									
								14				

l	Date	3/11/04		Packe	er Depth			158	ft	Name	JP /BZ
V	ven#	lle	-	lop of :	screen	Deserve			ft		1
т	est#	1107-3	e.	VOOA	e Packei	r Pressu	ire with				
1	csi #	101-2	-	Dopth t		p or scr	een		ft		
Stat.	Tent -	11:35		Depin to	o water t	able		111.0	ft		
- mod	Well	Preseure	1	Evt	J-T		()	07-3-	-b		
	Above	Below	Flow	Exu	action P	ump	В	adder Pu	Jmp		12 Sample: 1140
	Packer	Packer	Totalizer	Cond	Tomp			-		Air	3 " - 1210
Time	ft	ft	gallons	US/cm	Temp	PH	Cond.	Temp	pH	Flow	4 " -1310
1140	Co	and a	61360	2253	100	1 20	u 3/cm	74	-	?	Comment
1145	26.0	16-10	0.200	3328	18 4	6.14	2100	22.1	6.64	-	WL=114.3
1150			61378	3422	18.4	6.11	3157	2227	6.65		= (16.1
1155				3453	18.5	6.73	3149	22.3	6.62		= 118.1
1200	S		61390	3462	18.5	6.73	3151	22.9	6.65		= ((9,1
1205				3433	18.5	6.73	3169	22.9	6.65		= 120.2
1210	Se.	mple	61405	3334	18.5	6.77	3180	23.3	6.65	-	= 12(.2
1215		1		3260	19.6	6.78	3181	23.2	6.65		= 122.7
(220			61420	3152	18.5	6.79	3180	23.5	6.65		-123.4
1225			11430	3102	18.4	6.80	3(79	23.4	6.65		= 123.9
1230			61433	3061	18.3	6.80	3173	23.7	6.65		= 124.4
1235	C	,	11100	3026	18.(6.81	3166	23.8	6.65		= 124.9
1245		nde	61450	3006	18.1	6.81	3195	23.7	6.65		=125.2
1250			61465	2985	1.81	6.81	3209	23.9	6.64		=125,5
1255			COTIOS	2910	18.1	6.83	3210	23.8	6.65		= 125,9
1300			61480	7964	10.2	6.85	3197	23.8	6.65		= 126.1
1305			01100	2968	191	6.82	3200	24.0	6.64		= 126.3
1310	Sin	nolo	61495	2960	18.1	6.87	2206	221	6.64		= 126.5
		1				0.85	scop	2321	6.65		= 126.6
X											
		-				1.1					
\vdash						1.00	÷				
		\rightarrow									
		$- \setminus -$									
	17										4
			\rightarrow								
				-							
				1							

Wells 1101 and 1106—June 2004

Date	Well	No	B/T	Time	Uranium	Chloride	Nitrate	Sulfate
6/15/2004	1101	1		14:40	313.1	78.3	484.7	1196.6
6/15/2004	1101	1	Т	14:40	313.9	78.9	481 1	1185.2
6/15/2004	1101	1		15:15	320.0	77.9	481.8	1178.8
6/15/2004	1101	1	Т	15:15	318.8	77.9	482.6	1180.2
6/15/2004	1101	1		16:15	324.5	78.5	489.4	1185.5
6/15/2004	1101	1	Т	16:15	314.4	77.1	478.6	1161.4
6/15/2004	1101	1		16:30	311.8	78.8	489.5	1188 1
6/15/2004	1101	1	Т	16:30	317.8	78.8	489.0	1182 7
6/15/2004	1101	2		17:40	329.4	84.2	532.2	1279.9
6/15/2004	1101	2	Т	17:40	290.5	70.4	440.6	1059 1
6/15/2004	1101	2		18:00	344.6	89.4	565.7	1363.8
6/15/2004	1101	2	Т	18:00	279.4	70.1	440.0	1055 9
6/15/2004	1101	2		18:25	333.9	82.1	511.7	1239.2
6/15/2004	1101	2	Т	18:25	298.0	74.0	466.3	1119.6
6/15/2004	1101	2		19:00	354.5	90.6	570.0	1375.8
6/15/2004	1101	2	Т	19:00	284.6	69.9	433.2	1045.7
6/17/2004	1106	1		11:05	1708.3	69.2	452.2	938.5
6/17/2004	1106	1	Т	11:05	1553.5	68.0	419.5	925.9
6/17/2004	1106	1		11:30	1764.9	74.0	463.1	957.3
6/17/2004	1106	1	Т	11:30	1695.4	71.9	450.7	932.8
6/17/2004	1106	1		12:05	1772.5	74.6	472.6	970.5
6/17/2004	1106	1	Т	12:05	1858.2	74.9	474.8	972.8
6/17/2004	1106	2		13:50	1863.9	75.0	477.1	975.6
6/17/2004	1106	2	Т	13:50	1805.0	73.9	472.1	960.2
6/17/2004	1106	2		14:20	1941.2	74.8	480.3	979.5
6/17/2004	1106	2	Т	14:20	1881.8	74.5	474.2	969.1
6/17/2004	1106	4		17:05	1928.2	75.4	478.9	973.0
6/17/2004	1106	4	Т	17:05	1861.9	76.8	490.3	993.3
6/17/2004	1106	4		17:25	1852.2	75.0	478.7	973.4
6/17/2004	1106	4	Т	17:25	1742.9	72.5	461.0	946.1
6/17/2004	1106	4		17:55	1862.1	74.8	480.8	979.2
6/17/2004	1106	4	Т	17:55	1797.3	71.8	456.6	938.3
6/17/2004	1106	4		18:25	1790.3	72.7	464.9	952.1
6/17/2004	1106	4	Т	18:25	1774.6	73.9	470.3	960.4

	ell#	1101	-	Packe Top of s Above	r Depth creen	Pressu	ro with	193.5	ft ft	Name	Price - Jacobson
Te	st#	1		wa	ter at to	o of scre	en		8		
			•	Depth to	water ta	able			-"		
				Test	FN = 11	01-17	-	~1	-		(0-0) - 11/0
	Well P	ressure		Upper E	xtractio	n Pump		ower Pur	- 1[01-	i I	(8/14 (@ 1720 Lower Eugalizer
[Above	Below	Flow			1			T T	Air	
	Packer	Packer	Totalizer	Cond.	Temp	DH	Cond	Temp	nH	Flow	
Time	ft	ft	gallons	u S/cm	F	1.1	u S/cm	F	pii	TIOW	
1221											Comment
<u>́</u>											Lower Fump - \$ 700 Tutalizer - 8000 RPM
								1	1		4.7 g pm
				-						-	7600 12: 49:00
											apper paup 6.5 gpm - adjusted 204.50
400											116,4' Refuse 1
420								1			CYEVIS DEMONS
11.2											2/4/11 pumper 18/ gal upptr @ 1420
779											Started flow cells a lunar
470				3362		6.50	33/0		6.38		5 - 1925
437				3142		6.48	3337		6.40		Water Pup 1275
11410				33/7		6.48	3312		6.42		Sample Tation
450				3360		6.90	3294		6.44		3.3 gpm 4ppp 4 Appm lacues
HTT				7207		6.7	3276		6.45		Water Isvel 1262
500				3214		6.71	3287		6.47		
505				3322		6.70	220		6.48		Water Port 1262
510				3319		6.51	22 26		6.48		
515				3309		0.11	2260		6.43		Water level 131.3
520				3296		051	3600		6.44		
525				3290		6.52	3093		6.5		
530				32/3		6.54	3230		6.53		HITON @ 1527 Watelivel (22.15
575				3262		6.57	3215		6 59		Right 172.20
350				3297		6.53	3262		(53	-+	Alice 1340 132.60
325				3303		6.54	3240		6.53	-	7 : eded at 1 1 22 25
605				3275	0	6.58	3214		6.59		Bulling in 1996 1558 -> 16 03
610				3296		6.62	3230		6.67		Camples John Dury bater line, Ninem 131.45
617							3250		6.82		Aicoff 1611 (12015 Pr
20				33/1		6.73	3210		6.77		5.59 Pm GPPP P
190				3296		6.62	3750		6.72		1620 185 65 10 1618 1prof 128.0
126				5299		6.57	3131	G	6.65		Sampler Laton 1620 1011 133.75
.32				52/2		6.54	121V		6.58		Pames off 135.8

							Tuba	City E	Extrac	tion	Well Packer Test
L M Te	Date /ell # est #	6/15/ 1101 2	'o 4 -	Packe Top of s Above wa	er Depth screen e Packer ater at toj	Pressu p of scre	/ re with een	162.1	ft ft	Name	Jeff Price Parl Jacobson
				Depth to	o water ta	able			ft		
	Well F	Pressure		Upper I	Extractio	n Pump	Lo	ower Pur	mp		
Time	Packer ft	Packer	Totalizer gallons	Cond. u S/cm	Temp F	pН	Cond. u S/cm	Temp F	pН	Air Flow	
1730		<i>v.</i>									1732 Started But 125
											1732-6947 40000 + 6 1/2-
1735				8010		C PA	2 7 2 4				9920 @ 1792:30
1740				3075		6.38	3732		6.44		17:37 -> 130.0
1745				3078		6.51	3520		6.48		Sampled 5.7 gpm apper 315 gpm low m
1750				3078		6.50	3501		6.46		132.27 ft @ 1746
1755				3078		6.97	3587	-	6.46		
1900				3057		6.57	3620		646		San In Dia Cart
1805				3188		6.59	3652		6.46		Sumplie Hir un @ 1802 18:00 134.30
1910				3204		6.66	3467		6.64		1806 132.1
1815				3187		6.73	3340		6.74		
1820				3173		6.76	3291		6.77		Sample 16:22 @ 12. 11
1527				3173		6.77	3300		6.79		SG mp/4
1935				3760		6.76	3292		6.00		134.20" Added Elece Lande 1427-1429
1240				2,20		6.75	1357		6.74		Air bubble in lower numplic 6/421
1845				3025		6.75	3375		6.76		18 PS ; Air off 134.2 @ 1842] cl (6 10 hover al
1850				2952		Gel	2523	-	6.77		a so apply pimp)
1855				2949		6.59	3583		6.57		A 1.
1900				2942	-	6.59	3586		6.49		Sample
									0.70		1900 p 136.95
											8
											1
-											
-+											
-+										_	
											-
										-+	

	Tuba City Extraction Well Packer Test	

Date Well # Test #		6/16 1103 3	104	Packe Top of s Above wa Depth to	er Depth screen e Packer ater at to o water ta	Pressu p of scre able	/ re with een	62.1	ft ft ft	Name	e Price - Jacobson				
	Well P	ressure		Upper I	Extractio	n Pump	L	ower Pur	np	1	Т				
Time	Above Packer ft	Below Packer ft	Flow Totalizer gallons	Cond. u S/cm	Temp F	pН	Cond. u S/cm	Temp	pН	Air Flow					
									-		╈	Comment			
											+	aft Hord 115.6 water level			
600												Loc + 10+4/12+4 9622			
52				0.000								Started on a ps land Kling 25 hours Kling			
5.15				3573		6.61	3367		6.49			2001+ 1100 J. 4 Mpptr Flow 6.			
850				3109		6.53	3443		6.47			1277 @ 047			
044				3119		6.55	3926		6.46			Lower Klow 6.3 Gpm			
200				3113		6.57	3947		6.45			Hiron @ 8:57			
GL6				3/62		6.38	3391		6.95	24 P	si	Bubble in low er pumpling @ 9:04			
9:10				2/12		6.98	2300		6.74		1	125.4'0 9.07			
915				3172		6.70	2255		6.94	l	⊢	Lower Ficar G. Sapon @ 9:09			
920				3199		6.91	2246		6.2	<u> </u>	┢	126.2 @ 9:13			
125				3/71		6.00	3355		6.87	21.0	1	61455 bears & dded @ 9:17-7 922			
130				3250		C. 04	,,,,		6,21	21 P	51	130.2 178.70 9:25			
				511		1.01					+	Low Pr pump shut down on her storant @ 9:30			
											⊢	beats on lovel prope a water ling			
				-							+				
											-				
-															
_															
											11				
\rightarrow															
-+															
-+												N			
\rightarrow															
+															
-+															
+	-										_				
-															

	Tuba City Extraction Well Packer Test												
C W	Date /ell #	6 16/0 <u>1101</u>	5 4 -	Packe Top of s Above	er Depth screen e Packer	Pressu	/ re with	31.9	ft ft	Name	Price Jacobson		
.10	est #	_7		wa Depth to	o water ta	p of scre able	en	1	ft ft				
	Well F	Pressure		Upper E	Extractio	n Pump	Lower Pump						
Time	Packer ft	Packer ft	Totalizer gallons	Cond. u S/cm	Temp F	pН	Cond. u S/cm	Temp F	pН	Air Flow	Comment		
											appen Totalizer 6900.5 @ 9:40		
											water 1900 118.6 @ 10:06		
16:10											Stanted apper with the		
				-							i i i pri patrip		
		1											
		-											
		-											
				-									
									-				
				-									
							-						
											4		

L M	Date Vell #	6/17/04-		Packer Depth Top of screen Above Packer Pressure with			191.4	ft ft	Name	BENZ, JERF P.	
10	est#		-	Wa	ater at to	p of scre	en		ft		
			7	Depth t	o water ta	able		85.25	ft		
	Well F	ressure		Linner	Extractio	1 Dumm	Fr	$\mu = 110$	6-1		
	Above	Below	Flow	opper		n Pump	L	ower Pur	np		
	Packer	Packer	Totalizer	Cond.	Temp	nH	Cond	Tomp	-	Air	
Time	ft	ft	gallons	u S/cm	F	pri	u S/cm	F	рп	FIOW	
1005	/	<				1					Comment
1010				3206	17.4	6.62	3229	17.6	6.76	-	WI = 115 51 DI 1 1/2
1015											WL = 142' Sha lat 1 gpm T= 6.2
											The stop dest - need to stow pumps
		-									
1030	RE-ST	ART TO	-								21/2
10#5		,		3114	17.5	6.67	2296	10 1	174		WL= 120 Q lover= 3/2 gpin Uppur= 2/2gpin
1050				2978	17.6	6.70	3190	10.7	6.17		WL = 146 dt 11 dt
10.55				3005	17.7	6.71	3331	19.0	6.76		WLEIST IN A TO A HI AT
11							3090	19.9	6.77		me=100:5 (Sample lalue was closed)
1100				2490	17.7	6.73	3110	18.8	6.77		WL=163.3 01 = 22 04
1110				2829	17.8	6.72	3010	18.9	6.77		W= 167 (way Sound)
1115				3024	17.8	6.71	3050	19.2	6.77		Wh = 120.6
1120				2080	17.0	6.71	3100	19.2	6.77		WL= 17.3
1125				3100	17.9	6.16	3154	19.4	6.77		$L_{L} = 115.3$
1130				3052	18.6	6.74	3200	17.2	6.11		WL=176.45 Restricted Plow Value
1135				9505	19.0	6.75	3197	20,0	1.10		WL = 175,4 (water Sample)
1190				3055	19.1	6.75	3191	20,1	6.78		WL=1747 01 - 17
1195	_			3069	19.9	6.15	3171	19.7	6.79	- 1	WE = 1744
1150				3084	18.7	6.75	3178	19.9	6.78		$\omega_{L} = (74.3)$
12.5				3111	20.4	6.75	3195	20.7	6.78		WL= 174.25
1002				3164	21.3	6.75	3200	20.5	6.78		WL= 174.45 (Water Samole)
	STA	P T	TZ								
-											
										-+	Will allow the WL to recover some, reduce
											a sturther, and do another test @ this death.
										-	U
-+											
										1	

Date Well # Test #		6/17/04 1106 2	-	Packe Top of s Above wa	r Depth screen Packer iter at top	re with en	191.4	ft ft	Name	Ben Z. Jeff P.	
			9	Depth to	water ta			ft			
	Well F	ressure			-2 Introduction	1 During		FN=1	106-2	-	
T	Above Packer	Below Packer	Flow Totalizer	Cond.	Temp	pH	Cond.	ower Pur Temp	np pH	Air Flow	STRAFT TEST 12:55 WL = 119.60'
Time	π	π	gallons	u S/cm	F		u S/cm	F			a WL = 129.5' Commont
1202	-		-	3237	22.9	6,73	3204	25,9	6.75		
1312				3207	23.9	6.71	3121	22.3	6.74		W1 = 132.25' - 1.2 gpm @ upper = 1.2 gpm
1230											WL= 132 05 Blow = 0.7 Que = 0.8
1225				3118	23.2	6.72	3165	27.5	6.75		WL= 130,15
1350				3108	20.1	6.72	3106	27.6	6.74		WL=130,30
1200	KI. a			3111	20.0	6.71	3100	27.5	6.14		WL= 130.05 (Water Sande)
14-25	100			3107	17.6	6.71	3070	26.3	6:73		WL=129,20 Inistrin 6 30 m
1410			-	2100	20.2	6.72	3020	26.6	6.73		ill = 128,3
1415				2104	20.1	6011	3041	25.4	6.13		WE= 126.6 Add glass heads.
1420				2110	10.0	6.16	3035	24.9	6.73		WL=128,92
1425				3/14	19.0	6.15	3034	25,3	6.13		WL=129.85 (Water Sande)
				2101	17.0	6.11	2021	25.5	6.73		WE = 128.70
	S	301	TESY								
	<										
1.10											
-+											
-+											
-+											
	-										

Tuba City	Extraction	Well	Packer	Test	
-----------	------------	------	--------	------	--

Date Well # Test #		6/17/04- 1106 3		Packer Depth Top of screen Above Packer Pressure with water at top of screen Depth to water table				<u>i61.4</u>	ft ft ft	Name	Ben Z	4	HP.			
	Well F	ressure			06-31	r D	FN=	1106-	ŝ							
Time 1 500 1 510 1 515 1 520	Above Packer ft	Below Packer ft	Flow Totalizer gallons	Cond. <i>u</i> S/cm 3047 3022 3017	Temp FC 22.9 23.6 20.7	pH 6.77 6.79 6.78	Cond. u S/cm 2969 2965 2960	Temp F 24.4 25.2 25.4	pH 6.92 6.90	Air Flow	Start Tost WL = 114.45 WL = 114.80	e C Q	Com UL = 112 = both p	iment is sumps (0.7 ₅ pm	
1530 1535 1540 1545				3006 2995 3003 2992 2992	20.9 21.4 21.1 21.3 21.4	6.78 6.77 6.77 6.77 6.76	2954 2954 2982 2930 2954	25.7 25.5 26.2 25.5 27.4	6.79 6.79 6.79 6.78 6.78 6.79		WL = 115.58 WL = 115.72 WL = 116.10 WL = 116.10 WL = 116.10	In	just Aue	. e 30	w/sand	
1555 1600 1605	-	600	0 50	3002 3005 3003	22.9 22.9 24.2 25.8	6.76 6.80 6.83	2976 2976 2984 2975	28.1 29.1 24.3 22.7	6.19 6.80 6.87 6.92		WL = 116.15 WL = 113.16 WL = 112.9 WL = 112.65	Ac	dl Auz a	2 30 psi lower pu	mp discha	eje
											No Wa	ator :	Samples er values	taken .	- No chan	ge in
										-						

l V	Date /ell #	6/17/0	4	Packe Top of s	r Depth screen			131.4	ft ff	Name	J. PRICE	
T		4	•	Above Packer Pressure with					-"			
T	est#	4		wa	iter at top	o of scre	een		ft			
Depth to water table $FN = 106 - 4T$							EN-	ft U.a.	4			
	Well P	ressure		Upper E	Extraction	n Pump	L	ower Pun	np			4
	Above	Below	Flow							Air		
Time	Packer ft	Packer	l otalizer	Cond.	Temp	pH	Cond.	Temp	pH	Flow		
1640		it.	gailons	u S/GII	F		U S/cm	F				Comment
1650				3033	70 9	1 0A	7911	210	1 02	-	WL = 104.8	
1655				2992	19.7	6.85	3050	31.0	7.00		WZ=106.45	Q=0.7 gpm both pumps
1700				2993	19.8	6.86	3006	32.0	7.19			
1705				3031	19.7	6.83	2964	23.4	7.09	2	WL = III.I	infator Sand
1715				3035	19.7	6.81	2957	22.1	7.04		WL= 112.9	Sample
1720				2016	19.1	6.19	2944	23.2	7:00		WL= 114.0	
1725				2927	19.9	1 76	2122	222	7.08		WL= 114.9	
1735	-1735			2818	20.7	1.76	2958	24.0	6.74		WL=115.4	Waster Sample
1745				2807	20.4	6.75	2990	25.5	6.97		1.11 = 115.25	
1755				2852	20.3	6.75	2940	23.7	6.83		61/ = 115 1	ilte S
1805				2890	20.6	6.75	2906	24.8	6.80		WL = 114.95	Willer Jample
1015				2907	20.9	6.75	2870	25.6	6.79		WL = 114.90	
130				2412	20.1	6.75	2860	24.2	6.77		WL = 114.90	Water Semal
											000	
											2401	VEN
											<	
-+												
-+												
	-									-+		
										-+		