Atmospheric Dispersion Modeling in Safety Analyses: GENII

DOE Workshop to Discuss Issues Regarding Deposition Velocity June 5-6, 2012

Jeremy Rishel Bruce Napier

Today's Presentation....

- Will provide a high-level overview of the GENII codes.
- Will cover basic aspects of GENII's acute atmospheric transport model.
- Will review the GENII deposition model that is used to estimate the deposition velocity used in plume depletion.

GENII Development History

- 1988 GENII V1 released
 - ICRP-26/30/48 dosimetry
- 1990 GENII V1.485 stabilized
 - Current DOE Toolbox Version
- 1992 GENII-S stochastic version
- 2004 GENII V2
 - ICRP-72 age-dependent dosimetry
 - Federal Guidance Report 13 risk factors
- ▶ 2006/7 V&V
- 2008/9 New features for NRC (biota doses, etc.)
- 2012 GENII V2.10.1 (soon-to-be toolbox version)

GENII Overview

- A set of computer programs for estimation of radionuclide concentrations in the environment and dose/risk to humans from:
 - Acute or chronic exposures resulting from
 - Releases to the atmosphere or surface water, or
 - Initial contamination conditions
- A typical scenario for DOE safety-basis calculations might look like the following:

GENII Modeling Scenarios

- Far-Field scenarios
 - Atmospheric transport
 - Plume model
 - Centerline model (acute)
 - Sector-average model (chronic)
 - Puff model (acute or chronic)
 - Surface water transport (Acute or chronic)
- Near-Field scenarios
 - Spills
 - Buried waste
 - (Groundwater use GW transport modeling is NOT an explicit part of GENII)

GENII Acute Atmospheric Transport

- Straight-line (centerline) Gaussian plume for individuals
 - For short duration releases (~2 hours)
 - Single source
 - Ground-level or elevated releases
- Radial grid
 - Radial sectors by 16 or 36 compass points
- A specialized module for 95% conditions is now available
 - GENII 95% sector-dependent values are calculated with respect to the total time the wind is blowing in that sector; this is similar to HOTSPOT.
 - MACCS2 95% sector-dependent values are calculated with respect to the total number of hours in one year (8760 hours), or the 438th value in each sector.
 - RG1.145 recommends the 99.5%, or 44th value in each sector
 - GENII/HOTSPOT 95% will generally be higher than MACCS2.
 Pacific Northwest NATIONAL LABORATORY

GENII Parameterizations for Atmospheric Diffusion

- GENII utilizes the Pasquill Gifford (PG) stability classes (A-G) and associated diffusion coefficients
- Various parameterizations exist in GENII for estimating the PG lateral (σ_v) and vertical (σ_z) diffusion coefficients:
 - Briggs Open Country and Urban
 - EPA Industrial Source Complex (ISC3) Model (1995)
 - Eimutis and Konicek (1972)
 - Used in various NRC codes: PAVAN, MESORAD, XOQDOQ, etc.
- Comparison of the PG parameterizations reveals the methods are essentially indistinguishable out to distances of ~11 km, beyond which, the Briggs open country parameterization begins to diverge

GENII Parameterizations for Atmospheric Diffusion σ_v Near-field Comparison

GENII Parameterizations for Atmospheric Diffusion σ_v Far-field Comparison

GENII Dispersion Adjustments

- Plume rise from buoyancy and/or momentum
- Wind Speed Profiling
 - Adjusts the measured wind speed to final plume height
 - Diabatic wind profile accounts for surface roughness and stability
- Diffusion Enhancements
 - Building wake: adjustments to σ_y and σ_z to account for enhanced turbulence around buildings
 - Ramsdell and Fosmire (1995) low wind speed correction
 - Direction-dependent building wake model from ISC3 (1995)
 - Buoyancy-induced dispersion: adjustments to σ_y and σ_z to account for enhanced turbulence from plume rise (buoyancy or momentum)

GENII Deposition

- GENII also accounts for dry and wet deposition of the plume
- Deposition depletes the plume available for air inhalation dose; the deposited material accounts for dose through ground shine and ingestion pathways
- Dry Deposition
 - Particles and reactive gases (noble gases assumed not to deposit)
 - Based on a "resistance" model
 - Includes gravitational settling of larger particles
- Wet deposition
 - Gases (solubility) and particles (washout)
 - Dependent on precipitation rate
 - Rain and snow considered

Dry Deposition

- Many complex processes are involved in the transfer of pollutants at the surface:
 - Properties of the depositing material (particle size, shape, and density)
 - Surface characteristics (surface roughness, vegetation type, amount, physiological state)
 - Atmospheric properties (stability, turbulence intensity)
- Commonly used measure of deposition is the "deposition velocity" (v_d) (m/s)
 - Defined by the bulk deposition flux of material onto the ground from material in the air:
 - v_d [m/s] = (Mass Flux to Ground) / (In-air Concentration)
 - Reported deposition velocities estimated from experimental data exhibit considerable variability due to the many factors affecting deposition

Observed Dry Deposition Velocities (Slinn et al. 1978)

GENII Dry Deposition Velocity

GENII deposition model based on an approach that expresses the deposition velocity (v_d) as the inverse sum of "resistances", plus a settling velocity (v_s) term:

$$v_d = \frac{1}{r_a + r_s + r_t + r_a r_s v_s} + v_s$$

- r_a (aerodynamic resistance layer)
 - shallow layer within ~10 m of the ground
 - primary transfer mechanism is inertial impactions
- r_s (surface resistance layer)
 - very shallow layer just above the surface
 - primary transfer mechanism is Brownian diffusion and inertial impaction
- r_t (transfer resistance layer)
 - interaction with the vegetative surface
 - generally not a factor for particles; particles assumed to "stick" once in the transfer layer

GENII Dry Deposition Velocity cont'd

- The aerodynamic (r_a) and surface-layer (r_s) resistances are a function of:
 - Wind speed
 - Surface roughness
 - Atmospheric stability
- In general, a faster wind speed, a rougher surface, or a more thermally unstable atmosphere will decrease r_a and r_s (enhance inertial impaction), and therefore increase v_d.

GENII Plume Deposition and Depletion

The deposition velocity is used to deplete the plume.

- As noted previously, a faster wind speed will increase the deposition velocity for particles within ~1 to 20 µm range.
- However, a faster wind speed also means that the plume is over a given location for less time, which means it has less time to deposit out (i.e., deplete) at that location
- Therefore, a faster wind speed has offsetting effects: it increases the deposition velocity, but the plume has less time to deplete over a given location

Contact Information

- Jeremy.Rishel@pnnl.gov
 - 509-375-6974
- Bruce.Napier@pnnl.gov (for copies of GENII)
 509-375-3869
- Website:
 - http://radiologicalsciences.pnnl.gov/resources/protection.asp

