2012 Smart Grid Program Peer Review Meeting

Smart Grid Technology Test Bed
Scott Backhaus
Los Alamos National Laboratory

June 8, 2012
Smart Grid Technology Test Bed

Objectives

- Create and demonstrate a replicable DER control system—focus on small electrical utilities and co-operatives
 - Integration of renewables
 - Planning of DER portfolios
 - Assess economic DER value
- Development/characterization of DER
 - Commercial HVAC
 - Run-of-river hydro

Life-cycle Funding ($K)

<table>
<thead>
<tr>
<th>FY10-11</th>
<th>FY12 Request</th>
<th>FY13 Request</th>
<th>FY14 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>300</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Technical Scope

- Model predictive control (MPC) of diverse portfolios of distributed resources
- Optimal/controllable modification of the statistics of PV variability
- Data-driven models for control of HVAC in large commercial buildings
- Models/control of run-of-river hydro—river impacts
Smart Grid Technology Test Bed - Overview

LANL Commercial HVAC

LA County Run-of River Hydro

Copyright © 2011 Toshiba Corporation. All rights reserved.
Integration of DER/DR/ES

- Design and analysis of control algorithms that shape the statistics of PV variability, i.e. the net interface flow to the transmission system
 - Uncertain local renewable energy forecasts
- Simultaneous control of a diverse set of DER/DR/ES
 - Energy storage systems—NaS and lead-acid batteries
 - Commercial building HVAC load
 - Locally-controlled generation—run-of-river hydro
 - Discrete loads
- Control of complex loads—Large commercial HVAC
 - Models too large/complex for use in MPC or other controls

Smart Grid business cases—will be engaging Tri-State G&T for guidance

- Assess the economic value of DER/DR/ES—Different time scales for control
- DER portfolio design
 - Optimal design of portfolio to meet control objectives
 - Minimal/optimal sizing of storage
Model Predictive Control (MPC)

- A diverse portfolio of DER will have
 - Different dynamics—spanning time scales
 - Different end use requirements—different constraints
 - Constraints over time—ES state-of-charge constraints

- MPC—a control technique that unifies a DER portfolio
 - Spans time scales—many dynamics
 - Easily adjusts to many different end-use constraints—future constraints

- MPC—incorporates uncertain forecasts of renewable generation
 - Allows for recourse as forecasts are updated

- MPC—Adapts to different control objectives
 - Allows for shaping of net transmission interface flows
 - Shaping of residual renewable fluctuation statistics

- Operations-Based Planning of DER portfolios (Tri-State G&T)
Data-driven models for large commercial HVAC DR

- Large-building HVAC are complex control systems
 - Coupled thermodynamic systems—chillers, fans, conditioned spaces, local controllers
 - Hundreds of thermostats/VAV control points
 - Combination of centralized and distributed control
- First-principles dynamical models—are too complex for control
 - Bypass complexity—develop data-driven dynamical models via system identification
 - Experimentally create “look-up tables” for building dynamics
 - Build the look-up tables into MPC formulations

Run-of-river hydro

- Utilizing MPC to simulate effects of PV mitigation on the river flows
- Working with Army Corps of Engineers to develop a standardized process
Technical Accomplishments – (FY10)-FY11

• Data-driven HVAC models
 • BAS of 300,000 ft² office building reprogrammed to enable global set point control of all 500 thermostats
 • HVAC submetering installed
 • System identification experiments under wide range of HVAC loadings

• Run-of-river hydro
 • Model of dam operations built into MPC
 • Determined impact of MPC-based PV mitigation on daily river flows
 • Carried out tests of hydro control to determine downstream effects

• MPC
 • Controller for coded for continuous resources (batteries, hydro)
Technical Accomplishments – FY12

- Data-driven HVAC models
 - HVAC submetering validated
 - Dynamical models identified
 - TRANSYS dynamical model constructed
 - Implement control in BAS

- Run-of-river hydro
 - River flow control simulations completed for Army Corps

- MPC
 - Operations-based battery sizing with synthetic PV data
 - Implementation of MPC with historical PV and system load data
 - Incorporation of discrete loads
Technical Accomplishments – Out years

- **Data-driven HVAC models**
 - Integrate data-driven model into MPC
 - On-line control demonstration with smart grid testbed

- **Run-of-river hydro**
 - Complete impact study with Army Corps of Engineers
 - On-line control demonstration with smart grid test bed

- **MPC**
 - Operations-based planning/design of DER portfolios with historical and smart grid testbed data
 - Collaborate with Tri-State Generation and Transmission to determine economic value of DER portfolios
Significance and Impact

- **Data-driven commercial HVAC models**—Enables control
 - Reduces complexity of models for control purposes
 - Adaptable to control schemes other than MPC

- **MPC**
 - Enables combined control of continuous and discrete DER/DR/ES
 - Easily adaptable to other types DER (e.g. irrigation pumping). Only needs:
 - Dynamical model DER
 - End use constraints
 - Probabilistic/Statistical targets for interface flows easily incorporated

- **Run-of-river hydro**
 - Building a translatable methodology for engaging the Army Corps of Engineers on renewable integration
 - MPC models for generation control translate to other utility-owned generation
Interactions & Collaborations

- New Energy and Industry Technology Development Organization-Japan
 - PV and battery developer
 - Control system

- Los Alamos County Public Utilities
 - Grid owner
 - Hydro station owner

- LANL Utilities and Infrastructure
 - Owner of commercial HVAC system and BAS

- Army Corps of Engineers
 - Control of “run-of-river” water flows

- Trane (contractor)
 - Assistance the HVAC/BAS reprogramming

- *Tri-State Generation and Transmission*
 - Assessment of economic value of controlled DER
Contact Information

Scott Backhaus
LANL
MS K764
Los Alamos, NM 87545
505-667-7545
backhaus@lanl.gov
At 160 kW initial fan power
- +60 kW up regulation
- -40 kW down regulation

Energy storage
- ~ 40-50 kW-hrs