Fuel Cell Technologies Office Webinar

Energy Efficiency & Renewable Energy

FCTO Lab Consortia Overview: ElectroCat and HyMARC

Tuesday, November 8th, 2016

Presenter(s)

Debbie Myers – ANL (ElectroCat) Piotr Zelenay – LANL (ElectroCat) Mark Allendorf – SNL (HyMARC)

Question and Answer

Please type your questions into the question box

- Summary of the organization of two Fuel Cell Technologies Office consortia within DOE-EERE's Energy Materials Network
 - Electrocatalysis Consortium (ElectroCat)
 - Hydrogen Materials—Advanced Research Consortium (HyMARC)
- Current/planned scientific activities and capabilities
- Role of individual projects selected to work with these consortia
- Utilizing existing consortia capabilities
- Upcoming FY17 Funding Opportunity Announcement (FOA)

FCTO Lab Consortia Overview: ElectroCat

Purpose, scope, and capabilities of ElectroCat

November 8, 2016

Steering Committee

Dimitrios Papageorgopoulos and Adria Wilson, DOE-EERE-FCTO

ElectroCat Materials Domain: Electrocatalysts

Project Focus: PGM-free catalysts for automotive fuel cells

Problem Statement

Fuel cell system targets set to be competitive with ICEVs.

Durability <u>and</u> cost are the primary challenges to fuel cell commercialization and must be met concurrently

Bipolar Plates

Membranes

Balance of Stack

Catalyst and Application

PGM-free catalysts lag behind platinum in efficiency, durability, cost, and ease of integration into membrane electrode assemblies.

Platinum Group Metals

Energy Efficiency & Renewable Energy

PGM-free vs. PGM Cathodes: Targeting Competitiveness

Technical Targets: Electrocatalysts for Transportation Applications				
Characteristic	Units	2015 Status	2020 Targets	
Platinum group metal total content (both electrodes)	g/kW (rated, gross) @ 150 kPa (abs)	0.16	0.125	
Platinum group metal (PGM) total loading (both electrodes)	mg _{PGM} /cm² (electrode area)	0.13	0.125	
Mass activity	A/mg _{PGM} @ 0.9 V _{iR-free}	> 0.5	0.44	
Loss in initial catalytic activity	% mass activity loss	66	< 40	
Loss in performance at 0.8 A/cm ^{2*}	mV	13	< 30	
Electrocatalyst support stability	% mass activity loss	41	< 40	
Loss in performance at 1.5 mV		65	< 30	
PGM-free catalyst activity	A/cm ² @ 0.9 V _{IR-free}	0.024 A/cm ²	> 0.044*	

*Equivalent to PGM catalyst mass activity target of 0.44 A/mg_{PGM} at 0.1 mg_{PGM}/cm^2

PGM-free containing MEAs need to meet DOE performance and durability targets

Strategy: Research Priorities

Catalysts for oxygen reduction in low-temperature PEMFCs and PAFCs

Catalysts for oxygen reduction and hydrogen oxidation in AMFCs

Development of **electrodes and MEAs** that are compatible with PGM-free catalysts

Optimization of **atomic-scale** and **meso-scale models** of catalyst activity to predict macro-scale behavior

High-throughput techniques for catalyst synthesis

High-throughput techniques for characterization of catalysts, electrodes, and MEAs

Aggregation of data in an easily searchable, public database to facilitate the development of catalyst materials and MEAs

Introduction to FOA

- High-performing and durable PGM-free catalysts and electrodes to significantly reduce fuel cell cost primarily for automotive applications
- Goal is durable PGM-free oxygen reduction reaction catalysts that achieve activity of 0.044A/cm² at 0.9 V in a PEMFC MEA by 2020
- Proposed projects are expected to leverage specified collaboration with one or more ElectroCat national lab-based capabilities, which include:
 - catalyst synthesis, characterization, processing, and manufacturing
 - high-throughput, combinatorial techniques
 - advanced computational tools
- Projects for this topic will be up to 3 years with interim go/no-go decision points
- Interested applicants are encouraged to interface with the ElectroCat Steering Committee to determine potential for collaboration before the FOA is released

Synthesis, Processing and Manufacturing

Synthesis and post-synthesis processing of PGM-free catalysts in high-surface-area form or as planar model systems, and fabrication of electrode layers and MEAs

- ✓ High surface area catalysts
- Model systems synthesis
- ✓ Fabrication of electrodes and membrane-electrode assemblies

Characterization and Testing

Composition, structure, and performance of high-surface-area PGM-free catalyst powders, catalyst-ionomer inks, electrode layers, membrane electrode assemblies, and thin film model catalysts.

- Materials Characterization
- Electrode/Cell Characterization & Diagnostics
- ✓ Model Systems Characterization

Computation, Modeling and Data Management

Guiding and complementing experimental efforts with computational and modeling capabilities at the catalyst, electrode, and membrane electrode assembly levels, as well as by data management expertise.

- Modeling structure-function relationships
- Methods and models to characterize behavior
- ✓ Systems for handling and correlating data

Synthesis, Processing and Manufacturing Capabilities

High Surface Area Catalysts

- PGM-free Catalyst Synthesis, Analytical Characterization, and Electrochemical and Fuel Cell Testing (LANL)
- Sputter Deposition of Thin Films and High Surface Area Catalysts (ORNL)
- Powder Sputter and Implant System (NREL)
- High-throughput
 Synthesis of PGM-free
 Catalysts and Electrodes
 (ANL)

Model Systems Synthesis

- Controlled Functionalization of Model Catalysts (LANL)
- Sputter Deposition of Thin Films and High Surface Area Catalysts (ORNL)
- High-throughput (HT) Thin Film Fabrication and Characterization (NREL)

Fuel Cell Fabrication

- Membrane-Electrode Assembly Fabrication (LANL)
- High-throughput Synthesis of PGM-free Catalysts and Electrodes (ANL)
- High-throughput Approaches to Scaling PGM-free Electrodes (NREL)
- Manufacturing Porous Electrodes (ORNL)

Characterization and Testing Capabilities

Materials Characterization

- PGM-free Catalyst Synthesis, Analytical Characterization, and Electrochemical and Fuel Cell Testing (LANL)
- X-Ray Characterization Techniques (LANL)
- X-Ray Photoelectron Spectroscopy (ORNL)
- Electron Tomography (ORNL)
- Analytical Electron Microscopy (ORNL)
- In situ Electron Microscopy (ORNL)
- Structure/Composition-Function Relationships and Active Sites (ANL)
- In situ and Operando Atomic, Nano-, and Micro-structure Characterization (ANL)
- Combinatorial Hydrodynamic Screening of PGM-free Catalyst Activity and Stability (ANL)
- High-throughput Characterization of PGMfree Catalysts and Electrodes (ANL)

Electrode and Cell Characterization

- Operando Differential Cell Measurements of Electrochemical Kinetics and Transport (NREL)
- PGM-free Catalyst Synthesis, Analytical Characterization, and Electrochemical and Fuel Cell Testing (LANL)
- Electrode Microstructure Characterization and Simulation (ANL)
- Electron Tomography (ORNL)
- Analytical Electron Microscopy (ORNL)
- In situ and Operando Atomic, Nano-, and Micro-structure Characterization (ANL)
- Segmented Cell System Optimized for R&D Combinatorial Studies (NREL)
- In situ Fluoride and Carbon Dioxide Emission Measurements (LANL)
- Segmented Cell and Neutron Imaging (LANL)
- High-throughput Characterization of PGM-free Catalysts and Electrodes (ANL)

Model Systems Characterization

- Controlled Functionalization of Model Catalysts (LANL)
- X-Ray Photoelectron Spectroscopy (ORNL)
- High-throughput (HT) Thin Film Fabrication and Characterization (NREL)

Computation, Modeling & Data Management

Catalyst Modeling

- Multi-scale Modeling
- Rational Design of PGM-free Catalysts (LANL)

Electrode/Fuel Cell Performance Modeling

- Electrode Microstructure Characterization and Simulation (ANL)
- Modeling Kinetic and Transport Processes in PGMfree Electrodes (ANL)

Data Management

- Experimental and Computational Materials Data Infrastructure (NREL)
- Materials Data Facility and Globus (ANL)

Capability Navigation

Materials Characterization

PGM-free Catalyst Synthesis, Analytical Characterization, and Electrochemical and Fuel Cell Testing

The expertise in PGM-free catalyst synthesis, characterization, and fuel cell testing at LANL is built on decades-long experience and proven results, and is the most important capability within LANL's PGM-free program by far.

 Selectrode/cell characterization
 High surface area catalysts

 MATERIALS CHARACTERIZATION
 SYNTHE SIS/PROCESSING/MANUFACTURING

Title

Laboratory:

LANL, ANL, ORNL, or NREL

Capability Expert:

Person to contact with specific questions about capability

Capability Details:

- Title
- Class
- Description
- Capability Bounds
- Unique Aspects
- Availability
- References
- Benefit
- Illustrative Graphic

All Capabilities

Characterization & Testing

>> Materials Characterization

>> Electrode/Cell Characterization & Diagnostics

>> Model Systems Characterization

Analytical Electron Microscopy

Laboratory:	Oak Ridge National Laboratory (ORNL)
Capability Expert:	Karren L. More
Capability Details:	
Tide:	High-resolution analytical scanning transmission electron microscopy (STEM)
Class:	Characterization
Description:	High-resolution transmission electron microscopy (TEM) and aberration-corrected scanning transmission electron microscopy (STEM) are microscopy methods used to characterize the atomis-scale structure of PGM-res catalysts (phically in powder form) and the material constituents (catalyst and ionomer) comprising membrane electrode assembles (MEAs). STEM instruments are typically equipped with multiple detectors, including high angle annular dark field (HAADF) detectors to perform what is commonly referred to as Z-contrast STEM imaging (where Z refers to be atomic number), bright field (BF) detectors, and spectrometers (e.g., an electron energy loss spectrometer (ELE) and an energy dispersive X-ray spectrometer (EDS)). These detectors and spectrometers, when used in combination, enable the simultaneous study of the atomic structure and chemistry of novel PGM-free catalyst systems and their interfaces with other MEA constituents from the bulk-scale to the single atoms level. Compositions and chemistries can be acquired and mapped (spectral imaging) across multiple length scales and directly correlated with the atomic structure determined through HAADF/RF-STEM imaging.
Capability Bounds:	NA
Unique Aspects:	A full suite of scanning transmission electron microscopes (STEM) is available at ORNL for conducting imaging and spectroscopic analysis of PGM-free catalysts and membrane electrode assemblies (MEAs) from the bulk-scale to the single-atom level, including the identification of unique morphologies of catalyst particles and insight words understanding the atomic structure of catalytically active sites. Unique microscopes include low-voltage (00KV) and high-voltage (200KV) aberration-corrected STEM instruments equipped with high- energy resolution electron energy los spectroscopy (ELES) and high spatial-resolution energy dispersive X-ray spectroscopy (EDS), which enable a broad range of structural, chemical, and
Availability:	Instruments in ORNL's Materials Characterization Center (MCC) are available for partnership with industry through Strategic Partnership Projects (SPP), cooperative research and development agreements (CRADAs) via full-cost recovery (hourly fee), and direct project collaborations to facilitate new materials discovery and understanding; instruments in ORNL's Center for Nanophase Materials Sciences (CNMS – a U.S. DOE Office of Science User Facility) are accessible through a peer-reviewed proposal process (no cost if results are publishable and full-cost recovery if data is propriatery). All instruments in the MCC and CNMS are available for characterization of PGM-free catalysts and MEAs.
References:	 G. Wu, K.L. More, C.M. Johnston, and P. Zelenay, "High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyanilene, Iron, and Cobalt," <i>Science</i> 332 443-447 (2011). W. Gao, G. Wu, M.T. Janicke, D.A. Cullen, R. Mukundan, J.K. Baldwin, E.L. Brosha, C. Garlande, P.M. Ajayan, K.L. More, A.M. Dattlebaum, and P. Zelenay, "Ozonated Graphene Oxide Film as Proton Exchange Membrane," <i>Angewandta Chemie International Edition</i> 53 [14] 588-3593 (2014). G. Wu, K.L. More, P. Xu, H.L. Wang, M. Ferrandon, A.J. Kropf, D.J. Myers, S. Ma, C.M. Johnston, and P. Zelenay, "A Carbon-nanotube-supported Graphene-rich Non-precious Metal Oxygen Reduction Catalyst with Enhanced Performance Durability," <i>Chemical Communications</i> 49 3291-3293 (2013).
Benefit:	ORNL's unique STEM instruments provide capabilities for the complete analytical and structural characterization of PGM-free catalysts and MEAs at multiple length scales to correlate structure and chemistry with material performance.

Energy Efficiency & Renewable Energy

• Questions about capabilities:

<u>Contact@ElectroCat.org</u> (to Steering Committee members)

• Questions about FOA:

http://energy.gov/eere/fuelcells/subscribe-news-and-financial-opportunity-updates

• Note: If you intend to interact with ElectroCat through a FOA-awarded project, please do not contact either Steering Committee members or capability experts after the FOA has been released

Thank you

Dimitrios Papageorgopoulos dimitrios.papageorgopoulos @ee.doe.gov

Debbie Myers dmyers@anl.gov Piotr Zelenay zelenay@lanl.gov

hydrogenandfuelcells.energy.gov

- High-risk, high-reward seedling projects to develop innovative and novel onboard rechargeable hydrogen storage material concepts for use in automotive applications enabling higher capacity and lower cost storage systems
- Projects will work collaboratively with the HyMARC core team
- Multi-phase, stage-gated projects, up to 3 years total length, and \$250k-1M in DOE funding
- Projects must demonstrate the development of materials that meet agreed upon quantitative metrics to continue past the initial seedling phase (12-18 months)

HyMARC: A Consortium for Advancing Solid-State Hydrogen Storage Materials

Mark D. Allendorf, P.I., Sandia National Laboratories November 8, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Critical Scientific Challenges (Identified by NREL PI meeting, Jan. 2015)

Sorbents: Eng. COE target: 15 – 20 kJ/mol

- Volumetric capacity at operating temp.
- Increased usable hydrogen capacity needed
- Distribution of H₂ binding sites and ΔH at ambient temperature not optimized

<u>Metal hydrides</u>: Eng. COE target: ≤27 kJ/mol H₂

- Poor understanding of limited reversibility and kinetics
- Role of interfaces and interfacial reactions
 - Solid-solid
 - Surfaces
- Importance and potential of nanostructures

Need for multiscale modeling approaches to address both thermodynamic and kinetic issues

Objective: accelerate discovery of breakthrough storage materials by providing **capabilities** and **foundational understanding**

Foundational understanding of phenomena governing thermodynamics and kinetics limiting the development of solid-state hydrogen storage materials

HyMARC will deliver community tools and capabilities:

- **Computational models and databases** for highthroughput materials screening
- New characterization tools and methods (surface, bulk, soft X-ray, synchrotron)
- **Tailorable synthetic platforms** for probing nanoscale phenomena

A simple conceptual framework for energetics of H₂ storage focuses activities on two overarching aspects of storage materials

"Effective thermal energy for H₂ release" $\Delta E(T) = \Delta H^{\circ} (T) + E_{a}$ Thermodynamics of uptake and release Tasks 1
Kinetics of uptake and release Tasks 2, 3, 4, and 5

- Sorbents
- Hydrides

• Surface reactions

- Mass transport
- Solid-solid interfaces
- Additives

Technical approach: Organizational structure of Core Lab Team

Technical approach/Modeling capabilities: high-performance National Lab computing allows simulations at all relevant length scales

Accurate physisorption energetics

H₂ physisorption energetics with high-accuracy quantum chemistry and electronic structure methods

Sorbent characterization & H₂ uptake

- Surface area and porosity characterization
- Isotherm prediction

CuBTC/ HKUST-1 at 77 K

Ab initio thermodynamics

- Reaction free energy
- Effects of mechanical stress and nanosizing
- Phase diagram prediction ٠
- Phase fractions at intermediate (de)hydrogenation

1.0

0.5

0.0

0

Mole fraction X

Multiscale mass transport simulations

- Molecular dynamics (*ab initio* & classical)
- Defect formation and migration barriers

AlH₄ structural diffusion

- Non-equilibrium diffusion
- Polycrystalline effective diffusion

Interface simulations

- Simulations of interfaces with gas (H₂), liquids, or solids
- Electronic and chemical properties

Gas-surface interactions

Heterogeneous solid interfaces

Graphene-MgO-Mg interfaces

Solid-liquid interfaces

Surface oxide-solvent interface

HyMARC capabilities summary: Modeling and simulation

- Accurate physisorption energies (beyond-DFT, QMC, hybrid/vdW DFT)
- Sorbent characterization and hydrogen uptake (porosity, GCMC)
- Quantum chemistry and electronic structure (DFT)
- *Ab initio* thermodynamics (DFT, GCLP, CALPHAD)
- **Multiscale mass transport** (AIMD, KMC, phase field)
- Computational spectroscopy (DFT)
- Interface simulations with gas/liquid/solid (DFT, AIMD, MD, continuum)
- Solid-state phase transformation kinetics (phase field)
- Kinetic modeling and fitting (continuum)

Synthesis capabilities: bulk materials, dopants, sorbants, and nano-scale platforms

Technical approach/storage materials: <u>build and validate capabilities</u> using simple "model" systems, then progress to higher complexity

$\Delta E(T) = \Delta H^{\circ} (T) + E_{a}$ Effective thermal energy for H₂ release: **Sorbents** Metal hydrides Thermodynamics of H₂ release Thermodynamics Library of sorbents with representative - Bulk vs. nano structural motifs: • Kinetics of uptake and release MOFs with open metal sites Surface reactions Porous carbons Mass transport **Doped materials** Solid-solid interfaces

• Additives

<u>A progression of model systems will enable development of new capabilities</u> : Increasing complexity					
Binary hydrides	→ "Simple" Complex hyd Phase segregation Bulk → Nano Graphene nanobelts, 1	rides → Complex systems, e.g. Mg(BH ₄) ₂ "Molecular" species (e.g. B ₁₂ H ₁₂) templates, colloidal synthesis			

What synthesis-structure-property relationships govern hydrogen uptake and release?

Phase minimization strategies: overcome transport problems due to phase segregation

Doping and defect creation: solid solutions to minimize the number of solid phases

Entropy tuning: crystalline-to-amorphous transitions to improve ΔG°

Ultrahigh H₂ pressures (up to 700 bar) as a new strategy to regenerate metal hydrides

Consortium capabilities for bulk hydride synthesis include:

- High-pressure reactors (up to 2000 bar/500 °C)
- PCT equipment (200 bar/400 °C)
- Extensive ball-milling equipment

New capability: high-pressure station

Redesigned and upgraded the Sandia high-pressure hydrogen station (pressures up to 1000 bar H₂)

-35-

Vational aboratories

Synthesis of Metal Hydride Composites

- Scalable bottom-up synthetic route
- Atomically defined, tunable graphenebased materials as stabilizing support for metal hydride and complex hydride nanoparticles
- Demonstrated using Mg and MgH₂ nanocrystals
 - Graphene oxide (GO) sheets as encapsulation layer
 - Selectively permeable to hydrogen
- Extension to complex metal hydrides underway

- 1. Jeon, K.J. et al. *Nat Mater* **10**, 286-290 (2011).
- 2. Ruminski, A.M.et al. *Energ Environ Sci* **6**, 3267-3271 (2013).
- 3. Cho, E.S. et al. *Nat Commun* **7**, 10804 (2016).

Modified graphene nanoribbons for controlled catalysis

GNR: fix the location and chemical identity of catalytic active sites in welldefined materials. Can be integrated with other storage materials

Quite adaptive: catalytic metals, or chelating and ED/EWD groups

Schematic representation illustrating the integration of molecular-defined transition metal catalyst centers via:

a) bipyridine or

b) bindentate phosphine ligands along the edges of atomically defined GNRs.

Characterization: state-of-the-art tools probing bulk and surface chemistry, microstructure, phase composition

Surface: key to hydrogen storage

Schematic by Brandon Wood(LLNL)

Detecting hydrogen is challenging with most surface analysis techniques

TDS

Detecting H poses unique challenges:

- Direct detection impossible with most surface techniques (AES, XPS)
- Detectable signal overwhelmed by substrate (LEED, STM, HREELS)
- Ambiguous/difficult to interpret. (TDS)

Surface sensitivity of the HyMARC analysis probes: information depth depends on particle range

HyMARC surface analysis techniques provide access to a range of length scales that complement the modeling tools we are developing.

Direct mapping of hydrogen on surfaces by Low Energy Ion Scattering (LEIS) spectroscopy

- Optimized for direct sensitivity to H on surfaces (< 0.05 ML)
- High surface specificity
- Distinguishes H and D (exchange experiments)
- Adsorption kinetics on compressed particle beds/thin films (res. ~ 1 – 10 s)
- Atomic doser available to characterize uptake of H₂ vs. H
- Surface diffusion measurement: laser-induced pump probe

R. Kolasinski et al. Phys. Rev. B 85, 115422 (2012)

laser-induced desorption pump-probe

clean sample transfer container

X-ray photoelectron spectroscopy provides unique insight into surface chemistry of storage materials, including oxidation states

Quantitative surface composition

1 Torr

sample

- Detailed adsorbate binding information
- Reactor chamber available for sample exposure (up to 40 Torr H₂.)
- Near Ambient Pressure XPS allows surface/gas interactions (up to 10 Torr *in situ*)
 NAP-XPS is at the ALS (LBNL) and under development at SNL, CA):

In previous NAP-XPS studies, we described the mechanism of hydrogen utilization in operating Pt-based SOFCs F. El Gabaly et al., Chem. Comm. **48**, 8338 (2012)

X-rays

Summary: HyMARC surface tools

- Sandia, CA:
 - Low Energy Ion Scattering*
 - Auger Spectroscopy*
 - XPS* + reactor chamber

- Advanced Light Source (LBNL):
 - Near-Ambient-Pressure XPS* beamlines (requires approved ALS user proposal)
- In development at Sandia, CA:
 - Lab-based Near-Ambien-Pressure XPS*

* Clean transfer from glove box available for all techniques

X-ray Emission and Absorption Spectroscopy

- Measurement of the occupied DOS
- Resolve structure of filled electronic density of states states
- Angular momentum resolved probe of the unoccupied electronic DOS
- Provides structure and bonding information
- Suitable for amorphous and crystalline materials incl. short range order.

Computational spectroscopy

- X-ray spectroscopic simulations for interpreting XAS, XES, and XPS data
- Infrared and Raman spectroscopic simulations

 $\Delta F (\text{meV/atom})$

0 100

1000

Frequency (cm⁻¹)

Calculation of NMR chemical shifts

PDOS / Intensity (a.u.)

0

α

500

X-ray spectromicroscopy – spatially resolved XAS

- Scan sample transmitted intensity provides image
- Zone plate: ~ 25 nm resolution

Clean transfer systems ensure materials can be examined without adventitious oxide formation or contamination from air exposure

- Designed and fabricated at Sandia
- Transfers samples under inert atmosphere
- Available for XPS systems at Sandia & ALS
- Available for LEIS/AES

Synchrotron techniques implemented under HyMARC

X-ray Emission and Absorption Spectroscopy (XES/XAS)

Beamline 6.3.1.2 (ISAAC), ALS – Approved Program Beamline 8.0.1.1, ALS – General User Proposal REIXS beamline, CLS – General User Proposal

X-ray Spectromicroscopy – Scanning Transmission X-ray Microscopy (STXM)

Beamline 5.3.2.2, ALS – Approved Program

Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS)

Beamline 11.0.2, ALS – Director's Discretion Access

Community tools

	Open-source software	Distributed/federated database development	
	Phase fraction prediction code	What properties belong in the materials database?	
	(thermodynamics) Phase field modeling for hydrogen storage in hydrides (kinetics)	<u>Computational</u> : • Crystallographic/structural quantities	
		 Enthalpy, entropy, surface energy, elastic moduli Defect formation energies & mobilities Computational spectroscopy (e.g., XAS/XES, XPS) 	
	Kinetic Monte Carlo (transport)	 <u>Experimental</u>: Absorption isotherms (P, T, size) & time-dependent Transport (surface, bulk) 	
		Characterization data from all tasks	

uptake

HyMARC web site is on line

https://hymarc.org/

- Capabilities descriptions
- Contact information
- Recent news

We gratefully acknowledge the EERE Fuel Cell Technologies Office for funding HyMARC

ENERGY Energy Efficiency & Renewable Energy

Thank you

Ned Stetson Ned.Stetson@ee.doe.gov Mark Allendorf mdallen@sandia.gov

hydrogenandfuelcells.energy.gov

Please type your questions into the question box

