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Introduction to Transient Testing, TREAT, 
and Current Experimental Efforts
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What is Transient Testing?
• Transient testing is like car crash testing for nuclear fuel

– Demonstrate performance phenomena and limits for fuel 
development and reactor design

– Show consequences of hypothetical accidents for licensing

• Transient testing is the study of fuel and 
fuel system behavior under power-
cooling mismatch conditions
– Short timescale events need to be 

simulated with rapid nuclear heating
– Nuclear heating provides prototypic 

heat transfer conditions 
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Anticipated Operational 
Occurrences Design Basis Accidents Severe Accidents

Slide Courtesy of Nicolas Woolstenhulme



Transient Reactor Test Facility (TREAT)
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• TREAT core design:
– Zircaloy-canned blocks of urania dispersed in graphite
– Strong negative temperature coefficient, self-limiting

• Experiment displaces fuel assemblies
– Each fuel assembly is 10cm × 10cm in cross section
– 1.2m of active core length

• Air-cooling system for decay heat removal
– 100kW steady-state operation
– Not a required safety system

• 4 slots with view of core center, 2 in use
– Fast neutron hodoscope, neutron radiography facility

Example Transient Shapes

• Hydraulically-driven transient rods
– Allows for precise and 

flexible transient shaping
– 2500MJ max core energy 

in prompt burst (<1 sec)
– 2900MJ max core energy 

in shaped mode (up to ~5 min)

• On schedule for operation in 2018
and maybe sooner…



Characteristics of Transient Testing at TREAT
• Primary historical mission supported sodium-fast 

reactor testing
• TREAT is well suited to self-contained drop-in 

test devices
– Installation, testing, and withdrawal in a matter of 

days - enables support for rapid transition between 
different-environment test devices (e.g. Na, H2O) 

– Effective approach to test many pins quickly and cost 
effectively

• Examples of instrument objectives: time and 
location of first cladding failure; time-dependent 
axial growth; fuel relocation; coolant temperature, 
dynamics, and pressure

• Transients evolved to shaped transients to simulate 
pre-transient thermal conditions in fuel, etc.

• Experimental coupling with the reactor - trigger 
reactor scram at failure or trigger power burst upon 
Na voiding using experiment instrumentation

• Fuel-motion monitoring
– High-speed video in transparent capsule
– Fast-neutron hodoscope (next slide)

5Video still-frames of preirradiated UO2, steel cladding (F1) 
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Fuel Visualization and Motion Monitoring
• Fast neutron hodoscope provides the key capability for monitoring fuel motion 

during the transient
• Fission-born fast neutrons emitted from specimen travel through vehicle’s 

containment wall, through a collimator, and into detector array
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• Provides pixelated view of fuel mass in 
each collimator slot

Slide Courtesy of David Chichester



Experiment Design
• TREAT provides neutrons
• The experiment vehicle (e.g. loop, capsule, 

etc.) provides:
– Boundary conditions
– Instrumentation

• Accident Tolerant Fuels (ATF) transient tests 
driving current experiment design (LWR) 

– TREAT spent the last two decades of its prior 
operation (~1970-1990) largely supporting fast 
reactor tests

– Transient testing experiment team developing 
pressurized water test capabilities for TREAT

• Revitalization of sodium-environment 
irradiation vehicles underway

• Development of vehicles for “science-based” 
specimens also underway
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Insert Experiment Here 
(or anywhere else really)
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Multi-SERTTA
Static Environment Rodlet
Transient Test Apparatus 
(SERTTA)
• General purpose device 

without forced convection
• Pre-pressurized and 

electrically heated
– Liquid water up to 

PWR condition 
(300°C 15.5 MPa)

– Inert gas or steam
– Liquid sodium

• Planned to be the first 
“new” test to be used in 
restarted TREAT

• Includes a significant 
instrumentation package 
(later)
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Conceptualized Experiment Vehicles
• Integral tests and separate effects studies in package-type “loops”
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Multi-Vessel Static 
Capsule, Various 
coolants/thermal 
conditions PWR Flowing Water Loop

Large, Single Vessel 
Static Capsule, Various 
coolants/thermal 
conditions

Flowing Na 
Loop (based on 
historical testing)

Multi-Vessel, 
Minimal-Activation 
Capsule



TREAT Instrumentation
(In-Pile Experiments Focus)
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Why Instrument in TREAT?
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T. Fuketa, Comprehensive Nuclear 
Materials, Vol. 2, (2012) pp. 579-593

Modeler: 
Validation 

Needs

Desired 
resolution & 

accuracy

Experimentalist:
Available/Needed 
Instrumentation

Measured 
quantity and 

post processing

“Ideal” Experiment



• LWR (for example)
– Thermocouples
– Pressure transducers – coolant, rod
– LVDT – elongation, pressure, flow rate
– Strain gage
– SPND, flux wires/foils, ion chambers
– Ultrasonic thermometer
– Acoustic sensors
– Water column velocity

• SFR (for example)
– Thermocouples
– Pressure transducers
– Flowmeters
– Void sensor
– Sodium column impact
– Acoustic sensors
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Historical Transient Instrumentation

Deploying these 
instruments today requires 
significant development, 
qualification, and 
engineering integration

Example Power Burst Facility RIA Test Train



Instrument Development & Qualification
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• High Temperature Test Laboratory (HTTL) is testbed
• Primary challenge is the integration of known instruments into the test 

device and demonstration of interfaces and instrument performance

Instrumentation 
Engineering Loop

R&D Input
•Fuels (other) Programs
•Assessments & Studies
•Review of Alternatives

Conceptual Formulation
•Facility & Experiment Constraints
•Proof-of-concept testing

Design & Demonstration
•Conceptual-to-final design
•Engineering Development

• Experiment Integration
• Refinement & Optimization
• Characterization & Testing
• Uncertainty Quantification

Acceptance
•Experiment Integration
•Testing in TREAT
•Implementation Support

Operation
•Development Closeout
•Continued Support



Transient In-Pile Instrumentation Targets
• Fuel – metal, oxide, (ATF)

– Energy deposition - (dosimetry, micro-pocket fission 
detector), Temperature, Dimensional changes / 
mechanical behavior (hodoscope, LVDT), 
Microstructural / chemical behavior, Thermal / 
mechanical properties, Fission gas characteristics 
(pressure, composition) – (LVDT)

• Cladding
– Temperature (TC, fiber-based IR radiometry), 

Dimensional changes / mechanical behavior (acoustic, 
LVDT), Microstructural / chemical behavior, Thermal / 
mechanical properties

• Environment – gas, water, sodium…
– Temperature (TC), Pressure (transducer), Phase change 

(void sensor, acoustic), Mechanical behavior, Flow rate, 
Fission products, Chemical behavior
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Instrument Challenges & Opportunities
• Visualization – imaging techniques; e.g. advanced hodoscope, visible & IR 

videography (e.g. boroscope technologies), under-sodium viewing (e.g. ultrasonics), 
microstructural visualization (e.g. SEM)
– Hodoscope needs – see presentation by H. MacLean Chichester from NEET 

ASI Webinar 2015, “Advanced Fuels Program In-Reactor Instrumentation 
Overview”

• Sensor miniaturization
– Less obtrusive
– Increased spatial resolution/quantity
– Located nearer to locations of interest (e.g. in fuel)

• Electronics – in-core options, signal conditioning, ADC, enable more signals 
to/from experiments

• Feedthrough technologies – wide range of temperatures and pressures
• Adaptation of existing technologies to experimental constraints

– Hot-cell implementation considerations (non-contact, easy alignment, etc.)
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Multi-SERTTA Instruments
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• PWR version of Multi-SERTTA 
• Significant instrumentation capability
• Probable single test use instruments
• Current program development is focused on 

deployment of these instruments



Micro Pocket Fission Detector (MPFD)
• Background: Specimen energy deposition is a 

key experiment output parameter 
• Historical approach: Transient energy 

characteristics provided by combination of 
calibration tests (dosimetry) and reactor power 
measurements in TREAT biological shielding

• Goal: Provide real-time neutron flux 
measurement near test specimens

• Technology Need: 
– Compact size
– High temperature and pressure resistance
– Wide range of neutron flux while 

minimizing gamma influence
– Spectral information
– < ms response

• Approach:
– Modify existing MPFD design
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MPFD – Current Effort
• Modified MPFD design

– 2 high and 2 low efficiency chambers
– Thickened sheath (pressure boundary)
– Chamber fissile material thickness to 

be tuned to desired flux level

• Current status/progress:
– Analysis supporting higher pressure 

sheath design
– Analysis for optimal instrument location 

in experiment
– Detailed MCNP model of sensor to 

better understand design response
– Working through material quality 

requirements and procedures
– Design and testing of specialized 

counting electronics at KSU
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MCNP model of TREAT MPFD



Example of R&D need: Fast Transient Boiling
– Clad-to-coolant heat transfer remains an area of high uncertainty for 

modeling and simulation
→ pyrometer and void sensor

19WGFS RIA Fuel Codes Benchmark Meeting 2015



Pyrometer
• Goal: Measure cladding temperature with time 

resolution adequate for RIA with minimal impact to 
cladding (non-contact)

• State-of-the-art cladding temperature measurement:
– Thermocouple 

• Historical and contemporary standard (also 
in Multi-SERTTA)

• Impacts - fin effects, gamma-heating, 
response time, cladding integrity

• Technology Need:
– Response time ~ milliseconds
– Non-contact
– Use in multiple mediums, e.g. gas, steam, water

• Approach:
– Off-the-shelf IR pyrometer system – customized 

fiber delivery
• Characterize environmental effects

– Complete custom pyrometer approach (Utah St)

20
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Pyrometer – Current Effort
• Emissivity-corrected, single-color, fiber-

coupled pyrometer
– Temperature range: 220-1600°C
– Accuracy: ± 3°C
– Temperature Resolution: ± 1°C
– Spatial Resolution: ~ 2 mm
– Temporal Resolution: ~ 8.3 msec
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Specimen 
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Rodlet
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• Current status:
– Instrument in HTTL 
– Testing underway
– Custom design by 

Utah St. 

Laboratory setup at HTTL
Preliminary testing results



Void Sensor (Boiling Detector)
• Goal: Detect departure from nucleate boiling 

(DNB) – identify boiling regimes in PWR water
• State-of-the-art for phase change: CABRI –

ultrasonics, acoustic sensors, 
temperature/pressure sensors

• Technology Needs:
– Detect coolant event timing (ms response) 

• Sensitivity to DNB
– Operate at STP -> PWR conditions
– Void quantification

• Approach:
– Build custom sensor based on known tech.

• Effects of harsh environment
– Design for in-pile use (signal acquisition)
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Example of RELAP5 predicted heat void fraction 
and heat flux during RIA transient in Multi-SERTTA
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Void Sensor (Boiling Detector) – Current Effort
• Capacitive-based sensor

– Two ceramic-coated electrodes
– Single conductor MGO cabling from vessel
– Signal conditioning outside core shielding
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Parasitic 
Capacitance 

(leads, 
vessel, etc.)

Desired 
Capacitance

Water 
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Measured impedance:

Ceramic-Coated 
Boiling Detector 

Plates



Void Sensor (Boiling Detector) – Current Effort
• Primary technical issues addressed to date:

– Sensor-to-DAS leads/signal conditioning
– Effects of component grounding
– Optimal measurement frequency
– Capacitor plate design (4 plate vs 2 plate)
– Water quality effects
– Capacitor plate isolation
– PWR conditions
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Boiling detector 
prototype testing in 
autoclave at HTTL 

4 electrode vs 2 
electrode 
configuration

Glass-encased 
electrodes

Complete signal 
conditioning 
system

Viable 
coating 
tested in 
PWR 
condition

E&M 
Modeling



Collaborations for Instrumentation
• NEUP Projects

– Advanced Instrumentation for Transient Reactor Testing IRP (UW, Ohio 
St, Kansas St, Idaho St, INL)

– Benchmarking for Transient Fuel Testing IRP – Task 3 Core 
Instrumentation Plan (Oregon St, UMich, MIT, INL)

– A Transient Reactor Physics Experiment with High Fidelity 3-D Flux 
Measurements for Verification and Validation – Kansas St

• Instruments for Multi-SERTTA ATF-series
– Thermocouples, pyrometer - Utah St
– Void sensor – Utah St, U of New Mexico 

• International collaborations
– CEA (France) – CABRI/Sensors – optical fiber, pyrometer
– IRSN (France) – CABRI experiments – pyrometer, ultrasonics, LVDT, 

sensor testing & qualification
– Halden (Norway) – LVDT, pyrometer?
– NNC (Kazakhstan) – IGR – In-pile instrument testing

• Continue to grow…
25



• TREAT has performed nearly 3000 transients and more than 900 experiments
– Primary mission was transient fuel performance testing for SFR systems 
– Restart program underway with expected completion in 2018 (or sooner)

• Several test vehicle designs at various stages of development for LWR and 
SFR systems along with multiphysics modeling capabilities. Priority 
environments are:

1. Light Water Reactor (PWR & BWR)
• Reactivity Initiated Accidents (RIA)
• Loss of Coolant Accidents (LOCA)
• Variety of supporting separate-effects studies

2. Sodium Fast Reactor
• Transient Over Power (TOP)
• Unprotected Loss of Flow (ULOF)
• Variety of supporting separate-effects studies

Summary
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Summary – Instrumentation
• TREAT provides unique in-pile instrumentation access 

– Transient in-pile experiments employ significant instrumentation
– Wide range of experimental configurations and environments
– Fast response rate often required for instruments
– Short-duration, high-peak neutron flux
– Nuclear heating in materials can be significant

• Important near-to-medium-term challenges will be adaption/qualification of 
existing instrument technologies
– Recovering instrumentation capabilities of the past is an important and 

significant hurdle
• Looking (and developing) for next generation of sensors…

– Instrument development underway since the beginning of FY16 for LWR 
applications – MPFD / IR pyrometer / Void sensor / TC design

• INL’s HTTL laboratory is the center of instrument development and qualification
• Encourage instrument testing in TREAT 
• INL Transient Testing team can help! (needs & constraints)
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