Advanced Onsite Fabrication of Continuous Large-Scale Structures

Corrie I. Nichol, Ph.D.

AMM Workshop 17 October, 2016

Noorum Idaho National Laboratory

Concept Overview

- Cross between 3-D printer and Concrete Slip-Forming
- Structure built on-site from small format raw materials
- Form moves up as vessel is formed
- Material is fully densified by roller follower

Potential Benefits

- Potential multi-material composite construction, multi stress-state end product.
 - Corrosion resistant cladding, high strength steel alloy interior.
 - Residual compressive stresses to reduce corrosion cracking.
- Material transported to site in small form factor. (No component size site limitations.)
 - Site access to large navigable water-ways for component transport not required.
- Welds largely eliminated.
 - Residual weld stresses/weld flaws eliminated.
 - Weld inspection burden reduced.
- Domestic large vessel fabrication.
 - Ultra-heavy forging companies are no-longer in the U.S.

Year 1 Accomplishments

- Spray forming process modeling
- Surrogate process selection
 - Commercially available
 - Bench scale
- Initial system setup
- Initial testing and material
- NDE for in-process control and inspection

Minimum Energy for Spray Forming Process

Material:	Stainless Steel	
Deposition Rate:	0.50	kg/min
Heat to melt material:	8.33	kW
Gas for Material Transport:		
Argon	14.16	kW
Nitrogen	28.28	kW

- Simplistic analysis
- Process losses
 - Heat loss unaccounted
 - Process inefficiencies
- Recycle energy
- Bench scale process

System Overview

Spray Booth Internal Layout

Initial Spray Test

Initial Material Produced

- High porosity
- High inclusion
- Brittle
- Shape follows ceramic form
- Separation due to temperature differential
- Process resolution limitations

Initial NDE Research

- Previous experience with high temperature NDE environments
- Comparison of current project NDE requirements vs. past projects
 - Substantially elevated temperature
 - Potential material interactions/attenuation
- Continuing research on techniques for NDE

ET Tests on Hot Samples

- In-process inspection of Welding process
- High temperature
- Non-contact
- Probe cooled via water circulation
- Resolution of process

Temperature and NDE

 NDE methods from previous research

Arc Nozzle

Phased Array

Sensor

Laser

 Temperature challenges

Bracket

EC Sensor

Cooling Line

Upcoming Work

- Optimize process spray parameters
- Testing resulting materials
- NDE of material (cold, then hot)
- Investigate inert gas for arc spray system to reduce oxide inclusion

