

FY 2016 NEET R&D Award -Investigating Grain Dynamics in Irradiated Materials with High-Energy X-rays

Pls:

Meimei Li (ANL), Jonathan D. Almer (ANL), Donald W. Brown(ORNL)

DOE-NE Cross-cut Coordination Meeting August 16, 2016

Motivation - In situ Multiscale Experiment of Nuclear Reactor Materials with High-Energy X-rays

Combined *In situ* High-Energy X-ray Techniques (APS Beamline 1-ID)

In situ Thermal-Mechanical Experiment of Neutron-Irradiated Materials

In situ Characterization using 2D X-ray Techniques: Grain-Average Behavior

evolution during tensile deformation

(Dongare et al (2009))

SAXS captured void formation and evolution during necking

High-Energy Diffraction Microscopy (3D-XRD): Individual Grain Characteristics

- Three-dimensional, grain-scale characterization:
 - Characterization of microstructural and micromechanical response of individual grains within the bulk of a polycrystalline specimen.
- Near-field (nf-) HEDM (similar to 3D-EBSD):
 - Sample-detector distance: mm cm
 - Not suitable for in situ study with complex environments

- Grain shape and orientation map
- Detailed GB geometry
- Far-field (ff-) HEDM: sample-detector distance: meter (suitable for in situ)

-1000

X-ray Tomography

• 3D visualization of the internal structure (pores, voids, cracks, etc.) in a material

Absorption Tomography provides information due to electron density, revealing presence of voids, cracks, etc. (by AFRL, unpulished)

X-ray tomography of thermally-fatigue GlidCop specimen measured at APS beamline 1-ID. (A. Khounsary et al. J. Phys 425 (2013) 212015)

In situ 4D Characterization under Thermal-Mechanical Loading

- Integrate *in situ* thermal-mechanical loading capability with 3D X-ray techniques to enable time- and spatial-resolved (4D) characterization of neutron-irradiated polycrystalline materials
 - Single-grain diffraction measurements in a polycrystalline sample
 - Monitor grain dynamics under thermal-mechanical loading
 - Link local events with average properties

Proposed Work

• 4D characterization of neutron-irradiated materials with high-energy X-rays

- Demonstration of high-precision rotation & axial loading mechanism to enable 4D X-ray characterization
- Develop HEDM data analysis methods to specifically address irradiated specimens, including effects of peak overlap and broadening which result from radiation damage
- Develop a swappable specimen stage with a location tracking mechanism for synchronized measurements of the same specimen volume by *ex situ* nf-HEDM and *in situ* ff-HEDM.
- In situ mechanical testing of neutron-irradiated materials at high temperature with high-energy X-rays
 - Demonstrate the capability for *in situ* mechanical testing of an activated specimen at temperatures up to 600°C.
- Establish activated specimen holder library
 - A collection of well-established and approved holder designs for irradiated specimens will be of great value to the nuclear material community.
 - The specimen holder library will be closely coordinated with the NSUF sample library to accommodate different sample types, geometry and dimensions.

Automated Handling of Radioactive Specimens using Robot

What's Next?

APS Upgrade – Transform today's APS into the ultimate 3D X-ray microscope

Orders-of-magnitude increase in brightness and coherent X-ray flux.

Early Science at the Upgraded APS, Oct. 2015.

High energy, high brilliance X-rays High energy, high brilliance, high coherence X-rays

New Beamline Concept – "<u>High-Energy X-ray Microscope (HEXM)</u>"

- New imaging techniques
 - Direction-beam imaging: full-field transmission X-ray microscopy (TXM)
 - Diffraction-beam imaging: Bragg coherent diffraction imaging (BCDI)
- A long beam extending beyond APS experimental hall allows separate building
 - Include in situ ion irradiation beamline (XMAT)
 - Include Activated Material Laboratory (AML)