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Motivation - In situ Multiscale Experiment of
Nuclear Reactor Materials with High-Energy X-rays
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Combined In situ High-Energy X-ray Techniques
(APS Beamline 1-ID)
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In situ Thermal-Mechanical Experiment of Neutron-
Irradiated Materials

W beamstop

SAXS CCD
1 1k, 22.5 um pixels

1

Vacuum
Furnace for
radioactive
specimen

o Y

chamber

/ Translating

full field
imaging detector
2 2k pixels,

1 pm resolution

Quad-paneled array

for WAXS

four 2x2k detectors,
each 40x40 cm (active)

Guard Defining
slits ~ slits

w00 Fel211) Fe(200) Fe(110)
180
B
£
g
L0
1
‘3 100 ——G91 (RT)
o —G92-0 (RT)
80
e G92-3 (RT)
2 F ~==+G91 (650C)
S = ==+G92.0(650C)
¢ G92-3 (650C)
&
-
2
s
3
L e
0 5 10 15 20 25

Engineering Strain (%)

Lienert et.al. JOM 2011
Mesoscale: diffraction microscopy
(Sub)nanoscale: WAXS and SAXS & tomography

Macroscale: stress-strain
behavior



In situ Characterization using 2D X-ray Techniques:
Grain-Average Behavior
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Dislocation dynamic modeling of
dislocation density change as a
function of strain that may be
validated by in situ X-ray
measurements.
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High-Energy Diffraction Microscopy (3D-XRD):
Individual Grain Characteristics

=  Three-dimensional, grain-scale characterization:

— Characterization of microstructural and micromechanical response of individual grains
within the bulk of a polycrystalline specimen.
= Near-field (nf-) HEDM (similar to 3D-EBSD):

— Sample-detector distance: mm —cm .
P e Grain shape and

orientation map
e Detailed GB
geometry

— Not suitable for in situ study

with complex environments

= Far-field (ff-) HEDM: sample-detector distance: meter (suitable for in situ)
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X-ray Tomography

3D visualization of the internal structure (pores, voids, cracks, etc.) in a material

Absorption Tomography provides
information due to electron density,

revealing presence of voids, cracks, etc.
(by AFRL, unpulished)

X-ray tomography of thermally-fatigue
GlidCop specimen measured at APS
beamline 1-ID.

(A. Khounsary et al. J. Phys 425 (2013) 212015)




In situ 4D Characterization under Thermal-
Mechanical Loading

= Integrate in situ thermal-mechanical loading capability with 3D X-ray techniques to
enable time- and spatial-resolved (4D) characterization of neutron-irradiated
polycrystalline materials
— Single-grain diffraction measurements in a polycrystalline sample
— Monitor grain dynamics under thermal-mechanical loading
— Link local events with average properties
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Proposed Work

= 4D characterization of neutron-irradiated materials with high-energy X-rays
— Demonstration of high-precision rotation & axial loading mechanism to enable 4D X-ray
characterization

— Develop HEDM data analysis methods to specifically address irradiated specimens,
including effects of peak overlap and broadening which result from radiation damage

— Develop a swappable specimen stage with a location tracking mechanism for
synchronized measurements of the same specimen volume by ex situ nf-HEDM and in

situ ff--HEDM.
= |n situ mechanical testing of neutron-irradiated materials at high temperature
with high-energy X-rays
— Demonstrate the capability for in situ mechanical testing of an activated specimen at
temperatures up to 600°C.
= Establish activated specimen holder library
— A collection of well-established and approved holder designs for irradiated specimens
will be of great value to the nuclear material community.

— The specimen holder library will be closely coordinated with the NSUF sample library to
accommodate different sample types, geometry and dimensions.



Automated Handling of Radioactive Specimens
using Robot
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What’s Next?

APS Upgrade - Transform today’s APS into the ultimate 3D X-ray microscope
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High energy, high brilliance X-rays High energy, high brilliance, high coherence X-rays

New Beamline Concept — “High-Energy X-ray Microscope (HEXM)”

* New imaging techniques
— Direction-beam imaging: full-field transmission X-ray microscopy (TXM)
— Diffraction-beam imaging: Bragg coherent diffraction imaging (BCDI)

* Along beam extending beyond APS experimental hall allows separate building
— Include in situ ion irradiation beamline (XMAT)
— Include Activated Material Laboratory (AML)
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