

# Review of a license application for construction of a repository for spent nuclear fuel at the Forsmark site in Sweden

Interagency Performance and Risk Assessment Community of Practice (P&RA CoP) Annual Technical Exchange Meeting October 19 and 20, 2016

Bo Strömberg, Swedish Radiation Safety Authority (SSM)

#### **Outline of presentation**

- The Swedish Nuclear Fuel and Waste management company's (SKB) plans for final disposal of spent nuclear fuel in Sweden
- 2. SSM's requirements and guidance related to risk and probabilities
- 3. Some features related to risk and probabilistic methods in SKB's safety assessment
- 4. Some findings from the regulatory review

## KBS-3 concept for final disposal of spent nuclear fuel

- Repository at about
   500 m depth in the
   bedrock<sup>5</sup>
- Copper canister with cast iron insert<sup>1,2</sup>
- Bentonite buffer<sup>3</sup>
- Backfilling of deposition tunnels<sup>4</sup>



## SKB's construction license applications 16.03.2011

- Repository post closure safety assessment SR-Site
- Operational safety
  - spent nuclear fuel repository in Forsmark
  - encapsulation plant in Oskarshamn
- Justification of site and method selection





## SKB's repository development program (fast backwards and fast forward)

- Late 70s concept development, fundamental research
- > 80s first siting studies
- > 90s site selection voluntary basis
- 2000s site invetigations Forsmark (Östhammar) and Laxemar (Oskarshamn), SKB selects Forsmark
- > 2011 Licension application submission
- > 2016 SSM main review report completed, national consultation
- > 2017 Main hearing in the Land and Environment Court
- > 2018 Government decision?
- > 2020s Repository Constrution?
- > 2030s Repository operation?

## Review of long-term safety assessment SR-Site



- 94 external review reports
- > 70 requests for complementary information
- SSM post-closure safety review about 700 pages



## Regulatory requirements and guidance related to risk and probabilistic methods

- ✤ SSMFS 2008:37
  - A repository shall be designed so that the annual risk of harmful effects does not exceed 10<sup>-6</sup> for a representative individual in the group exposed to the greatest risk
  - The probability of harmful effects shall be calculated using the probability coefficients provided by ICRP (Publication 60, 1990).
     0,073 per Sivert
  - The risk criterion is not strictly implemented beyond 100 000 years

#### SSMFS 2008:21 guidance

- Both deterministic and probabilistic methods should be used so that they complement each other
- The probabilities of the scenarios and calculation cases included should be estimated as far as possible
- Scenarios with a significant impact on repository performance can be divided as 1) main scenario 2) less probable scenarios 3) residual scenarios



# Examples of other important supporting numerical modelling components to justify SR-Site assumptions

- Creep deformation of copper shell
  - required ductility of copper
- Thermal analysis
  - thermal dimensioning of canister loading and repository layout
- Rock mechanics evolution
  - rock failure in deposition holes and tunnels, activation of fractures
- Climate evolution
- Repository and buffer resaturation

## Key in SR-Site: failure modes of the copper canister



- 1. Extensive groundwater dilution
- 2. Failure of buffer erosional mass loss
- 3. Failure of canister corrosion



- 1. Large earthquake deformation zone
- 2. Propagation of shear movement secondary fracture
- 3. Failure of canister due to rock shear



Source: SKB TR 05-18 Mock-up experiment 140 MPa

- 1. Extreme hydrostatic pressure during a future glaciation
- 2. Failure of canister due to isostatic collapse

#### **Scenario selection in SR-Site**



#### SKB's main scenario

- Incorporates the erosion corrosion failure mode

#### Only one less likely scenario

- Incorporates the earthquake shear failure mode
- Residual sceanario with zero probability
  - Canister isostatic collapse
- Other residual scenarios hypothetically exclude key barriers/barrier functions, e.g.
  - No buffers
  - No canisters
  - No buffers and no canisters

#### Other conceivable canister failure modes analysed by SSM and excluded by SKB using scoping arguments

| Failure mode                        | Feature/event/process                                                                                                                                              |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Localised forms of copper corrosion | <ul> <li>Stress corrosion cracking of copper</li> <li>Contributions from pitting corrosion</li> </ul>                                                              |
| Brittle creep failure of copper     | <ul> <li>Expected extent of creep based on manufacturing tolerances</li> <li>Creep mechanisms</li> </ul>                                                           |
| Anoxic corrosion of copper          | Proposed corrosion of copper in oxygen<br>free water even without access to sulphide<br>(Cu + H <sub>2</sub> O $\rightarrow$ CuOH + $\frac{1}{2}$ H <sub>2</sub> ) |

## Groundwater flow modelling

- Groundwater flow modelling and calculation of PDFs for effective flow parameters - Connectflow code
- Code generats a random fracture set based on
  - 1) orientation, 2) size distribution and 3) fracture frequency in rock domains using data from site investigations
- Deterministic representation of deformation zones and repository layout
- Data from characterisation and measurement in 25 deep cored examination boreholes



- Code releases "particles" from canister positions and distributions for effective flow parameters are calculated
  - Groundwater flowrate near deposition holes
  - F-ratios
  - Advective travel times
- Fracture hydraulic properties assigned according to three separate models
  - Correlation between fracture size and fracture transmissivity
  - Semi-correlated case
  - Uncorrelated case



#### **Containment analysis erosion corrosion**

- Copper corrosion rate by sulphide:
   2Cu(s) + HS<sup>-</sup> + H<sup>+</sup> → Cu<sub>2</sub>S(s) + H<sub>2</sub>(aq)
- 1. Failure of Buffer; i) yes ii) no
- 2. Groundwater flow rate distribution
- 3. Distribution of sulphide concentrations
- Number of deposition holes with buffer failure:
- 1. Groundwater salinity evolution during glacial cycle
- 2. Erosion: i) no (I > 4 mM) ii) yes (I < 4 mM)
- 3. Erosion rate as a function of flow rate distribution and fracture apertures
- 4. Buffer failure mass loss larger than 1200 kg



Copper corrosion in buffer erosion cavity

#### **Containment analysis rock shear**

- Large earthquakes
  - Event frequency large earthquake during glacial cycle
  - Application of frequency in local repository area
- Bedrock conditions
  - Relationship fault displacement target fracture displacement
  - Placement of deposition holes to avoid large features



Source: SKB TR-11-01



#### Source: SKB TR-06-63

#### Canister

 Materials properties, defect tolerance of the insert and performace of non-destructive testing

## Anticipated frequency of post-closure EBS failure modes in 10<sup>6</sup> years\*

| Failure mode                               | Number of failed cansiters<br>(out of 6000) |
|--------------------------------------------|---------------------------------------------|
| Corrosion (intact buffer)                  | 0                                           |
| Corrosion failure following buffer failure | 0.1 - 1.0                                   |
| Buffer failure (cavity formation)          | 20 - 300                                    |
| Earthquake shear failure of canister       | 0.1                                         |
| Isostatic collapse of canisters            | 0                                           |

\*) Source: SKB TR-11-01: Long-term safety for the final repository for spent nuclear fuel at Forsmark

### Near-field release and transport



- Radionuclide inventory
- Flowrate distribution q (deponsition hole scale)
- Spent fuel conversion in groundwater
  - PDF 10<sup>-8</sup> to 10<sup>-6</sup> (fraction per year)
  - Distrubution of
    - radionuclide solubilities
    - Kds bentonite sorption
    - effective diffusivity and porosity
- Probabilistic modelling with Comp23 or Marfa code



Q1

#### Far-field radionuclide transport

- Input from near-field radionuclide transport modelling
- Use of effective parameters from groundwater flow modelling
  - Triplets of q, F, tw
- Intact rock properties, distributions of
  - effective diffusivity for matrix diffusion
  - rock porosity
- Distribution of Kd values for sorption on rock surfaces
- Probabilistic modelling approach Farf31 and Marfa code

#### **Biosphere analysis**

- Temporal evolution of Forsmark site biosphere objects
  - arable land, lake, forest, wetland etc.
- The most exposed group:
  - all food and water from the worst biosphere objective at the point in time with highest radionuclide releases
- Exposure pathways:
  - analysed deterministically with best estimate approach
- Landscape Dose conversation Factors (LDF Sv/Bq), unit radionuclide release (Bq/y), Pandora code





- Long-term doses dominated by Ra-226, I-129 and Se-79
- Low dose due to few failed canisters
- Important parameters
  - Spent fuel conversion rate in groundwater
  - Transport and retardation of key nuclides in buffer
  - (Geosphere not important because fast transport pathways are conservatively assumed to have been formed)



#### Similar result as shear load case

- Dose only occur after first glacial cycle
- Important parameters
  - Spent fuel conversion rate in groundwater
  - Transport and retardation of key nuclides in geosphere
  - (buffer failed prior to canister failure and is therefore not effective for retardation of radionuclides)



## SKB risk summation and compliance demonstration

#### The combined risk

- Two orders of magnitude below regulatory target on a 10<sup>5</sup> y. time scale
- One order of magnitude below regulatory target on a 10<sup>6</sup> y.
   time scale
- Uncertainty propagated to risk summation
  - Flow modelling assumption
  - Buffer loss initial advection





#### **Review results**

- SSM has independently verified SKB's modelling results in the following areas:
  - Groundwater flow modelling
  - Canister failure by buffererosion and sulphide corrosion
  - Near-field and far-field radionuclide transport
  - Biosphere analysis: SKB's modelling extremely complex but modelling verfied by simple reference biosphere models
- SSM has in some areas instead obtained new modelling results through requests for complementary information:
  - Creep deformation of copper shell
  - Integrity of the insert for a larger set of loading conditions in the repository (isostatic and shear loading)
  - Resaturation times of buffer for tight bedrock conditions

## SSM's overall review results and recommendations

- SKB's application and provided complementary information sufficient to determine that there are good prospects for fulfilment of SSM's regulatory requirements
- The Forsmark site is regarded as a suitable localisation fora KBS-3 spent fuel repository
- In future phases SKB need to further develop e.g.
  - improved specifications of engineered barrier design
  - manufacturing, testing and emplacment methods for repository components
  - the site descriptive model repository construction phase
  - addtional analysis of slow resaturation and slow canister loading
  - detailed investigations related to creep deformation mechanisms and localised copper corrosion phenomena

## Improvements related to risk analysis and safety assessment

- SKB:s selection of scenarios:
  - Sceanario focussing on the early reposition evolution and the potential risk of early cansiter failures
- SKB:s handling of uncertainties can be further developed and integrated
  - explicit through probabilistic methods
  - implicit through conservative assumptions
- SKB:s modelling work presently decoupled or loosely coupled
  - High degree of simplification in probabilistic modelling
  - Limits usefulness of global sensitivity analysis
  - Careful consideration of the compatilibity and data transfer between different modelling efforts

#### **Example of conceptual uncertainties**

- Creep deformation of copper shell
  - The extent of required creep deformation depends on manufacturing tolerances and detailed design of canister
  - Long saturation and slow development of external canister loads
  - Uncertainties in creep deformation mechanisms
- Localised copper corrosion processes
  - Availability of gaseous corroding species and very slow development of swelling pressue
  - Stress corrosion cracking in area with tensile stresses and passivating copper sulphide layer
  - Pitting corrosion of copper