

CSP Program Summit 2016

Advanced sCO₂ cycles Apollo award: DE-EE0001720

UW-Madison, CSM, NREL, SNLs, CompRex and FlowServe.

Mark Anderson,

Professor, University of Wisconsin Madison

energy.gov/sunshot

Advanced Supercritical Carbon Dioxide Cycles

M. Anderson/UW, M. Carlson/Sandia, R. Braun/CSM T. Neises/NREL, Z. Jia/Comprex, R. Gradle/FlowServe

Technology Addressed

Advanced Power Cycles for CSP

Innovative Aspect

Incorporate switched-bed regenerators in place or in addition of recuperative heat exchangers, into SCO₂ cycles. Decrease cost & increase temp. options.

Impact

- Reduce cost of component required for regenerative heat transfer
- Increase temperature capability with insulated pressure boundary w/out expensive materials
- Develop cost and performance models

Background and Proposed Work

- SCO₂ cycles have been shown theoretically and now experimentally to have several advantages with regard to CSP systems
- This project will focus on addressing the key technical challenges associated with their deployment
- Tasks include the design, fabrication, and demonstration of switched bed regenerators and high temperature valve solutions

High Temperature Recuperator From Comprex High Temperature Regenerator

Project Objectives

- Evaluate the possible improvements in the economics and thermodynamic performance of the supercritical carbon dioxide (sCO₂) cycle that can be realized by the replacement of the high cost recuperative heat exchanger (HX) with a potentially lower cost regenerative HX
- 2. Develop improved thermodynamic and economic models to understand the overall benefit of the sCO2 power block for use in CSP.

This project examines an innovative way to improve the sCO_2 cycle by addressing one of the critical high cost components. It also increases the understanding of the cost associated with a sCO_2 power block and provides real data for performance evaluation of components.

Define detailed STEP cycle configuration

The Supercritical Transformational Electric Power (STEP) facility is a ~10MWe demonstration of the sCO_2 power cycle with a 720°C turbine inlet temperature and dry cooling to a 32°C compressor inlet temperature.

Shown here is a simplified cycle diagram with the major components

Develop cycle performance and cost models

- Developed heat input and heat rejection models to interface with a recompression cycle model
- Currently optimizing system design and control (inventory, compressor speed, recompression fraction) for CSP locations and dispatch schedules
- Next steps are adding cost models to component design models and integrating with SAM's CSP model

Develop detailed geometry and cost models for recuperative heat exchangers

Use STEP cycle layout as basis for sizing regenerator systems

Develop cost and performance models for recuperators as a function of UA as well as the operating temperature and pressure

		CompR	ex PLA	TE-FIN	STAINL	ESS ST	EEL HE	AT EXC	HANGE	ER SPECIFICAT	FION	
Customer	DOE Ap	DOE Apollo				10 MW	sCO2 Por	wer plant		Location		
em number 2027 - 2A				Service		Hot Recuperator 47MW				Date 1/10/2016 Rev		on
Stream i.d. / fluid name			Unit	A/ Hot CO2		B/ Cold CO2		C/		D/	E/	F/
Tow rate Total		kg/s	104.5		104.5							
	Vap./Lic	ı. In	kg/s		1		/		1	/	/	/
	Vap./Lic	. Out	kg/s		1		1		1	/	/	/
Molecular weight	Vap.	In/Out	-	44	/ 44	44	/ 44		1	1	1	1
	Liq.	In/Out	-		1		1		1	1	1	/
Density	Vap.	In/Out	kg/m ³	54.76	/ 107.59	320.83	/ 151.15		1	1	1	1
	Liq.	In/Out	kg/m ³		1		/		1	1	1	1
Viscosity	Vap.	In/Out	сP	0.0373	/ 0.0243	0.0314	/ 0.0376		1	1	7	1
	Liq.	In/Out	cP		1		/		1	1	1	1
Specific heat	Vap.	In/Out	J/kg K	1218	/ 1158	1479	/ 1252		1	/	1	1
	Liq.	In/Out	J/kg K		/		/		/	/	1	1
Thermal conductivity	Vap.	In/Out	W/m K	0.0622	/ 0.0351	0.0461	/ 0.0627		/	/	1	1
	Liq.	In/Out	W/m K		1		1		1	/	1	1
l'emperature	In/C	Dut	С	581	/ 204	194	/ 533		1	/	/	/
Operating pressure In			MPa	8.96		23.99						
Nowable frictional pressure drop			kPa	130		130						
Heat load			MW	-46.6		46.6						
Corrected MTD			С	24.2							-	
Fouling resistance			m ⁺ K/W	0								
Design pressure / test pressure			MPa (g)	9.7445	1	26.278	1		1	/	1	1
Design temperatures max/min.			С	608.78	/0							
lumber of cores and assemblies			-	In paralle	el 2	In series	2	Number	of cores/a	ssembly	1 Number of assen	nblies 1
ore size			mm	Width	609.6	Height	1514.5	Length	1346.2			
low pattern			-	Counter		Y	Cross-c	ounter		Cross	Paralle	
Approx. weights			kg	Core empty		24515.5 Core ope		erating	24783	Assemblyempty	Assemb	lyoperating
Number of layers			-									
Fin code: Heat transfer fin			-									
Distributor fin			-									
Heat transfer surface/core			m ²									
Core opening size In/Out		mm	304.8	/ 304.8	2x101.6	/ 2x101.6		/	/	/	/	
Nozzle number × size	9	In/Out	mm	1x203.2	/ 1x203.2	2 x 76.2	/ 2 x 76.2		/	/	/	/
<i>N</i> anifold pipe size		In/Out	mm		/		/		/	/	/	/
alculated frictional pressure drop		kPa	146.9		142.7							
Code and/or regulation	on:											
		581/204	11: 194/5	37.49C. (P: 146.9/	142.7kPa						
lotes	Tin/Tou											
Votes	Tin/Tou											
Votes	Tin/Tou											
lotes	Tin/Tou											
votes	User su	ipplied dat	a							Data st	neet (rev.1 05/2014))

These models will be incorporated into the developed cycle design and cost assessment tools used to help optimize the cycle layout for CSP plants

WISC[©]2

Evaluation of regenerators as a possible replacement for printed circuit recuperators in sCO2 power cycles

Conceptual design of regenerator

WISC_{G2}

Operation of regenerative sCO2 system

- 1) <u>HTCB</u>: Hot fluid exiting turbine flows through the regenerator depositing thermal energy into the packed bed
- Pressurization: the valve between the compressor and regenerator is opened and high pressure sCO₂ enters the regenerator, increasing the pressure.
- 3) <u>CTHB:</u> cold fluid is forced by the compressor into the regenerator where it removes heat from the packed bed before entering the primary heater and turbine
- <u>Blowdown:</u> the pressure in the regenerator is reduced by allowing the high pressure sCO₂ in the regenerator to return to the suction line of the compressor.

operation repeats on ~ 0.03 Hz cycle (i.e., every 30 s) continuously

Detailed regenerator modeling to predict performance

- Fully transient simulation
- Allows analysis of additional phenomena:
 - Local property calculations, influence of valves and switching
 - Axial conduction in the solid, entrained fluid heat capacity

Temperature versus time for different axial locations.

- Initial results agree fairly well with NTU-eff-Cm design model for high temp. regenerator
- Results deviate more significantly for long switching times and for low temp. regenerator

Regenerator sizing and operation compared to recuperator

Size of systems are comparable initial estimates indicate that a ~80% reduction in capital cost of unit is possible which leads to a 24% reduction in the LCoE. There may be other advantages with respect to higher temperature operation and off-the-shelf components.

Valve study: Need to ensure valves will survive under high temperature cyclic conditions

 Regenerator systems require valves that need to be sourced and their performance and cost must be evaluated

Materials Testing in sCO2: Need to ensure materials hold up for life of plant

sCO₂ Static autoclave testing

High temperature power plant alloy materials. IN740, IN 282, 316, P91 are exposed to sCO2 at 750C and 20 MPa

Tensile testing

Exposure

Special thanks to Haynes and Special Metals for material and welded samples

Detailed evaluation of materials and weld joints **WISCO2**

• Based on power fit equation:

 $W = \alpha t^b$

- Used time-dependent data out to 1,000 hours
- Used ratio of thickness to weight change from SEM to determine approximate thickness of oxide after 1 year

- Sample exposed to RG CO₂ showed no observable chromium depletion zone.
- Chromium depletion zone for oxygen doped exposure in red box on right.
- Chromium carbides found in both samples (indicated by red boxes on left side of both line scans).

Oxygen levels were recorded in CO_2 gas before entering the testing autoclave (inlet), as well as at the exit of the autoclave for 650°C and 750°C tests. (Plotted for 100ppm test above)

H230 Cross Sections after 1000 hours of Exposure in O₂ Doped CO₂

- Increase in chromium along grain boundary suggests presence of chromium carbide.
- Void formation and chromium depletion zone observed in EDS scan.
- Formation of Iron oxide and increase AI concentration observed in EDS mapping.
- No detected large carburization region in high Ni/Cr alloys

Summary

- Qualified team assembled to investigate the sCO₂ cycle
 - Development of cost and performance models
 - Evaluation of regenerative heat exchangers to reduce cost and increase operating temperature
- Detailed assessment of valves for the sCO₂ regenerative cycle
- Detailed assessment of material issues and welds for sCO₂ cycle development
- Evaluation of scaled components at two different scales to add confidence in models.

