
Agent Development

JEREME HAACK

August 11, 2016 1

Pacific Northwest National Laboratory
VOLTTRONTM 2016

PNNL-SA-120049

Base Agent Definition

August 11, 2016 2

Agent Core

► Main event loop handler and VIP message dispatcher
► Namespace: Agent.core
► Methods:

■ register(name, handler, error_handler)
● Register a subsystem handler

■ run(running_event=None)
● Connects VIP socket and starts processing of VIP messages

■ stop(timeout=None)
● Stop the agent (can be called from any context)

■ send(func, *args, **kwargs) and send_async(func, *args, **kwargs)
● Send functions from any thread to execute

■ spawn(func, *args, **kwargs) and spawn_in_thread(func, *args, **kwargs)
● Spawn function in new greenlet or thread

August 11, 2016 3

Agent Core (continued)

► Decorators:
■ periodic(period, args=None, kwargs=None, wait=0)

● Execute a method on a regular interval
■ schedule(deadline, *args, **kwargs)

● Execute a method at a specific time
■ receiver(signal)

● Register a method as a callback for the named signal

► Signals:
■ onsetup – used for instantiation and configuration

● VIP messaging is not running
● All receivers run serially

■ onstart – used to spawn tasks as VIP loop starts
■ onstop – signaled just before VIP loop stops
■ onfinish – signaled after VIP loop stops

● Used for teardown and cleanup
August 11, 2016 4

VIP Subsystem: pubsub

► Platform pub/sub service
■ Global service allows for discovery and platform-level messaging

► Message format:
■ Topic

● UTF-8 encoded string
● /-separated components

■ Headers
● JSON serialized dictionary (mapping)

■ Body
● Zero or more ZeroMQ frames

► Improvements with 3.0
■ Source attribution (not spoofable)
■ Unlimited per-agent buses
■ Decentralized

August 11, 2016 5

VIP Subsystem: RPC

► Remote procedure calls via JSON-RPC 2.0
■ Specification at http://www.jsonrpc.org/specification
■ Safe, expressive, simple, well-supported, etc.
■ Supports one-way notifications

► Extended to support simultaneous use of list (*args) and keyword
(**kwargs) arguments

► Export agent methods with export() decorator
► Calls handled asynchronously (spawned in own greenlet)
► Calling remote procedure returns AsyncResult

■ Wait for results
■ Set callback to handle results

► Discover exported methods with inspect()
■ Also used to query parameters, return value, documentation, etc.

August 11, 2016 6

http://www.jsonrpc.org/specification

Other VIP Subsystems

► error
■ Protocol for communicating routing errors

● EHOSTUNREACH: no route to peer (peer not connected)
● EAGAIN: temporary failure because of full buffers

► hello
■ Get version and identity (router and peer) information from router

► ping
■ Send ping requests to any agent

► query
■ Query router for properties (e.g. TCP addresses)

► channel
■ Tunnel ZeroMQ frames between agents

August 11, 2016 7

VIP Compatible with 2.x Agents

► Compatibility layer
■ Relays 2.x pub/sub messages via VIP
■ Completely modular
■ Can be easily removed

► 2.x agents work without modification
► 2.x legacy support will be removed in subsequent release

August 11, 2016 8

gevent for Cooperative Multitasking

► According to gevent.org:

August 11, 2016 9

gevent is a coroutine-based Python networking library that uses greenlet to
provide a high-level synchronous API on top of the libev event loop.

Features include:

• Fast event loop based on libev (epoll on Linux, kqueue on FreeBSD).
• Lightweight execution units based on greenlet.
• API that re-uses concepts from the Python standard library (for example

there are Events and Queues).
• Cooperative sockets with SSL support
• DNS queries performed through threadpool or c-ares.
• Monkey patching utility to get 3rd party modules to become cooperative

Tips for Using gevent

► gevent is cooperative
■ Greenlet’s own the thread until explicitly relinquished or blocking operation
■ Must use gevent-aware routines when blocking
■ Locking is not necessary
■ Use gevent.sleep(0) to yield thread

► Use caution when using gevent across threads
■ Agent core has methods to assist

● send(), send_async(), and spawn_in_thread()
■ This use case is rare
■ Can monkey-patch threading module

► When reading files use gevent.fileobject.FileObject proxy
► Use zmq.green in place of zmq

■ from zmq import green as zmq
► Provides socket, ssl, select, etc. modules

August 11, 2016 10

Publish/Subscribe

► Decorator
■ @PubSub.subscribe('pubsub', ‘devices/campus/building/device/point‘)

► Callback
■ self.vip.pubsub.subscribe(peer='pubsub',prefix=”

devices/campus/building/device/point‘”,callback=callback_method)

August 11, 2016 11

Status and Alerts

►Agent can send an alert when off-normal event occurs
■ self.vip.health.send_alert(“Short name”, “Status message”)

► Platform agent receives alerts
► Actions can be triggered by alerts (email admin)

■ EmailerAgent

August 11, 2016 12

Agent Creation Walkthrough

http://volttron.readthedocs.io/en/develop/devguides/agent_development/Age
nt-Development.html

August 11, 2016 13

http://volttron.readthedocs.io/en/develop/devguides/agent_development/Agent-Development.html

Agent Lifecycle

► Build
► Install
► Enable
► Start
► Stop
► Remove

August 11, 2016 14

VOLTTRONTM Resources

► GitHub
■ https://github.com/VOLTTRON/volttron.git

► Email: volttron@pnnl.gov
► Bi-weekly office hours, email to be added

■ http://bgintegration.pnnl.gov/volttronofficehours.asp

August 11, 2016 15

https://github.com/VOLTTRON/volttron.git
mailto:volttron@pnnl.gov
http://bgintegration.pnnl.gov/volttronofficehours.asp

	Agent Development
	Base Agent Definition
	Agent Core
	Agent Core (continued)
	VIP Subsystem: pubsub
	VIP Subsystem: RPC
	Other VIP Subsystems
	VIP Compatible with 2.x Agents
	gevent for Cooperative Multitasking
	Tips for Using gevent
	Publish/Subscribe
	Status and Alerts
	Agent Creation Walkthrough
	Agent Lifecycle
	VOLTTRONTM Resources

