Solar Energy Forecasting Advances and Impacts on Grid Integration

> Jan Kleissl University of California, San Diego Subject Editor, Solar Resources and Energy Meteorology, Solar Energy Journal

> > UCSD SRAF solar resource and forecasting laboratory

Global renewables-based power capacity additions by type and share of total capacity additions

* Includes geothermal, marine, bioenergy and concentrating solar power.

Time Horizons for Energy Markets

Lannoye, Tuohy, EPRI (2015)

Outline

- Grid Integration Case Studies
 - Day-ahead forecast for unit commitment
 - Storage operation for PV smoothing
 - Sky imager forecast for distribution system voltage control
- Solar Forecasting Advances
 - Forecast Accuracy Metrics
 - Forecast Technologies
 - Numerical Weather Prediction
 - Sky imager
 - Satellite
 - IEA Task 46
- Future Research

- What is the value of improving DA solar power forecasts?
- And what are the impacts on bulk power system operations?

Scenarios for each solar power penetration level (4.5% / 9.0% / 13.5% / 18.0%)

- o DA forecasts: 25% uniform improvement
- DA forecasts: 50% uniform improvement
- DA forecasts: 75% uniform improvement
- DA forecasts: 100% uniform improvement

Carlo Brancucci Martinez-Anido, NREL

Underforecast Event

24 hours

Reduced curtailment Reduced fossil fuel generation Reduced Gas CC ramping

Value of DA Solar Power Forecasting Improvement

Impacts of Day-Ahead Solar Forecast Improvements

Solar power forecasting improvements

- Reduces electricity generation from the fast reacting and lower efficiency power plants, such as gas and oil GT and IC.
- Decrease ramping of all generators, start and shutdown costs, and solar power curtailment.
- Provides an annual economic value.

The marginal value of solar power forecasting improvement increased with solar power penetration, while it decreased with additional improvement levels.

and in reality ...

Impact of DA Forecast Errors on Intraday Spot Pricing in Germany

Sample Application

Smoothing Solar with Forecast and Storage

THE PROBLEM A SOLUTION

OPERATIONAL MITIGATION SCENARIO

1 minute ramp rate< 5% installed capacity</th>5 minute ramp rate< 10% installed capacity</td>15 minute ramp rate< 15% installed capacity</td>60 minute ramp rate< 25% installed capacity</td>

Sample Application

Reduce Distribution Feeder Transformer Tap Operations

Sky Imagery for Distribution Systems

- High resolution and distributed PV generation profiles
- Up to 15 min forecasts
- Tap changes designed to manage voltage
 - Time lag
 - Cost

 Avoid unnecessary tap operations

Simulated TO Reduction

- 100% PV penetration
- #TO on Jan 19, 1000 1230 h
 - No control: 125 TO
 - Actual forecast: 46 TO
 - Perfect Forecast: 15 TO

Voltage Quality Impacts

Solar Forecasting Improvements

Solar Forecast Types and Horizons

Diagne et al., 2013, Inman et al., 2013

Solar Forecast Accuracy Metrics

Absolute

- MAE, RMSE [W m⁻²]
- MBE
- Relative
 - MAPE [%]

Further Reading:

Hoff, T. E., Perez, R., Kleissl, J., Renne, D. and Stein, J. (2012), Reporting of irradiance modeling relative prediction errors. Prog. Photovolt: Res. Appl.. doi: 10.1002/pip.2225
Zhang, J., Florita, A., Hodge, B.M., Lu, S., Hamann, H.F., Banunarayanan, V. and Brockway, A.M., 2015. A suite of metrics for assessing the performance of solar power forecasting. *Solar Energy*, *111*, pp.157-175.
Coimbra, C., J. Kleissl, and R. Marquez. "Overview of solar forecasting methods and a metric for accuracy evaluation." *Solar Resource Assessment and Forecasting*, *edited by: Kleissl, J., Elsevier, Waltham, Massachusetts* (2013).

- But: Higher variability, higher random errors
 - Penalizes point forecast, minute forecasts, cloudy climates
- Solution: Forecast Skill:
 - FS = 1 RMSE / RMSE of Smart Persistence
 - "Smarter" IEA Task 46 definition

RMSE	De Ro	sert ock	Fort	Peck	Вот	ulder	Sioux	Falls	Bond	lville	God Cre	lwin eek	Penn	State
Clearness index* Satellite model error	90% 99	Persist	80% 99		70% 124	Persist.	79% 80		70% 100		81% 97		66% 113	
1 h ahead	99 ES -	100	91	111	143	170	80	97	100	108	92	103	112	131
2 h ahead	110 ES -	119 . Q 0/	109	149	175 FS -	- 10% - 18%	98	127	115	145	113	135	127	164
		0/0				10/0								

Review of Solar Power Forecast Research

Javier Antonanzas; Natalia Osorio, Master; Rodrigo Escobar, Ruben Urraca; Francisco Javier State of the art of power forecasting on photovoltaics, Solar Energy, Martínez de Pisón, under review

Progress

Machine Learning Techniques 2010: Unsophisticated postprocessing

Review of Solar Power Forecast Research

Javier Antonanzas; Natalia Osorio, Master; Rodrigo Escobar, Ruben Urraca; Francisco Javier Martínez de Pisón, State of the art of power forecasting on photovoltaics, Solar Energy, under review

Smart Probabilistic Forecasts with SVMs and ANNs

The proposed smart model first uses a SVM to classify the weather condition into either low DNI variance period (lv) or high DNI variance period (hv) [1] and then adaptively applys the more suitable ANN schemes to construct the PIs of 90% confidence level for 5-, 10-, 15-, and 20-minute horizons.

Y. Chu, H. T.C. Pedro, and C.F.M. Coimbra (2013) "Hybrid Intra-Hour DNI Forecasts with Sky Image Processing Enhanced by Stochastic Learning." *Solar Energy* (98) pp. 592-603.

Assessment and Progress

Numerical Weather Prediction 2010: Poor clear sky modeling

Numerical Weather Prediction (NWP)

- Physics-based modeling important for long time horizons
- But: Large biases
- Accurate native forecasts low NOAA priority
- Europeans outperform

NWP Clear Sky Modeling

- Aerosol climatological dataset (SCS-LIM)
 - Removed stubborn satellite errors over desert South-West
- Online AOD data (GEOS5 AOD)

TABLE 2. RMSE in the surface irradiance components ($W m^{-2}$). The relative improvement with respect to the NO-AEROSOL experiment is shown in parenthesis.

Irradiance	NO-AEROSOL	ECMWF – CLIM	SCS – CLIM	GOCART – CLIM	MACC – AOD	GEOS5 – AOD
GHI	21	16(23%)	16 (23 %)	16 (23 %)	20 (5 %)	15 (28 %)
DIF	44	20 (54 %)	19 (57 %)	26 (41 %)	42 (4 %)	12 (73 %)
DNI	103	66 (36 %)	52 (50 %)	58 (44 %)	120 (-16 %)	41 (60 %)

Jimenez, Pedro A., et al. "WRF-Solar: An augmented NWP model for solar power prediction. Model description and clear sky assessment." *Bulletin of the American Meteorological Society* 2015.

Progress

Sky Imager Solar Forecasting

Design and application of a high dynamic range sky imaging system for solar forecasting

Images

Solar forecasting with sky imager

- 30 sec, 10m x 10m resolution.
- Basic steps
 - Cloud detection
 - Cloud height determination
 - Cloud motion vectors
 - Projection on the ground for irradiance maps
 - Convert from irradiance to power

Sample of the forecasting process with sky imager

Progress

Satellite Solar Forecasting

SolarAnywhere Satellite Irradiance Model Accuracy

© Perez et al.

Progress

Putting it all together Example NCAR Example SolarAnywhere

State-of-the-Art Forecast Skills

GLOBAL SCALE MODELS

- NCEP GFS
- ECMWF

CONTINENTAL SCALE MODELS

FORECAST

NAM

HIGH RESOLUTION ASSIMILATION MODELS

- RAP
- HRRR

NEW SolarAnywhere **OPTIMUM MIX**

NOW

CLIMATOLOGY

The Future

GOES-R Satellite Launch Oct 2016

GOES-R IMPROVEMENTS OVER CURRENT GOES

GOES-R will feature the following improvements over current GOES capabilities:

Capability	Current GOES	GOES-R
Full Disk Image	30 minutes	5 minutes
Imager bands	5	16
Visible	~1 kilometer	0.5 - 1 kilometer
Near Infrared	N/A	1 -2 kilometer
Infrared	4-8 kilometer	2 kilometer
Bit Depth	10 bits	12 bits – Visible, 14 bits IR

GOES-R mitigates main sky imager advantages

Virtual Sky Imager Testbed Mejia et al. (2015) 3D Radiative Transfer Models – Image Tomography

Real Sky Images are difficult to control and analyze systemically:

- Dirt - 3D cloud effects - Stray light effects - Many dependent variables

→ Create Virtual Sky Imager Testbed

Spherical Harmonic Discrete Ordinate Method (SHDOM) 3D Radiative Transfer Model

Goal: Robust and accurate cloud detection and cloud optical depth estimation

USI image taken at UCSD.

SHDOM simulated sky image.

Schalkwijk et al. (BAMS, 2015)

Captured length-scales

IEA Task 46 Solar Resource Assessment and Forecasting

- Lead: David Renne
- International Coordination
 - Germany, Spain, Australia, Chile
- Joint model evaluations
- Benchmarking and metrics

From the stone age 2010 to 2015

- Dynamic clear sky choldeling teractions
 - RAR koutop Litsuidowallequoid topater
- Morsatellistet & ditecalstanpredsstorriste sunrise forecasts
- Sonsbishiisateat eab stopstorrexsessing
 - Bizgineenloaved corrections, Deep machine learning
- Detleabilisisticfoeeaatsts
- Solar forecasts modelsedsoperationally

Final Word – Persistence is a tough competitor in the industry!

Forecaster ID	ALA1	ALA2	BWNG	SINKIN	SOMERSE
BONN3027	68%	66%	77%	74%	72%
RIGA6629	62%	54%	66%	67%	67%
OSLO9582	61%	62%	56%	49%	53%
PERSIST1	56%	52%	57%	53%	53%
LYON1996	55%	56%	59%	52%	50%
MESA4145	50%	37%	64%	63%	63%
BAKU7743	49%	50%	51%	48%	48%
PUNE6437	49%	50%	53%	48%	48%
PERSIST2	48%	44%	50%	47%	44%
KANO4083	48%	49%	53%	47%	47%
LYONCORR	47%	49%	49%	47%	47%
MESAADD1	46%	45%	33%	41%	42%
LIMAADD1	43%	43%	38%	45%	46%
KOBE8145	39%	41%	41%	39%	38%
LIMA2463	38%	42%	35%	39%	41%
GIZA2169	29%	31%	26%	28%	29%
ROME1995	18%	22%	23%	20%	19%

FORECASTERS

SOLAR PLANTS