Rapid Freeform Sheet Metal Forming: Technology Development and System Verification (RAFFT)

DE-EE0005764 Ford Motor Co, The Boeing Company, MIT, Penn State Erie Budget Period 2

Dr. Vij Kiridena, Ford Motor Company

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

- Develop a transformational **RA**pid Freeform sheet metal Forming Technology (RAFFT) to deliver:
 - > A sheet metal parts (up to 2.0 m x 1.5 m)
 - Dimensional accuracy (± 1.0 mm) & surface finish (Ra < 30 μm)</p>
 - > 3-day art to part total time from receiving CAD model
 - Low per unit variable cost
 - > Robust enough to operate in an industrial environment
 - > Low energy utilize a fraction of the energy c.f. conventional stamping
- Current process for sheet metal forming requires costly die design, casting, extensive machining and assembly (Even prototyping and low-volume production)
 - Time-consuming
 - Energy intensive
 - > Expensive
- RAFFT is a new type of "Rapid Prototyping" technology for making sheet metal parts that **eliminates stamping & forming dies**.

Technical Innovation

Current Methods of prototyping sheet metal parts	Pros and Cons
 Machined matched die set 	 Most common and reliable Cost: \$25K to \$500K Parts are available between 8 weeks - 24 weeks
• Single sided machined zinc (Kirksite) dies	 Cost can reach up to tens of thousands of dollars Parts available between 1 week - 8 weeks Limited number of stamped parts (10 - 50) Not suited for all materials, thicknesses and geometries
• English Wheel	 Need highly skilled craftsmen Relatively inexpensive Parts can be made available quickly
Hand Tools	Need highly skilled craftsmen
Amino NC Forming Technology	 Technology is commercially available Based on single sided incremental forming Parts are formed against a <u>soft die</u>

Technical Innovation – Dieless Free Forming

• RAFFT is based on the concept of double-sided incremental forming.

RAFFT (DSIF) Concept

RAFFT Process

RAFFT Machine

0.4 scale 2017 Mustang Hood

Technical Approach

Transition and Deployment

End Users:

• <u>Automotive Industry</u>:

Prototype VehiclesVehicle PersonalizationConcept VehiclesLow-Volume Production

After-Market Part Service

- <u>Aerospace and Defense</u>: Low-volume production; in-theater replacement parts.
- <u>Biomedical</u>: Customized medical applications (e.g. Cranial plate, ankle support etc.)
- <u>Appliance</u>: Prototyping and after-market services
- <u>Art and Entertainment</u>: Creative sculptures

Aerospace

Biomedical

Automotive

Transition and Deployment

Transition:

- Adopt a "scalable" machine tool architecture and a reconfigurable software system architecture.
- Increase RAFFT technology awareness through demonstrations, media announcements journal/conference publications, etc.

Deployment & Commericalization Opportunities:

- Create a "RAFFT technology" package and establish a technology licensing framework.
- Make "RAFFT technology" available through third parties.
- Technology adaptation by industry may include:
 - Dedicated systems at OEM and large manufacturing facilities.
 - Service providers to serve occasional or smaller customers.
 - Deployment of smaller units for educational initiations and for technology enthusiasts.

Measure of Success

- RAFFT has the potential to revolutionize sheet metal prototyping and low-volume production:
 - <u>Energy Efficient and Environment-Friendly</u>: eliminate extensive energy consumption associated with casting and machining forming dies. No wasteful by-products.
 - <u>Ultra-Low Cost and Fast Delivery Time</u>: eliminate cost and time associated with die engineering, construction and tryout.
- Preliminary estimates (MIT) suggest RAFFT technology could save ~ 8.4 TBtu and \$12.3 billion per year in US when fully deployed. Estimates are calculated based upon an analysis of savings in material production, component manufacture and product use.

Project Management & Budget

- **Project Duration**: 54 months (07/2013 12/2017)
- Major Tasks:
 - > Task 1: Energy Management & Environmental Impact Modeling
 - > Task 2: Development, Integration and Verification of RAFFT System
 - > Task 3: Tool Path Generation Algorithm, Process Modeling and Optimization
 - Task 4: Thermally-assisted Freeform Sheet Metal Forming
 - > Task 5: Material Characterization & Performance Validation

• Key Milestones:

- ✓ 03/2015: Complete the build of the RAFFT hardware.
- ✓ 12/2015: Complete toolpath generation software (V 1), data exchange platform and integration with RAFFT hardware system.
- 12/2016: Complete process optimization and technology demonstration with an aluminum hood and a titanium gearbox container. (Achieve TRL6)
- 12/2017: Complete project and make RAFFT technology available for commercialization.

Total Project Budget		
DOE Inv.	\$7.47 M	
Cost Share	\$2.63 M	
Project Total	\$10.10 M	

Results and Accomplishments

Major Accomplishments Since 2015 AMO Review:

- Energy, cost and environmental impact modeling:
 - Quantified power consumption of DSIF on RAFFT machine. Collected energy data on stretch forming, superplastic forming and hydroforming. Analyses have been completed and extended to the construction of a generalized model
- Hardware:
 - Commissioned the RAFFT/F₃T Gen II machine and fully equipped RAFFT Lab at Ford Research and Innovation Center in June, 2015.
- Software:
 - Developed and released Version 3 of the tool path generation software built with CATIA environment. Created a platform for exchanging data among all software applications being used for modeling, analysis and testing.
- Modeling:
 - Developed methodologies for simulating RAFFT (DSIF) models in Abacus and LS-Dyna. Current models produce results in ~ 30% of the time used by the original models.
- Material Characterization:
 - Completed mechanical property measurements on tensile bars excised from 18 truncated pyramid panels fabricated using the RAFFT machine. Developed a series of "Design of Experiments" to quantify fatigue behavior.
- Pre-processing of material and Post-processing of parts:
 - Demonstrated application of electricity to reduce springback.

Results and Accomplishments

