

Bio-Oxo Technology DE-EE0005773 12/2014-12/2017

Easel Biotechnologies, LLC Dr. Lars Rohlin

Business Officer: Dr. Shahrooz Rabizadeh (sr@easelbio.com) PI : Dr. Wendy Higashide (wendy.higashide@easelbio.com)

U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

• Convert renewable feed stocks into isobutyraldehyde for use in a wide variety of everyday products, including plastics, resins, paints and lubricants using only a biological process.

• What is the problem?

- Natural cells produce very little aldehydes if any at all.
- Aldehydes are unstable and reactive compounds.

• Why is it difficult?

- Aldehydes are more toxic to bacterial cells than alcohols.
- Toxins and inhibitors such as acetate, formate and 5-(hydroxymethyl)furfural are created during the deconstruction process of non-food cellulosic carbon.

Technical Approach

• Current Best Practice for Chemical Oxo Process

- Ruhrchemie/Rhone-Poulenc oxo process.
- Aqueous biphasic catalysis.
- Geared toward n-butyraldehyde.
- Use fossil fuels for starting materials.
- Overall market size: 7,000,000 ton/year.

Technical Approach

Bio-oxo approach

- Easel process is the first approach to produce isobutyraldehyde biologically.
- In situ removal of product for continuous production.
- Longer fermentation.

Process Overview

Transition and Deployment

Commodity chemicals produced from renewable resources with a reduced carbon footprint at a cost competitive price.

Transition and Deployment

Easel commercialization approach

Next step: Find a strategic partner to form a joint venture to initiate a demonstration plant. Preferably, the partner is a current aldehyde producer.

Technology sustainment

Our technology allows us to quickly pivot and extend the technology to other bio-based chemicals and biofuels.

Measure of Success

- Introduce a new class of fermentation processes.
- New bio-based aldehyde will mean more "green" products manufactured for consumer markets.
- Reduce fuel consumption by an equivalent of 50 million barrels of liquid petroleum gas per year.
- Reduce natural gas consumption by 13 billion cubic feet per year.
- Additional revenue stream for feed producers.

Project Management & Budget

Project duration: 3 years

Go/No Go Decision point and final delivery schedule.

Task	Title	Go/No Go Decision point	Time	
1	Improve Isobutyraldehyde Productivity by Strain Engineering and Develop Fermentation and Separation Process	Productivity: 0.3 g/L/hr Titer: 10 g/L	2015 Q4	\checkmark
2	Strain and Pathway Optimization and Development of Integrated Processes.	Productivity: o.6 g/L/hr Titer: 30 g/L	2016 Q4	
3	Demonstrate the Integrated Production Process in Pilot Scale (30L).	Productivity: 1.0 g/L/hr Titer: 50 g/L Theoretical yield: 60%	2017 Q4	

Total Project Budget			
DOE Investment	2,000,000		
Cost Share	500,000		
Project Total	2,500,000		

Results and Accomplishments

- Completed five quarters out of 3 years, met Go/No Go
- Concurrently metabolize glucose and xylose
- Current titer from corn stover hydrolysate 25 g/l

- Improve titer 2-fold by and increase yield 3-fold
 - Genetic engineering and strain development
 - Fermentation optimization and product removal