A New Method of Low Cost Production of Ti Alloys to Reduce Energy Consumption of Mechanical Systems

DE-EE005761 University of Utah, Ametek, Ford, ARL 2012-2016

Z. Zak Fang, PI, Univ. of Utah Ravi Chandran, Co-PI, Univ. of Utah

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. June 14-15, 2016

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Objective

- Develop a novel low cost method for manufacturing Ti
- Demonstrate the mechanical properties of Ti using the new method to be equivalent to that of wrought Ti at a fraction of its cost.
- Initiate efforts to promote the use of Ti in automobiles, balancing the energy and cost considerations
- Traditional wrought Ti is too expensive
- Traditional powder metallurgy Ti is either inferior, or lacks significant cost advantage
- Affinity of Ti to oxygen makes Ti extraction, melt refining, forging / rolling, and machining, all extraordinarily costly

Manufacturing Routes of Ti Products

Powder metallurgy is considered a low cost alternative, but...

Issues plaguing conventional PM Ti after 4 decades

Mechanical properties { Fracture toughness Fatigue performance

Microstructure

- **Coarse lamellar as-sintered microstructure**
- I Oxygen and other impurity levels
 - Residual porosity

Cost

- Cost of high pressure consolidation / sintering
- Post-sintering thermal mechanical processing cost

High performance/cost ratio – P/C?

To address these issues:

- **Obtain wrought-like microstructure including**
 - grain microstructure,
 - oxygen near or <0.2%,
 - eliminate porosity when necessary
- Do so without resorting to wrought processing or other high pressure sintering processes

Typical Wrought Ti-6Al-4V Heat Treated Microstructures

There are three general types of microstructure in α + β alloys:

Fully lamellar: Typical Widmanstatten structure. Transformed β consisting of α plates with β between them.

Bi-modal (duplex): Equiaxed primary α (α P) in a lamellar α + β (transformed β) matrix. Globular Equiaxed primary α (α P) grains with the equilibrium fraction of β formed only at the triple points of α grains.

Microstructure of vacuum sintered Ti-6Al-4V

Vacuum Sintered Ti

- Poor densification
- Coarse microstructure

Vacuum Sintered TiH₂

- Significantly improved densification
- Coarse microstructure

<u>Novel innovation</u>: Hydrogen Sintering and phase transformation (HSPT)

- Refine grain sizes by controlling H₂ content and phase transformation in as-sintered state
- ➢ High density >99%
- ➤ Small pore size <1 mic.</p>
- Maximize Performance / cost ratio

Microstructures produced by sintering of TiH₂ in (a) hydrogen, (b) vacuum (SEM)

Microstructure comparison: HSPT vs. vacuum-sintered vs. heat-treated vs. wrought Ti-6Al-4V

HSPT Ti-6Al-4V is capable of forming wrought-like (globularized or bi-modal) microstructure via simple heat treatments without TMP, while vacuum-sintered Ti-6Al-4V does not have this capability.

Transition and Deployment

- Who cares?
 - Light weight/high specific strength
 - High temp. corrosion resistance
- Who is the end user?
 - Aerospace, chemical processing, bio medical
 - <u>Automobile</u>: reciprocal weight fuel economy exhaust components – high T corrosion all other PM steel components
- Technology licensed to Ametek a tier one supplier
 - Fully proven in the lab. If there will ever be Ti used in automobiles, this is the best technology.
- Market barriers and response:
 - Why people, including the user industry and even DOE, are not really embracing, promoting, or using it?
 - Need the right messenger?
 - Need marketing campaign to educate end users, part makers, funding agencies, and investors.
 - Identify key market entry points, grow market to reach economy of scale

Measure of Success

- Primary goal is to produce Ti with superior properties at 1/10th to 1/5th cost of current state-of-the-art. If we are successful -
- Automobiles can and will start using Ti to replace steel
 - ORNL case study estimates life cycle energy savings through use phase when substituting <u>18 kg HSPT or Kroll-wrought-</u><u>machined Ti for 36 kg steel in vehicles</u>:
 - 3,500 MJ savings per HSPT vehicle
 - Energy <u>penalty</u> of 157,000 MJ per Kroll-wrought-machined Ti vehicle
 - Benefits in "use phase" of Kroll/wrought Ti does not outweigh the energy consumption of manufacturing, but,
 - HSPT Ti breaks even in six years compared with using steel
 - At US LDV fleet level, savings of ~50 TBtu annually by 2050 with HSPT

Project Management & Budget

- Duration of the project 3 years
- Project task and key milestone schedule

	Description	Schedule
Milestone I	A single source of powder selected for the project	Dec. 1, 2013
Milestone II	Ti-6Al-4V microstructure targets: >98% density, Grain size < 2 μm , Oxygen % < 0.3%	Aug. 30, 2013
Milestone III	Mechanical property targets: Tensile – 900 MPa, Elongation >10%, Fatigue limit: 500-600 MPa	Aug. 30, 2014

• Project budget

Total Project Budget		
DOE Investment	\$1,460,285	
Cost Share	\$370,000	
Project Total	\$1,830,285	

Results and Accomplishments

- The process technology has been repeatedly demonstrated, robust
- Wrought-like microstructure achieved

Static tensile properties

• Wrought-like mechanical properties including both static and fatigue strength targets achieved

Fatigue endurance limit

Number of Cycles to Failure