### FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

May 18-19, 2016 Cincinnati, OH

# **FEMP Lighting Initiatives**

Hosted by:



Federal Energy Management Program



Jeff McCullough, LC Pacific Northwest National Laboratory

# Order of the Day...

- Lighting industry trends and forecasts
- Federal sector lighting estimates
- Latest FEMP-designated lighting product categories
- The Interior Lighting Campaign (ILC)
- "The Troffer Conundrum"
- The "ABCs" ... of UL 1598
- Q&A



# Penetration Rates of LED Lighting Applications



DOE 2015 Adoption of Light-Emitting Diodes in Common Lighting Applications



### **Energy Savings Forecast**



FERRE DUKE Federal Energy Management Program

### Much Deeper Energy Savings Still Achievable



FERPERATE DUKE Federal Energy Management Program

Source: http://energy.gov/eere/ssl/market-studies

### Federal Market Assessments

# Federal market assessments for indoor and outdoor lighting

- Energy savings potential of LEDs across portfolios
- Combines multiple databases/models
- Available to federal departments and agencies on a case-by-case basis







# Federal Outdoor Energy Use

- Estimated Federal Outdoor Lighting Energy Use by Application (Total 5.0 TWh)
- Federal Sector Outdoor Lamps by Technology (total 6.6 million lamps)



Source: Analysis of Outdoor Solid-State Lighting Potential at Federal Sites: Technical Support Document (PNNL-21458, August 2012)

Federal Utility Partnership Working Group May 18-19, 2016 Cincinnati, OH



# Federal Purchasers MUST Buy FEMP-designated Products



Multiple laws, Executive Orders, and the Federal Acquisition Regulations have established a robust set of requirements that:

Federal purchasers MUST buy, specify, and contract for ENERGY STAR<sup>®</sup>, FEMP-designated, and low standby products

Suppliers must provide only compliant products (look for FAR clause 52.223-15 in your contract)

References:

- Energy Independence and Security Act of 2007 (EISA)
- Energy Policy Act (EPAct) of 1992 and 2005
- Executive Orders 13221, 13423 & 13514
- Federal Acquisition Regulation (FAR 23.2 and FAR 52.223-15)



# **FEMP-designated Lighting Categories**

| PRODUCT CATEGORY                          | PRODUCT TYPE | * 🕴 | Δ 🔶 | o 🔅 | • \$ | <b>x</b> 🔅 |
|-------------------------------------------|--------------|-----|-----|-----|------|------------|
| Fluorescent Ballasts                      | Lighting     |     | Δ   |     |      |            |
| Fluorescent Lamps, General Service        | Lighting     |     | Δ   |     |      |            |
| Fluorescent Luminaires, Ceiling-Mounted   | Lighting     |     | Δ   |     |      |            |
| Fluorescent Luminaires, Suspended         | Lighting     |     | Δ   |     |      |            |
| Industrial Lighting (High/Low Bay)        | Lighting     |     | Δ   |     |      |            |
| LED Luminaires, Commercial and Industrial | Lighting     |     | Δ   |     |      |            |
| Light Bulbs                               | Lighting     | *   |     |     |      |            |
| Light Fixtures (Residential)              | Lighting     | *   |     |     |      |            |
| Light Fixtures, Luminaires (Commercial)   | Lighting     | *   |     |     |      |            |
| Exterior Lighting                         | Lighting     |     | Δ   |     |      |            |

Federal Utility Partnership Working Group May 18-19, 2016 Cincinnati, OH



## FEMP-designated Efficiency Requirements for Commercial and Industrial LED Luminaires

| TABLE 1. EFFICIENCY REQUIREMENTS FOR COMMERCIAL AND INDUSTRIAL LED LUMINAIRES |                      |                           |  |  |  |
|-------------------------------------------------------------------------------|----------------------|---------------------------|--|--|--|
| Luminaire Type                                                                | Light Output         | Luminaire Efficiency (LE) |  |  |  |
| Commercial, linear ambient                                                    | ≥375 lm/ft           | ≥103 lm/W                 |  |  |  |
| Commercial, 1-foot by 4-foot troffers                                         | ≥1,500 lm            | ≥99 Im/W                  |  |  |  |
| Commercial, 2-foot by 2-foot troffers                                         | ≥2,000 lm            | ≥100 lm/W                 |  |  |  |
| Commercial, 2-foot by 4-foot troffers                                         | ≥3,000 lm            | ≥103 lm/W                 |  |  |  |
| Industrial, low bay                                                           | ≥5,000 to <10,000 Im | ≥103 lm/W                 |  |  |  |
| Industrial, high bay                                                          | ≥10,000 lm           | ≥100 lm/W                 |  |  |  |

Federal Utility Partnership Working Group May 18-19, 2016 Cincinnati, OH



#### **Interior Lighting Campaign – Learn More**



- Free resources
- Free to join
- Free technical assistance

http://www.interiorlightingcampaign.org #IntLtgCampaign



### Interior Lighting Campaign – Overview

• Launched May 2015 by:





- First year focus
  - High-efficiency troffers and controls applications
- First year goal
  - Document by May 2016 1M high-efficiency troffers installed or planned for installation by May 2018
  - Retrofit and new construction
  - Includes TLEDs, LED retrofit kits, high-efficiency luminaires
  - Encourages use of controls for added energy savings



\* U.S. Department of Energy-Energy Information Administration. Annual Energy Outlook 2014 with Projections to 2040. 2014.

### Interior Lighting Campaign – WIIFM



#### Resources

- ✓ Incentive lists
- ✓ Technology reports
- ✓ Case studies
- ✓ Calculation tools
- ✓ Webinars



#### **Technical Assistance**

- ✓ Site identification
- ✓ Technology option evaluation
- ✓ Application of specification
- $\checkmark$  Award entry content

#### Join as a Participant

- ✓ Building owners
- ✓ Building managers
- Others end users including federal, state, and municipal buildings

#### Join as a Supporter

- ✓ Energy efficiency groups
- ✓ Manufacturers
- ✓ Utilities
- ✓ ESCOs
- ✓ Lighting designers
- ✓ Others who influence but don't directly manage buildings



#### Be Recognized

- ✓ Listed/linked on Campaign website
- ✓ Case studies of recognized projects
- ✓ Newsletter articles and tweets
- Awards for exemplary projects 2016
  BOMA International Conference
  and Expo, June 27 plenary event
  - New construction and retrofits awards
  - Small, medium, large project awards
  - Energy savings, portfolio adoption, and use of controls awards

### Interior Lighting Campaign Resources





### **ILC Resources for Federal Users**



#### **INTERIOR LIGHTING CAMPAIGN**



#### Information and Resources for Federal Users



Federal sites are encouraged by the Federal Energy Management Program (FEMP) to participate in the ILC

#### Benefits:

- Save Money: Significantly reduce your site's energy and maintenance costs. High efficiency troffer lighting technology with controls can cut lighting energy bills by 75% while delivering additional benefits including long life, reduced maintenance costs, and improved lighting uniformity.
- · Meet Federal Guidelines: Help ensure that you are meeting federal requirements for energy efficiency
- Receive Technical Assistance: Lighting engineers are available to provide technical assistance to help ensure that your site is designed in a manner to take full advantage of new high efficiency lighting and controls systems.
- Get Recognized: In addition to saving money and energy, ILC participants will be recognized on the campaign website and are eligible to receive awards for exemplary energy efficient lighting performance.

JOIN YOUR FEDERAL COUNTERPARTS TODAY!

#### www.interiorlightingcampaign.org/information-and-resources-federal-users

Federal Utility Partnership Working Group May 18-19, 2016 Cincinnati, OH



### Top 10 reasons why everyone is interested in TLEDs?

- 1. They last longer (forever maybe) than fluorescent lamps
- 2. A TLED is perceived to be the lowest cost option to get the benefits of LED
- 3. Efficacy has been steadily increasing
- 4. Prices have been steadily decreasing
- 5. I get to keep my existing fixture that's been in my ceiling for 20 years... yippee!
- 6. They don't have any of that bad 'ol mercury
- 7. Many continue to cling to the old paradigm that... "a-lamp-is-a-lamp" and all lamps interchange "one-for-one"
- 8. I can potentially do away with my ballasts and get into the "lamps only" business
- 9. Installation is just a "point" and "click" away
- 10. They truly are shiniest damn thing in my ceiling!



### A True Case Study from a 1<sup>st</sup> Generation TLED Installation

#### **1**<sup>st</sup> Generation System

- Installed circa 2010
- 16 W, 1400 lm, 87.5 lm/W
- 4200-4600K claimed "cool white"
- Reached < L<sub>70</sub> in 6 years and is currently delivering 50% of initial fluorescent levels
- Warranty: 50,000 hour/5 year "life" claimed by manufacturer. No L<sub>70</sub>!

#### 2016 system

- 18 W, 1950lm, 108 lm/W
- 4100K (3000-6500K offered)
- L<sub>70</sub>: 50,000 hours
- Warranty: 5 years (with a 10-year option)
- Resulted in increased energy usage!





### Size of Market

| Configuration | Mixture | Approx. # of<br>Installations | Hours | Input Power<br>(W) | Estimated Energy<br>(TWh) |
|---------------|---------|-------------------------------|-------|--------------------|---------------------------|
| 2'x4'         | 74%     | ~272,000,000                  | 10.5  | 74                 | 77.1                      |
| 2'x2'         | 16%     | ~59,000,000                   | 10.5  | 59                 | 13.3                      |
| 1'x4'         | 8%      | ~29,000,000                   | 10.5  | 44                 | 4.9                       |
| Total         | 100%    | ~367,000,000                  |       |                    | 95.3                      |

Notes:

- Quantities extrapolated from DOE SSL Niche Report & NEMA LE5-2001
- Power values assume a mixture of lamps, ballast factors, and ballast efficiencies
- TWh = 1,000,000,000 watt-hours



# Interior Lighting by the Numbers -Commercial Buildings



- Commercial lighting is ≈ 2.6% of <u>ALL</u> primary energy consumption in the U.S.
- Troffers  $\approx 1\%$  of <u>ALL</u> energy use
- ≈ 20% of building energy is lighting and troffers are ≈ 50% of that energy

# TLEDs Today (2016)

4-foot LED linear replacements on DLC Qualified Products List by UL Type 4/20/16



Note: Individual Product offerings and not shipments



### TLEDs Efficacy

#### Measured luminaire efficacy of DLC-listed 4-foot LED linear replacement lamps by UL type 4/20/16



## Prior DOE Studies into TLEDs

#### Reports



#### Application Summary Report 21: Linear (T8) LED Lamps (March 2014)

- **Report 21.1:** Linear (T8) LED Lamps in a 2 × 4 K12-Lensed Troffer (April 2014)
- **Report 21.2:** Linear (T8) LED Lamp Performance in Five Types of Recessed Troffers (May 2104)
- Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps (May 2014)
- **Report 21.4:** Summary of Linear (T8) LED Lamp Testing (June 2014)
- "Only one product tested for this report could be installed without removing the existing fluorescent ballast, assuming the luminaire was equipped with an instant-start electronic ballast."

#### Exploratory Study: Recessed Troffer Lighting (May 2013)

#### Fact Sheets



odior applications has been the linear fluorescent lamps council of or over 75% of the lighting service in commercial laftings. Receives totiffer laminastic, commonly available patings. The total installed stock of common linear fluorescent laminastic later in the land stock of common linear fluorescent patings. The total installed stock of common linear fluorescent laminastics. In the United States is estimated to be over 60 million laminastes.<sup>1</sup>

amend from an estimated 40,000 units in 2010 to noarly 60,000 units in 2012. LED banishase still represent less an 0.3% of the troller kurninaries installed in commercial unidings. It may be possible to achieve over 25% energy average on anatonal level if LED technology machine its orgenetia marked penetration in throllen luminaries of over an be much greater than 25%. The related economic and woromental benefits are substantial?

Equipates Furchase Costs IED replacement lamps often provide the lowest cost option in terms of purchasing the LED components. The cost of LED reroft kits usually more than replacement lamps, and purchasing new LED luminaires usually is the highest cost.

a. Installation Labor Costs Replacement lange that simply snap into the existing fluores. Cont lange society provide the lowest labor costs for mitallators further modifications to the baseling of the source labor for the start of the source labor costs and the source of costs similar to perdote marketed as setted kins. Labor costs for installar generality have many labor labor for modifications requestly have that have labor modifications requestly have that have labor and depending on the extent of the lamont and depending on the extent of the lamont modifications request, any approximation or ensure costs the source of the labor request of the lamont of the lamont modifications request, any approximation or ensure costs of the labor modifications request, any approximation or ensure of the labor.



#### www.energy.gov/eere/ssl/led-linear-lamps-and-troffer-lighting



# How Do TLEDs Save Energy and \$?

- Higher source (system) efficacy (lamp + driver) compared to fluorescent system efficacy (lamp + ballast) = reduced connected wattage.
- Greater fixture efficiency. Directionality of TLED allows for more light (useful lumens) out of the fixture.
- Energy savings of 20-30% are possible with similar light levels but ultimately is a function of the space and the existing fixture type.
- Potential for longer "lamp" life = reduced maintenance costs
- Potential to optimize existing lighting systems (reduce light levels) that are overlighted by current ASHRAE/IES standards



# Key Challenges with TLEDs

- There are NO standards for:
  - Wiring configurations. No guarantee that a replacement lamp 5 years from now will be wired the same way
  - Distribution from the lamps. Is beam angle a good surrogate? What about "batwing" distributions?
  - Light output. Fluorescent lamps are interchangeable and have standard lumen/wattage ranges
- How many manufacturers are in the market?

3 manufacturer groups for UL Type A products: <u>Group 1</u>: Cree, GE, OSRAM SYLVANIA, Philips <u>Group 2</u>: Lighting Science Group, Litetronics, Maxlite, Ushio, Universal Lighting Technologies, Venture, Westinghouse <u>Group 3</u>: All others (about 190 companies)



Number of Type A products listed by manufacturer

# How Do We Design Indoor Lighting Systems?

- Lighting designers "target" a sustained light level based on many factors:
  - The room geometry (e.g. ceiling height, location to work plane, etc.)
  - The reflectances of the room surfaces. You often see "80/50/20" used.
    - 80% for acoustic ceiling
    - 50% for light colored walls
    - 20% for dark carpet
  - Various light loss factors (LLFs)
    - Lamp lumen, dirt, temperature, fixture, ballast, voltage, etc.
    - Lamp lumen depreciation is specified at a point in time (typically 40% of rated life for fluorescents).
    - The lamp lumen depreciation for a "good" quality F32T8 85 CRI fluorescent lamp is ~0.91 or 91%. Some "premium" lamps are capable of up to 94-96% lumen maintenance all the way out to rated lamp life.
- The initial light levels are generally higher than the space needs so as to deliver ≥ the target light levels at a point in time.
- As a practical matter light levels are generally allowed to fall about 10% below the target as the human eye will not notice the difference.
- Some building lease specifications may require a minimum light level at all times.



### **Design Considerations – Spacing Critera**



Luminaire Spacing = Spacing Criterion x mounting height above work plane (MH)

Courtesy: Acuity Lighting Technical Considerations



### LEDs are not "Everlasting Gobstoppers"





- ALL light sources degrade most fail before critical light output level is reached
- LED diodes can survive but also degrade well beyond useful light – levels
- Industry considers lumen output as one measure of the useful life of an LED diode. Commonly, 70% of initial output is used.





#### Lumen Maintenance Comparisons

Lamp Replacement at 70% of Rated Life



Run Hours (1000's)



### **LED Replacement Tube Varieties**

- LED replacement tubes come in a variety of distributions
- Directionality is efficacious but can effect performance in fixtures designed for omnidirectional fluorescent tubes.





### **Troffer Geometry**



Parabolic



Recessed Indirect





Volumetric





High Performance







### Fluorescent Tube vs. LED Tube Distribution Patterns





# The Troffer Conundrum – What do I do?



Super T8 Fluorescent Lamp/Ballast



Tubular LED (TLED)



LED Retrofit Kit



**New LED Fixture** 

### As with most things... Life is about Choices... and Lighting is no different!

| Category                                   | Power<br>Supply                                             | Light<br>Source<br>Mounting       | Dimming                                    | Controls                                            | Risk | Total<br>Cost | Attributes                                                                                                        |
|--------------------------------------------|-------------------------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------------------|------|---------------|-------------------------------------------------------------------------------------------------------------------|
| 1. LED<br>Replacement<br>Lamp<br>(Ballast) | Existing<br>fluorescent<br>ballast                          | Existing<br>fluorescent<br>socket | Unlikely                                   | Shut-off only<br>(switch or<br>occupancy<br>sensor) | ?    | \$            | LED or LFL option,<br>No electrician,<br>matches lens<br>configuration, need<br>for future ballast<br>replacement |
| 2. LED<br>Replacement<br>Lamp<br>(Mains)   | "Mains"<br>voltage                                          | Existing<br>fluorescent<br>socket | Yes, with<br>matching<br>0-10V<br>system   | Shut-off only<br>(switch or<br>occupancy<br>sensor) | ??   | \$\$          | Matches existing<br>lens configuration                                                                            |
| 3. LED<br>Replacement<br>Lamp<br>(Hybrid)  | "Mains"<br>voltage or<br>existing<br>fluorescent<br>ballast | Existing<br>fluorescent<br>socket | Only<br>likely if<br>FL ballast<br>removed | Shut-off only<br>(switch or<br>occupancy<br>sensor) | ?/?? | \$\$          | Matches existing<br>lens configuration                                                                            |
| 4. LED Retrofit<br>Kit (Lamp<br>Socket)    | Proprietary<br>power<br>supply                              | Existing<br>fluorescent<br>socket | Yes, with<br>matching<br>0-10V<br>system   | Yes, with<br>matching<br>driver/control             | ??   | \$\$\$        | Matches existing<br>lens configuration                                                                            |
| 5. LED Retrofit<br>Kit (Free-<br>form)     | Proprietary<br>power<br>supply                              | Free-form                         | Yes, with<br>matching<br>0-10V<br>system   | Yes, with<br>matching<br>driver/control             | ???  | \$\$\$        | Allows for light<br>source relocation/re-<br>alignment                                                            |



# Key Considerations for a Successful TLED Installation

- Give thought to your long term goals for the space. Some choices commit you to certain technology... for a long time!
- A "role" for "control." As luminaire efficacy increases the ability to add controls later becomes less cost-effective and a potential lost opportunity.
- Use the DesignLights<sup>®</sup> Consortium Qualified Products List and DOE LED Lighting Facts<sup>®</sup> to help find products that have been tested and meet your performance goals.
- Consider developing performance-based criteria for the intended application. Why not ask your vendor to deliver a system that meets your requirements (e.g., light levels when installed in your fixtures, maintained light levels at a period in time, etc.)?
- Target Facilities based on existing technology, light levels and energy costs.
- Do an honest life-cycle cost calculation or total cost of ownership.
- A mock-up is ALWAYS a good idea!



# The "A," "B," "A/B," and "C"s of TLEDs

In 2013, the lines for troffer "kits" were blurry...

- Many lamps required bypass of the ballast
- Some were wired to line voltage
- Others required an external driver
- Some came with new sockets
- Some had new luminaire optics
- Others didn't use the sockets at all
- Some you could install as simply as replacing the lamp
- Some you even had to aim!

... Since then, UL has helped bring clarity to some of the many options (UL 1598 certification)...



### UL 1598 **TYPE A**

- Replacement Lamps... plug'n play!
- Does not require mechanical or electrical changes to the fixture
- Can operate off an existing fluorescent ballast however compatibility varies (may not work on rapid start/programmed rapid start ballasts)
- More and more products available
- Efficiency loses due to ballast
- Existing ballast life
- LED life + ballast life... something will fail first!





### UL 1598 **TYPE B**

- Internal Driver/Line Voltage Lamp-Style Retrofit Kits
- Sockets are powered by line voltage, does NOT operate off the existing fluorescent ballast
- Requires rewiring of the existing fixture to bypass the ballast and send line voltage directly to the lamp holders
- Line-voltage sockets could prove dangerous for installer
- Still various wiring types





# UL 1598

#### **TYPE A/B (hybrid)**

- Internal Driver/Line Voltage Lamp-Style Retrofit Kits
- Dual Mode Internal Driver (UL Type A and Type B):
- operate off the existing fluorescent ballast
- also have the ability to operate off of line voltage if the troffer is rewired to bypass the ballast
- Sockets are powered by line voltage, does **NOT** operate off the existing fluorescent ballast
- Requires rewiring of the existing fixture to bypass the ballast and send line voltage directly to the lamp holders
- Line-voltage sockets could prove dangerous for installer
- Still various wiring types





### UL 1598 **TYPE C**

- External Driver Lamp-Style Retrofit Kits
- Sockets are powered by low-voltage drive current and does **NOT** operate off the existing fluorescent ballast
- Requires rewiring of the existing fixture to replace the ballast with an external driver
- Still variables within this category:
  - Form-factor,
  - wiring configuration





# Considerations - Are Retrofits a Good Idea?

| EXISTING<br>CONDITIONS<br>TO CONSIDER | DESCRIPTION                                                         | LAMPS | кітѕ | LUMINAIRES |
|---------------------------------------|---------------------------------------------------------------------|-------|------|------------|
|                                       | Look like new                                                       |       |      |            |
| Condition of<br>sockets               | Some wear but no<br>major cracks                                    |       | •    |            |
|                                       | Look old, blackened,<br>cracks apparent                             |       |      |            |
|                                       | Nice and white                                                      |       |      |            |
| Condition<br>of interior<br>surfaces  | Slightly worn but no<br>major scratches or<br>peeling paint         |       |      |            |
|                                       | Very worn, scratches<br>in paint, some peeling<br>paint             |       |      |            |
| Condition<br>of lens or<br>louvers    | Looks new; very little<br>wear apparent                             |       |      |            |
|                                       | Some minor color<br>variations or scratches<br>in surface           |       |      |            |
|                                       | Looks old, obvious<br>cracks or yellowing                           |       |      |            |
| Ceiling<br>access                     | No concerns with<br>working above the ceil-<br>ing; easy access     |       |      |            |
|                                       | Some concerns about<br>working above the<br>ceiling; limited access |       |      |            |
|                                       | Working above the ceiling should be avoided                         |       |      |            |

- There is no across-the-board one "best" option
- These are retrofit products. You need to know which system components are staying and compliment them.



# Navigating the Wiring Variables

#### **Existing: Instant Start Ballast**

- Lampholders are shunted
  - Internally
  - Externally

#### Existing: Programmed Start/Rapid Start/Magnetic Ballasts

- Lampholders are unshunted
- Unshunted lampholders can be easily shunted

- Products can be selected to reduce installation time
  - Type A- ballast compatibility
  - Type B- double ended power
  - Type C- double ended power
- Above recommendations will reduce installation time, but new ballasts/lampholders can be installed to accommodate any TLED



# Maintenance

- Re-lamping
  - Double-check manufacturer's wiring configuration (we have seen these change, even with the same model number!)
  - Clear documentation must be provided so the correct type and wiring can be purchased at time of re-lamping
  - Will the re-lamp work in the existing wiring configuration?
- Risks of Mis-lamping
  - Short Circuit at lamp holder
  - Re-installing fluorescent lamps leading to tube failure, socket damage, etc.



### Tons of Resources @ www.ssl.energy.gov





### **Questions and Answers**

Jeff McCullough Pacific Northwest National Laboratory (509) 375-6317 jeff.mccullough@pnnl.gov

